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Abstract

We introduce Sequential Neural Posterior Score
Estimation (SNPSE), a score-based method for
Bayesian inference in simulator-based models.
Our method, inspired by the remarkable success
of score-based methods in generative modelling,
leverages conditional score-based diffusion mod-
els to generate samples from the posterior distri-
bution of interest. The model is trained using an
objective function which directly estimates the
score of the posterior. We embed the model into a
sequential training procedure, which guides sim-
ulations using the current approximation of the
posterior at the observation of interest, thereby
reducing the simulation cost. We also introduce
several alternative sequential approaches, and dis-
cuss their relative merits. We then validate our
method, as well as its amortised, non-sequential,
variant on several numerical examples, demon-
strating comparable or superior performance to
existing state-of-the-art methods such as Sequen-
tial Neural Posterior Estimation (SNPE).

1. Introduction
Many applications in science, engineering, and economics
make use of stochastic numerical simulations to model com-
plex phenomena of interest. Such simulator-based models
are often designed by domain experts, using knowledge of
the underlying principles of the process of interest. They are
thus well suited to domains in which observations are best
understood as the result of mechanistic physical processes.
These include, amongst others, neuroscience (Sterratt et al.,
2011; Gonçalves et al., 2020), evolutionary biology (Beau-
mont et al., 2002; Ratmann et al., 2007), ecology (Beaumont,
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2010; Wood, 2010), epidemiology (Corander et al., 2017),
climate science (Holden et al., 2018), cosmology (Alsing
et al., 2018), high-energy physics (Brehmer, 2021), and
econometrics (Gourieroux et al., 1993).

In many cases, simulator-based models depend on parame-
ters θ which cannot be identified experimentally, and must
be inferred from data x. Bayesian inference provides a prin-
cipled approach for this task. In particular, given a prior p(θ)
and a likelihood p(x|θ), Bayes’ Theorem gives the posterior
distribution over the parameters as

p(θ|x) = p(x|θ)p(θ)
p(x)

(1)

where p(x) =
∫
p(x|θ)p(θ)dθ is known as the evidence

or marginal likelihood. The major difficulty associated
with simulator-based models is the absence of a tractable
likelihood function p(x|θ). This precludes, in particular,
the use of conventional likelihood-based Bayesian infer-
ence methods such as Markov chain Monte Carlo (MCMC)
(Brooks et al., 2011) or variational inference (VI) (Blei et al.,
2017). The resulting inference problem is often referred to
as likelihood-free inference or simulation-based inference
(SBI) (Cranmer et al., 2020; Sisson et al., 2018).

Traditional methods for performing SBI include approxi-
mate Bayesian computation (ABC) (Beaumont et al., 2002;
Sisson et al., 2018), whose variants include rejection ABC
(Tavaré et al., 1997; Pritchard et al., 1999), MCMC ABC
(Marjoram et al., 2003), and sequential Monte Carlo (SMC)
ABC (Beaumont et al., 2009; Bonassi & West, 2015). In
such methods, one repeatedly samples parameters, and only
accepts parameters for which the corresponding samples
from the simulator are similar to the observed data xobs.

More recently, a range of new SBI methods have been intro-
duced, which leverage advances in machine learning such
as normalising flows (Papamakarios et al., 2017; 2021) and
generative adversarial networks (Goodfellow et al., 2014).
These methods often include a sequential training proce-
dure, which adaptively guides simulations to yield more
informative data. Such methods include Sequential Neu-
ral Posterior Estimation (SNPE) (Papamakarios & Murray,
2016; Lueckmann et al., 2017; Greenberg et al., 2019), Se-
quential Neural Likelihood Estimation (SNLE) (Lueckmann
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Figure 1. Visualisation of posterior inference using Neural Posterior Score Estimation (NPSE) in the ‘Two Moons’ experiment.
The forward process transforms samples from the target posterior distribution p(θ|x) to a tractable reference distribution. The backward
process transports samples from the reference to the target posterior. The backward process depends on the scores ∇θ log pt(θ|x), which
can be estimated using score matching techniques given access to samples (θ, x) ∼ p(θ)p(x|θ) (see Section 2.2).

et al., 2019; Papamakarios et al., 2019), and Sequential Neu-
ral Ratio Estimation (SNRE) (Durkan et al., 2020; Hermans
et al., 2020; Miller et al., 2021; Thomas et al., 2022). Other
more recent algorithms of a similar flavour include Sequen-
tial Neural Variational Inference (SNVI) (Glockler et al.,
2022), Generative Adversarial Training for SBI (GATSBI)
(Ramesh et al., 2022), Truncated SNPE (TSNPE) (Deistler
et al., 2022a), and Sequential Unnormalized Neural Likeli-
hood Estimation (SUNLE) (Glaser et al., 2022).

In this paper, we present Neural Posterior Score Estima-
tion (NPSE), as well as its sequential variant (SNPSE). Our
method, inspired by the remarkable success of score-based
generative models (Song & Ermon, 2019; Song et al., 2021;
Ho et al., 2020), utilises a conditional score-based diffusion
model to generate samples from the posterior of interest.
While similar approaches (e.g., Batzolis et al., 2021; Dhari-
wal & Nichol, 2021; Song et al., 2021; Tashiro et al., 2021;
Chao et al., 2022; Chung & Ye, 2022) have previously found
success in a variety of problems, their application to SBI
has not yet been widely investigated.1

In contrast to existing SBI approaches based on normalising
flows (e.g., SNLE, SNPE), our approach only requires esti-
mates for the gradient of the log density, or score function,
of the intractable likelihood or the posterior, which can be
approximated using a neural network via score matching
techniques (Hyvärinen, 2005; Vincent, 2011; Song et al.,
2020). Since we do not require a normalisable model, our
method avoids the need for any strong restrictions on the
model architecture. In addition, unlike methods based on
generative adversarial networks (e.g., GATSBI), we do not
require adversarial training objectives, which are notoriously
unstable (Metz et al., 2017; Salimans et al., 2016).

We first discuss how conditional score-based diffusion mod-
els can be used for SBI. We then outline how our approach
can be embedded within a principled sequential training
procedure, which guides simulations towards informative

1In parallel with an early version of this work, Geffner et al.
(2023) also studied the use of diffusion models for SBI. We provide
a comparison with this paper in Section 4.3 and Appendix D.

regions using the current approximation of the posterior. We
outline in detail a number of possible sequential procedures,
several of which could also be used to develop sequential
variants of amortised algorithms more recently proposed in
the SBI literature (e.g., Dax et al., 2023). We then advo-
cate for our preferred method, Truncated Sequential NPSE
(TSNPSE), which uses a series of truncated proposals in-
spired by the approach in Deistler et al. (2022a). We validate
our methods on several benchmark SBI problems as well as
a real-world neuroscience problem, obtaining comparable
or superior performance to other state-of-the-art methods.

2. Simulation-Based Inference with Diffusion
Models

2.1. Simulation-Based Inference

Suppose that we have access to a simulator which, given
input parameters θ ∈ Rd, generates synthetic data x ∈ Rp.
We assume that parameters are distributed according to
some known prior p(θ), but that the likelihood p(x|θ)
is intractable. Given an observation xobs, we are inter-
ested in generating samples from the posterior distribution
p(θ|xobs) ∝ p(θ)p(xobs|θ), given a finite number of i.i.d.
samples {(θi, xi)}Ni=1 ∼ p(θ)p(x|θ).

2.2. Diffusion Models for Simulation-Based Inference

We propose to tackle this problem using conditional score-
based diffusion models (e.g., Song et al., 2021). In such
models, noise is gradually added to the target distribution
using a diffusion process, resulting in a tractable reference
distribution, e.g., a standard Gaussian. The time-reversal
of this process is also a diffusion process, whose dynam-
ics can be approximated using score matching (Hyvärinen,
2005; Vincent, 2011; Song & Ermon, 2020; Song et al.,
2021). One can thus generate samples from the target distri-
bution by simulating the approximate reverse-time process,
initialised at samples from the reference distribution.

More concretely, we begin by defining a forward noising
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process (θt)t∈[0,T ] which, initialised at θ0 ∼ p(·|x), evolves
according to the stochastic differential equation (SDE)

dθt = f(θt, t)dt+ g(t)dwt, (2)

where f : Rd×R+ → Rd is the drift coefficient, g : R+ →
Rd is the diffusion coefficient, and (wt)t≥0 is a standard
Rd-valued Brownian motion. The coefficients f and g are
chosen such that, for all x ∈ Rp, the forward noising process
admits a unique stationary distribution π from which it is
easy to sample, e.g., a standard Gaussian.

Under mild conditions, the time-reversed process
(θ̄t)t∈[0,T ] := (θT−t)t∈[0,T ] is also a diffusion process
(Anderson, 1982; Föllmer, 1985; Haussmann & Pardoux,
1986). Initialised at θ̄0 ∼ pT (·|x), this process evolves
according to

dθ̄t =
[
−f(θ̄t, T − t) + g2(T − t)∇θ log pT−t(θ̄t|x)

]
dt

+ g(T − t)dwt, (3)

where pt(·|x) =
∫
pt|0(·|θ0)p(θ0|x)dθ0 denotes the time

marginal density of θt, conditioned on x. By defini-
tion, the marginals of (θ̄t)t∈[0,T ]|x are equal to those of
(θT−t)t∈[0,T ]|x. Thus, in particular, θ̄T ∼ p0(·|x) :=
p(·|x). Hence, if we could sample θ̄0 ∼ pT (·|x), and sim-
ulate (θ̄t)t∈[0,T ] according to (3), then its final distribution
would be the desired posterior distribution. This process is
visualised in Figure 1.

Although this procedure provides an elegant sampling
mechanism, it does not allow us to evaluate the density
p0(θ|x) := p(θ|x) of these samples. Fortunately, there ex-
ists an ODE with the same marginals as (2), which does en-
able density evaluation. This deterministic process, known
as the probability flow ODE (Song et al., 2021), defines
(θt)t∈[0,T ] according to

dθt
dt

=

[
f(θt, t)−

1

2
g2(t)∇θ log pt(θt|x)

]
, (4)

where once again θ0 ∼ p(·|x). In this case, the log densities
log pt(θt|x) can be computed exactly via the instantaneous
change-of-variables formula (Chen et al., 2018a):

d log pt(θt|x)
dt

(5)

= −Tr
[
∇θ

(
f(θt, t)−

1

2
g2(t)∇θ log pt(θt|x)

)]
.

In practice, we cannot simulate (3) or (4) directly, since we
do not have access to pT (·|x), or the scores ∇θ log pt(θt|x).
We will therefore rely on two approximations. First, we
will assume that pT ≈ π. Second, we will approximate
∇θ log pt(θt|x) using score matching (e.g., Song et al.,
2021), and substitute this approximation into (3) or (4).
In this case, the ODE in (4) is an instance of a continuous
normalising flow (CNF) (Grathwohl et al., 2019).

There are various ways in which we can obtain this approxi-
mation. Here, we choose to train a time-varying score net-
work sψ(θt, x, t) ≈ ∇θ log pt(θt|x) to directly approximate
the score of the perturbed posterior (Dhariwal & Nichol,
2021; Song et al., 2021; Batzolis et al., 2021).2 In this case,
a natural objective is the weighted Fisher divergence

J SM
post(ψ) =

1

2

∫ T

0

λt (6)

Ept(θt,x)
[
||sψ(θt, x, t)−∇θ log pt(θt|x)||2

]
dt,

where λt : [0, T ] → R+ is a positive weighting function,
and pt(θt, x) denotes the joint distribution of (θt, x). In
practice, this objective cannot be evaluated directly, since
it depends on the posterior scores ∇θ log pt(θt|x). Fortu-
nately, one can show (e.g., Batzolis et al., 2021; Tashiro
et al., 2021; Appendix A.1) that it is equivalent to minimise
the conditional denoising posterior score matching objective,
given by

J DSM
post (ψ) =

1

2

∫ T

0

λtEpt|0(θt|θ0)p(x|θ0)p(θ0) (7)[
||sψ(θt, x, t)−∇θt log pt|0(θt|θ0)||2

]
dt,

where pt|0(θt|θ0) denotes the transition density defined
by (2). In particular, this objective is minimised when
sψ(θt, x, t) = ∇θ log pt(θt|x) for almost all θt ∈ Rd, x ∈
Rp, and t ∈ [0, T ].

The expectation in (7) only depends on samples θ0 ∼ p(θ)
from the prior, x ∼ p(x|θ0) from the simulator, and θt ∼
pt|0(θt|θ0) from the forward diffusion (2). Moreover, given
a suitable choice for the drift and diffusion coefficients in
(2), the scores ∇θt log pt|0(θt|θ0) can be computed in closed
form. We can thus compute a Monte Carlo estimate of (7),
and minimise this to obtain sψ(θt, x, t) ≈ ∇θ log pt(θt|x).

We now have all of the necessary ingredients to generate
approximate samples from the target posterior distribution:

(i) Draw samples θ0 ∼ p(θ) from the prior, x ∼ p(x|θ0)
from the likelihood, and θt ∼ pt|0(θt|θ0) using the for-
ward process (2).

(ii) Using these samples, train a time-varying score network
sψ(θt, x, t) ≈ ∇θ log pt(θt|x) by minimising a Monte
Carlo estimate of (7).

(iii) Draw samples θ̄0 ∼ π(·). Simulate an approximation of
the reverse-time process in (3), or the time-reversal of the
probability flow ODE in (4), with x = xobs, replacing
∇θ log pt(θt|xobs) ≈ sψ(θt, xobs, t).

2In Appendix B, we outline an alternative approach which
instead trains a score-network to approximate the score of the
perturbed likelihood ∇θ log pt(x|θt). We refer to this approach as
Neural Likelihood Score Estimation (NLSE).
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In line with the current SBI taxonomy, we will refer to this
approach as Neural Posterior Score Estimation (NPSE).

In Appendix A.2, we provide error bounds for NPSE in the
fully deterministic sampling regime, assuming an L2 bound
on the approximation error and a mild regularity condition
on the target posterior p(·|xobs). Our result is adapted from
Benton et al. (2024, Theorem 6).

3. Sequential Neural Score Estimation
Given enough data and a sufficiently flexible model, the op-
timal score network sψ∗(θt, x, t) will equal ∇θ log pt(θt|x)
for almost all x ∈ Rp, θt ∈ Rd, and t ∈ [0, T ]. Thus, in
theory, we can use the methods in the previous section to
generate samples θ ∼ p(θ|x) for any observation x.

In practice, we are often only interested in sampling from the
posterior for a particular experimental observation x = xobs.
Thus, given a finite simulation budget, it may be more effi-
cient to train the score network using simulated data which
is close to xobs, and thus more informative for learning the
posterior scores ∇θ log pt(θt|xobs). This can be achieved
by drawing initial parameter samples from a suitably cho-
sen proposal prior, θ0 ∼ p̃(θ), rather than the true prior
θ0 ∼ p(θ). This idea is central to existing sequential SBI al-
gorithms, which use a sequence of adaptively chosen propos-
als in order to guide simulations towards more informative
regions. The central challenge associated with developing a
successful sequential algorithm is how to effectively correct
for the mismatch between the so-called proposal posterior

p̃(θ|x) = p(θ|x) p̃(θ)
p(θ)

p(x)

p̃(x)
, (8)

and the true posterior p(θ|x) ∝ p(θ)p(x|θ). In the following
sections, we introduce several possible sequential variants
of NPSE, which we collectively refer to as SNPSE. We
note, as pointed out in the introduction, that in principle
these approaches could also be used to develop sequential
variants of the recently proposed flow-matching posterior
estimation (FMPE) algorithm (Dax et al., 2023).

We begin by outlining some generic features of the se-
quential procedure, which hold irrespective of the specific
sequential method employed (see Sections 3.1 - 3.2). In
all cases, the sequential procedure will take place over
R rounds, indexed by r ≥ 1. Given a total budget of
N simulations, we assume the simulations are evenly dis-
tributed across rounds: Nr = N/R =M for r = 1, . . . , R,
where Nr is the number of simulations in round r. In the
first round, we follow the standard NPSE algorithm (Sec-
tion 2). In particular, we first generate {θ10,i}Mi=1 ∼ p(θ)
from the prior, and {x1i }Mi=1 ∼ p(x|θ0,i) using the simu-
lator. These samples are used to train a score network
sψ(θt, x, t) ≈ ∇θ log pt(θt|x) by minimising (7). By sub-
stituting this into (3), we can generate samples approxi-

mately from the target posterior.

Following the initial round, there are several conceivable se-
quential procedures one could use to generate samples from
p(θ|xobs). We now describe several such methods. Broadly
speaking, these procedures differ in (i) how they define the
proposal prior; and (ii) how they correct for the mismatch
between the proposal posterior and the true posterior.

3.1. Truncated Approach

We first introduce our preferred method: Truncated SNPSE
(TSNPSE). This algorithm - summarised in Algorithm 1 -
utilises a series of proposals given by truncated versions of
the prior, inspired by the approach in Deistler et al. (2022a).
For r ≥ 1, let pr−1

ψ (θ|xobs) denote the approximation to
the target posterior learned in the (r − 1)th round, with the
convention that p0ψ(θ) := p(θ). Then, in the rth round, we
will use the highest-probability region of this approximation
to define a truncated version of the prior. To be precise, in
the rth round, suppose we define

p̄r(θ) ∝ p(θ) · I{θ ∈ HPRε(p
r−1
ψ (θ|xobs))}, (9)

where HPRε(·) denotes the highest 1 − ε probability re-
gion, defined as the smallest region which contains 1− ε of
the mass; and we adopt the convention that p̄0(θ) = p(θ).
We then define the proposal distribution for this round as
p̃r(θ) = 1

r

∑r−1
s=0 p̄

s(θ). Additional details regarding how
to compute and sample from this proposal distribution are
provided in Appendix E.3.

Crucially, under the assumption that we do not truncate
regions which have non-zero mass under the true posterior
p(θ|xobs), this proposal distribution is proportional to the
prior within the support of the posterior. Thus, we do not
need to perform a correction. In particular, our loss function
remains minimised at the score of the target posterior. This
statement is formalised in the following proposition.

Proposition 3.1. Let p̃r(θ) = 1
r

∑r−1
s=0 p̄

s(θ), where
p̄0(θ) = p(θ) and p̄s(θ) is defined by (9) for all s ≥ 1.
Suppose that Θobs ⊆ HPRϵ(p

s
ψ(θ|xobs)) for all s ≥ 1,

where Θobs = supp(p(·|xobs)). Then, writing p̃rt (θt, x)
for the distribution of (θt, x) when (θ0, x) ∼ p̃r(θ, x), the
minimiser ψ∗ of the loss function

J TSNPSE−SM
post (ψ) =

1

2

∫ T

0

λtEp̃rt (θt,x) (10)

[||sψ(θt, x, t)−∇θ log pt(θt|x)||2]dt,

or, equivalently, of the loss function

J TSNPSE−DSM
post (ψ) =

1

2

∫ T

0

λtEpt|0(θt|θ0)p(x|θ0)p̃r(θ0) (11)

[||sψ(θt, x, t)−∇θ log pt|0(θt|θ0)||2]dt,

satisfies sψ⋆(θt, xobs, t) = ∇θ log pt(θt|xobs).
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Proof. See Appendix C.1.

Algorithm 1 TSNPSE

Inputs: Observation xobs, prior p(θ) =: p̄0(θ), simula-
tor p(x|θ), simulation budget N , number of rounds R,
(simulations-per-round M = N/R), dataset D = {}.
Outputs: pψ(θ|xobs) ≈ p(θ|xobs).
for r = 1, . . . , R do

for i = 1, . . . ,M do
Draw θi ∼ p̄r−1(θ), xi ∼ p(x|θi).
Add (θi, xi) to D.

end for
Learn sψ(θt, x, t) ≈ ∇θ log pt(θt|x) by minimising a
Monte Carlo estimate of (11) based on dataset D.
Compute p̄r(θ) in (9) using sψ(θt, xobs, t). See Ap-
pendix E.3 for details.

end for
Get pψ(θ|xobs) sampler by substituting sψ(θt, xobs, t) ≈
∇θ log pt(θt|xobs) in (4).
Return: pψ(θ|xobs).

3.2. Alternative Approaches

We now outline several other possible sequential approaches
for NPSE. An extensive and detailed discussion of these
methods, as well as supporting numerical results, can be
found in Appendix C. Broadly speaking, these methods can
be viewed as score-based analogues of existing sequential
variants of NPE, namely, SNPE-A (Papamakarios & Murray,
2016), SNPE-B (Lueckmann et al., 2017), and SNPE-C
(Greenberg et al., 2019). We refer to, e.g., Durkan et al.
(2020) for a concise overview of SNPE-A, SNPE-B, and
SNPE-C.

Unlike TSNPSE, in each of these methods, the proposal
prior is defined directly in terms of the most recent approx-
imation of the posterior. In particular, in the rth round,
we now sample new parameters {θr0,i}Mi=1 ∼ pr−1

ψ (θ|xobs)
and simulate new data {xri }Mi=1 ∼ p(x|θr0,i). We then con-
catenate these samples with those from previous rounds to
form

⋃r
s=1{(θs0,i, xsi )}Mi=1 ∼ p̃r(θ)p(x|θ), where p̃r(θ) =

1
r

∑r−1
s=0 p

s
ψ(θ|xobs), and p0ψ(θ|xobs) := p(θ).

In this case, if were to minimise the original score match-
ing objective (7), but using samples θ0 ∼ p̃r(θ) rather
than θ0 ∼ p(θ), we would learn a score network which
approximates ∇θ log p̃

r
t (θt|x), rather than ∇θ log pt(θt|x),

where p̃rt (θt|x) =
∫
Rd pt|0(θt|θ0)p̃r(θ0|x)dθ0, and

p̃r(θ|x) = p̃r(θ)p(x|θ)
p̃r(x) . Substituting this score network, eval-

uated at x = xobs, into (3) or (4), would then result in
samples θ ∼ p̃r(θ|xobs), rather than θ ∼ p(θ|xobs). We
thus require a correction to recover samples from the correct
posterior.

SNPSE-A. The first approach is to perform a post-hoc im-
portance weight correction using, e.g., sampling-importance
resampling (SIR) (Rubin, 1987; 1988; Smith & Gelfand,
1992; Gelman et al., 1995). According to this approach,
we first generate {θ̃i}M

′

i=1 ∼ p̃rψ(·|xobs), where p̃rψ(·|xobs)
denotes the approximate proposal posterior obtained in the
rth round, and M ′ ≥ M . We then draw samples {θi}Mi=1

with or without replacement from {θ̃i}M
′

i=1, with sample
probabilities, w̃i, proportional to the importance ratios

h̃i =
p(θ̃i|xobs)
p̃rψ(θ̃i|xobs)

. (12)

In the limit as M ′ → ∞, this sample will consist of inde-
pendent draws from p(·|xobs) (e.g., Smith & Gelfand, 1992).
In practice, we cannot evaluate p(·|xobs) in (12), and thus
will instead use sample probabilities wi proportional to

hi =
p(θ̃i)

p̃r(θ̃i)
. (13)

The importance ratios in (13) are approximately propor-
tional to the correct importance ratios in (12), since

hi =
p(θ̃i)

p̃r(θ̃i)
∝ p(θ̃i|xobs)
p̃r(θ̃i|xobs)

≈ p(θ̃i|xobs)
p̃rψ(θ̃i|xobs)

= h̃i. (14)

Although SNPSE-A can work well in simple settings, it is
fundamentally limited by the approximation introduced in
(14). In particular, when there is a significant mismatch
between the true proposal, p̃r(·|xobs), and the approximate
(learned) proposal, p̃rψ(·|xobs), this approach can lead to
inaccurate inference (see Appendix C.2).

SNPSE-B. The second approach is to include an impor-
tance weight correction within the denoising score matching
objective (7). In particular, in the rth round, we now min-
imise a Monte Carlo estimate of

J SNPSE−B
post (ψ) =

1

2

∫ T

0

λtEpt|0(θt|θ0)p(x|θ0)p̃r(θ0) (15)[
p(θ0)

p̃r(θ0)
||sψ(θt, x, t)−∇θt log pt|0(θt|θ0)||2

]
dt.

It is straightforward to show that this objective is minimised
at the score of the true posterior, that is, by ψ∗ such that
sψ∗(θt, x, t) = ∇θ log pt(θt|x) (see Appendix C.3). Un-
fortunately, similar to SNPE-B (Lueckmann et al., 2017),
the importance weights are often high variance, resulting in
unstable training and poor overall algorithm performance
(e.g., Papamakarios et al., 2019; Durkan et al., 2019).

SNPSE-C. The third approach is to include a score-
based correction within the denoising posterior score match-
ing objective (7). In this case, we minimise (7), now
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over samples from the proposal prior, to learn an esti-
mate s̃rψ(θt, x, t) ≈ ∇θ log p̃

r
t (θt|x) of the proposal poste-

rior. We would like to use this to automatically recover an
estimate of ∇θ log pt(θt|x). To do so, observe that

∇θ log pt(θt|x) = ∇θ log pt(θt) +∇θ log pt(x|θt) (16)
∇θ log p̃

r
t (θt|x) = ∇θ log p̃

r
t (θt) +∇θ log p̃

r
t (x|θt) (17)

where pt(x|θt) =
∫
p(x|θ0)p0|t(θ0|θt)dθ0 and p̃rt (x|θt) =∫

p(x|θ0)p̃r0|t(θ0|θt)dθ0. Thus, in particular,

∇θ log p̃
r
t (θt|x) = ∇θ log pt(θt|x) (18)

+∇θ log p̃
r
t (θt) +∇θ log p̃

r
t (x|θt)

−∇θ log pt(θt)−∇θ log pt(x|θt).

This identity suggests defining s̃rψ(θt, x, t) in terms of an-
other score network sψ(θt, x, t) according to

s̃rψ(θt, x, t) = sψ(θt, x, t) (19)

+∇θ log p̃
r
t (θt) +∇θ log p̃

r
t (x|θt)

−∇θ log pt(θt)−∇θ log pt(x|θt).

In this case, given s̃rψ(θt, xobs, t) ≈ ∇θ log p̃
r
t (θt|xobs), we

also have sψ(θt, xobs, t) ≈ ∇θ log pt(θt|xobs) from (18) -
(19), as required. Unlike SNPSE-A and SNPSE-B, SNPSE-
C has the advantage of not requiring importance weights.
Moreover, since the corrections are performed ‘in the score
space’, it does not require us to evaluate p̃r(·), and thus does
not necessitate calculating likelihoods via (4) and (5). On
the other hand, it does require knowledge of ∇θ log p̃

r
t (θt),

∇θ log p̃
r
t (x|θt), ∇θ log pt(θt), and ∇θ log pt(x|θt), which

are not immediately available. Thus, in practice, this ap-
proach depends on several additional approximations. We
provide further details in Appendix C.4.

In empirical testing, the corrections required for SNPSE-
A, SNPSE-B, and SNPSE-C, lead to significantly worse
performance than TSNPSE (see Appendix C). On this basis,
we advocate for TSNPSE as the preferred sequential method,
and focus exclusively on this approach in our subsequent
numerics (see Section 5).

4. Related Work
4.1. Simulation-Based Inference

Approximating the Posterior. Many modern SBI algo-
rithms are based on learning a conditional neural density
estimator qψ(θ|x) to approximate the posterior p(θ|x), often
over a number of rounds of training (Papamakarios & Mur-
ray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019).
This approach is known as SNPE. Such methods circumvent
the bias introduced by the use of a proposal prior in various
ways, including a post-hoc importance weight correction
(SNPE-A) (Papamakarios & Murray, 2016), minimising an

importance weighted loss function (SNPE-B) (Lueckmann
et al., 2017), and re-parametrising the proposal posterior
objective (SNPE-C) (Greenberg et al., 2019). Alternatively,
the use of a truncated prior as the proposal circumvents
the need for a correction (TNPSE) (Deistler et al., 2022a).
As noted in Section 3, our sequential methods can loosely
be viewed as analogues of these approaches suitable for
diffusion models.

Approximating the Likelihood. Rather than approximat-
ing the posterior directly, another approach is to learn a
model qψ(x|θ) for the intractable likelihood p(x|θ). Such
methods are sometimes referred to as Synthetic Likelihood
approaches (Wood, 2010; Ong et al., 2018; Price et al., 2018;
Frazier et al., 2022). Early examples of this approach as-
sume that the likelihood can be parameterised as a single
Gaussian (Wood, 2010), or a mixture of Gaussians (Fan
et al., 2013). More recent approaches, referred to as SNLE,
train conditional neural density estimators, over a number
of rounds (Lueckmann et al., 2019; Papamakarios et al.,
2019). While SNLE does not require a correction, it does
rely on MCMC to generate posterior samples. This can
be costly, and may prove prohibitive for posteriors with
complex geometries.

Approximating the Likelihood Ratio. Another approach
to simulation-based inference is based on learning a para-
metric model for the likelihood-to-marginal ratio r(x, θ) =
p(x|θ)/p(x) = p(θ|x)/p(θ) (Izbicki et al., 2014; Tran et al.,
2017; Durkan et al., 2020; Hermans et al., 2020; Miller et al.,
2021; Simons et al., 2021; Thomas et al., 2022), or the like-
lihood ratio r(x, θ1, θ2) = p(x|θ1)/p(x|θ2) (Pham et al.,
2014; Cranmer et al., 2016; Gutmann et al., 2018; Stoye
et al., 2019; Brehmer et al., 2020). In the first case, one
trains a binary classifier to approximate this ratio. Using
the fact that p(θ|xobs) = p(θ)r(xobs, θ), one can then use
MCMC to generate posterior samples. This approach is also
amenable to a sequential implementation, known as SNRE
(Durkan et al., 2020).

Approximating the Posterior and the Likelihood. Two
recent methods aim to combine the advantages of SNLE
(or SNRE) and SNPE, while addressing their shortcomings
(Wiqvist et al., 2021; Glockler et al., 2022). In particular,
SNVI (Glockler et al., 2022) and Sequential Neural Pos-
terior and Likelihood Approximation (SNPLA) (Wiqvist
et al., 2021) first train a neural density estimator qψlik(x|θ)
to approximate the likelihood, or the likelihood ratio. Once
this model has been trained, one trains a parametric approxi-
mation qψpost(θ) for the posterior, using variational inference
with normalising flows. These methods differ in their vari-
ational objectives: SNVI uses the forward KL divergence,
the importance weighted ELBO, or the Renyi α-divergence,
while SNPLA uses the reverse KL divergence.
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4.2. Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Song & Er-
mon, 2019; Ho et al., 2020; Song et al., 2021) have recently
emerged as a new class of generative models. These models
offer high quality generation and sample diversity, do not
require adversarial training, and have achieved state-of-the-
art performance in a range of applications, including image
generation (Dhariwal & Nichol, 2021; Ho et al., 2020; Song
et al., 2021), audio synthesis (Chen et al., 2021; Kong et al.,
2021; Popov et al., 2021), shape generation (Cai et al., 2020),
music generation (Mittal et al., 2021), and video generation
(Ho et al., 2022).

Conditional diffusion models (Song & Ermon, 2019; Song
et al., 2021; Batzolis et al., 2021; Dhariwal & Nichol, 2021;
Chao et al., 2022) extend this framework to allow for con-
ditional generation, allowing for tasks such as image in-
painting (Song et al., 2021), time series imputation (Tashiro
et al., 2021), image colourisation (Song et al., 2021), and
medical image reconstruction (Song et al., 2022). In such
applications, the ‘prior’ typically corresponds to an un-
known data distribution, whose score is estimated using
score matching. Meanwhile, the ‘likelihood’ is often known,
or else corresponds to a differentiable classifier (e.g., Song
et al., 2021). This is rather different to our setting, in
which the prior is typically known, while the likelihood
is intractable.

4.3. Diffusion Models and Simulation-Based Inference

Surprisingly, the application of diffusion models to prob-
lems of interest to the SBI community (see, e.g., Lueckmann
et al., 2021) has not previously been investigated. In parallel
with this work, Geffner et al. (2023) also considered the
use of diffusion models for SBI. While related to our work,
Geffner et al. (2023) focused specifically on how to use
NPSE for sampling from p(θ|x1obs, . . . , xnobs), for any set of
observations {x1obs, . . . , xnobs}. Meanwhile, we introduce
sequential variant(s) of NPSE (see Section 3). We provide a
more detailed comparison with this work in Appendix D.

More recently, several other authors have proposed SBI al-
gorithms which are closely related to diffusion models. In
particular, Dax et al. (2023) propose flow matching posterior
estimation (FMPE), an SBI algorithm which approximates
the posterior p(θ|x) using a CNF trained via flow matching
(Lipman et al., 2023). This approach includes NPSE, when
using the deterministic probability-flow ODE, as a special
case. Meanwhile, Schmitt et al. (2023) introduce consis-
tency model posterior estimation (CMPE), which applies
consistency models (Song et al., 2023) to SBI. In contrast to
our work, both of these papers consider only the amortised
setting, and do not introduce sequential variants of their
algorithms.

5. Numerical Experiments
In this section we benchmark the numerical performance
of NPSE and TSNPSE. Code to reproduce our numer-
ical results can be found at https://github.com/
jacksimons15327/snpse_icml.

5.1. Experimental Details

In all experiments, our score network is comprised of inde-
pendent multilayer perceptron (MLP) embedding networks
for θt and x. A sinusoidal embedding is employed for t. The
embeddings of θt, x, t are concatenated and input to a MLP.
All MLP networks have 3 fully connected layers, each with
256 neurons and SiLU activation functions. We use Adam
(Kingma & Ba, 2015) to train the networks, with a learning
rate of 10−4. We hold back 15% of the data to be used as a
validation set for early stopping. We provide details of any
additional hyperparameters in Appendix E.3.2.

5.2. Benchmark Results

We first provide results for eight popular SBI benchmarks
described in Lueckmann et al. (2021) (see Appendix E.1 for
details). We consider simulation budgets of 1000, 10000
and 100000. In all cases, we report the classification-based
two-sample test (C2ST) score (Lopez-Paz & Oquab, 2017),
which varies between 0.5 and 1 (lower is better), with a
score of 0.5 indicating perfect posterior estimation.

For both our non-sequential (NPSE) and sequential
(TSNPSE) methods, we consider two choices of dynam-
ics for the forward noising process: a variance-exploding
SDE (VE SDE) and a variance-preserving SDE (VP SDE)
(Song et al., 2021). Further details can be found in Ap-
pendix E.3.1. For reference, we compare our non-sequential
method (NPSE) with NPE (Papamakarios & Murray, 2016);
and our sequential method (TSNPSE) with SNPE-C (Green-
berg et al., 2019) and TSNPE (Deistler et al., 2022a). For
these algorithms, we obtain results using the Python toolkit
sbibm (Lueckmann et al., 2021). We include an additional
comparison with FMPE (Dax et al., 2023) in Appendix F.

Our results, provided in Figures 2 and 3, demonstrate that
diffusion models provide an accurate and robust alternative
to state-of-the-art SBI methods based on posterior density
estimation with (discrete) normalising flows. Notably, for
the two most challenging benchmark experiments, SLCP
and Lotka Volterra, our methods outperform their competi-
tors, providing evidence that our proposed algorithms scale
well to high-dimensions. For the remaining benchmark
experiments, the results are more mixed, with the best per-
forming method varying based on the task at hand as well
as the simulation budget. It is worth emphasising that our
algorithms employ the same hyperparameter settings (e.g.,
neural network architecture, optimizer, etc.) across all exper-
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Figure 2. Results on eight benchmark tasks (non-sequential methods).
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Figure 3. Results on eight benchmark tasks (sequential methods).

iments, including both the benchmarks and the real-world
experiment in Section 5.3, and that we did not perform
an extensive hyperparameter search. We suspect that the
performance of (TS)NPSE could be further improved with
additional tuning.

We also note that the choice of dynamics (e.g., VE SDE
or VP SDE) for the forward noising process can have a
significant impact on the quality of the posterior inference,
although the best performing method can fluctuate based on
the task at hand. In general, based on our empirical results,
we recommend VE SDE for low dimensional experiments,
and VP SDE for high dimensional experiments.

5.3. Real-world Neuroscience Problem

We also apply TSNPSE to a challenging real-world neuro-
science problem: inference for the parameters of a simulator
model of the pyloric network of the stomatogastric ganglion
in the crab Cancer borealis (Prinz et al., 2003; 2004). In this
case, the model simulates 3 neurons, whose behaviours are
governed by synapses and membrane conductances which
together constitute a set of 31 parameters. The simulator out-

puts 3 voltage traces, which are condensed into 18 summary
statistics (Prinz et al., 2003; 2004). The prior is uniform
over previously defined parameter ranges (Prinz et al., 2004;
Gonçalves et al., 2020). We are interested in inferring the
posterior distribution of the parameters, given experimen-
tally observed data (Haddad & Marder, 2021).

In this model, the volume of the parameter space which
gives rise to meaningful summary statistics is very small.
For example, over 99% of prior samples input into the sim-
ulator result in neural traces with ill-defined summary statis-
tics. This, alongside the significant simulator cost, ren-
ders posterior inference in this model a very challenging
task. Previous work has performed amortised inference us-
ing NPE, although this requires several million simulations
(Gonçalves et al., 2020; Deistler et al., 2022b). More recent
methods have adopted a sequential approach, reducing the
number of samples required by 25 times or more (Glockler
et al., 2022; Deistler et al., 2022a; Glaser et al., 2022).

We applied TSNPSE to this problem, using an identical
architecture to that used in our benchmark experiments to
demonstrate the robustness of our approach. We performed

8
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Figure 4. Results for the Pyloric experiment.

inference over 9 rounds, with 30000 initial simulations, and
20000 added simulations in each round. Our results, in-
cluding the percentage of valid summary statistics versus
the number of simulations, and a posterior predictive sam-
ple, are provided in Figure 4. We also provide a pairwise
marginal plot of our final posterior approximation in Figure
7 (Appendix E.2). In the final round, we achieved 81% valid
summary statistics from the simulator (Figure 4c), superior
to the percentage achieved by other methods for the same
simulation budget. We also note that the obtained posterior
produces samples which closely match the observed data
(Figure 4a). In addition, the posterior marginals (Figure 7)
are very similar to others previously reported in the literature
(Deistler et al., 2022a; Glockler et al., 2022).

6. Discussion
Limitations The main limitation of our approach relates
to computational cost. In particular, TSNPSE requires com-
puting HPRε of the approximate posterior to define the
proposal, which involves computing the approximate poste-
rior density over many samples. In TSNPE, which uses a
normalising flow, this is relatively inexpensive as a single
forward pass is required for sampling, and a single backward
pass for density evaluation (Dinh et al., 2017; Papamakar-
ios et al., 2017). In contrast, with TSNPSE, which uses
a CNF, multiple forward passes are required for sampling,

and multiple gradients of forward passes are required for
density evaluation (Chen et al., 2018b; Grathwohl et al.,
2019). Interestingly, this can be avoided using an alternative
parameterisation of the score network; see Appendix G for
further details.

It is worth noting that there are several ways to reduce the
cost of both sampling and likelihood evaluation in CNFs.
For example, faster numerical ODE solvers can substan-
tially reduce the number of forward passes required for sam-
pling (e.g., Lu et al., 2022; Zhang & Chen, 2023). Mean-
while, the Skilling-Hutchinson trace estimator (Skilling,
1989; Hutchinson, 1990) can be used to reduce the cost of
the gradient computations required for likelihood evaluation
(Grathwohl et al., 2019).

In some sense, this comparison between TSNPE and
TSNPSE reflects a wider discussion regarding the trade-
offs between (discrete) normalising flows and CNFs. The
former are associated with a lower computational cost, while
the latter are much more flexible, which can result in more
accurate inference (e.g., Grathwohl et al., 2019; Finlay et al.,
2020). As such, preference for a method based on a discrete
normalising flow (e.g., TSNPE) or a CNF (e.g., TSNPSE)
will depend on the problem at hand. For example, for chal-
lenging real-world simulators, the additional cost incurred
by a CNF may be negligible in comparison to the cost of
acquiring simulations.

Future Work We highlight two directions for future work.
First, with the exception of SNPSE-C, the sequential meth-
ods in this paper can also be applied to other methods based
on CNFs. In this sense, a natural extension of our work
would be to develop a sequential variant of FMPE (Dax
et al., 2023). Second, in this paper we used a relatively
simple neural network architecture, with a relatively small
number of parameters, in large part to demonstrate the ro-
bustness of our approach. In contrast, the architectures used
by diffusion models in other modalities are often highly
specialised, and have received significant attention in their
own right (e.g., Karras et al., 2022). Undoubtedly, further
investigation into effective network design for SBI problems
would be a fruitful direction for future work.
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A. Neural Posterior Score Estimation: Theoretical Results
A.1. Derivation of the NPSE Loss Function

In this section we include a self-contained proof that the minimiser of the denoising posterior score matching objective in (7)
is equal to the minimiser of the posterior score matching objective in (6). Similar results can also be found in Batzolis et al.
(2021); Tashiro et al. (2021).

Our proof begins with the observation that

J DSM
post (ψ) =

1

2
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[
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= E(θ0,x)∼p(θ0,x),θt∼pt|0(θt|θ0)[s
⊤
ψ (θt, x, t)∇θt log pt|0(θt|θ0)]. (33)

The third term Ω3
t is independent of ψpost. We thus have

J DSM
post (ψ) ∝ 1

2

∫ t

0

λtE(θ0,x)∼p(θ0,x),θt∼pt|0(θt|θ0)
[
||sψ(θt, x, t)||2 − 2s⊤ψ (θt, x, t)∇θt log pt|0(θt|θ0)

]
dt (34)

∝ 1

2

∫ t

0

λtE(θ0,x)∼p(θ0,x),θt∼pt|0(θt|θ0)
[
||sψ(θt, x, t)−∇θt log pt|0(θt|θ0)||2

]
dt. (35)
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A.2. Error Bounds for NPSE

We now present error bounds for NPSE in the fully deterministic sampling regime, assuming an L2 bound on the approxima-
tion error and a mild regularity condition on the target posterior distribution. Our results are based on those obtained in
Benton et al. (2024).

A.2.1. NOTATION

We begin by setting up some basic notation. We first recall the definition of the probability flow ODE, now for fixed
x = xobs, and t ∈ [0, 1]. This ODE is given by

dθϑt
dt

=

[
−f(θϑt , t) +

1

2
g2(t)∇θ log pt(θ

ϑ
t |xobs)

]
︸ ︷︷ ︸

v(θϑt ,t)

, θϑ0 = ϑ (36)

for each ϑ ∈ Rd. The probability flow ODE defines a deterministic coupling between the reference distribution and the
target posterior distribution. In particular, if we define (θt)t∈[0,1] by taking ϑ ∼ π, and setting θt = θφt for all t ∈ [0, 1],
then θ1 ∼ p(·|xobs). Throughout this section, we will write v(θ, t) for the velocity field defined by (36), and vψ(θ, t) for the
velocity field corresponding to (36) but where the score ∇θ log pt(θt|xobs) is replaced with its approximation sψ(θt, xobs, t).
We suppress notational dependence of these velocity fields on xobs, since xobs is assumed to be fixed.

It is worth noting several modifications between the definition of the probability flow ODE in this appendix, and the
definition in the main text. First, we here assume that time is rescaled so that the probability flow ODE runs for t ∈ [0, 1],
rather than t ∈ [0, T ]. Second, we now consider time to run in the opposite direction. In particular, running forward in time,
the probability flow ODE in (36) transforms the reference distribution to the target distribution, rather than the other way
round. We adopt this convention to remain consistent with the setup used in Benton et al. (2024).

A.2.2. ASSUMPTIONS

We impose the following assumptions, which represent analogues of Assumptions 1, 2, 3, and 4’ introduced in Benton et al.
(2024).
Assumption A1 (Bound on JointL2 Approximation Error). The true and approximate scores ∇θ log pt(θt|x) and sψ(θt, x, t)
satisfy

∫ 1

0
Ept(θt,x)

[
||sψ(θt, x, t)−∇θ log pt(θt|x)||2

]
dt ≤ ε2.

Assumption A1’ (Bound on Conditional L2 Approximation Error). The true and approximate scores ∇θ log pt(θt|xobs)
and sψ(θt, xobs, t) satisfy

∫ 1

0
Ept(θt|xobs)

[
||sψ(θt, xobs, t)−∇θ log pt(θt|xobs)||2

]
dt ≤ ε2obs.

Assumption A2 (Existence and Uniqueness of Smooth Flows). For each ϑ ∈ Rd, and s ∈ [0, T ], there exist (ηϑs,t)t∈[s,1]

and (ιϑs,t)t∈[s,1] starting in ηϑs,s = ϑ and ιθs,s = ϑ with velocity fields vψ(φ, t) and v(φ, t) respectively. In addition, ηϑs,t and
ηϑs,t are continuously differentiable in η, s, and t.
Assumption A3 (Regularity of Approximate Score Function). The score-network sψ(θ, xobs, t) is differentiable in its first
and last inputs. In addition, for each t ∈ (0, 1), there exists a constant Lt such that sψ(θ, xobs, t) is Lt Lipschitz in θ.
Assumption A4 (Regularity of Data Distribution). Let θ ∼ p(·|xobs). Then, for any τ ∈ (0,∞) and ξ ∼ N (0, τ2I)
independent of θ, there exists λ ≥ 1 such that ||Covξ|θ′=ϑ(ξ)||op ≤ λτ2 for all ϑ ∈ Rd, where θ′ = θ + ξ.

Assumption A1 is arguably the most natural assumption on the training error since we learn the score-network sψ by
minimising the denoising posterior score matching objective in (7). This is proportional to the L2 approximation erro in
(6), which appears in the LHS of the bound in Assumption A1. On the other hand, Assumption A1’ is required to apply
the results in Benton et al. (2024). Below, we provide an additional technical assumption which can be used to translate
Assumption A1 into Assumption A1’.
Assumption B1. Let Aδ

obs = {x ∈ Rp : ||x − xobs||2 < δ}, for δ > 0. There exists δ > 0 such that infx∈Aδ
obs
p(x) >

0 and
∫ 1

0
Ept(θt|xobs)||sψ(θt, xobs, t) − ∇θ log pt(θt|xobs)||2dt ≤ (C + 1) infx∈Aδ

obs

∫ 1

0
Ept(θt|x)||sψ(θt, x, t) −

∇θ log pt(θt|x)||2dt for some C ≥ 0.

Alternatively, we can just impose Assumption A1’ directly. In this case, the results in Benton et al. (2024) can essentially be
applied without modification. We refer to, e.g., Fu et al. (2024, Theorem 3.2) for some conditions under which it is possible
to obtain a bound of this type.
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A.2.3. AUXILIARY RESULTS

In order to extend Benton et al. (2024, Theorem 6) to our setting, we will require some simple additional results. We first
establish a lemma which will allow us to translate Assumption A1 into Assumption A1’.
Lemma A.1. Suppose Assumption A1 and Assumption B1 hold. Then Assumption A1’ holds.

Proof. Let f(x) =
∫ 1

0
Ept(θt|x)||sψ(θt, x, t) − ∇θ log pt(θt|x)||2dt. In addition, let K = [

∫
Aδ

obs
p(x)dx]−1 and K1 =

K(1 + C). We then have

f(xobs) =
1∫

Aδ
obs
p(x)dx

[
f(xobs)

∫
Aδ

obs

p(x)dx

]
(37)

=
1∫

Aδ
obs
p(x)dx

[[
inf

x∈Aδ
obs

f(x)
] ∫

Aδ
obs

p(x)dx+
[
f(xobs)− inf

x∈Aδ
obs

f(x)
] ∫

Aδ
obs

p(x)dx

]
(38)

≤ 1∫
Aδ

obs
p(x)dx

[[
inf

x∈Aδ
obs

f(x)
] ∫

Aδ
obs

p(x)dx+ C
[

inf
x∈Aδ

obs

f(x)
] ∫

Aδ
obs

p(x)dx

]
(39)

≤ C + 1∫
Aδ

obs
p(x)dx

[∫
Aδ

obs

f(x)p(x)dx

]
(40)

≤ C + 1∫
Aδ

obs
p(x)dx

[∫
Rp

f(x)p(x)dx

]
(41)

≤ K1ε
2 := ε2obs, (42)

where in (39) we have used Assumption B1, in (40) we have used elementary properties of the infimum, in (41) we have
used the fact that f(x) ≥ 0 for all x, and in (42) we have used Assumption A1.

We next establish a very straightforward lemma which will enable us to convert our L2 bound on the approximate score
function (Assumption A1’) into an L2 bound on the corresponding velocity field in the probability flow ODE.
Lemma A.2. Suppose Assumption A1’ holds. Suppose also that supt∈[0,1] g

4(t) <∞. Let v(θ, t) and vψ(θ, t) be the true
and approximate velocity fields for the probability flow ODE, as defined in Section A.2.1. Then there exists ε1 > 0 such that∫ 1

0
Ept(θt|xobs)

[
||vψ(θt, t)− v(θt, t)||2

]
dt ≤ ε21.

Proof. Straightforwardly, we have that∫ 1

0

Ept(θt|xobs)

[
||vψ(θt, t)− v(θt, t)||2

]
dt (43)

=
inft∈[0,1]

4
g4(t)

inft∈[0,1]
4

g4(t)

∫ 1

0

Ept(θt|xobs)

[
||vψ(θt, t)− v(θt, t)||2

]
dt (44)

≤ 1

inft∈[0,1]
4

g4(t)

∫ 1

0

4

g4(t)
Ept(θt|xobs)

[
||vψ(θt, t)− v(θt, t)||2

]
dt (45)

=
1

4
sup
t∈[0,1]

[g4(t)]

∫ 1

0

Ept(θt|xobs)

[∣∣∣∣∣∣∣∣2 [vψ(θt, t) + f(θt, t)]

g2(t)
− 2 [v(θt, t) + f(θt, t)]

g2(t)

∣∣∣∣∣∣∣∣2
]
dt (46)

=
1

4
sup
t∈[0,1]

[g4(t)]

∫ 1

0

Ept(θt|xobs)

[
||sψ(θt, xobs, t)−∇θ log pt(θt|xobs)||2

]
(47)

≤ 1

4
ε2 sup

t∈[0,1]

[g4(t)] := ε21, (48)

where in (45) we have used elementary properties of the infimum, in (47) we have used the definitions of v(θ, t) and vψ(θ, t),
and in (48) we have used Assumption A1’.
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A.3. Main Result

In order to state our main result, we will require some additional definitions. Following Benton et al. (2024, Corollary 2),
we first define the quantities (βt)t∈[0,1] and (γt)t∈[0,1] as

VP ODE: γt = R cos
[(π

2
− δ

)
t
]
, βt = sin

[(π
2
− δ

)
t
]
, (49)

VE ODE: γt decreasing, βt = 1. (50)

We also define (Kt)t∈[0,1] according to

Kt = λ
|γ̇t|
γt

+min

[
λ
|β̇t|
βt

, λ1/2R
|β̇t|
γt

]
. (51)

Finally, we let V denote the class of functions v : Rd × [0, T ] → Rd which are Kt-Lipschitz in θ for all t ∈ [0, 1].

We are now ready to state our main result: a bound on the error of NPSE in the deterministic sampling regime in terms of
the L2 approximation error.
Theorem A.3. Suppose that Assumption A1 and B1 hold, or that Assumption A1’ holds. Suppose also that Assumptions A2,
A3, and A4 hold. Let vθ ∈ V . Let π̃0 = N (0, I), and let π̃1 equal p(·|xobs) plus Gaussian noise with scale γ1 ≪ 1. Let
(ηt)t∈[0,T ] be a flow starting in π̃0 with velocity field vψ, and let π̂1 be the distribution of η1. Then, with ε1 defined as in
Lemma A.2,

VP ODE: W2(π̂1, π̃1) ≤ ε1

[
e

γ1

]λ
, (52)

VE ODE: W2(π̂1, π̃1) ≤ ε1

[
1

γ1

]λ
. (53)

Proof. The result follows directly from Benton et al. (2024, Theorem 6), setting the target distribution π := p(·|xobs),
for some fixed xobs. We note, in particular, that Assumption 1 in Benton et al. (2024) follows from Assumption A1’ (or
Assumptions A1 and B1 via Lemma A.1) and Lemma A.2. Meanwhile, our Assumptions A2, A3, and A4 correspond
directly to Assumptions 2, 3, and 4’ in Benton et al. (2024).

B. Neural Likelihood Score Estimation
B.1. Overview

In this section we outline an alternative method to the one described in Section 2.2 for learning an approximation to the
perturbed posterior score ∇θ log pt(θt|x). We refer to this approach as Neural Likelihood Score Estimation (NLSE). Our
alternative approach is based on the following decomposition of the posterior score, which follows straightforwardly from
Bayes’ theorem:

∇θ log pt(θt|x) = ∇θ log pt(x|θt) +∇θ log pt(θt), (54)

where pt(x|θt) =
∫
p(x|θ0)p0|t(θ0|θt)dθ0 denotes the conditional density of x given θt. This decomposition suggests that,

rather than directly targeting the score of the posterior, we could instead train a score network sψlik
(θt, x, t) ≈ ∇θ log pt(x|θt)

for the score of the perturbed ‘likelihood’ pt(x|θt), and then estimate the perturbed posterior score by setting

sψpost(θt, x, t) = sψlik
(θt, x, t) +∇θ log pt(θt). (55)

In certain cases, it is possible to compute the perturbed prior pt(θt) in closed form, and thus obtain the perturbed prior
score ∇θ log pt(θt) via automatic differentiation (see Appendix B.2.1). In cases where this is not possible, we can instead
approximate this term using an additional score network sψpri(θt, t) ≈ ∇θ log pt(θt) (see Appendix B.2.2).

In order to train the time-varying score network sψlik
(θt, x, t), it is once again natural to minimise a weighted Fisher

divergence, which now reads

J SM
lik (ψlik) :=

1

2

∫ T

0

λtEpt(θt,x)
[∣∣∣∣sψlik

(θt, x, t)−∇θ log pt(x|θt)
∣∣∣∣2]dt. (56)
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Similar to (6), we cannot optimise this objective due to the intractable second term. However, by substituting (54), and
arguing as in Appendix A.1, one can show that it is equivalent to minimise the denoising likelihood score matching objective
function, given by3

J DSM
lik (ψlik) :=

1

2

∫ T

0

λtEpt|0(θt|θ0)p(θ0,x)
[∣∣∣∣sψlik

(θt, x, t) +∇θ log pt(θt)−∇θ log pt|0(θt|θ0)
∣∣∣∣2]dt. (57)

Similar to (7), given a suitable choice for the drift and diffusion coefficients in (2), the scores ∇θt log pt|0(θt|θ0) can be
computed in closed form. We can compute Monte Carlo estimates of (57), and minimise this using standard methods to
obtain sψlik

(θt, x, t) ≈ ∇θt log pt(x|θt).

B.2. Computing or Estimating the Perturbed Prior Score

B.2.1. COMPUTING THE PERTURBED PRIOR SCORE

For certain choices of the prior, and certain choices of the drift and diffusion coefficients in the forward SDE (2), we can
obtain the perturbed prior pt(θt) =

∫
Rd pt|0(θt|θ0)p(θ0)dθ0 in closed form. We can then obtain the score of the perturbed

prior ∇θ log pt(θt) using automatic differentiation (e.g., Bartholomew-Biggs et al., 2000).

Suppose, for example, that the drift and diffusion coefficients in (2) are given by f(θt, t) = 0 and g(t) = τt, where
(τt)t∈[0,T ] is a positive sequence of reals. In this case, we have pt|0(θt|θ) = N (θt|θ, τ2t I), and can obtain pt(θt) in closed
form for the following common choices of prior.

Uniform Prior. Suppose that p(θ) = U(θ|a, b). We can then compute, writing Φ(·|µ, σ2) is the CDF of a univariate
Gaussian with mean µ and variance σ2,

pt(θt) =

∫
Rd

p(θ0)pt|0(θt|θ0)dθ0 (58)

=
1∏d

i=1(bi − ai)

∫
[a1,b1]×···×[ad,bd]

N (θt|θ0, τ2t I)dθ0 (59)

=
1∏d

i=1(bi − ai)

d∏
i=1

(
Φ(bi|θt,i, τ2i,t)− Φ(ai|θt,i, τ2i,t)

)
. (60)

Gaussian Mixture Prior. Suppose that p(θ) =
∑n
i=1 αiN (θ|µi,Σi). Using standard results (e.g., Bishop, 2006, Equation

2.115), we then have that

pt(θt) =

∫
Rd

p(θ0)pt|0(θt|θ0)dθ0 (61)

=

n∑
i=1

αi

∫
Rd

N (θ0|µi,Σi)N (θt|θ0, τ2t I)dθ0 (62)

=

n∑
i=1

αiN
(
θt|µi,Σi + τ2t I

)
. (63)

B.2.2. ESTIMATING THE PERTURBED PRIOR SCORE

In cases where it is not possible to obtain the perturbed prior in closed form (e.g., the prior is implicit), we can instead learn
an approximation sψpri

(θt, t) ≈ ∇θ log pt(θt) using denoising score matching, by minimising a Monte Carlo estimate of

Jpri(ψpri) =
1

2

∫ T

0

λtEp(θ0)pt|0(θt|θ0)
[∣∣∣∣sψpri(θt, t)−∇θ log pt|0(θt|θ0)

∣∣∣∣2] . (64)

We summarise this procedure below.

3See also Chao et al. (2022, Theorem 1) for a slightly more general version of this result.
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Algorithm 2 Prior Score Estimation

Input: prior p(θ), prior sample budget N , dataset D = {}.
Outputs: sψpri

(θt, t) ≈ ∇θt log pt(θt)
for i = 1 : N do

Sample θi ∼ p(θ).
Add θi to D.

end for
Learn sψpri

(θt, t) ≈ ∇θt log pt(θt) by minimising a Monte Carlo estimate of (64) based on D.
Return: sψpri

(θt, t)

B.3. NPSE versus NLSE

A natural question to ask is whether it is preferable to use NLSE or NPSE. In numerical testing, we observed significantly
better performance for NPSE relative to NLSE in cases where it was not possible to compute the score of the perturbed prior,
and it was thus necessary to approximate this quantity using an additional score network (see Appendix B.2.2).

Meanwhile, in cases where it was possible to compute the perturbed prior analytically (see Appendix B.2.1), we found little
empirical difference between NPSE and NLSE. To illustrate this point, we provide results for four benchmark experiments
in Figure 5. For NPSE, we report results using both the VE SDE and VP SDE (see Appendix E.3.1) for the forward noising
process. For NLSE, we use the VE SDE (see Appendix E.3.1), as this allowed us to easily compute the perturbed prior in
closed form (see Appendix B.2.1).

Figure 5. Comparison between NPSE and NLSE on four benchmark tasks.

C. Sequential Neural Posterior Score Estimation: Additional Details
In this section we provide further details of the various sequential methods introduced in Section 3: TSNPSE (Section C.1),
SNPSE-A (Section C.2), SNPSE-B (Section C.3), and SNPSE-C (Section C.4).

C.1. TSNPSE

We begin with our main sequential algorithm: TSNPSE. In particular, the following section contains a proof of the theoretical
result (Proposition 3.1) provided in the main text.

C.1.1. THEORETICAL RESULTS

Proposition C.1. Let p̃r(θ) = 1
r

∑r−1
s=0 p̄

s(θ), where p̄0(θ) = p(θ) and p̄s(θ) is defined by (9) for all s ≥ 1. Suppose that

Θobs ⊆ HPRϵ(p
s
ψ(θ|xobs)) (65)
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for all s ≥ 1, where Θobs = supp(p(·|xobs)). Then, writing p̃rt (θt, x) for the distribution of (θt, x) when (θ0, x) ∼ p̃r(θ, x),
the minimiser ψ∗ of the loss function

J TSNPSE−SM
post (ψ) :=

1

2

∫ T

0

λtEp̃rt (θt,x)
[
||sψ(θt, x, t)−∇θ log pt(θt|x)||2

]
dt, (66)

or, equivalently, of the loss function

J TSNPSE−DSM
post (ψ) :=

1

2

∫ T

0

λtEpt|0(θt|θ0)p(x|θ0)p̃r(θ0)
[
||sψ(θt, x, t)−∇θ log pt|0(θt|θ0)||2

]
dt, (67)

satisfies sψ⋆(θt, xobs, t) = ∇θ log pt(θt|xobs).

Proof. By definition, we have p̃r(θ) ∝ cr(θ)p(θ), where cr(θ) := 1
r

∑r−1
s=0 I{θ ∈ Θs}, with Θ0 = supp(p(θ)) and

Θs = I{θ ∈ HPRε(p
s
ψ(θ|xobs))} for all s ≥ 1. Thus, in particular, we can write

pr(θ) =
cr(θ)p(θ)

Zr
:= fr(θ)p(θ), (68)

where fr(θ) = cr(θ)
Zr , and where Zr is the normalisation constant

Zr =

∫
Rd

cr(θ)p(θ)dθ =
1

r

r−1∑
s=0

∫
Θs

p(θ)dθ. (69)

By definition, cr(θ) = 1
r

∑r−1
s=0 I{θ ∈ Θs} = 1 for all θ ∈ ∪r−1

s=0Θ
s. Under the assumption on Θobs, we thus also have that

cr(θ) = 1 for all θ ∈ Θobs. It follows that

fr(θ) =
1

Zr
= constant = Ar (70)

for all θ ∈ Θobs. Thus, in particular, we have that pr(θ) = Ar · p(θ) for all θ ∈ Θobs; see also Deistler et al. (2022a, Section
6.2).

Now, using standard results (e.g., Batzolis et al., 2021, Theorem 1), we know that ψ⋆ = argminJ TSNPSE−SM
post (ψ) =

argminJ TSNPSE−DSM
post (ψ) satisfies

sψ⋆(θt, x, t) = ∇θ log p̃
r
t (θt|x), (71)

where, similar to before, p̃rt (θt|x) =
∫
Rd pt|0(θt|θ0)p̃r(θ0|x)dθ0, and p̃r(θ0|x) = p̃r(θ0)p(x|θ0)

p̃r(x) . Thus, at the observation
xobs, we have that

p̃rt (θt|xobs) =
∫
Rd

pt|0(θt|θ0)p̃r(θ0|xobs)dθ0 (72)

=

∫
Rd

pt|0(θt|θ0)
p̃r(θ0)p(xobs|θ0)

p̃r(xobs)
dθ0 (73)

=

∫
Rd

pt|0(θt|θ0)
fr(θ0)p(θ0)p(xobs|θ0)

p̃r(xobs)
dθ0 (74)

=

∫
Rd

pt|0(θt|θ0)
fr(θ0)p(θ0|xobs)p(xobs)

p̃r(xobs)
dθ0 (75)

∝
∫
Rd

fr(θ0)pt|0(θt|θ0)p(θ0|xobs)dθ0 (76)

= Ar ·
∫
Θobs

pt|0(θt|θ0)p(θ0|xobs)dθ0 (77)

= Ar · pt(θt|xobs), (78)

where the penultimate equality holds since fr(θ) = Ar for all θ ∈ Θobs, and p(θ|xobs) = 0 for all θ ∈ Rd \ Θobs.
Thus, combining (71) and the logarithmic derivative of (78), we conclude that sψ⋆(θt, xobs, t) = ∇θ log p̃

r
t (θt|xobs) =

∇θ log pt(θt|xobs) as required.
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C.2. SNPSE-A

We now provide more details on SNPSE-A, so-named due to its connections with SNPE-A (Papamakarios & Murray, 2016).
This algorithm is summarised in Algorithm 3.

C.2.1. OVERVIEW

The main steps involved in SNPSE-A can be summarised as follows. For r = 1, sample parameters from the prior
{θ10,i}Mi=1 ∼ p(θ) := p0ψ(·|xobs). Then, for r = 1, 2,

(i) Simulate new data {xri }Mi=1 ∼ p(·|θr0,i). Concatenate samples {(θr0,i, xri )}Mi=1 with those from previous rounds to form
{(θ0,i, xi)}rMi=1 :=

⋃r
s=1{(θr0,i, xri )}Mi=1 ∼ p̃r(θ)p(x|θ), where p̃r(θ) = 1

r

∑r−1
s=0 p

s
ψ(θ|xobs). Draw times {ti}rMi=1 ∼

U(0, T ), and samples {θti,i}rMi=1 ∼ pt|0(·|θ0,i).

(ii) Using these samples, train a time-varying score network s̃rψ(θt, x, t) to approximate the score of the proposal posterior
∇θ log p̃

r
t (θt|x), by minimising a Monte Carlo estimate of the original denoising posterior score matching objective,

but now over samples from the proposal prior. That is,

J DSM−A
post (ψ) =

1

2

∫ T

0

λtEpt|0(θt|θ0)p(x|θ0)p̃r(θ0)
[∣∣∣∣s̃rψ(θt, x, t)−∇θt log pt|0(θt|θ0)

∣∣∣∣2] dt. (79)

(iii) Draw samples {θr+1
T,i }M

′

i=1 ∼ π(θ), where M ′ ≥M . Simulate the backward SDE (3) or the probability flow ODE (4),
substituting s̃rψ(θt, xobs, t) ≈ ∇θ log p̃

r
t (θt|xobs), to obtain samples {θ̃r+1

0,i }M ′

i=1 ∼ p̃rψ(·|xobs) ≈ p̃r(·|xobs).

(iv) Use (approximate) sampling-importance-resampling (SIR) (Rubin, 1987; 1988; Smith & Gelfand, 1992; Gelman et al.,
1995) to recover samples {θr+1

0,i }Mi=1 ∼ prψ(·|xobs) ≈ p(·|xobs). In particular, draw samples {θr+1
0,i }Mi=1 with or without

replacement from {θ̃r+1
0,i }M ′

i=1 using sample probabilities wri proportional to

hri =
p(θ̃r+1

i )

p̃r(θ̃r+1
i )

, i ∈ [M ′]. (80)

This corresponds, at the level of densities, to updating the current posterior density estimate as (see also Papamakarios
& Murray, 2016)

prψ(θ|xobs) ∝
p(θ)

p̃r(θ)
p̃rψ(θ|xobs). (81)

Algorithm 3 SNPSE-A

Inputs: Observation xobs, prior p(θ) =: p0ψ(θ|xobs), simulator p(x|θ), simulation budget N , number of rounds R,
(simulations-per-round M = N/R)
Outputs: Samples θ ∼ prψ(θ|xobs) ≈ p(θ|xobs)
for r = 1, 2 do

for i = 1, . . . ,M do
Draw θi ∼ pr−1

ψ (θ|xobs) using (81) (requires importance weights, see Appendix C.2.3 for details), xi ∼ p(x|θi).
Add (θi, xi) to D.

end for
Learn s̃rψ(θt, x, t) ≈ ∇θ log p̃

r
t (θt|x) by minimising a Monte Carlo estimate of (79) based on dataset D.

Get p̃rψ(θ|xobs) sampler by substituting s̃rψ(θt, xobs, t) ≈ ∇θ log p̃
r
t (θt|xobs) into (3) or (4).

end for
Return: θ ∼ prψ(θ|xobs) using (81) (requires importance weights, see Appendix C.2.3 for details).

C.2.2. THEORETICAL JUSTIFICATION

We can formally justify this procedure as follows. First, using standard results on conditional denoising score matching (e.g.,
Batzolis et al., 2021), the minimiser

ψ∗ = argminψJ DSM−A
post (ψ) (82)
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is such that s̃rψ∗(θt, x, t) = ∇θ log p̃
r
t (θt|x) for almost all θt ∈ Rd, x ∈ Rp, and t ∈ [0, T ]. Thus, by substituting the score

network s̃rψ∗(θt, x, t) into (3) or (4) we can, in principle, generate samples from the true proposal posterior,

{θ̃r+1
i }M

′

i=1 ∼ p̃r(θ|xobs). (83)

It follows, using classical results on SIR (e.g., Gelfand et al., 1992), that if we resample {θr+1
i }Mi=1 from {θ̃r+1

i }M ′

i=1 with or
without replacement, using sample probabilities wri proportional to the importance weights

hri =
p(θ̃r+1

i |xobs)
p̃r(θ̃r+1

i |xobs)
∝ p(θ̃r+1

i )

p̃r(θ̃r+1
i )

(84)

then, in the limit as M ′ → ∞, the resulting samples will correspond to i.i.d. draws from the target posterior p(·|xobs), as
required. These are precisely the importance weights that we use in SNPSE-A, c.f. (80).

In practice, of course, we will never obtain the minimiser ψ∗ = argminψJ DSM−A
post (ψ) but instead some ψ such

that, hopefully, s̃rψ(θt, x, t) ≈ ∇θ log p̃
r
t (θt|x) or, alternatively, such that p̃rψ(θ|xobs) ≈ p̃r(θ|xobs). Here, as be-

fore, we use p̃rψ(θ|xobs) to denote the approximation of the true proposal posterior p̃r(θ|xobs) obtained by substituting
s̃rψ(θt, x, t) ≈ ∇θ log p̃

r
t (θt, x, t) into the probability flow ODE (4). Using the score network s̃rψ(θt, x, t), we can now

generate samples from an approximation of the proposal posterior, rather than the true proposal posterior:

{θ̃r+1
i }M

′

i=1 ∼ p̃rψ(·|xobs) ≈ p̃r(θ|xobs). (85)

It follows, once again appealing to standard results on SIR, that in this case the correct probabilities to use in order to recover
samples from the true posterior are sample probabilities w̃ri proportional to the importance weights

h̃ri =
p(θ̃r+1

i |xobs)
p̃rψ(θ̃

r+1
i |xobs)

. (86)

These importance weights are only approximately equal to (84), i.e., the importance weights that we actually use in
SNPSE-A:

h̃ri =
p(θ̃r+1

i |xobs)
p̃rψ(θ̃

r+1
i |xobs)

≈ p(θ̃r+1
i |xobs)

p̃r(θ̃r+1
i |xobs)

= hri , (87)

since we will only ever learn an approximation of the true proposal posterior scores, s̃rψ(θt, x, t) ≈ ∇θ log p̃
r
t (θt, x, t),

and thus an approximation of the true proposal posterior, p̃rψ(θ|xobs) ≈ p̃r(θ|xobs), when we minimise the SNPSE-A
score-matching objective J DSM−A

post (ψ) over a finite number of samples.

It follows that, when we perform a post-hoc correction in the rth round using sample probabilities proportional to hri rather
than h̃ri , we necessarily introduce an additional approximation into the sequential procedure. This approximation is directly
related to the scale of the mismatch between the true proposal posterior p̃r(θ|xobs), and the approximate proposal posterior
p̃rψ(θ|xobs) learned in the rth round.

C.2.3. COMPUTING THE IMPORTANCE WEIGHTS

SNPSE-A relies on being able to compute the importance weights in (80). In particular, it is necessary to compute the
density ratio between the prior and the proposal prior, viz

p(θ)

p̃r(θ)
=

p(θ)
1
r

∑r−1
s=0 p

s
ψ(θ|xobs)

. (88)

Since the prior p(θ) is typically available in closed form, it just remains to compute the proposal prior p̃r(θ). In the following
sections, we outline several possible ways to compute or approxiate this term.

Computing the Proposal Prior. The first and most direct approach is to compute the proposal prior using the probability
flow ODE (4) and the instantaneous change-of-variables formula (5). To be precise, by substituting our estimate of the
proposal posterior score, s̃rψ(θt, xobs, t) ≈ ∇θ log p̃

r
t (θt|xobs) into the probability flow ODE (4), it is possible to evaluate

the approximate proposal posterior density p̃rψ(θ|xobs) ≈ p̃r(θ|xobs) via the instantaneous change of variable formula (5).
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Unfortunately, even with access to approximate proposal posterior densities p̃rψ(θ|xobs), it turns out that we can only
compute the approximate posterior densities prψ(θ|xobs) for r = 0, 1. Thus, by definition, we can only compute the proposal
prior p̃r(θ) and the importance weights p(θ)

p̃r(θ) for r = 1, 2. In other words, it is only possible to compute the required
weights in (88) for up to 2 rounds.

To illustrate this, we can consider explicitly the quantities required to compute the proposal priors p̃1(θ), p̃2(θ), . . . in rounds
r = 1, 2, 3. Recall that the proposal priors are defined as the mixture of the posterior estimates p0ψ(θ|xobs), p1ψ(θ|xobs), . . .
from the previous rounds, c.f. (88). For these proposals to be computable, we must be able to express them in terms of
the prior p(θ), which we assume is known, and the proposal posterior estimates p̃1ψ(θ|xobs), p̃2ψ(θ|xobs), . . ., which we can
always access using the instantaneous change of variables formula.

At the start of the 1st round, the current ‘posterior estimate’ is initialised equal to the prior: p0ψ(θ|xobs) = p(θ). Thus, in the
1st round, the proposal prior is just equal to the prior:

p̃1(θ) = p0ψ(θ|xobs) = p(θ). (89)

At the start of the 2nd round, the current posterior estimate is equal to the proposal posterior estimate obtained in the 1st

round: p1ψ(θ|xobs) = p̃1ψ(θ|xobs). This is because the proposal prior in the 1st round is equal to the prior, and thus the
proposal posterior in the 1st round coincides with the posterior. Thus, in the 2nd round, the proposal prior is given by a
mixture of the prior and the proposal posterior estimate obtained in the 1st round:

p̃2(θ) =
1

2

[
p0ψ(θ|xobs) + p1ψ(θ|xobs)

]
(90)

=
1

2

[
p(θ) + p̃1ψ(θ|xobs)

]
. (91)

At the start of 3rd round, the current posterior estimate is equal to the proposal posterior estimate obtained in the 2nd round,
reweighted by the ratio between the prior and the proposal prior in the 2nd round:

p2ψ(θ|xobs) =
1

Z2
ψ

p(θ)

p̃2(θ)
p̃2ψ(θ|xobs), (92)

where Z2
ψ is an (intractable) normalising constant given by Z2

ψ = p̃2(xobs)/p(xobs), where p(xobs) =
∫
Rd p(θ)p(xobs|θ)dθ

and p̃2(xobs) =
∫
Rd p̃

2(θ)p(xobs|θ)dθ. Thus, in the 3rd round, the proposal prior is given by a mixture of the prior, the
proposal posterior estimate obtained in the 1st round, and the posterior estimate obtained in the 2nd round:

p̃3(θ) =
1

3

[
p0ψ(θ|xobs) + p1ψ(θ|xobs) + p2ψ(θ|xobs)

]
(93)

=
1

3

p(θ) + p̃1ψ(θ|xobs) +
1

Z2
ψ

p(θ)

1
2

[
p(θ) + p̃1ψ(θ|xobs)

] p̃2ψ(θ|xobs)
 . (94)

Crucially, this proposal not only depends on the prior p(θ) and the proposal posterior estimates p̃1ψ(θ|xobs), p̃2ψ(θ|xobs), . . .,
but also on an intractable normalising constant Z2

ψ . Thus, without additional approximations, we cannot use this approach in
the 3rd round, or any future rounds.

Approximating the Proposal Prior. An alternative approach is to approximate the proposal prior, or each component of
the proposal prior, using samples. In this case, we replace the proposal prior p̃r(θ) in (88) by an approximate proposal
prior p̂r(θ) ≈ p̃r(θ), which we obtain using samples θ ∼ p̃r(θ). The advantages of this approach are that (a) it can be
applied if we use more than 2 rounds and (b) we no longer need to use the probability flow ODE (4) and the instantaneous
change-of-variables formula (5) to compute densities.

To see this, let us once again consider the quantities (i.e., the proposal priors) required to compute the importance weights in
rounds r = 1, 2, 3. At the start of the 1st round, the current ‘posterior estimate’ is once again defined to be equal to the prior.
Thus, the proposal prior p̃1(θ) is equal to the prior p(θ), as in (89). In this case, we can just set the approximate proposal
prior equal to the original proposal prior:

p̂1(θ) := p̃1(θ). (95)
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At the start of the 2nd round, the current posterior estimate is equal to the proposal posterior estimate from the 1st round,
as argued after (89). Thus, as before, the proposal prior is equal to a mixture of the prior p(θ) and the proposal posterior
estimate p̃1ψ(θ|xobs) from the 1st round:

p̃2(θ) =
1

2
[p(θ) + p̃1ψ(θ|xobs)] (96)

Unlike before, suppose now that we can generate samples from p̃1ψ(θ|xobs) and thus from p̃2(θ) = 1
2 [p(θ) + p̃1ψ(θ|xobs)],

but that we cannot explicitly evaluate p̃1ψ(θ|xobs), nor p̃2(θ) = 1
2 [p(θ) + p̃1ψ(θ|xobs)]. For example, it may be too expensive

to solve the instantaneous change-of-variables formula (5) to evaluate these densities. We then have two natural options
for approximating p̃2(θ). The first is to directly approximate p̂2(θ) ≈ p̃2(θ) using samples θ ∼ p̃2(θ). The second is to
approximate p̂1ψ(θ|xobs) ≈ p̃1ψ(θ|xobs) using samples θ ∼ p̃1ψ(θ|xobs), and then to approximate p̃2(θ) using

p̂2(θ) :=
1

2

[
p(θ) + p̂1ψ(θ|xobs)

]
. (97)

At the start of the 3rd round, the current posterior estimate is equal to the approximate proposal posterior estimate from the
2nd round, reweighted by the ratio between the prior and the approximate proposal prior from the 2nd round:

p2ψ(θ|xobs) =
1

Ẑ2
ψ

p(θ)

p̂2(θ)
p̂2ψ(θ|xobs), (98)

where p̂2ψ(θ|xobs) is the approximation of the proposal posterior p̂2(θ|xobs) ∝ p̂2(θ)p(xobs|θ) associated with the approxi-
mate proposal prior p̂2(θ), and Ẑ2

ψ is the appropriate normalising constant. Explicitly, we now have Ẑ2
ψ = p̂2(xobs)

p(xobs)
, where

p(xobs) =
∫
Rd p(θ)p(xobs|θ)dθ and p̂2(xobs) =

∫
Rd p̂

2(θ)p(xobs|θ)dθ. Thus, in the 3rd round, the proposal prior p̃3(θ) is
equal to a mixture of the prior, the approximate proposal posterior estimate obtained in 1st round, and the approximate
posterior estimate in (98) obtained in the 2nd round. That is, the mixture defined in (94), but now with p̃(·) replaced
everywhere by p̂(·).

We cannot directly evaluate p2ψ(θ|xobs) in (98) due to the intractable normalising constant Ẑ2
ψ. We can, however, still

generate samples θ ∼ p2ψ(θ|xobs) using, e.g., SIR, since this only requires that we can sample from p̂2ψ(θ|xobs), and that we
can evaluate both p(θ) and p̂2(θ). Thus, by construction, we can also generate samples from the proposal prior, θ ∼ p̃3(θ).
Similar to before, we can then approximate p̃3(θ) using samples, either directly or by estimating the mixture components
individually.

For subsequent rounds, we can proceed in precisely the same fashion. In particular, first generate samples from the current
estimate of the proposal posterior. Then use SIR to obtain samples from the current posterior estimate. Finally, use these
samples to approximate the current posterior estimate, and use this approximation to approximate the next proposal prior.

The disadvantage of this approach is that it necessitates additional approximations in each round. This being said, perhaps
somewhat surprisingly, in other contexts the use of approximate importance weights rather than exact importance weights
can actually improve performance (Henmi et al., 2007; Delyon & Portier, 2016); see also the discussion in Liu & Lee (2017).
Regarding the proposal prior approximations, there are several possibilities: e.g., a kernel density estimator (Delyon &
Portier, 2016), or a normalising flow (Papamakarios et al., 2021). We leave a more thorough investigation of this approach
to future work.

Approximating the Importance Weights. One final option is to approximate the density ratio in (88) using samples, rather
than just approximating the proposal prior. This is the subject of (two sample) density ratio estimation (DRE) (Sugiyama
et al., 2012). There are various approaches to two-sample DRE, amongst others, moment matching (Gretton et al., 2009),
probabilistic classification (Qin, 1998; Cheng & Chu, 2004; Bickel et al., 2007), and ratio matching (Sugiyama et al., 2008;
Kanamori et al., 2009; Tsuboi et al., 2009; Yamada & Sugiyama, 2009). In our case, not only do we have access to samples
from the prior, but we can also evaluate the density. In this setting, Stein density ratio estimation (SDRE) provides an
alternative approach (Liu et al., 2019). Once again, we leave a more detailed investigation into this approach to future work.

C.3. SNPSE-B

Next, we provide additional details on SNPSE-B, which can be seen as the score-based analogue of SNPE-B (Lueckmann
et al., 2017). This algorithm is summarised in Algorithm 4.
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C.3.1. OVERVIEW

The main steps involved in SNPSE-B are as follows. For r = 1, sample parameters from the prior {θ10,i}Mi=1 ∼ p(θ) :=

p0ψ(·|xobs). Then, for all r ≥ 1,

(i) Simulate new data {xri }Mi=1 ∼ p(·|θr0,i). Concatenate samples {(θr0,i, xri )}Mi=1 with those from previous rounds to form
{(θ0,i, xi)}rMi=1 :=

⋃r
s=1{(θr0,i, xri )}Mi=1 ∼ p̃r(θ)p(x|θ), where p̃r(θ) = 1

r

∑r−1
s=0 p

s
ψ(θ|xobs). Draw times {ti}rMi=1 ∼

U(0, T ), and samples {θti,i}rMi=1 ∼ pt|0(·|θ0,i).

(ii) Using these samples, train a time-varying score network sψ(θt, x, t) to approximate the score of the posterior
∇θ log pt(θt|x), by minimising a Monte Carlo estimate of

J DSM−B
post (ψ) =

1

2

∫ T

0

λtEpt|0(θt|θ0)p(x|θ0)p̃r(θ0)
[
p(θ0)

p̃r(θ0)

∣∣∣∣sψ(θt, x, t)−∇θt log pt|0(θt|θ0)
∣∣∣∣2]dt. (99)

(iii) Draw samples {θr+1
T,i }Mi=1 ∼ π(θ). Simulate the backward SDE (3) or the probability flow ODE (4), substituting

sψ(θt, xobs, t) ≈ ∇θ log pt(θt|xobs), to obtain samples {θr+1
0,i }Mi=1 ∼ prψ(·|xobs) ≈ p(·|xobs).

Algorithm 4 SNPSE-B

Inputs: Observation xobs, prior p(θ) =: p0ψ(θ|xobs), simulator p(x|θ), simulation budget N , number of rounds R,
(simulations-per-round M = N/R)
Outputs: pψ(θ|xobs) ≈ p(θ|xobs)
for r = 1, . . . , R do

for i = 1, . . . ,M do
Draw θi ∼ pr−1

ψ (θ|xobs), xi ∼ p(x|θi)
Add (θi, xi) to D

end for
Learn sψ(θt, x, t) ≈ ∇θ log pt(θt|x) by minimising a Monte Carlo estimate of (99) based on dataset D (requires
importance weights, see Appendix C.3.3 for details).
Get prψ(θ|xobs) sampler by substituting sψ(θt, xobs, t) ≈ ∇θ log pt(θt|xobs) into (3) or (4).

end for
Return: pRψ (θ|xobs)

C.3.2. THEORETICAL JUSTIFICATION

The theoretical justification for SNPSE-B is rather straightforward. In particular, observe that

J DSM−B
post (ψ) =

1

2

∫ T

0

λtEpt|0(θt|θ0)p(x|θ0)p̃r(θ0)
[
p(θ0)

p̃r(θ0)

∣∣∣∣sψ(θt, x, t)−∇θt log pt|0(θt|θ0)
∣∣∣∣2]dt (100)

=
1

2

∫ T

0

λtEpt|0(θt|θ0)p(x|θ0)p(θ0)
[∣∣∣∣sψ(θt, x, t)−∇θt log pt|0(θt|θ0)

∣∣∣∣2] dt. (101)

This is nothing more than the original denoising posterior score matching objective in (7), which we know is minimised by ψ∗

such that sψ∗(θt, x, t) = ∇θ log pt(θt|x) (e.g., Batzolis et al., 2021). Thus, substituting sψ(θt, xobs, t) ≈ ∇θ log pt(θt|xobs)
into the backward SDE (3) or the probability flow ODE (4), will indeed result in samples approximately distributed according
to p(θ|xobs), with no need for an additional correction.

C.3.3. COMPUTING THE IMPORTANCE WEIGHTS

Similar to SNPSE-A, SNPSE-B relies on our ability to compute or approximate the importance weights p(θ)/p̃r(θ), which
now appear in the objective function in (99). We refer to Appendix C.2.3 for a detailed discussion of how to compute or
approximate these weights.
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C.4. SNPSE-C

Finally, we provide additional details regarding SNPSE-C, which can be seen as the score-based analogue of SNPE-C
(Greenberg et al., 2019). This algorithm is summarised in Algorithm 5.

C.4.1. OVERVIEW

The main components of the SNPSE-C algorithm are summarised below. For r = 1, sample parameters from the prior
{θ10,i}Mi=1 ∼ p(θ) := p0ψ(·|xobs). For all r ≥ 1:

(i) Simulate new data {xri }Mi=1 ∼ p(·|θr0,i). Concatenate samples {(θr0,i, xri )}Mi=1 with those from previous rounds to form
{(θ0,i, xi)}rMi=1 :=

⋃r
s=1{(θr0,i, xri )}Mi=1 ∼ p̃r(θ)p(x|θ), where p̃r(θ) = 1

r

∑r−1
s=0 p

s
ψ(θ|xobs). Draw times {ti}rMi=1 ∼

U(0, T ), and samples {θti,i}rMi=1 ∼ pt|0(·|θ0,i).

(ii) Using these samples, train a time-varying score network s̃rψ(θt, x, t) to approximate the score of the proposal posterior
∇θ log p̃

r
t (θt|x), by minimising a Monte Carlo estimate of

J DSM−C
post (ψ) =

1

2

∫ T

0

λtEpt|0(θt|θ0)p(x|θ0)p̃r(θ0)
[∣∣∣∣s̃rψ(θt, x, t)−∇θt log pt|0(θt|θ0)

∣∣∣∣2]dt, (102)

where the score network s̃rψ(θt, x, t) is defined as

s̃rψ(θt, x, t) = sψ(θt, x, t) +∇θ log p̃
r
t (θt)−∇θ log pt(θt). (103)

or some approximation thereof (see Appendix C.4.3).

(iii) Draw samples {θr+1
T,i }Mi=1 ∼ π(θ). Simulate the backward SDE (3) or the probability flow ODE (4), substituting

sψ(θt, xobs, t) for ∇θ log pt(θt|xobs), to obtain samples {θr+1
0,i }Mi=1 ∼ prψ(·|xobs) ≈ p(·|xobs).

Algorithm 5 SNPSE-C

Inputs: Observation xobs, prior p(θ) =: p0ψ(θ|xobs), simulator p(x|θ), simulation budget N , number of rounds R,
(simulations-per-round M = N/R)
Outputs: pψ(θ|xobs) ≈ p(θ|xobs)
Compute ∇θ log pt(θt) or estimate srψ(θt, t) ≈ ∇θ log pt(θt) (see Algorithm 2).
for r = 1, . . . , R do

for i = 1, . . . ,M do
Draw θi ∼ pr−1

ψ (θ|xobs), xi ∼ p(x|θi)
Add (θi, xi) to D

end for
if r > 1 then

Learn sr,propφ (θt, t) ≈ ∇θ log p̃
r
t (θt) by minimising (123).

Define s̃rψ(θt, x, t) := sψ(θt, x, t) + sr,propφ (θt, t)−∇θ log pt(θt)
else

Define s̃rψ(θt, x, t) := sψ(θt, x, t)
end if
Learn s̃rψ(θt, x, t) ≈ ∇θ log p̃

r
t (θt|x) by minimising a Monte Carlo estimate of (102) based on dataset D

Get prψ(θ|xobs) sampler by substituting sψ(θt, xobs, t) ≈ ∇θ log pt(θt|xobs) into (3) or (4).
end for
Return: pRψ (θ|xobs)
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C.4.2. THEORETICAL JUSTIFICATION

We now outline the theoretical justification for SNPSE-C. We begin by noting that, via a repeated application of Bayes’
Theorem, we have

pt(θt|x) =
∫
pt|0(θt|θ0)p(θ0|x)dθ0 =

pt(θt)
∫
Rd p0|t(θ0|θt)p(x|θ0)dθ0

p(x)
=
pt(θt)pt(x|θt)

p(x)
, (104)

p̃rt (θt|x) =
∫
pt|0(θt|θ0)p̃r(θ0|x)dθ0 =

p̃rt (θt)
∫
Rd p̃

r
0|t(θ0|θt)p(x|θ0)dθ0
p̃(x)

=
p̃rt (θt)p̃

r
t (x|θt)

p̃(x)
, (105)

where in the final equality in each line we have identified pt(x|θt) =
∫
p(x|θ0)p0|t(θ0|θt)dθ0 and p̃rt (x|θt) =∫

p(x|θ0)p̃r0|t(θ0|θt)dθ0. It follows, taking logarithmic derivatives of (104) and (105), that

∇θ log pt(θt|x) = ∇θ log pt(x|θt) +∇θ log pt(θt), (106)
∇θ log p̃

r
t (θt|x) = ∇θ log p̃

r
t (x|θt) +∇θ log p̃

r
t (θt). (107)

Thus, in particular, we can relate the perturbed posterior score ∇θ log pt(θt|x) to the perturbed proposal posterior
∇θ log p̃

r
t (θt|x) score according to

∇θ log p̃
r
t (θt|x) = ∇θ log pt(θt|x) +∇θ log p̃

r
t (θt)−∇θ log pt(θt) +∇θ log p̃

r
t (x|θt)−∇θ log pt(x|θt), (108)

Now, suppose that we define s̃rψ(θt, x, t) according to

s̃rψ(θt, x, t) = sψ(θt, x, t) +∇θ log p̃
r
t (θt)−∇θ log pt(θt) +∇θ log p̃

r
t (x|θt)−∇θ log pt(x|θt). (109)

By standard results on conditional denoising score matching (e.g., Batzolis et al., 2021), we know that (102) is minimised
by ψ∗ such that s̃rψ∗(θ, x, t) = ∇θ log p̃

r
t (θ|x) for almost every θ ∈ Rd, x ∈ Rp, and t ∈ [0, T ]. It follows, using this

observation, the definition in (109), and the identity in (108), that the minimiser ψ∗ = argminJ DSM−C
post (ψ) of (102) is such

that

sψ∗(θ, x, t) = s̃rψ∗(θt, x, t)−∇θ log p̃
r
t (θt) +∇θ log pt(θt)−∇θ log p̃

r
t (x|θt) +∇θ log pt(x|θt) (110)

= ∇θ log p̃
r
t (θt|x)−∇θ log p̃

r
t (θt) +∇θ log pt(θt)−∇θ log p̃

r
t (x|θt) +∇θ log pt(x|θt) (111)

= ∇θ log pt(θt|x). (112)

More generally, if we minimise (102) to obtain s̃rψ(θt, x, t) ≈ ∇θ log p̃
r
t (θt|x), then we automatically recover sψ(θt, x, t) ≈

∇θ log pt(θt|x) via the definition (109). That is, we can automatically transform an estimate of the proposal posterior score
into an estimate of the posterior score. This approach is reminiscent of SNPE-C (Greenberg et al., 2019), also referred to as
automatic posterior transformation (APT).

In practice, the definition in (109) relies on several quantities - namely ∇θ log p̃
r
t (θt), ∇θ log p̃

r
t (x|θt) and ∇θ log pt(x|θt) -

to which we do not have immediate access. To make any progress, we will therefore need to make several simplifications
and approximations. The first simplification is based on the observation that ∇θ log p0(x|θ0) = ∇θ log p̃0(x|θ0) and
∇θ log pT (x|θT ) ≈ ∇θ log p̃T (x|θT ). Thus, substituting into (108), we have

∇θ log p̃
r
0(θ0|x) = ∇θ log p0(θ0|x) +∇θ log p̃

r
0(θ0)−∇θ log p0(θ0), (113)

∇θ log p̃
r
T (θT |x) ≈ ∇θ log pT (θT |x) +∇θ log p̃

r
T (θT )−∇θ log pT (θT ). (114)

Inspired by (113) - (114), suppose that we define a sequence of distributions {pr,seqt (θt|x)}t∈[0,T ] according to pr,seqt (θt|x) ∝
pt(θt)
p̃rt (θt)

p̃rt (θt|x) ∝
p̃rt (x|θt)
pt(x|θt) pt(θt|x). By construction, the scores of this sequence of distributions satisfy the identity

∇θ log p̃
r
t (θt|x) = ∇θ log p

r,seq
t (θt|x) +∇θ log p̃

r
t (θt)−∇θ log pt(θt). (115)

In addition, based on (115), suppose that we now redefine the score network s̃rψ(θt, x, t) according to

s̃rψ(θt, x, t) = sψ(θt, x, t) +∇θ log p̃
r
t (θt)−∇θ log pt(θt). (116)
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Then, arguing similarly to before, but now using (116) and (115) in place of (109) and (108), it follows that the minimiser
ψ∗ = argminJ DSM−C

post (ψ) of (102) is such that

sψ∗(θ, x, t) = s̃rψ∗(θt, x, t)−∇θ log p̃
r
t (θt) +∇θ log pt(θt) (117)

= ∇θ log p̃
r
t (θt|x)−∇θ log p̃

r
t (θt) +∇θ log pt(θt) = ∇θ log p

r,seq
t (θt|x). (118)

Thus, in general, if we minimise (102) to obtain s̃rψ(θt, x, t) ≈ ∇θ log p̃
r
t (θt|x), then we automatically recover sψ(θt, x, t) ≈

∇θ log p
r,seq
t (θt|x) via the definition in (116). Crucially, by our construction of {pr,seqt (θ|x)}t∈[0,T ], we have

pr,seq0 (θ0|x) ∝
p0(θ0)

p̃0(θ0)
p̃r0(θ0|x) =

p(θ0)

p̃(θ0)
p̃(θ0|x) ∝ p(θ0|x), (119)

pr,seqT (θT |x) ∝
pT (θT )

p̃T (θT )
p̃rT (θT |x) ≈

N (θT ; 0, I)

N (θT ; 0, I)
N (θT ; 0, I) = N (θT ; 0, I). (120)

Thus, in particular, {pr,seqt (θt|x)}t∈[0,T ] defines a sequence of distributions which smoothly interpolate between the
true posterior p0(θ|x) = p(θ|x), and the reference distribution N (θ; 0, I). In general, of course, pr,seqt (θt|x) will not
coincide with pt(θt|x), which means the sequence {pr,seqt (θt|x)}t∈[0,T ] does not correspond to the standard sequence
{pt(θt|x)}t∈[0,T ] of distributions obtained by applying the forward SDE (2), as described in Section 2.2. Thus, in particular,
substituting the score network sψ(θt, x, t) ≈ ∇θ log p

r,seq
t (θt, x, t) obtained via (116) into the backward SDE (3) will not

result in samples from the correct posterior distribution.

Nonetheless, based on our observation above that {pr,seqt (θt|x)}t∈[0,T ] smoothly interpolate between the true posterior
p0(θ|x) = p(θ|x), and the reference distribution pT (θ|x) = N (θ; 0, I), we can still use this score network to obtain samples
from the correct posterior. In particular, by using sψ(θt, x, t) ≈ ∇θ log p

r,seq
t (θt, x, t) within an annealed MCMC algorithm,

e.g., annealed Langevin dynamics (Song & Ermon, 2019; Geffner et al., 2023; Du et al., 2023), we should still recover
samples from the correct posterior. See also Du et al. (2023, Section 4) for a related discussion, albeit in a very different
context.

C.4.3. ESTIMATING THE PROPOSAL PRIOR SCORE

Clearly, in order to define the score network s̃rψ(θt, x, t) according to (103), we must be able to compute (or approximate)
score of the perturbed proposal prior, namely,

∇θ log p̃
r
t (θt) := ∇θ log

[
1

r

r−1∑
s=0

psψ,t(θt|xobs)

]
, (121)

where p̃rt (θt) =
∫ t
0
pt|0(θt|θ0)p̃r(θ0)dθ0, psψ,t(θt|xobs) =

∫ t
0
pt|0(θt|θ0)psψ(θ0|xobs)dθ0; and p̃r(θ) and psψ(θ|xobs) are

defined as in Section C.4.1. Unfortunately, the score of the perturbed proposal prior cannot be written as a mixture of the
score of the perturbed proposal priors from each of the previous rounds:

∇θ log p̃
r
t (θt) ̸=

1

r

r−1∑
s=0

∇θ log p
s
ψ,t(θt|xobs) (122)

That is, we cannot compute ∇θ log p̃
r
t (θt) in (121) using the score estimates obtained in previous rounds. Instead, to

compute (121), and thus to use (103), we will need an alternative approach. Below, we outline several possibilities.

Approximating the Proposal Prior Score. The first and perhaps most natural approach is to approximate
sr,propφ (θt, t) ≈ ∇θ log p̃

r
t (θt) using a score network, and substitute this approximation into (103). Given samples θ ∼ p̃r(θ),

we can train this network by minimising a Monte Carlo estimate of the standard denoising score matching objective, viz,

J DSM−C
prop (φ) =

1

2

∫ T

0

λtEpt|0(θt|θ0)p̃r(θ0)
[
||sr,propφ (θt, t)−∇θ log pt|0(θt|θ0)||2

]
dt. (123)

There are several advantages of this approach: it is conceptually very simple, and it fits rather naturally into our existing
framework. At the same time, there are several disadvantages, particularly with regards to computational and memory costs.

31



Sequential Neural Score Estimation 32

First, to obtain a sufficiently accurate score network sr,propφ (θt, t) ≈ ∇θ log p̃
r
t (θt), it is desirable to use a large number of

samples θ ∼ p̃r(θ) from the proposal prior to form the Monte Carlo estimate of (123). By definition of the proposal prior,
this requires generating (and storing) a large number of samples θ ∼ psψ(θ|xobs), for s = 1, . . . , r − 1, which are obtained
by repeated simulation of the relevant backward SDE (3) or probability flow ODE (4). Second, minimising (123) is itself a
costly procedure, possibly requiring a large number of iterations in order to converge. The score network sr,propφ (θt, t) ≈
∇θ log p̃

r
t (θt) must be re-learned after each round, which may amount to a significant additional computational cost over a

large number of rounds.

Finally, the proposal prior score network sr,propφ (θt, t) ≈ ∇θ log p̃
r
t (θt) is substituted into (103) to compute s̃rψ(θt, x, t),

which is then learned by minimising the SNPSE-C objective in (102). Thus, minimising (102) requires an additional neural
network pass at each training iteration. In addition, any error in the approximation sr,propφ (θt, t) ≈ ∇θ log p̃

r
t (θt) will

adversely affect learning an accurate approximation s̃rψ(θt, x, t) ≈ ∇θ log p̃
r
t (θt|x).

Approximating the Density Ratio Score. An alternative approach is instead to approximate the score of the ratio of the
proposal prior density and the prior density, viz

∇θ log

[
p̃rt (θt)

pt(θt)

]
= ∇θ log p̃

r
t (θt)−∇θ log pt(θt). (124)

Inspired by the recent perspective in Liu et al. (2024) on Stein variational gradient descent (Liu et al., 2016), we can
approximate this term using a normalised, kernel-based estimate. In particular, let k : Rd × Rd → R be a positive
semi-definite kernel. We can then approximate

∇θ log

[
p̃rt (θt)

pt(θt)

]
≈

∫
Rd k(θt, θ

′
t)∇θ′ log

[
p̃rt (θ

′
t)

pt(θ′t)

]
p̃rt (θ

′
t)dθ

′
t∫

Rd k(θt, θ
′
t)p̃

r
t (θ

′
t)dθ

′
t

(125)

= −
∫
Rd [∇θ′k(θt, θ

′
t) +∇θ′ log pt(θ

′
t)] p̃

r
t (θ

′
t)dθ

′
t∫

Rd k(θt, θ′t)p̃
r
t (θ

′
t)dθ

′
t

(126)

= −
Ept|0(θ′t|θ′0)p̃r(θ′0) [∇θ′k(θt, θ

′
t) +∇θ′ log pt(θ

′
t)]

Ept|0(θ′t|θ′0)p̃r(θ′0) [k(θt, θ
′
t)]

, (127)

where the second line follows using integration by parts, and holds under mild regularity conditions (e.g., Liu et al., 2016;
Korba et al., 2020). Crucially, the expectations in (127) only depend on samples θ′t ∼ pt|0(·|θ′0), where θ′0 ∼ p̃r(·), and can
therefore be approximated using Monte Carlo.

Approximating the Proposal Prior. One final approach, somewhat different in spirit from the previous two, is to learn an
approximation p̂r(θ) ≈ p̃r(θ) of the proposal prior, or else an approximation p̂sψ(θ|xobs) ≈ psψ(θ|xobs) of each component
of the proposal prior, for which it is possible to exactly compute the score of the corresponding perturbed proposal prior

∇θ log p̂
r
t (θt) := ∇θ

[
1

r

r−1∑
s=0

p̂sψ,t(θt|xobs)

]
. (128)

There are several possible choices of surrogate proposal prior for which this calculation is possible. These include a mixture
of Gaussians, a (continuous) uniform distribution, and an atomic (i.e., discrete uniform) distribution (e.g., Greenberg et al.,
2019). We refer to Appendix B.2.1 for further details of how to compute the perturbed prior score in each of these cases. We
leave further investigation of this approach to future work.

C.5. TSNPSE vs SNPSE-A vs SNPSE-B vs SNPSE-C

In Figure 6, we provide a comparison between TSNPSE, SNPSE-A, and SNPSE-B, for two of the benchmark tasks described
in Lueckmann et al. (2021) (SLCP and GLU). We omit the corresponding results for SNPSE-C since, in our empirical testing,
this method failed to provide meaningful results (e.g., C2ST ≈ 1). This, we suspect, is due to the significant approximation
error incurred when estimating the score of the proposal prior, as described in Section C.4.3.

In both of these task, TSNPSE significantly outperforms both SNPSE-A and SNPSE-B, a finding which was also replicated
in other tasks. We suspect that this is largely due to the error associated with the approximate importance weight correction
used by SNPSE-A, and the high-variance updates associated with the use of importance weights in the loss function used by
SNPSE-B. We note that the performance of SNPSE-B could likely be improved using the techniques recently introduced in
Xiong et al. (2023).
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Figure 6. Comparison between SNPSE-A, SNPSE-B, and TSNPSE on two benchmark tasks.

D. Dealing with Multiple Observations
In this section, we discuss how to adapt our methods to the task of generating samples from p(θt|x1obs, . . . , xnobs)
for any set of observations {x1obs, . . . , xnobs}. As noted in Geffner et al. (2023), it is not possible to factorise the
multiple-observation posterior score ∇θ log pt(θt|x1obs, . . . , xnobs) in terms of the single-observation posterior scores
∇θ log pt(θt|xiobs), and the prior score ∇θ log p(θt). Thus, a naive implementation of NPSE would require training a
score network sψ(θt, x1, . . . , xn, t) ≈ ∇θ log pt(θt|x1, . . . , xn) using samples (θ, x1, . . . , xn) ∼ p(θ)

∏n
j=1 p(x

i|θ). This
requires calling the simulator n times for every parameter sample θ, and is thus highly sample inefficient.

To circumvent this issue, Geffner et al. (2023) introduce a new method based on the observation that p(θ|x1, . . . , xn) ∝
p(θ)1−n

∏n
i=1 p(θ|xi). In particular, they propose to use the sequence of densities

p
(bridge)
t (θt|x1, . . . , xn) ∝ (p(θt)

1−n)
T−t
T

n∏
i=1

pt(θt|xi). (129)

Importantly, the density at t = 0 coincides with the target distribution p(θ|x1, . . . , xn), while the density at t = T is a
tractable Gaussian. In addition, the score of these densities can be decomposed into the single-observation posterior scores
∇θ log pt(·|xi), and the (known) prior score ∇θ log p(·), as

∇θ log p
(bridge)
t (θt|x1, . . . , xn) =

(1− n)(T − t)

T
∇θ log p(θt) +

n∑
i=1

∇θ log pt(θt|xi). (130)

Thus, in particular, it is only necessary to learn a single score network sψpost(θt, x, t) ≈ ∇θ log pt(θt|x), which can be trained
using samples (θ, x) ∼ p(θ)p(x|θ). After learning this score network, one can then generate samples from the posterior by
running the reverse diffusion with

∇θ log p
(bridge)
t (θt|x1obs, . . . , x

n
obs) ≈

(1− n)(T − t)

T
∇θ log p(θt) +

n∑
i=1

sψ(θt, x
i
obs, t).

It is worth emphasising that, other than for t = 0, p(bridge)t (θt|x1, . . . , xn) do not coincide with the true perturbed multi-
observation posterior densities pt(θt|x1, . . . , xn). Thus, to generate samples, one must use an annealed MCMC algorithm
(e.g., Geffner et al., 2023, Algorithm 1), rather than directly integrating the reverse-time SDE.

We now propose an alternative approach, based on a very similar idea to the one in Geffner et al. (2023). In particular, in
place of (129), we now propose the sequence of densities

p
(bridge)
t (θt|x1, . . . , xn) ∝ (pt(θt))

1−n
n∏
i=1

pt(θt|xi). (131)

This sequence of densities has all of the desirable properties of (129). The density at t = 0 coincides with the target
p(θt|x1, . . . , xn), and the density at t = T is a tractable Gaussian. Moreover, we can factorise these densities in terms of
the single-observation posterior scores ∇θ log pt(θt|xi), and the perturbed prior score ∇θ log pt(θt), as

∇θ log p
(bridge)
t (θt|x1, . . . , xn) = (1− n)∇θ log pt(θt) +

n∑
i=1

∇θ log pt(θt|xi). (132)
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Similar to above, it is then only necessary to learn a single score network sψpost(θt, x, t) ≈ ∇θ log pt(θt|x), which we can
train using samples (θ, x) ∼ p(θ)p(x|θ). Clearly, the expressions in (131) - (132) are very similar to the ones given in (129)
- (130), with the only difference appearing in the first term. These quantities coincide at time zero, but will otherwise differ.
The advantage of (130), i.e., the scheme proposed in Geffner et al. (2023), is that it only requires access to the score of the
prior (rather than the score of the perturbed prior), and is thus very straightforward to implement.

E. Additional Experimental Details
E.1. Benchmark Tasks

We consider the following set of benchmark tasks, described in Lueckmann et al. (2021, Appendix T).

Gaussian Linear. This simple experiment involves inferring the mean of a 10-dimensional Gaussian, in which the
covariance is fixed. The prior is a Gaussian, given by p(θ) = N (0, 0.1I), as is the simulator, p(x|θ) = N (x|θ, 0.1I).

Gaussian Mixture. This task, introduced by Sisson et al. (2007), appears frequently in the SBI literature (Beaumont
et al., 2009; Lueckmann et al., 2021). It consists of a uniform prior p(θ) = U(−10, 10), and a simulator given by
p(x|θ) = 0.5N (x|θ, I) + 0.5N (x|θ, 0.01I), where θ, x ∈ R2.

Two Moons. This two-dimensional experiment consists of a uniform prior given by p(θ) = U(−1, 1), θ ∈ R2, and a
simulator defined by

x|θ =
(
r cos(α) + 0.25

r sin(α)

)
+

(
−|θ1 + θ2|/

√
2

(−θ1 + θ2)/
√
2

)
(133)

where α ∼ U(−π/2, π/2) and r ∼ N (0.1, 0.012). It defines a posterior distribution over the parameters which exhibits
both local (crescent shaped) and global (bimodal) features, and is frequently used to analyse how SBI methods deal with
multimodality (Greenberg et al., 2019; Glockler et al., 2022).

Gaussian Linear Uniform. This task consists of a uniform prior p(θ) = U(−1, 1), and a Gaussian simulator p(x|θ) =
N (x|θ, 0.1I), where θ, x ∈ R10. This example allows us to determine how algorithms scale with increased dimensionality,
as well as with truncated support.

Bernoulli GLM. This experiment consists of a generalised linear model (GLM) with Bernoulli observations, used to
simulate the activity of a neuron depending on a single set of covariates (De Nicolao et al., 1997; Lueckmann et al., 2017).
The task is to infer a 10-dimensional parameter θ = (β, f) ∈ R10, where β ∼ N (0, 2) and f ∼ N (0, (FTF)−1), where F
encourages smoothness by penalizing the second-order differences in the vector of parameters. The observed data x ∈ R10

are the sufficient statistics for this GLM.

SLCP. This task, introduced by Papamakarios et al. (2019), is designed to have a simple likelihood and a complex posterior.
The prior is a five-dimensional uniform distribution p(θ) = U(−3, 3), while the likelihood for the eight-dimensional data is
Gaussian, but with mean and covariance which are highly non-linear functions of the parameters. This defines a complex
posterior distribution over the parameters, with four symmetrical modes and vertical cut-offs.

SIR. This is an epidemiological model in which individuals from a population move between 3 possible compartments:
(S)usceptible, (I)nfected and (R)emoved. The task involves inferring a two-dimensional model parameter θ = (β, γ), where
β ∼ LogNormal(log(0.4), 0.5) is the contact rate between susceptible and infected, and γ ∼ LogNormal(log(0.8), 0.2) is
the mean removal rate. The data x = (x1, . . . , x10) ∈ R10 consist of 10 equally spaced noisy recordings xi ∼ Bin(1000, IN ),
where I denotes the number of individuals in the infected compartment, and is simulated according to a set of ODEs.

Lotka Volterra. This experiment involves a classical model used in ecology to model predator-prey populations (Lotka,
1920). The task is to infer a four dimensional parameter θ = (α, β, γ, δ) which governs the growth rates and the interactions
of the predator and prey populations, which are described by a system of ODEs. The priors for these parameters are given
by α, γ ∼ LogNormal(−0.125, 0.5), and β, δ ∼ LogNormal(−3, 0.5). The observed data x = (x1, . . . , x10) ∈ R20

+ , with
each xi ∈ R2

+, consist of 10 evenly spaced recordings of both predator and prey populations.
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E.2. Real-World Neuroscience Problem

Additional Implementation Details. To deal with ill-defined summary statistics, we follow the approach adopted by
Deistler et al. (2022a), and replace invalid summary statistics with a value two standard deviations below the prior predictive
of the summary statistic. We use the VP SDE to diffuse samples (see Appendix E.3.1 for more details).

Additional Numerical Results. Additional results for this experiment are provided in Figures 7 - 8. In Figure 7, we
provide a pairwise marginal plot for the posterior approximation obtained by TSNPSE. Our approximation has similar
characteristics to those previously obtained in the literature; see, e.g., Deistler et al. (2022a) and Glockler et al. (2022).
Meanwhile, Figure 8 shows the expected coverage of the approximate posterior, computed according to the simulation-based
coverage calibration (SBCC) procedure described in Deistler et al. (2022a). This plot indicates that, for mid-low confidence
levels, the empirical expected coverage is smaller than the confidence level (i.e., the posterior is overconfident). Importantly,
however, the empirical expected coverage approximately matches the confidence level for high confidence levels. We expect
that, as suggested in Hermans et al. (2022), an ensemble of approximate neural posteriors estimators could be used to obtain
a more conservative posterior.
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Figure 7. Pairwise marginal plot for the posterior approximation obtained in the Pyloric experiment. The posterior mean is plotted
in red.
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Figure 8. Coverage plot for the Pyloric experiment.

E.3. Implementation Details

E.3.1. SDE

For the benchmark experiments, we consider two different choices for the forward noising process: the variance exploding
SDE (VE SDE) and the variance preserving SDE (VP SDE). See Song et al. (2021, Appendices B - C) for further details.

VE SDE. The VE SDE is defined according to

dθt = σmin

(
σmin

σmax

)t√
2 log

σmax

σmin
dwt , t ∈ (0, 1]. (134)

We set σmin = 0.01 for the 2-dimensional experiments, SIR and Two Moons, and σmin = 0.05 for all other experiments,
while σmax is chosen according to Technique 1 in Song & Ermon (2020). This SDE defines the transition density

pt|0(θt|θ0) = N
(
θt

∣∣∣∣θ0, σ2
min

(
σmax

σmin

)2t

I

)
. (135)

VP SDE. The VP SDE is defined according to

dθt = −1

2
βtθtdt+

√
βtdwt , t ∈ (0, 1], (136)

where βt = βmin + t(βmax − βmin). In our experiments, we set βmin = 0.1 and βmax = 11.0, following Song & Ermon
(2020). This SDE defines the transition density

pt|0(θt|θ0) = N
(
θt

∣∣∣θ0e 1
2

∫ t
0
βsds, I− Ie

∫ t
0
βsds

)
. (137)

E.3.2. NETWORK ARCHITECTURE AND TRAINING

θt embedding network. 3-layer fully-connected MLP with 256 hidden units in each layer. The input dimension is d
(θ ∈ Rd) and the output dimension from the final layer is determined by max(30, 4 · d). We denote this embedding θemb.

x embedding network. 3-layer MLP fully-connected with 256 hidden units in each layer. The input dimension is p
(x ∈ Rp) and the output dimension from the final layer is determined by max(30, 4 · p). We denote this embedding xemb.

t sinusoidal embedding. We embed t into 64 dimensions, denoted temb. Inspired by Vaswani et al. (2017), we use
sinusoidal embeddings defined by

(temb)i =


sin

(
t

10000(i−1)/31

)
if i ≤ 32,

cos

(
t

10000((i−32)−1)/31

)
if i > 32.

(138)
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Score network. Finally, we concatenate [θemb, xemb, temb] and feed this into a 3-layer fully-connected MLP with 256
hidden units in each layer whose output dimension is d.

Activation Function. We use SiLU activation functions between layers for all MLP networks.

Optimizer. We use Adam (Kingma & Ba, 2015) to train the networks with a learning rate of 1× 10−4. We hold 15% of
the data back as a validation set: we compute the loss function on these samples after each training step, if this loss does not
decrease for 1000 steps then we stop training and return the network which gave the lowest validation loss. The maximum
number of training iterations is 3000 for sequential experiments and 3000 for non-sequential experiments. For experiments
with a simulation budget of either 1000 or 10000, our batch size is 50 for non-sequential experiments and 200 for sequential
experiments. For simulation budgets of 100000 we employ a bigger batch size of 500 for both sequential and non-sequential.

E.3.3. MISCELLANEOUS

Sampling. We use the probability flow ODE for sampling. To solve this ODE, we use an off-the-shelf solver (RK45).

Estimating HPRε and Sampling the Truncated Proposal. We follow the approach described in Deistler et al. (2022a,
Section 6.3). We first simulate 20000 samples from our approximate posterior via (the time-reversal of) the probability
flow ODE in (4) using our approximation of ∇θ log pt(θt|xobs). We then compute the likelihood of these samples via
the instantaneous change-of-variables formula in (5). Finally, we calculate the truncation boundary, κ, by taking the
(ε = 5× 10−4)th quantile. This quantity defines the log-probability rejection threshold for rejection sampling.

To sample the truncated proposal, we use rejection sampling. In particular, we repeat the following procedure until the
appropriate number of samples have been accepted: sample θ ∼ p(θ), compute the likelihood under our approximate
posterior using the instantaneous change-of-variables formula in (5), and accept the sample if the likelihood is greater than
κ, otherwise reject. As outlined in Deistler et al. (2022b, Section 3.2), one could also use other sampling schemes besides
rejection sampling, such as Sampling Importance Resampling (SIR).

In practice, computing likelihoods via the instantaneous change of variables formula in (5) is a computationally expensive
procedure, and thus we introduce an additional rejection sampling step to minimise the number of likelihood evaluations
required.4 In particular, we first perform a cheap initial rejection step directly on the prior samples by identifying whether
they are within the (empirical) hypercube occupied by the approximate posterior samples. This is appropriate since the
support of the approximate posterior typically takes up a fraction of the prior space; and can significantly reduce the number
of likelihood calculations required.

Standardization. We centre both θt and x before being input into the score network, by subtracting an estimate of the
mean and dividing by the standard deviation in each dimension.

Number of Rounds We use R = 10 rounds for all sequential experiments, unless otherwise specified. The simulation
budget is equally divided between rounds.

F. Comparison to Flow Matching Posterior Estimation
In this section we provide an additional comparison between our non-sequential method (NPSE) and flow matching posterior
estimation (FMPE) (Dax et al., 2023). In particular, results for the eight SBI benchmark experiments described in Section
E.1, for simulation budgets of 1000, 10000, and 100000, are provided in Figure 9.

It is worth noting that the results for FMPE are taken directly from Dax et al. (2023). As a consequence, there is a difference
in the way in which hyperparameters are tuned between the two methods. For FMPE, as detailed in Dax et al. (2023,
Appendix C), hyperparameter tuning is performed on an experiment-by-experiment basis. This is achieved by sweeping over
values of 5 hyperparameters (layer width, number of layers, learning rate, batch size, and a loss-weighting hyperparameter)
for each experiment, and selecting the model which has the lowest validation loss on a held-out dataset. In contrast, NPSE
uses a single set of hyperparameters for all experiments.

4See Appendix G for an alternative approach which reduces the cost of computing an (unnormalised) likelihood to the cost of a single
forward pass of the neural network.
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Figure 9. Comparison between NPSE and FMPE on eight benchmark tasks.

G. Alternative Parameterisation of the Score Network
In this section we discuss how an alternative energy-based parameterisation of the diffusion model (e.g., Du et al., 2023) can
significantly reduce the computational cost of TSNPSE. Specifically, this parameterisation circumvents the need to use the
instantaneous change-of-variables formula (5) to compute likelihoods, which is required for the truncated proposal used in
TSNPSE (see Section E.3.3).

As discussed in Salimans & Ho (2021); Du et al. (2023), there are multiple ways to parameterise the posterior score estimate
used in diffusion models. In this paper, we have directly modelled the score using a vector-valued score network sψ :
Rd×Rp×[0, T ] → Rd. As an alternative, one could parameterise a scalar-valued energy functionEψ : Rd×Rp×[0, T ] → R,
and then model the score as the gradient of this function: sψ(θt, x, t) = −∇θtEψ(θt, x, t).

5 In this case, we automatically
also obtain an estimate of the perturbed posterior density as

pt(θt|x) ≈
exp [−Eψ(θt, x, t)]

Zψ(x, t)
, (139)

where Zψ(x, t) =
∫
Rd exp [−Eψ(θt, x, t)] dθt is an (unknown) normalising constant. Recalling that p0(·|x) := p(·|x), and

noting that the normalising constant is independent of θ, it follows in particular that

p(θ|xobs) ∝∼ exp [−Eψ(θ, xobs, 0)] . (140)

Now, observe that estimating HPRε and sampling the truncated proposal (i.e., evaluating if samples are inside HPRε)
actually only requires knowledge of the likelihood up to a normalisation constant (see Section E.3.3). Thus, under the
energy-based parameterisation, estimating HPRε and sampling the truncated proposal only requires a single forward pass of
the neural network Eψ. This is significantly cheaper than using a score-based parameterisation, which not only requires
multiple forward passes, but also the gradient of multiple forward passes, to solve (4) and (5).

It is worth noting that the choice of parameterisation can have a significant impact on the sample quality of (unconditional)
score-based generative models; see, e.g., Salimans & Ho (2021, Section 4.1) or Du et al. (2023, Appendix E). It is likely that
the same is true for the conditional score-based generative models used in TSNPSE. With this in mind, further empirical
testing is required to understand whether the speed-up associated with the use of an energy-based parameterisation in
TSNPSE comes at any cost in terms of sample quality.

5There are various ways in which one could parameterise the energy function Eψ . The simplest is to parameterise Eψ as a feedforward
neural network, whose final layer has a single output (e.g., Nijkamp et al., 2020). Several other parameterisations have also been
considered in Salimans & Ho (2021); Du et al. (2023).
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