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Abstract Nowadays, customers as well as retailers look
for increased sustainability. Recommerce markets — which
offer the opportunity to trade-in and resell used products —
are constantly growing and help to use resources more
efficiently. To manage the additional prices for the trade-in
and the resale of used product versions challenges retailers
as substitution and cannibalization effects have to be taken
into account. An unknown customer behavior as well as
competition with other merchants regarding both sales and
buying back resources further increases the problem’s
complexity. Reinforcement learning (RL) algorithms offer
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the potential to deal with such tasks. However, before
being applied in practice, self-learning algorithms need to
be tested synthetically to examine whether they and which
work in different market scenarios. In the paper, the
authors evaluate and compare different state-of-the-art RL
algorithms within a recommerce market simulation
framework. They find that RL agents outperform rule-
based benchmark strategies in duopoly and oligopoly sce-
narios. Further, the authors investigate the competition
between RL agents via self-play and study how perfor-
mance results are affected if more or less information is
observable (cf. state components). Using an ablation study,
they test the influence of various model parameters and
infer managerial insights. Finally, to be able to apply self-
learning agents in practice, the authors show how to cali-
brate synthetic test environments from observable data to
be used for effective pre-training.

Keywords Recommerce - Dynamic pricing -
Competition - Reinforcement learning - Market
simulation - Sustainability

1 Introduction

Nowadays, shoppers and retailers alike are becoming more
environmentally conscious. A study conducted in 2020
found that over two-thirds of shoppers planned on buying
sustainable clothing in the future, and over half already did
so regularly, see Statista (2020). At the same time, another
study reveals that retailers favor online channels over off-
line channels when selling used goods, with 78% preferring
the former and only 6% the latter, cf. Rabe (2020). This
demand is causing more and more businesses, especially
those selling their products through e-commerce channels,
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to adopt more sustainable strategies and enter the circular
economy, see, e.g., Kirchherr et al. (2017).

In this context, the need for more sustainable business
strategies xed, see Hawlitschek (2021), Weinhardt et al.
(2021), as well as the proper use of the potential of artificial
intelligence in modern information systems facing chal-
lenges of a transforming world, see Thomas et al. (2020).

In the domain of e-commerce, circular markets are also
referred to as recommerce markets, a phrase coined in
2005, cf. Colony (2005). Recommerce markets, in which
used products are sold, are constantly growing. Such
markets follow the concept of a circular economy and help
to save resources by giving products a longer lifetime.
Recommerce firms buy returned articles (such as smart-
phones, clothes, etc.) from customers or other firms and —
after optionally repairing or refurbishing them — resell them
again to consumers as used products. As the costs for
grading, storing, repairing, or refurbishing products are
comparably low and consumers’ interest in sustainability is
increasing, recommerce is a beneficial business model.
However, recommerce firms also face challenges, which
can be described as follows:

1. To successfully manage trade-ins and sales a jointly
optimized pricing is essential.

2. Further, when also new product versions are sold,
substitution effects between new and used products
have to be taken into account.

3. Many recommerce markets are characterized by
duopoly or oligopoly competition.

4. The interaction of own and competitors’ prices on
demand are not easy to anticipate.

5. Usually fully manual pricing decisions are not feasible
and automation is required, but effective rule-based
pricing strategies are hard to derive.

6. Self-learning data-driven algorithms typically require a
great amount of data to be trained in practice.

To tackle these challenges, simulated market environments
are key to developing, testing, and evaluating the strategic
interplay of automated pricing strategies applied in
recommerce markets. In addition, the potential perfor-
mance of self-learning strategies can be compared to rule-
based baseline strategies.

In this paper, we propose a conceptual framework for
such a recommerce market simulation, including an
adjustable customer behavior model, which is capable to
apply rule-based and self-learning agents based on rein-
forcement learning (RL). Monitoring tools shall allow to
analyze each agent’s policy and their effects on the overall
market and the associated resource flows. With the help of
such simulations, we seek to study the competitiveness of
self-adapting pricing tools and their long-term impact on
market competitors and customers.
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Our key contributions can be summarized as follows:

e We use a synthetic simulation framework to study
whether different state-of-the-art RL algorithms allow
computing effective dynamic pricing strategies for
recommerce markets in duopoly and oligopoly
competition.

e We analyze how different RL algorithms perform
compared with rule-based benchmark strategies in
different market scenarios and evaluate associated
steady states.

e We use self-play to identify strategies that achieve
competitive results compared to strategies not seen in
training.

e We study the impact of different model parameters and
information structures on the performance of RL
algorithms and the associated average prices, sales,
stock levels, and resource flows.

e We demonstrate how to calibrate synthetic environ-
ments from data which allow to pre-train RL agents
before applying them to incompletely known
environments.

e We provide a rich open-source simulation and evalu-
ation framework, see code repository.'

The remainder of this paper is organized as follows. In
Sect. 2, we discuss related work. In Sect. 3, we describe
our conceptual framework to simulate recommerce markets
and to test self-learning algorithms. In Sect. 4, we present
several experimental evaluations to study the performance
of different state-of-the-art RL algorithms applied within
different problem scenarios, including duopoly and oligo-
poly setups. Further, we perform an ablation study
regarding the impact of several model parameters. To
illustrate how to potentially apply self-learning agents in
practice without being forced to train them extensively on
real-life markets, we show in Sect. 5 how to calibrate
synthetic test environments from observable data to be
used for pre-training before releasing the agent to the target
market. In Sect. 6, we summarize the main results obtained
and discuss limitations and potential extensions of the
model. Concluding remarks and ideas for future work are
given in the final Sect. 7.

2 Related Work

We shortly discuss related work along the following dif-
ferent streams associated to the topic of the paper: circular
economy (Sect. 2.1), dynamic pricing and market simula-
tions (Sect. 2.2), and an overview of existing RL tech-
niques (Sect. 2.3).

! https://github.com/hpi-epic/BP2021.
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2.1 Circular Economy

A market is most commonly referred to as a circular
economy if it includes the three activities of reduce, reuse,
and recycle, e.g., see Kirchherr et al. (2017). This means
that while in a classical linear economy market each pro-
duct is sold once at its new price and after use thrown
away, in a circular economy a focus is put on recycling and
thereby waste reduction. An entry point to study the con-
cepts of circular economy and sustainable markets is given
in, e.g., Stahel (2016) and Bocken et al. (2016). The overall
idea is to save resources, reduce the use of resources and to
avoid waste, which is also closely related to closed-loop
supply chains, see, e.g., Savaskan et al. (2004), Gonsch
(2014). Further, related aspects are environmental costs
(Commoner 1972) or recycling investments (Schlosser
et al. 2021).

2.2 Dynamic Pricing and Market Simulations

Selling products on online marketplaces is a classical
revenue management application, see, e.g., Talluri and
Van Ryzin (2006). A comprehensive overview of the lit-
erature in dynamic pricing research is provided by the
surveys by Chen and Chen (2015), den Boer (2015),
Strauss et al. (2018), and Klein et al. (2020). The recent
work of Gerpott and Berends (2022) particularly discusses
dynamic pricing models under competition on online
marketplaces.

The combined problem of (i) updating prices, (ii)
learning demand behaviors, and (iii) identifying strategy
equilibria in competitive markets is challenging as infor-
mation is incomplete and merchants may constantly adapt
their strategies. For analyzing and evaluating the complex
interplay and long-term behavior of mutual self-adaptive
pricing strategies, market simulations for classical e-com-
merce applications have been used, see Kephart et al.
(2000), DiMicco et al. (2003), van de Geer et al. (2019),
and Schlosser and Richly (2019). The latter put a focus on
the dynamic interaction of two market participants and
their global effects, focusing on each agent’s profit as the
main performance indicator.

While the previously mentioned research projects focus
mostly on online retail markets, many other use cases of
dynamic pricing are known. A magnitude of publications
considers pricing under competition in very different sce-
narios, potentially including other constraints, optimization
goals, or mechanics which have to be taken into account,
ranging from inventory management to fairness goals.
Some of those publications rely on reinforcement learning
(RL), for example, Maestre et al. (2018). This is one of the
examples relying on learning from a simulation, a

requirement that is demanded by all model-free RL
methods.

RL is usually considered in those use cases in which the
state representation becomes too complex to apply other-
wise optimal dynamic programming-based solution meth-
ods. This can occur in online markets with many
competitors or relevant demand features, but in other
specialized use cases as well. For example, if the under-
lying optimization goal does not only aim for revenue
optimization, but also for optimal usage of a limited
resource, as described in Turan et al. (2020). In this use
case, an RL-based policy is charged with the task of
managing not only the price of rides but also the supply of
electric vehicles in a dynamic market.

The previously mentioned publications vary widely in
their choice of the solution method. The one presented
here, relying on RL and neural networks, is only rarely
chosen. To learn specific market dynamics in dynamic
pricing, neural networks are used, for example in Yang
et al. (2022). In this example, a recurrent neural network is
used to represent the market dynamics in a market with
perishable products. The combination of RL and recurrent
networks has been shown in the past, but is not applied
here. Another project considering dynamic pricing using
RL and perishable products is provided by Shihab and Wei
(2022). Other examples of specialized use cases incorpo-
rating competition and other relevant features include
cloud resource pricing, see Chen et al. (2022). Markets in
which customers also provide products to the market and
thus influence the market prices by adjusting their own
sales, are, e.g., small-scale energy markets and smart grid
systems. Pricing in such markets has been studied by Tsao
et al. (2022).

One example of research that considers retail products
and which also incorporates selling used versions of those,
is provided in Wen et al. (2022). In this use case, the
pricing is not dynamic regarding competition, which dis-
tinguishes it from the scenario described here.

However, the additional buyback option of recommerce
markets and associated circular resource flows, all while
keeping the demand dependent on competitors’ choices,
have not been studied in the mentioned frameworks.

2.3 Reinforcement Learning

In this section, we give a brief overview of existing RL
methods. RL agents are trained through a process of trial-
and-error. They iteratively interact with an unknown
environment by means of an observable state and an action
and observe feedback signals as well as the following state
according to an underlying Markov process. Simulation-
based RL algorithms enable the heuristically solving of
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large Markov with
information.

The books by Sutton and Barto (2018) and Bertsekas
(2019) summarize the state of the art in the field of RL.
Examples of established RL algorithms are, e.g., Deep
Q-learning Networks (DQN), cf. Mnih et al. (2015),
Proximal Policy Optimization (PPO), cf. Schulman et al.
(2017), or Soft Actor Critic (SAC), cf. Haarnoja et al.
(2018).

Applications of DQN and SAC to dynamic pricing
under competition can, e.g., be found in Kastius and
Schlosser (2022). Unfortunately, RL algorithms typically
require a lot of training data which makes them less
attractive to use in practice. To overcome this issue, current
approaches such as transfer learning, cf. Zhu et al. (2020),
or multitask RL, cf. Teh et al. (2017), seek to use
observable data more efficiently. Alternatively, synthetic
market environments that mimic the use case under con-
sideration can be used to pretrain RL agents.

In this context, we aim at closing a research gap by
studying the applicability and effectiveness of different
state-of-the-art RL methods to recommerce problems with
additional buyback options using a rich open-source sim-
ulation and evaluation framework.

decision problems incomplete

3 Model and Problem Description

In this section, we first briefly introduce the main compo-
nents of our recommerce model (Sect. 3.1) and then
describe the mathematical model and its problem formu-
lation as Markov Decision Process from one firm’s per-
spective  (Sect. 3.2). In Sect. 3.3, we define a
suitable environment to be able to apply RL methods in
different market setups. Finally, we discuss different
potential classes of RL methods for our recommerce use
case and select suitable algorithms to be used in the eval-
uation and comparison.

3.1 Overview

To mimic real-life recommerce markets, in our market
simulation framework, we consider the following main
components: (i) supplier(s), (ii) firm(s) including a private
data/event store, (iii) a (shared) marketplace, (iv) con-
sumer, (v) resource in use, and (vi) waste (cf. garbage), see
Fig. 1. The components are connected as follows. Firms set
prices for new and used products on their (or a central)
marketplace. Arriving consumers decide (whether and)
which product to buy from which firm. Bought products are
considered as a resource in use on the consumer side. They
may be disposed of as garbage after a while or sold back to
one of the firms which offer a corresponding buyback
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price. Firms can also order new resources from their (or a
central) supplier at a certain cost (cf. virgin cost). To be
able to easily integrate various RL libraries, we follow a
standard stationary discrete-time setup with an infinite
horizon.

Note that this basic model sketched above also allows to
describe the following special cases: (i) monopoly settings,
(i1) scenarios with just one product type, and (iii) classical
e-commerce scenarios with no buyback option (cf. linear
economy), as well as combinations of those cases (i)-(iii).

Active decisions are made by the firms and the con-
sumers. The pricing decisions of a firm can be organized by
a certain rule-based strategy as well as an RL agent
exploiting a firm’s gathered partially observable market
data. Consumer behavior can be arbitrarily defined, e.g., by
generating random numbers of interested customers with
heterogeneous preferences and a diversified willingness-to-
pay. Besides consumers of a myopic type, also certain
shares of strategic or loyal customers can be defined and
considered.

3.2 Model Description

In the following, we describe the setup, a firm’s controls,
the consumers’ behavior, competitors’ reactions, and a
firm’s objective.

3.2.1 Setup

We consider an infinite time horizon. The discount factor
for one unit of time is denoted by . We consider K
competing firms. Each firm sells a new version as well as
used versions of a standardized product. If a customer buys
a new product, the item becomes a used product and is
added to the number of resources in use denoted by N,. In
this context, firms can buy back items from consumers.
Each firm has an inventory of used products. Items repur-
chased from the consumers are added to a firm’s inventory.
We assume that the rebuy price includes average costs for
cleaning, refurbishing, repairing, etc.). The inventory
holding costs per item and unit of time are denoted by
Ciny > 0. If a consumer buys a new product, the selling firm
receives the item from a supplier and faces virgin costs
Cvirgin = 0 per item.

3.2.2 A Firm’s Controls and Competitors’ Reactions
Each firm k, k =1, ..., K, sets a price pﬁ,’é)w € A, en, for new
products, where A, denotes the set of admissible prices.

Further, each firm k, k = 1, ..., K, sets a price pfﬁld € Auseds
for used products, where A,,.; denotes the admissible pri-

ces. Also, each firm k, k=1,...,K, sets a rebuy price
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Market Simulation

Episode length: 50

Consumer
Arrivals: 840
Sales: 673

Time step: 42
Price new: 7
Sales new: 4

I I I !
. Resource cost: 3 vendor_0 Market-
Supplier Inventory: 90 Price used: 5 I ! > 1 !
Profit: 391.4 Sales used: 2 | I | !
I I I !
Rebuy price: 3
T Repurchases: 1 ! I I| Resources |! thrown away: 6, Garbage
I T I in use | [t T 9
I I I Amount: 279 | Amount: 80
Price new: 6
Sales new: 8 | I | !
I I I !
. Resource cost: 3 vendor_1 Market- — >
Supplier Inventory: 10 Price used: 4 | | | I
Profit: 697.8 Sales used: 1 I 1
| |

Rebuy price: 2
Repurchases: 0

Fig. 1 Illustration of the main components of a recommerce market simulation with two competing merchants and prices for new items, used

items, and buyback prices

pi’;zuy € Ayepuy, for rebuying used products, where A,pyy

denotes a set of admissible prices. The sets Ay, Aysed, and
A epuy can be chosen discrete or continuous.

A firm sets its three prices simultaneously for one period
of time. The K firms set their prices subsequently in a
certain order and with fixed delays. Taking the perspective
of one specific firm, e.g., firm k = 1, this firm sets its prices
at the beginning of a period of length one, e.g., from time ¢
to r+ 1, taking into account the current prices

pnew<t> € AnKEW’ pmed(t) € Afyed’ prﬁbuy(t) € Afebuy as well as

the own inventory of used products, cf. Niig 4(1) > 0. Within
the period (¢, + 1) each firm k = 2, ..., K of the competing
K — 1 firms adjusts its price vector at its corresponding
point in time t®) € (¢,7 + 1) in a similar way by reacting to
the current prices at time ), i.e., P (T¥), Pusea(t¥),
Prevuy(t¥) and its own inventory Nifzd(ﬁk)) >0. In this
context, for each firm, we assume non-anticipating
Markovian strategies, where competitors’ prices are
observable while competitors’ inventory levels are not
observable. For the firms’ strategies, we allow for rule-
based as well as self-learning Al-based strategies.

3.2.3 Consumer Behavior for Buying and Reselling

We consider a stream of arriving consumers whose number
and timing can be defined in a steady deterministic and in a
random fashion.

A single consumer arriving at a certain point in time ¢
observes the current offer prices for new

(Prew = (p,(llezv, e pﬁ,’e{v)v)) and for
Pused = (pflild,...,piﬁ)d)) products from all K firms. A

customer’s choice behavior can be defined arbitrarily and
may include a no-buy option (cf. k£ = 0). In our model, we

used

assume that a (myopic) customer buys at most one product
and that the overall consumer buying behavior is expressed
as a probability distribution for buying no item at all (cf.

(0)
Prw buy

PEl]é)W(pnew7 pused) 2 0) or a used (Cf Pt(fvld(pnewv pused) > 0)
product from one of the K firms given the current prices

(Ppews Puseq) =>0) or buying either a new (cf.

Puew € AKX and p,,., € AK .. such that
0
P£w>buy (pneW’ pused) + Z Pl(jz)w (pnewa pused)

k=1,..K

k
+ Z Pfts)ed(pnevaused) =1.
=1,k

(1)

Note, within this framework various choice models can be
used.

Moreover, consumer behavior regarding selling back
items is modeled as follows. We again consider a stream of
consumers (interested in giving back an item), which may
explicitly depend on the current number of resources in use
N5 The precise number of such customers arriving, e.g.,
within a period of time, and the timing can be defined in a
steady deterministic way as well as in a random fashion.
Further, a (myopic) consumer interested in reselling
observes the current rebuy prices of all competitors

(Prebuy = (pglzmy,..., pgfguy)) and sells back at most one
product. We assume that the overall consumer reselling
behavior is expressed as a probability distribution for

. . 0
selling no item at all (cf. P,(w)se,,

(prebuy> > O) or selling the

used product to one of the K firms (cf. Pﬁif,)l(p,ebuy) >0)

given the current rebuy prices p,p,, € Afgbuy, such that

0
me)sell(pnewv Pused: prebuy) +
k=1,...

k
vael)l(pnevv7 Pused: prebuy) =1L
K

(2)
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Note that the resell probabilities may also depend on the
competitors’ current offer prices, which may serve as
potential reference prices. Again this formulation is fairly
general and compatible with established choice models.

3.2.4 Problem Formulation from a Single Firm’s
Perspective

A firm k’s profit, k = 1, ..., K, is characterized by its sales,
purchases, and its holding costs, which are connected to the
inventory process N*)(r). By Xnew( ) (and de( ), we
denote the number of new items (and used items) sold
within period (¢,# + 1). The number of used items repur-
chased from consumers within (¢,7+ 1) is denoted by

Xﬁfﬁu,,(t) (policy)

(p(ew, pmd, pmfm) a firm k’s random accumulated

Given a  pricing  strategy

future profits from time 7 on (discounted on time f) amount
to,t>0,k=1,...K

G .= Zé’ r.
i=t

k . k .
Nzi:z)’d( ) Xie;u\ ( ) pfel)my( )
(3)

A firm £’s goal, k = 1, ..., K, is to determine a non-antici-
pating (Markovian) 3-dimensional feedback pricing policy
that for given a certain initial state

k k
S(<) ) = (Nl,(lsld(o)7 Prew (0)7 Pused (0)7 prebtt)*(())) ) (4)

which is characterized by a firm k’s initial inventory level
and the current market prices, optimizes a given objective,
e.g., the maximization of expected total discounted profit,
cf. (3), from time t = 0 on:

E(G{1s). (5)

Note, depending on the targeted use case, the number of
resources in use might also be considered observable and
added to the state. Further, the proposed model is general
enough to deal with monopoly or duopoly scenarios as
special cases and also subsume models with no differen-
tiation between new and used products or without a rebuy
channel (cf. linear economy).

Due to the size of the state space, standard dynamic
programming-based solution techniques (assuming com-
plete information about the dynamics of the underlying
process) are, in general, not applicable and analytical
closed-form solutions are very likely not exist. Hence, we
seek to apply RL agents to the problem as an alternative
approach.

@ Springer

k) [+ k) /. k
O . (erezt(l) . (]751624/(1) - Cvirgin) +XL(nld( ) pL(lSZd( ))

3.3 Application and Selection of RL Agents
3.3.1 Embedding of RL Environments

Based on the model description and problem formulation
given in Sect. 3.2, we describe how different RL Algo-
rithms can be applied to our problem by mapping the
recommerce model to a standard RL framework. Standard
RL frameworks usually require a discrete-time (turn-based)
setup and are characterized by a so-called environment,
which includes states, actions, reward signals, and state
transition dynamics. The RL agent plays against the envi-
ronment by choosing actions from a certain action space
and receiving (aggregated) reward signals and associated
state transitions.

From a firm’s, i.e., the agent’s perspective, the state is
characterized by its inventory level, the current prices of
the competitors, cf. (4), and — if considered observable —
the amount of resources in use. Further, a firm’s action is a
combination of prices for new products, used products, and
the buyback price. Hence, for an RL agent, the action space
is 3-dimensional and given by the price sets Az, Auseds
and Arebuy-

The reward signal of a firm is the aggregated reward
associated to realized sales, purchases, and holding costs
(within one period); it is characterized by the underlying
customer behavior, cf. demand probabilities (1) and the
resell probabilities (2), including the defined arrival
streams of interested consumers, see Sect. 4.1.2.

Finally, (realized) state transitions are organized via the
MDP described in Sect. 3.2 and governed by the evolution
of the own inventory level and, in particular, the subse-
quent price adjustments of all competing firms. This, in
general, requires that certain, e.g., rule-based, policies are
assigned to the competing firms, see Sect. 4.1.1.

The agent’s objective is to find a state-dependent strat-
egy that maximizes expected discounted long-term
rewards, cf. (5). Note, the agent does not know internals of
the environment, i.e., the defined consumer behavior and
the defined competitors’ strategies are not unknown to the
agent. Finally, within the described environment, different
standard RL algorithms can be applied by using common
RL libraries.

3.3.2 Selection of RL Algorithms

Potential state-of-the-art RL algorithms for our problem are
so-called Q-Learning-based techniques and policy gradient
algorithms. Here, we will focus on RL algorithms using
neural networks; note that tabular methods (as used in
classical dynamic programming) cannot handle the
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problem because the size of the state space exceeds the
computational limits by far.

Further, as also the action space of our problem will be
typically large, we decided to consider algorithms that use
a continuous action space. The main reason for this is that
for a discrete formulation, neural networks require an
output neuron for each individual action. But the size of
this action space is |Apew| - [Aused| - [Arebuy|, Which does not
scale with fine-grained price levels. Moreover, unlike the
continuous ones, the actions in a discrete formulation have
the disadvantage that they only represent categories and,
hence, do not have a metric order. They also do not reflect
that the prices are real vectors whose distances have any
meaningful interpretation. In line with this, for example,
Kastius and Schlosser (2022) found that Soft Actor Critic
(SAC), cf. Haarnoja et al. (2018), performed better than
Deep-Q-Learning (DQN), cf. Mnih et al. (2015), on their
pricing benchmarks.

Finally, as RL methods with continuous action space,
we selected the following state-of-the-art RL algorithms to
be applied to our problem: A2C Mnih et al. (2016), SAC,
and PPO Schulman et al. (2017). Alternative algorithms
such as DDPG Silver et al. (2014) or TD3 Fujimoto et al.
(2018) were tested but soon ruled out due to their clearly
inferior performance. A3C, an asynchronous alternative to
A2C, was also considered but deemed unnecessary due to
the environment’s ability to generate data faster than the
algorithm itself could process it.

4 Evaluation

Our evaluation is organized as follows. In Sect. 4.1.1, we
define the consumer behavior and rule-based benchmark
strategies to be used in our experimental framework,
including reproducible hyperparameters for the different
RL agents are defined. In Sect. 4.2, we study the perfor-
mance of RL agents against rule-based benchmark strate-
gies in a duopoly. In Sect. 4.3, we consider an opportunistic
version of the setup of Sect. 4.2. In Sect. 4.4, we use self-
play to evaluate an RL agent playing against itself in a
duopoly. In Sect. 4.5, we provide a study examining
alternative versions of observable state spaces. In Sect. 4.6,
we also analyze monopoly and oligopoly scenarios.
Finally, in Sect. 4.7, we provide an ablation study with
respect to various model parameters in order to verify the
general applicability of the proposed model framework as
well as the robustness of the market results.

4.1 Definitions and Model Specifications
4.1.1 Competitors’ Strategies

In our experiments, we seek to model the timing of price
updates in a realistic (i.e., not concurrently) and fair fash-
ion (i.e., with uniform timely delays). For ease of sim-
plicity, we let the K competing firms subsequentially
update their prices (in random order) with a fixed consis-
tent delay of 1/K units of time. To be precise, firm k,
k=1,..,K, adjusts its prices at points in time
t+(k—1)/K, t=0,1,.... Hence, in each period, we
obtain K sub-intervals of length 1/K in which the market
prices remain unchanged.

As a rule-based benchmark strategy (denoted by RBB),
we define a common, representative competitive strategy,
which seeks to undercut other competitors’ prices but also
balances its own inventory level. The strategy uses an
incremental price unit 4 for undercutting competitors’
prices and a given upper reference level M for the firm’s
own inventory level. If firm k plays this RBB strategy, the
prices are (at any time f) adjusted as follows:

k
sz)w( isgdv pnew? puseda prebuy)

‘= max min {(i)}—/’lC‘-_Fh (6)
o ie{l»-»,K}\{k} pnew » Lvirgin

k k
p l(lszed (N L({Se)’d s Prews Pused> prebuy)

min {pt(tlv)ed} +h ’ind <M/15

ie{l,.. Kk}
— mn Gy NEemys
ie{l,TiI(rl}\{k} {pi?ed} —2h ,else
E‘glu)' (N, L(tlj'lll? Puews Puseds prebuy)
min(Cyirgin — h, ie{lfﬁ%\{k}{lﬁ?}my} +h) Nyl <M/15
= ,-Eu,l?_e}(’i\{k}{pi?”“-"} —h Nra<M/8
ie{l.r?%\{k}{p 5?”“}'} —2h yelse

(8)

Note, while the price for new items depends on the unit
COStS Cyjpgin, the used and repurchase prices depend on the
own stock level. If the inventory level is small (high), used
prices are chosen slightly higher (lower) compared to the
competitors in order to increase (decrease) the inventory
level. All prices are restricted to the action space (in case
the calculation determines results smaller or larger prices
than framed via the sets Ay, Aysea, and Aepyy).
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4.1.2 Consumer Arrival and Behavior

For ease of simplicity, in our experiments, we use a
deterministic arrival model. In each sub-period of length 1/
K associated with the subsequent updates of all competi-
tors, see Sect. 4.1.1, we consider B arrivals of customers
with an independent buying behavior sampled from the

probabilities pY P, and P, 4, cf. (1).

no buy’

In our experiments, we define the buying behavior for
given prices p,,,,, and p,. as follows. To compare prices
of different competitors, we use the following two prefer-
ence functions upe, (p), with p € A, and uysq(p), with
P € Auseds Onew € [0, 1], Ousea € [0,1], Kysea € [0, 1], defined
by

phe” o

D— new ‘Pnew
Unew (P) - 6‘[ e

p
and
” p(max) )

. Pused " Pysed Ouusec (max

uused(p) T f P e Pusea,

Based on the preference functions uy,, and u,s,, and the
fixed preference value of one associated to the no buy

option, we use Y=ol S LK euuew(pggw) 4
ijl ____ ewaPue) and the softmax function to define
P’S(()))buy, PY and Pmd, k=1,..,K, as:
no buy(pnevaused) . e/
®)
Plow(Prews Pusea) = €7 [ (10)
®
Pt (Prews Pusea) = €4 Vi) /5. (11)

Next, we define the consumers reselling behavior. In each
sub-period of length 1/K associated with the subsequent
updates of all competitors, see Sect. 4.1.1, we consider
[Nye - w| arrivals of customers interested in reselling,
where we use the share w € [0, 1]. Each arriving consumer

observes the current prices p,,,, and the reselling behavior
is independently sampled from PEw oy and P 11
In our experiments, for given rebuy prices p,.p,,, we

define the buying behavior using the reference price p,;,

= min;er, k) {mln(pnm, p,(u)g d)} as well as the preference

4~ Pmin

Mrehuy( ) (=2 ¢ Pmin >

ac Are;my, and

the preference functions dyep,y and Uyep,, we use X :=

1+drel7u) (Prebuy) + Zz 1
tion to define P( ) and P

no sell

0
““”“«“("whuv) and the softmax func-

k=1,..,K, as:

,,,,,

vell ’
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Pl(’l()> sell (pnew7 Pused> prebu) ) l+dmm) (Preoy) /Z (12)
k Urebuy ® . S

Piel)l(pnewv pused7 prebuy) =e e (pmhm)/z- (13)

Note, the consumers reselling behavior depends on the
different competitors’ rebuy prices and the current prices
for new and used items as a reference to discard rebuy
offers.

4.1.3 Reproducible Example

In the following examples and experiments, if not chosen
differently, we use the dynamics defined in Sects. 4.1.1 and
4.1.2 as well as the parameters summarized in Table 1.

4.1.4 Hyperparameters

The absence of theoretical knowledge about the determi-
nation of optimal hyperparameters requires exhaustive
experimental efforts within various settings for our specific
problem. This is not within the scope of this work. Instead,
as we look for solutions avoiding tedious tuning, as a
reasonable simple choice, we use the default hyperparam-
eters of the original methodological papers and test their
suitability for our recommerce problem. These can be
found in the Appendix (available online via http://link.
springer.com) in the Tables 4, 5, and 6. Nevertheless, it
might be possible to identify better hyperparameter setups
than the ones used for the following experiments. While no
full parameter sweep was performed by us, in some cases
the conclusions about the algorithms were validated over
several hyperparameter combinations.

4.1.5 Implementation Setup

The comparison of the RL algorithms takes place on the
market defined in Sect. 3.2. This market is simulated on the
test platform developed by us. The agents are communi-
cated via the Gym interface, see Brockman et al. (2016).
For the algorithms to be compared, the implementations of
the library Stable Baselines, cf. Hill et al. (2018), are used.
Stable Baselines is an open-source RL library written in
Python. It is built on PyTorch, see Paszke et al. (2019). In
most cases, the algorithms implemented in Stable Baselines
directly correspond to the proposed algorithms of the
original papers and are characterized by high code read-
ability. All hyperparameters are configurable.

4.2 Experiment A: An RL Agent Against the Rule-
Based Strategy RBB in a Duopoly

In this experiment, we consider a duopoly against the rule-
based benchmark competitor (RBB). We compare the
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Table 1 Parameters with brief

Symbol Explanation Default value
explanation and default values
used for our experiments 0 Discount factor per period 0.99
Cyirgin Purchase or production price for new products 3
Ciny Price per stored used product per period (step) 0.1
A Price sets Aoy = Aused = Arebuy = A [0, 10]
p(WZX) Maximum price for all three price sets Aey, Auseds Arebuy 10
B Number of customers visiting the store per step 20
w Proportion of owners considering resale per step 0.05
0w Parameter for preference function (new items) 0.8
Osea Parameter for preference function (used items) 0.5
Kused Parameter for preference function (used items) 0.55
K Number of competing firms 2
h Price decrease for the RBB strategy 1
M Upper reference value for used products in stock 100
E Number of periods (steps) per episode 500

performance of the three RL algorithms: A2C, PPO, and
SAC.

First, we discuss the results for the on-policy algorithms
A2C and PPO. Figure 2 shows the learning curves of both
algorithms. Each of these experiments was run four times
independently for one million steps (two thousand episodes
of 500 steps each), cf. Table 1. The learning curves depict
the running averages of the episode returns (cf. profits)
over a window of 100 episodes. The range between max-
imum and minimum episode returns of these four runs is
colored. The bold line represents their average. In this
graph, the loss region (i.e., values below zero) is hidden to
allow a more accurate comparison in the upper-perfor-
mance region. We observe that all agents reach the profit
zone. However, with average scores of about 8000 per
episode, we find that PPO clearly outperforms A2C. Fur-
ther, we observe that PPO’s learning stability is signifi-
cantly higher compared to A2C. Figure 3 illustrates a

detailed view of a typical PPO training run. The perfor-
mance develops in a narrow band, and catastrophic for-
getting does not occur. Its average performance increases
to 8160 by the end and shows a consistently stable trend in
return and price selection. Results for single runs of A2C
are given in the Appendix, see Fig. 13.

The difference in learning speed and stability between
PPO to A2C is not surprising as it exists by design. These
experiments show that PPO is successful in its intention to
increase training stability. This effect is achieved by lim-
iting the stochastic policy change in each training step. On
the other hand, this leads to the observed lower learning
speed.

One observation in Fig. 3 deserves special attention
because it seems paradoxical at first: Although with regard
to profit the RL agent outperforms the rule-based agent
after some time, it is later outperformed again. This gives
the impression that the agent gets worse during training.

Fig. 2 Learning curves (mean 10000
rewards) of A2C, PPO, and - mea" °: Zzg—j?p“‘::;de s
. ean o _clip_range_0.
SAC on the duopoly with the Mean of sac_standard
rule-based undercutting 8000 -
competitor RBB. The shaded
areas show the minimum and
maximum rewards of 4 runs 6000
E
o
T
4000
2000 4

250

o4

500 750 1000 1250 1500 1750 2000

Episodes
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Fig. 3 Detailed view of a PPO training run to visualize stability: (left) learning curve; (center) average selection of new prices; (right) average

selection of used prices

However, the opposite is true. The PPO agent first learns to
price new and used goods higher. For new sale prices
greater than four, it experiences that the rule-based com-
petitor always underbids its price by 1. Through reciprocal
undercutting, a downward price spiral leads to the price
settling just above the purchase price. However, the
extremely low rate of return allows only low profits. While
the agent gains experience through exploration, it learns
that it can increase its overall profit by moving the market
to a higher price band. The competitor then continues to
undercut the agent, but only by the value of one. In doing
so, the agent accepts that more customers will buy from the
competitor due to the low price and that the competitor will
also earn more from each customer as prices increase.
However, it can still increase its profits compared to the
low-priced market. The effect is, therefore, that the RL
agent, in reaction to the competitor who is always under-
cutting him, allows the latter an increase in profits in order
to be able to achieve higher profits for himself as well. The
existence of this effect is due to the fact that the only
optimization criterion for the agent is its own profit. A
reward formulation that includes outperforming the com-
petitor as an objective is discussed in Sect. 4.3.

On the same duopoly market, we also evaluated SAC.
Figure 2 shows the learning curve of four SAC agents in a
training run of 2000 episodes as in the experiments for PPO
and A2C. Within the 2000 episodes, SAC achieves slightly
less mean rewards compared to PPO.

SAC was developed as an off-policy algorithm for two
main goals besides achieving competitive results: First, it is
intended to have high sample efficiency, meaning that it
requires significantly fewer steps during training. Second,
SAC aims at a high training stability. The learning curve
confirms that SAC achieves these two main goals. At about
250 to 300 episodes, agents are already close to their peak
performance. The rest of the training yields only small
performance gains.

Similar to Figs. 3 and 4 shows more details during
training. The average prices start — apparently due to a
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different parameter initialization — at higher levels than for
PPO. They then drop and end at 6.4 and 5.4, similar to
PPO.

With the implementation and hardware used for these
experiments, training per step with SAC takes about 3.7
times as long as with PPO. Collecting the examples from
the market takes about 25% of the training time with PPO,
and only about 6% with SAC. The speed of training is very
similar for A2C and PPO. If we calculate the actual
training time, the higher sampling requirement for PPO is
put into perspective. A2C is superior to the other algo-
rithms in pure time requirements.

Note, because the SAC training is time-consuming and
the learning progress is slow later on, the number of
training steps is reduced in some of the subsequent
experiments. The same is done with A2C since its maxi-
mum performance is achieved very early on.

4.3 Experiment B: An RL Agent against the Rule-
Based Strategy RBB in a Duopoly (Opportunistic
Version with Adapted Reward Function)

In Experiment A, the RL agents achieved overall good
profits but were still outperformed by the rule-based
competitor. In Sect. 4.2, we explained that this should not
be interpreted as a weakness of the algorithms, but can be
attributed to the reward function, which only evaluates its
profit. Now, maximizing one’s own profit is not an inap-
propriate metric, yet firms will be reluctant to leave more
profit to their competitors than to themselves in a sym-
metric market. Therefore, it is obvious to evaluate not only
one’s own profits in the reward function but also whether
the competitor is outperformed.

One way is to formulate the market as a zero-sum game
in that the reward is precisely the difference between one’s
own profits and those of the competitor. This formulation
puts a clear focus on outperforming the competitor and
further potentially opens up the market scenario to insights
from game theory for zero-sum games. However, this
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Fig. 4 Detailed view of a SAC training run analogous to Fig. 3

formulation is not practical because the goal of maximizing
profit is not valued at all. Thus, optimizing solely the dif-
ference may result in significantly outperforming the
competitor, but with overall low profits.

Therefore, a mixed reward function was used for the
following series of experiments. It simply calculates the
sum of (i) profit and (ii) the difference to the competitor’s
profit. For these experiments, both summands were
weighted equally, but a hyperparameter could be inserted
to balance the two goals of maximizing profit and outper-
forming the competitor.

The results, see Fig. 5, show that the competitor can be
clearly outperformed, but naturally, the agents’ profits are
lower than compared to the original implementation, but
this difference turns out to vary in its strength among the
algorithms.

4.4 Experiment C: RL vs. RL Training via Self-Play

In Experiment A and B, the RL agents all trained against
the undercutting rule-based competitor RBB. This satisfies
the theoretical requirements of an MDP with fixed and
known dynamics but poses a number of problems for
practical applications. First, the competitor’s policy must
be known for this to work. However, because it can be
assumed that the competitor will not reveal its pricing
strategy, it would have to be estimated from historical data,

A2C PPO

10000 10000

1000 1250 1500 1750 2000 0 250 500 750

1000 1250 1500 1750 2000 0 250 500 750
Episode

1000 1250 1500 1750 2000
Episode

accepting inaccuracies. Second, the strategy trained using
RL is only reliable against that particular rule-based
strategy. If the competitor suddenly changes its pricing
strategy, this weakens the performance of the RL strategy
and necessitates further expensive training.

Therefore, the user wants a policy that can hold up
against various different competitor strategies rather than
being overfitted to a specific one. DeepMind had a similar
challenge in training go and chess strategies, which was
solved by self-play, see, e.g., Silver et al. (2017).

For our market, we developed a self-play variant in
which an RL agent continues to train on a duopoly market,
but the competitor’s policy is its own policy. In the pro-
gramming implementation, a pointer to the RL agent is
passed to the opponent, which eventually also implements
the policy function. Naturally, as the agent is playing
against itself and continuously updates its strategy, the
Markov property is violated. Yet, the training still leads to
relatively stable rewards in most cases. The motivation
behind self-play is that the agent constantly develops
strategies against its own, which are then, in turn, chal-
lenged. This is to prepare the agent for a variety of oppo-
nents’ policies.

Our experiments with self-play were again conducted
with the algorithms A2C, PPO, and SAC. In this context,
the entire series of experiments was performed with the
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Fig. 5 Representative single runs of A2C, PPO, and SAC with opportunistic reward function
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normal reward function and the mixed reward function
from Experiment B, cf. Sect. 4.3.

Figure 6 shows the learning curves of the three algo-
rithms when trained against themselves. The learning
curves under mixed reward look similar and can be found
in the Appendix, see Fig. 14. These curves initially show
that learning success is achieved for all of these three
agents. However, they alone cannot tell us whether the
agents can actually compete against an opponent with an
arbitrary pricing strategy. Therefore, the returns of these
learning curves should not be directly compared to those
from the previous sections. To establish comparability, a
model was saved every 50 episodes during self-play and
each of these models was subsequently tested for 25 epi-
sodes. This created accurate learning curves comparing the
model trained during self-play to the rule-based agent
RBB. A mean run was selected for the three algorithms and
the two reward functions and illustrated in Fig. 7.

For both reward functions, the agents have successfully
learned to cope with the market and show that they are also
successful against the rule-based benchmark competitor.
Note, the peak rewards of all agents in the evaluation are at
8000 or just below. A2C suffers from strong fluctuations,
some of the A2C agents do not reach a level of 5000, see
Fig. 6.

The effects of the mixed reward function can also be
seen in the training runs. During training, the difference
between the agent’s and the opponent’s profit is also
tracked as an optimization criterion. When evaluated
against RBB, the agent trained by self-play via PPO and
SAC beats the competitor. While the benchmark results do
not achieve the same results as by training directly against
the rule-based agent, we observe that they are close. This is
noteworthy because these successes were achieved without
ever having observed the rule-based competitor before.

Thus, these experiments can be considered successful,
particularly for PPO and SAC.

4.5 Experiment D: Study for Different Observable
State Spaces

In this section, we study cases in which different elements
of the state are hidden from the agent. In our model, the
fully observable state space contains: (i) current prices, (ii)
the number of resources in use, and (iii) all competitors’
inventory levels. However, observing some of these
quantities is often not feasible in practice. For example, the
competitor will not let competitors look into his or her
warehouse and the number of products in circulation is not
directly observable and not easy to estimate. Therefore, the
question arises whether the algorithms work without these
two pieces of information.

Figure 8a—c shows the learning curves of the three
algorithms when trained against the undercutting rule-
based strategy RBB under different observable state
spaces. The result here is surprising. The expectation that
less information would lead to worse results is not fulfilled.
For PPO, except for a slight deterioration in stability,
performance is similar for the three scenarios (cf. blue,
orange, and green plots). This slight drop in stability can
probably be explained directly by the lack of information.
For A2C, performance improves without additional infor-
mation, and also for SAC, mean rewards improve signifi-
cantly. The SAC agents that are only deprived of the
competitor’s stock level perform quite similarly (slightly
better) than those with complete information; the agents
that additionally lack the information about the number of
products in circulation perform significantly better. Not
only does it lower the time to peak performance to below
100 episodes, but it actually improves the peak perfor-
mance. This brings the maximum closer to that of PPO.

Fig. 6 RL vs. RL in a B
i d Iv: L . 14000 4 —— Mean of ppo_clip_range_0.3
symmetric duopoly: Learning Mean of a2c_standard
curves for A2C, PPO, and SAC —— Mean of sac_standard
at self-play; algorithms were 12000
trained for 2000 episodes (with
normal reward function, 4 runs 10000 -
B—
each)
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o
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!
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Fig. 7 Performance of representative runs for RL agents trained via self-play for x episodes and then evaluated against RBB
(x = 0,50, ...,2000); column-wise by agent: (left) A2C, (center) PPO, (right) SAC; top row with normal reward, bottom row with mixed reward

This is an important finding (cf. practical applicability),
and yet, it raises the question of how to explain unex-
pectedly good performance under incomplete information.
The first explanation is that the omitted information plays
only a subordinate role. They do explain to some extent the
future action of the competitor and the number of owners
willing to sell, but the effects are so indirect that they are
difficult to exploit for improving a policy.2 Further, a
higher-dimensional observation space also poses a chal-
lenge in principle for machine learning methods. The need
for samples increases and patterns in the data are harder to
detect.

However, the higher dimension is not sufficient to
explain the specific phenomenon in SAC. Another theory
might serve as the underlying reason here. Figure 9 (mid-
dle) displays that an exemplary SAC agent has a strong
sensitivity with regard to the two arguments, number of
resources in circulation and the stock level of the com-
petitor. Thus, the mean of the SAC policy for used prices
differs between 2 and 10 for similar situations, a jump
through the entire action space. That a near-optimal policy
should behave this way can be ruled out given the low
importance of the two arguments, confirming the policy of
the clearly more successful PPO agent. As one would
expect, the policy of the PPO agent hardly depends on
these two arguments. The lower performance maxima of
SAC can be explained by this weakness.

2 The rule-based competitors do not use this information either.

An explanation can be found in the internal replay
buffer Soft Actor-Ceritic relies on. It is based on the fact that
more products are in circulation when policies are evolved
in the market. This is shown in Fig. 9 (left) and is due to
the fact that little-trained policies often buy back too much
(and spend too much money in the process) in contrast to
the more evolved ones. This means that, especially in early
episodes, the experience buffer is filled only with state
transitions with low in-circulation values. These samples
remain in the experience-buffer, but are no longer useful
for later training and can explain the anomalies in the
policy. For example, a strong anomaly in the policy is in
the range between 50 and 150 products in circulation,
exactly the range from which the early samples come.
Thus, omitting the in-circulation entry arguably improves
the performance of SAC because it then no longer has the
opportunity to overfit early to relationships that are not
sampled from the market reliably in the long term. It is thus
noted as a weakness of SAC compared to the on-policy
method PPO that it is less able to ignore this bias in the
early generated data.

4.6 Experiment E: Monopoly and Oligopoly Scenarios

In the previous experiments A-D, the algorithms were
tested in duopoly scenarios. Naturally, in real-world
applications, there are also different scenarios to master. In
Experiment E, we investigate how the RL algorithms
perform on market scenarios such as monopoly setups (cf.
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Fig. 8 Learning curves of A2C,
PPO, and SAC with full versus
partial observation; (blue) full
observation, (orange) without
competitor’s stock level, and
(green) without competitor’s
stock level and the number of
products (respective minimum,
maximum, and mean results are
based on 4 runs) (color

figure online)
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Fig. 9 View of agents with complete information: (left) progression
of in-circulation counter in SAC training, (center and right) used price
policy as a function of in-circulation and competitor’s stock level for
SAC and PPO; for the illustration, other state arguments were pinned

Sect. 4.6.1) and, in particular, oligopoly scenarios (cf. Sect.
4.6.2).

4.6.1 Monopoly Scenario

Compared to duopolies, a monopoly scenario is likely to be
less complex. Here, the RL agent is the only merchant,
while the same stream of customers continues to visit the
market. The other dynamics of the market are unchanged.
The agent’s reward function optimizes expected profits —
comparisons with competitors are unnecessary.

Figure 10 shows the learning curves of the three agents
in the described monopoly market with complete infor-
mation. The parallels to the duopoly results are immedi-
ately striking:

1. The relative order of the agents in the learning curve is
the same: PPO performs best, then SAC ahead of A2C.

2. A2C is the first to reach the profit zone, followed by
SAC and finally PPO.
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to a representative value that is typical in a training run (own stock
level: 25, competitor’s new price: 6, competitor’s used price: 4,
competitor’s repurchase price: 0)

3. The training of PPO and SAC is stable, A2C’s training
is characterized by catastrophic forgetting.

We observe that, even though the monopoly market is
simpler (cf. the size of the state space), the demand for
samples does not decrease noticeably. Comparing the point
at which the algorithms stop achieving significantly better
results, A2C reaches this at around 150 episodes in both
setups, SAC at around 300 episodes, and PPO at around
600 episodes, cp. Figure 2. In the monopoly, the algorithms
achieve about twice as high profits as in the duopoly. This
is plausible as they no longer have to share the market. In
the Appendix, see Fig. 17, a PPO run in a monopoly is
compared with one in a duopoly in terms of sales figures.

4.6.2 Oligopoly Scenario

Next, oligopoly scenarios are examined. In our experiment,
we now consider K =35 players. Here, the RL agent
competes against the following set of four rule-based
agents:

Fig. 10 Learning curves of
A2C, PPO, and SAC in a
monopoly scenario over 1000
episodes (4 runs)
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1. a generalization of the known rule-based agent RBB
(which for used and new products undercuts the
minimum price of the other players by & = 1),

2. arule-based agent that uses prices to regulate its stock
but does not react to other agents’ actions,

3. apassive agent that has fixed prices (6 as new price, 3
as used price, and 2 as buyback price), and

4. an agent created specifically for the oligopoly scenario:
As a new price, it undercuts the median of the other
sellers and regulates its stock to contain about 7 items.

Each step here is decomposed into fifths, cf. K, and the
players set their prices in turn. In each of these fifths,
B/K = 4 customers come to the marketplace (B = 20, cf.
Table 1). The other parameters of the marketplace remain
unchanged. The observation space is 18-dimensional (in-
circulation, own stock level, and for each of the four
competitors’ three prices as well as the stock level). With
regard to the state space, the scenario is more complex than
the duopoly setup.

Figure 11 shows the learning curves on our oligopoly
scenario (same scaling as in Fig. 2). The RL agents achieve
learning success here as well, although the gains are nat-
urally lower given the increased competition for the same
demand. Consistent with our other experiments, PPO and
SAC show stable learning curves. A2C shows familiar
instabilities, but its performance at the peak actually lags
only slightly behind that of the other algorithms. What is
interesting in this experiment is that the SAC algorithm
performs better than PPO, which was superior in peak
performance in the other experiments. Because only 1000
episodes were trained due to the high training effort and the
PPO curves still show a slight increase at the end, it cannot
be ruled out that PPO catches up at a later time, but nev-
ertheless, based on this learning curve SAC can be classi-
fied as superior.

The algorithm comparison on the oligopoly was also
performed with the mixed reward function. Its results are
similar, but the SAC runs there scatter much more. The
learning curves for this experiment are given in the
Appendix, see Fig. 18.

Figure 12 shows a typical training run for each of the
three algorithms. The results here are positive. Each of the
RL agents is able to significantly outperform all of its rule-
based competitors during its training run. As expected, the
agent with fixed prices performs the worst, as it is neither
able to regulate its inventory nor to react to competitors’
prices. The agent that only regulates its inventory ends up
in second to last place, while the two rule-based agents that
also react to competitor prices perform passably.

As in this oligopoly experiment the RL agents already
outperform their competitors, cp. Experiment A, there is no
need for the mixed (opportunistic) reward function, cp.
Experiment B. Therefore, experiments on this setup were
omitted.

4.7 Ablation Study for Steady State Results

In this section, we provide an ablation study with respect to
various model parameters in order to verify the general
applicability of the proposed model framework as well as
the robustness of the market results.

We summarize the results of the ablation experiments,
cf. Table 2, in the following remark.

4.7.1 Remark 1

(i) The steady state of the Base Case is characterized
as follows. In the presence of the aggressive and
unyieldingly undercutting RBB competitor the RL
agent sells less new items and less used items.
However, the agent charges on average higher

Fig. 11 Learning curves of 10000
A2C, PPO, and SAC in an
oligopoly scenario over 1000
episodes with normal reward 8000
and full observation (4 runs)
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Fig. 12 Profits of typical training runs of A2C, PPO, and SAC compared to their rule-based peers in an oligopolistic setup

(i)

(iii)

@iv)

)

prices within both channels. Further, the RL agent
repurchases less items at lower prices compared to
the competitor. Overall, stock levels and rewards
are similar for both firms.

An increasing customer arrival intensity B leads to
overall plausible results: more sales, more repur-
chases, higher rewards for both firms, more virgin
resources, more resources in use, and also more
garbage. Both firms sell more new items at higher
prices. Offer prices and sales prices for used items
and repurchases are less affected. The RL agent
meets demand using higher stocks.

Higher production costs cirqin lead, as expected,
to higher offer prices and higher sales prices for
new items. We also observe higher rebuy prices as
resources are more valuable. Overall, we have less
in resources in use, less garbage, and less rewards
for both firms. Compared to the Base Case, the RL
agent sells more used items and repurchases more
items; the competitor sells less new items. For
higher c¢,;.,;» the RL agent beats the RBB strategy.
If the customers’ propensity to resell, cf. w,
increases rebuy prices drop and repurchases
increase (for both firms). Offer and sales prices
for used items are reduced and sales of used items
increase for both firms. As expected, also the
number of resources in use is smaller. Prices for
new items are lower, however, while the RL agent
sells more new items the competitor sells less new
items compared to the Base Case. For larger w the
competitor loses competition. While the RL agent
effectively adapts his/her policy to the new
conditions, the competitor’s policy seems less
well suited for the setup and should be re-tuned,
which, however, is not straightforward.

We varied the number of players K by considering
different selections of competitors of the oligopoly
experiment shown in Sect. 4.6.2. As expected, the
RL agent’s rewards are influenced by the com-
petitiveness of the market, i.e. rewards decrease

(vi)

the more firms take part in the competition. In line
with Fig. 12, we obtain that the RL agent (using
PPO) again beats his/her competitors in the
considered setups with 3, 4, and 5 players.

To test an alternative competitor policy, we
consider an exemplary two-bound-like rule-based
strategy (denoted by RSS) that avoids a race to the
bottom and represents a less aggressive heuristic
benchmark strategy:

k
pf’t’?w (Nyisgzﬁ Prew> Pused> prebuy)

W= h {0} > cu
= {iE{l‘Tk}\{k}{pne“ te{l.{r.l.l(}\{k} Pused Cvirgin

(max)

Drnew ,else

(14)

pu\ed(Nmedv Prew> Pused> prebm )

il )
= ie{LTll(}\{k}{p““d il KN Pusea

7 ,else

(15)

(k) ( (k) )

prebu) used? Prew> Puseds Prebuy
e+ L
= ie{lT.K}\{k}{prebuy * ’15(1 ..... K}\(k} Prebuy § < Cvirgi
h Jelse.

(16)

Overall, we obtain similar results, see Table 2.
Note, since the RSS policy is less aggressive, the
RL agent is able to achieve higher rewards. Fur-
ther, the RSS policy suffers from holding costs as
the inventory is not explicitly managed. This again
shows that it is not easy to define a well balanced
rule-based strategy in complex markets.

Ablation results for the choice of further model parameters
characterizing the consumer behavior (0., Quseds Kused)s
the threshold parameters of the RBB policy as well as the
holding costs (cj,) can be found at the end of the
Appendix, see Table 7.
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Table 2 Ablation Study: Steady state results, i.e., average offer and sales prices, sales, resource flows, stock levels, and rewards (per period) for

the RL agent and the competitor, cf. “C”

Base B Cyirgin w K RSS
Case 10 30 2 4 0.025 0.075 3 4 5
Offer prices P_ffw,oﬁer 6.12 584 658 5.94 6.63 6.25 5.26 6.02 564 560 6.01
p‘fmofﬁ,r 5.12 448 5.57 4.95 5.64 5.25 4.34 5.01 460 4.01 499
prL, e 392 442 412 4.24 4.01 3.84 3.26 3.92 415 335 393
p‘ﬁwd;o_ffer 3.34 379  3.56 3.60 3.64 3.36 2.68 2.96 282 260 292
p#:eLbuy,uffer 0.23 0.00 0.15 0.01 0.42 0.24 0.10 0.22 042 0.68 041
p‘febumﬂ.w 0.72 0.56 0.84 0.62 0.88 0.80 0.70 1.19 1.38 148 2.00
Sales prices pfjmmld 6.01 584 650 5.88 6.56 6.16 5.21 6.00 568 556 585
p‘fm_ﬂww 5.09 4.83 553 4.94 5.63 5.23 4.33 5.02 461 401 4095
pfédw[d 3.61 4.04 4.01 3.81 3.89 3.65 3.16 3.61 370 326 3.76
PCood sord 3.07 361 337 3.33 3.44 3.11 2.51 3.19 284 263 2.88
pf}bw.wm 0.39 0.00 0.20 0.00 0.64 0.49 0.16 0.34 0.59 0.79 0.58
Popusod 092 089 1.05 0.87 1.04 0.95 0.87 1.29 131 138 2.00
Sales X”ffw’ 3.96 242 474 4.44 4.04 3.40 4.14 2.84 272 186 374
ngw 6.52 378 9.88 6.74 5.60 6.76 6.24 4.30 432 362 6.74
iffed 1.72 0.62 250 1.46 1.98 1.88 242 1.24 088 1.12 2.06
Xfwd 3.63 098 5.14 3.00 342 3.82 4.20 3.34 290 206 3.56
ngiuy 1.74 0.68 254 1.44 2.08 1.78 2.34 1.18 0.84 1.14 2.06
Xfwbw 3.62 1.04 520 3.00 342 3.74 4.12 3.34 284 212 792
Resource flows, stocks & rewards N,-m,;(, 258 156 349 265 232 482 173 184 238 293 244
Vearbage 5.11 446 7.20 6.84 4.16 4.84 3.90 0.62 0.18 0.18 0.82
Nyirgin 10.50 631 1456  11.18 9.64 10.16 1038 7.14 7.04 548 1048
Nﬁick 8.77 424 1356 8.24 8.04 22.04 1146 1142 392 504 642
Nscw(:k 8.35 8.06 9.28 8.78 7.98 8.74 8.64 6.02 560 524 29.88
G’ﬁiwd 1560 894 2472 2196 1589 1454 1530 1145 9.66 581 1574
G¢ 1691 8.00 2893 2440 12.80 1838 9.48 6.56 6.43 3.12 11.69

reward

We vary different parameters with respect to our Base Case ( 7 =0.99, ¢yirgin = 3, iy = 0.1, B =20, w = 0.05, 00y = 0.8, Oypea = 0.5,
Kused = 0.55, in a duopoly (K = 2) vs. the RBB policy with 2 =1, M = 100, cf. Sect. 4.1.3). K = 3,4, 5 subsequently extends the Base Case by a
3" player “Rule Based (non competitive)”, a 4" player “Fixed Price”, and a 5th player “Storage Minimizer”, as used in Sect. 4.6.2, see Fig. 12;

the table contains results for the competitor RBB. RSS, cf. (14)—(16), exchanges the policy RBB

5 Calibrating Environments from Observable Data
5.1 Using Synthetic Test Environments for Pre-training

Naturally, the question arises of how to integrate the pro-
posed model and solution framework into real-world
information systems to solve companies’ individual rev-
enue management challenges. In this regard, it would be
necessary to calibrate the environment of our model, cf.
Section 3, to the use case such that it mimics the market
under consideration. One way to do this is based on domain

@ Springer

knowledge and corresponding experts. Alternatively, a
suitable environment could also be defined by using his-
torical data. First, besides known or easy-to-estimate
market and cost parameters, one would have to estimate
consumers’ demand probabilities under competition, see,
e.g., Schlosser and Boissier (2018a, b). For this purpose,
established methods and sophisticated forecasting tools are
available, see, e.g., Salinas et al. (2020) and references
therein. Second, the underlying competitors’ price reac-
tions need to be imitated. Based on suitable data regarding
own price adjustments and competitors’ price reactions,
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standard methods can be used to compute and predict data-
driven price anticipations, see, e.g., Schlosser and Richly
(2019).

These two dynamics can then be used within an artificial
model environment to generate price reactions, sales, and
inventory levels for multiple parties, i.e., the agent and the
competitors. Finally, the calibrated artificial environment
can be used to train an RL agent without being forced to do
that in practice. Finally, if obtained pricing strategies are
plausible, they can be applied and trained further in the
specific real-life application.

5.2 Test Example for the Base Case

To test the applicability of the sketched approach, we
distinguish between an original test environment A (which
is used to produce realized market data) and a fitted aux-
iliary environment B (which is used supposed to be used
for training). We consider the following example.

Example 1 As environment A, we consider the setup of
the Base Case, cf. Section 4.1, where the competing firm 2
plays again the RBB strategy. (Our) firm 1 initially plays
the two-bound RSS strategy, see (14)—(16). To ensure a
sufficiently diversified dataset, we add an exploration rate
of ¢ = 0.1 (for i.i.d. uniform prices within set A) to firm 1’s
policy. For this setup, we simulate test data for D = 20
episodes (with E =500 periods each) representing an
available set of historic market data.

5.2.1 Fitting Sales Probabilities

Given the test data produced by environment A, cf.
Example 1, we estimate the consumer behavior via
expected sales and repurchases. We consider time intervals
of length 1/2, i.e., half periods (z,7 + 0.5), r = 0,0.5, ..., T,
where T = E x 20. Next, we seek to explain the number of
sales of new items for firm 1 within (¢,7+ 0.5), i.e., the

dependent variable is X,SQV(I, t+0.5). As explanatory
variables we use the corresponding prices of new and used

items for both firms, ie. phew(t,z+0.5),p') (1,1 +

0.5), i (t,t +0.5),p2 (1,1 4+ 0.5). Using, e.g., simple

OLS regression providing corresponding f§ coefficients,
allows to predict average new sales for firm 1

(Xil)w(nt—&—O.S)) for half periods for any given prices.

Further, to simulate integer sales we sample the neighbors

of )f,(quw(t, t 4+ 0.5) with corresponding probabilities. Recall,
to include the standard deviation more accurately also
alternatives could be used.

Moreover, to simulate new sales for the competing firm
2, we exploit a symmetric setup, i.e., we use the same

regression result and switch the perspectives of both firms

regarding their prices. Note, this way, the competitor’s
sales do not need to be part of firm 1’s observable dataset.

Further, sales for used items and repurchases can be
predicted analogously for both firms. Note, for used sales,
we also include the firm’s own inventory level as an
additional feature. For repurchases, we of course also
include the current rebuy prices of both firms, cf.

Doty (1,1 +0.5) and p3),, (1,1 +0.5).
Overall, for Example 1, the described regressions for
demand obtained results with an R? = 0.52.

5.2.2 Fitting Competitor’s Price Reactions

Given the test data produced by environment A, cf.
Example 1, we estimate the competitor’s price reactions as
follows. We consider time intervals of length 1, i.e., full
periods (t,t4+ 1), t=0,0.5,...,T, where T =E x 20.
First, we seek to explain the competitor’s price for new
items for period (¢+0.5,7+ 1.5), ie., the dependent

variable is p,(l?w(t +0.5,1+ 1.5). As explanatory variables

we use the previous competitor price pﬁzv(t —0.5,1+0.5)

as well as, e.g., a family of binary features 1 U () <jp?

J=h2h, .. pi) p =1, pia) — 10, which particularly
allow to express nonlinear response functions to firm 1’s

price p,(qle)w(ut—&— 1). Note, this approach provides deter-

ministic predictions. Naturally, also extended models to
predict mixed strategies are possible (but not in focus of
this example). Further, firm 2’s price reactions for used
items as well as repurchases can be predicted analogously.

Finally, for the fitted price reactions (of the deterministic
RBB policy, cf. Example 1), the described regressions
obtained results with an R* = 0.90.

5.2.3 Training an Agent on the Fitted Environment B

The fitted sales probabilities (Sect. 5.2.1) and the fitted
price reactions of the competitor (Sect. 5.2.2) are now used
to define an auxiliary test environment B that mimics
environment A without using explicit knowledge of the
original dynamics. While model parameters such as cyigin,
7, and c¢;,,, can be assumed to be given, previous parameters
describing the consumer behavior (B, 0,1, Quseds Kused) OF
the competitor’s policy (M, h) are not required anymore.
The simulation of the environment B is straightforward.
Price updates, sales realizations, evolutions of stock levels,
and (accumulated) rewards are evaluated as before, cf.
Sect. 3.2. Similarly, also the training of RL agents, cf. Sect.
3.3, remains unchanged in the fitted environment B. Recall,
opposed to real-life applications the number of training
runs in environment B is not limited and can be fully
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exploited. In this example, we used 2000 episodes to train a
PPO agent on environment B.

5.2.4 Evaluation of the Trained Agent on the Original
Environment A

Finally, the PPO agent trained on environment B, cf.
Section 5.2.3, is evaluated in the original (hidden) envi-
ronment A. Note, the Base Case solution against RBB, cf.
Section 4.2, serves as a baseline and provides an upper
bound for agents that were not allowed to interact with
environment A, see Table 3. In our example, the pre-
trained PPO agent received a performance of 94% com-
pared to the Base Case solution, which shows that the

overall approach works well as long as the fit of environ-
ment B is accurate.

In further examples using less data or abstain from
exploration to obtain diversified data — as expected —
results were significantly worse. Typically, an inaccurate or
incomplete fit of the environment B leads to learned poli-
cies that are too optimistic in certain regions of the state
space, which fires back in the original market. To actively
resolve such issues and to improve the fit of environment B
(besides exploration) one could iteratively enrich the
dataset by shortly testing the current policy on environment
A and subsequently continue to train on an updated fit of
environment B.

Table 3 Performance Comparison: Steady state results for Agent B (i) after training on the auxiliary Environment B and (ii) evaluated in the

original Environment A, cf. Example 1

Base case Trained agent B applied on Env. A Agent B trained on Env. B

Offer prices ﬁfjw o 6.12 5.52 (0.90) 5.34 (0.87)
Plewoffer 5.12 4.57 (0.89) 4.57 (0.89)

lﬂféd,affw 3.92 3.94 (1.01) 4.03 (1.03)

;fsed‘off” 3.34 3.19 (0.95) 2.44 (0.73)

lﬁiwﬂﬁ” 0.23 0.02 (0.11) 0.03 (0.15)

I’{rebuy,uﬁer 0.72 0.61 (0.84) 0.25 (0.34)

Sales prices ﬁ:‘w‘,sold 6.01 542 (0.90) 5.19 (0.86)
lfew,wld 5.09 4.57 (0.90) 4.55 (0.89)

PR o 3.61 3.79 (1.05) 3.94 (1.09)

P edsold 3.07 2.84 (0.93) 2.44 (0.79)

I?lelimy.ml " 0.39 0.04 (0.09) 0.05 0.12)

Pﬁbuy.,mld 0.92 0.82 (0.89) 0.25 0.27)

Sales ){fﬁv 3.96 4.50 (1.14) 3.26 (0.82)
Xfm 6.52 6.98 (1.07) 5.00 0.77)

Xfild 1.72 1.38 (0.80) 2.62 (1.52)

sted 3.63 3.62 (1.00) 3.14 (0.87)

Xfeme: 1.74 1.58 0.91) 2.68 (1.54)

X‘febu'y 3.62 3.62 (1.00) 3.14 (0.87)

Resource flows, stocks & rewards Ninuse 258 277 (1.08) 219 (0.85)
Vearbage 5.11 6.58 (1.29) 2.54 (0.50)

virgin 10.50 11.48 (1.09) 8.26 0.79)

Nﬁi{_k 8.77 9.12 (1.04) 5.64 (0.64)

Ngm-k 8.35 9.40 (1.13) 1.58 (0.19)

G’ﬁwd 15.60 14.70 (0.94) 16.75 (1.07)

G¢ 16.91 14.20 (0.84) 13.53 (0.80)

reward

The numbers in brackets show the relative comparison to the Base Case, where Agent A is directly trained on Environment A
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6 Discussion

In the following, we summarize our main insights, discuss
limitations, and propose ideas on how to introduce RL
agents in real-life markets.

6.1 Main Insights

Our main insights can be summarized as follows:

e RL algorithms can successfully be applied to complex
recommerce markets with unknown underlying dynam-
ics regarding consumers’ and competitors’ behaviors.

e RL agents are able to clearly outperform commonly
established rule-based agents.

e In our experiments, at most a few thousand episodes
were necessary to train the agents.

e PPO and SAC performed best in duopoly as well as in
oligopoly scenarios.

e The default hyperparameters of the RL algorithms
worked well; hardly any tuning was necessary.

e Steady-states of controlled markets are obtained after
about a few hundred periods.

e The non-observability of both the number of resources
in use and the competitors’ inventories is not critical;
results hardly depend on whether they are part of the
state space.

e Applying self-play allows finding robust pricing strate-
gies which are effective against different competitor
strategies, even ones not seen in training.

e Our numerical examples show that changes in the
parameters or the setup lead to good-natured and
plausible solutions, which verifies the general applica-
bility of the model.

e Agents can be successfully applied to incompletely
known markets by pre-training them on auxiliary
markets that are calibrated based on realized market
data of the (hidden) target market.

6.2 Limitations and Extensions

The lack of more or better benchmark strategies and
alternative RL algorithms, cf. Section 3.3.2, is a limitation.
Also, results are to some degree stochastic and a larger
number of runs would have to be used to quantify mean
values and their standard deviations accurately. Further, the
successful calibration of auxiliary training environments
deserves further analysis. However, in the existing frame-
work, alternative competitor strategies, calibration tech-
niques, and other RL algorithms can be easily added and
tested in greater detail. Moreover, the basic model could
also be extended to capture more complex settings. For
instance, for each firm, we may additionally consider a

technology state serving as a sustainability image (cf.
greenness, signaling, etc.), which increases demand. Fur-
ther, this state could be stimulated via corresponding
investment efforts and otherwise depreciates over time.
Another research direction is to include strategic consumer
behavior.

7 Conclusion

In this paper, we have proposed a market simulation
framework for recommerce markets under competition.
The framework has modular components, which allow to
study different pricing strategies in different market sce-
narios. The simulation is designed in such a way that self-
learning RL algorithms can be easily integrated and com-
pared. Further, we have studied the performance of state-
of-the-art RL algorithms in different recommerce markets.
We find that PPO and SAC performed best while being
tested in various market setups as well as different infor-
mation structures.

Detailed analyses of the policies obtained allow to better
understand resource flows in recommerce markets and to
infer managerial insights. Further, we show that RL agents
can be promising candidates for practical applications as
long as a sufficient amount of historic data is available and

synthetic training environments can be calibrated
accurately.
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