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ABSTRACT

Classifiers trained with Empirical Risk Minimization (ERM) often rely on spurious
correlations, degrading performance on underrepresented groups and challeng-
ing out-of-distribution generalization and fairness. While prior methods aim to
address this, many require group annotations for training or validation, limiting
their applicability when spurious correlations or group labels are unknown. We
demonstrate that what has been learned during ERM training can be utilized to
fully remove group supervision for both training and model selection. To show
this, we design Environment-based Validation and Loss-based Sampling (EVaLS),
which uses losses from an ERM-trained model to construct datasets with mitigated
group imbalance. EVaLS leverages environment inference to create diverse envi-
ronments with correlation shifts, enabling model selection without group-annotated
validation data. By using worst environment accuracy as a tuning surrogate, EVaLS
achieves robust performance across groups through simple last-layer retraining.
This fast and effective approach eliminates the need for group annotations, achiev-
ing competitive worst-group accuracy and improving robustness to known and
unknown spurious correlations. Our code is available here.

1 INTRODUCTION

Training deep learning models with Empirical Risk Minimization (ERM) risks relying on spurious
correlations—patterns in the training data that correlate with the target without causal relevance.
Learning such shortcuts can reduce accuracy on minority groups lacking these patterns (Kirichenko
et al., 2023; LaBonte et al., 2023), raising fairness concerns (Hashimoto et al., 2018) and impairing
performance. This issue is particularly critical when underrepresented minority groups during training
become overrepresented at inference due to subpopulation shifts (Yang et al., 2023b). Ensuring
robustness to group shifts and improving worst-group accuracy (WGA) is therefore essential for both
fairness and reliability in deep learning.
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Many studies have proposed solutions to address this challenge. A promising line of research focuses
on increasing the contribution of minority groups in the model’s training (Liu et al., 2021a; Yang
et al., 2023a; Sagawa et al., 2019). A strong assumption that is considered by some previous works is
having access to group annotations for training or fully/partially fine-tuning a pretrained model (Nam
et al., 2021; Sagawa et al., 2019; Kirichenko et al., 2023). The study by Kirichenko et al. (2023)
proposes that retraining the last layer of a model on a dataset that is balanced in terms of group
annotation can effectively enhance the model’s robustness against shifts in spurious correlation. While
these works have shown tremendous robustness performance, their assumption for the availability of
the group annotation restricts their usage.

In many real-world applications, the process of labeling samples according to their groups can be
prohibitively expensive, and sometimes impractical, especially when all minority groups may not be
identifiable beforehand. A widely adopted strategy in these situations involves the indirect inference
of various groups, followed by the training of models using a loss function that is balanced across
groups (Liu et al., 2021a; Qiu et al., 2023; Nam et al., 2020; Yang et al., 2023b). The loss value of
the model, or its alternatives, are popular signals for recognizing minority groups (Liu et al., 2021a;
Qiu et al., 2023; Nam et al., 2020; Noohdani et al., 2024). While most of these techniques necessitate
full training of a model, Qiu et al. (2023) attempts to adapt the DFR method (Kirichenko et al., 2023)
to preserve computational efficiency while simultaneously improving robustness to the group shift.
However, this method still requires group annotations of the validation set for the model selection
and hyperparameter tuning. Consequently, this constitutes a restrictive assumption when adequate
annotations for certain groups are not supplied. It also applies to situations where some shortcut
attributes are completely unknown.

In this study, we investigate whether a model trained with standard ERM contains all the information
needed to make it robust to spurious correlations. We propose a strategy that mitigates reliance
on spurious correlations, eliminating the need for group annotations in both training and retraining
stages. Notably, we provide empirical evidence that group annotations are unnecessary even for model
selection. Instead, assembling diverse environments reflecting group shifts serves as an effective
alternative. Our method, Environment-based Validation and Loss-based Sampling (EVaLS), enhances
model robustness against spurious correlations without relying on ground-truth group annotations. In
the robustification of trained models, EVaLS is pioneering in its ability to eliminate the need for group
annotations at every phase, including the model selection step. EVaLS posits that in the absence of
group annotations, a set of environments showcasing group shifts is sufficient for robustness. This
indicates that Worst Environment Accuracy (WEA) could then be utilized for model selection. We
observe that spurious correlations cause significant group shifts when using environment inference
methods. Consequently, the inferred environments offer a practical mechanism to compare different
hyperparameter settings. Figure 2 illustrates the main components of EVaLS.

Aligned with AFR (Qiu et al., 2023) and DFR (Kirichenko et al., 2023), EVaLS offers a significant
advantage by not requiring any modifications to the standard ERM training procedure or the original
training data. This characteristic is particularly beneficial in enhancing the robustness of ERM-
pretrained networks against their potential inherent biases. Specifically, it eliminates the need to
retrain the entire model, which may be impractical or infeasible when the original training data is
unavailable. While AFR and DFR rely on similar post-hoc approaches, EVaLS demonstrates that
even without explicit information about spurious correlations or group annotations, pretrained models
inherently contain the signals needed to improve their robustness against spurious correlations.

Our empirical observations support prior research suggesting that loss of a trained model could be
a signal for distinguishing samples of minority and majority groups. (Liu et al., 2021a; Qiu et al.,
2023; Nam et al., 2020). EVaLS evenly selects from both high-loss and low-loss data to form a
balanced dataset for last-layer retraining. Both theoretical insights and empirical results support
the effectiveness of this strategy. Comprehensive experiments conducted on spurious correlation
benchmarks show that EVaLS achieves accuracy comparable to state-of-the-art methods, despite
having no supervision regarding spurious correlations sources. Moreover, when group annotations are
accessible solely for model selection, our approach, EVaLS-GL, further improves performance against
various distribution shifts, including attribute imbalance and class imbalance. Finally, we introduce
two new datasets designed to model real-world scenarios where there are multiple independent
shortcuts, but group annotations are not available for some attributes. In this setting, we show that
EVaLS, without utilizing group annotations for either attribute, can paradoxically be more effective
in preserving the performance of the most underrepresented group.
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The main contributions of this paper are as follows:

• We present EVaLS, a simple yet effective post-hoc approach that enhances the robustness of
ERM-pretrained models against both known and unknown spurious correlations, without
relying on group annotations.

• We provide both theoretical insights and empirical results on how balanced sampling from
high-loss and low-loss samples offers a dataset in which the group imbalance is notably
mitigated. We further show that worst environment accuracy could serve as a reliable
indicator for model selection.

• EVaLS achieves competitive performance in spurious correlation benchmarks without re-
quiring group annotations and delivers state-of-the-art performance when group annotations
are available for model selection.

• By introducing two new datasets with multiple spurious attributes and one being un-
annotated, we show that EVaLS, counterintuitively, improves the robustness of under-
represented groups better than methods relying on group annotation.

2 PRELIMINARIES

2.1 PROBLEM SETTING

We consider a supervised learning problem with training set DTr, validation set DVal, and test set DTe.
Each dataset consists of paired samples (x, y), representing the input data and their corresponding
label. While conventional settings assume these datasets are sampled from the same distribution,
real-world scenarios often involve distribution shifts. Specifically, we address the subpopulation shift
problem (Yang et al., 2023b), where data samples belong to groups Gi, each characterized by a shared
property. The overall data distribution is given by p(x, y) =

∑
i αipi(x, y), where αi represents the

proportion of group i such that
∑

i αi = 1. In this work, we assume that DTr, DVal, and DTe contain
the same groups but differ in their mixing coefficients {αi}.
Several types of subpopulation shifts have been identified in the literature, including class imbalance,
attribute imbalance, and spurious correlation (Yang et al., 2023b) (see Appendix A). In the case
of spurious correlation, when a spurious attribute is strongly associated with a label, deep models
may rely on it as a shortcut instead of learning the core features. Consequently, model performance
degrades on groups lacking this attribute. Our objective is to enhance classifier robustness to spurious
attributes by improving performance across all groups.

2.2 PARTIALLY ANNOTATED MULTIPLE SPURIOUS ATTRIBUTES

As previously discussed by Li et al. (2023), when data contains multiple spurious attributes and
annotations are only available for some of them, methods that depend on group annotations for
training or model selection would make the model robust only to the known spurious attributes.
To explore such complex scenarios, we introduce the Dominoes Colored-MNIST-FashionMNIST
(Dominoes-CMF) (Figure 1(a)) and CelebA Straight Hair - Smiling - Gender (CelebA-SHSG) datasets.
Drawing inspiration from Pagliardini et al. (2022a) and Arjovsky et al. (2020), Dominoes-CMF
merges an image from CIFAR10 (Krizhevsky & Hinton, 2009) at the top with a colored (red or green)
MNIST (Deng, 2012) or FashionMNIST (Xiao et al., 2017) image at the bottom. The primary label
is derived from the CIFAR10 image, while the bottom part introduces two independent spurious
attributes: color (red or green) and style (MNIST or FashionMNIST). Although annotations for shape
are provided for training and model selection, color remains an unknown variable until testing. For
details on CelebA-SHSG and more details on Dominoes-CMF refer to Appendix F.

In Section 4.1 we show that our approach, which does not rely on the group annotations of the
identified group, achieves enhanced robustness to both spurious correlations, outperforming strategies
that depend on the known group’s information.
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3 ENVIRONMENT-BASED VALIDATION AND LOSS-BASED SAMPLING

In line with the DFR (Kirichenko et al., 2023) approach, we utilize a classifier defined as f = hϕ ◦ gθ,
where gθ represents a deep neural network serving as a feature extractor, and hϕ denotes a linear
classifier. The classifier is initially trained with the ERM objective on the training dataset DTr.
Subsequently, we freeze the feature extractor gθ and focus solely on retraining the last linear layer
hϕ using the validation dataset DVal as a held-out dataset. This scheme helps us make our method
available in settings where DTr is not available, or where repeating the training process is infeasible.
We randomly divide the validation setDVal into two subsets,DLL andDMS, used for last layer training
and model selection, respectively.

In Section 3.1 we explain how to sample a subset of DLL that statistically handles the group shifts
inherent in the dataset. Building on this, We discuss the theoretical justification for this approach.
Here, we leave out the detailed analysis in Appendix E. Finally, in Section 3.2 we describe how DMS

is divided into different environments that are later used for model selection. The optimal number of
selected samples from DLL and other hyperparameters is determined based on the worst environment
accuracies among environments that are obtained from DMS. Figure 2 (Appendix B) illustrates the
comprehensive workflow of the EVaLS.

3.1 LOSS-BASED INSTANCE SAMPLING

Following previous works (Liu et al., 2021a; Nam et al., 2020; Qiu et al., 2023), we use the loss
value as an indicator for identifying minority groups. We first evaluate classifier f on samples within
DLL and choose k samples with the highest and lowest loss values in each class. By combining these
2k samples from each class, we construct a balanced set DBal, consisting of high-loss and low-loss
samples (see Figure 2(c)). DBal is then used for the training of the last layer of the model. We observe
that as we choose smaller number of samples with the highest loss, the proportion of minority samples
among these samples increases. This suggests that high and low-loss samples could serve as effective
representatives of minority and majority groups, respectively (see Figure 3 in Appendix D). However,
our approach brings up the question of whether loss-based sampling can successfully construct a
balanced dataset without introducing spurious correlations. We provide theoretical insights into why
this approach may result in group-balanced data in Appendix E.

3.2 PARTITIONING VALIDATION SET INTO ENVIRONMENTS

Contrary to common assumptions and practices in the field, precise group labels for the validation set
are not essential for training models robust to spurious correlations. Our empirical findings, detailed in
Section 4, reveal partitioning the validation set into environments that exhibit significant subpopulation
shifts can be used for model selection. Under these conditions, the worst environment accuracy
(WEA) emerges as a viable metric for selecting the most effective model and hyperparameters.

The environment concept in invariant learning refers to data partitions with different distributions.
A model with high worst environment accuracy (WEA) is likely to generalize well across test
groups. Several methods infer environments with distribution shifts (Creager et al., 2021; Liu et al.,
2021b). EIIL (Creager et al., 2021) uses predictions from a trained ERM model to split data into two
environments that deviate from the invariant learning principle of Arjovsky et al. (2020), introducing
distribution shifts. Initially, an environment inference method (e.g. EIIL) is employed to split DMS

into two environments. Subsequently, each environment is further divided based on sample labels,
resulting in 2×|Y| environments. To measure the difference between the distribution of environments,
we define group shift of a class as the absolute difference in the proportion of a minority group
between two environments of that class. A higher group shift suggests a more distinct separation
between environments. As detailed in the Appendix, environments inferred by EIIL demonstrate an
average group shift of 28.7% over datasets with spurious correlation. Further details on environment
inference methods and the extent of group shifts in each dataset are provided in the Appendix.

We demonstrate that even more straightforward techniques can be effective to an extent in several
cases (See Appendix H.3). These observations underscore that the feature space of a trained model
is a valuable resource of information for identifying groups affected by spurious correlations. This
supports the logic of previous research that employs clustering (Sohoni et al., 2020) or contrastive
methods (Zhang et al., 2021) in this space to differentiate between groups.
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Table 1: Comparison of worst-group accuracy across various methods, including ours, on five datasets.
The Group Info column indicates if each method utilizes group labels of the training/validation data,
with ✓✓denoting that group information is employed during both stages. Bold numbers are the highest
results overall, while underlined ones are the best among methods that may require group annotation
only for model selection. CivilComments is class imbalanced, MultiNLI has imbalanced attributes,
and the other three datasets have spurious correlations. The × sign indicates that the dataset is out of
the scope of the method. Methods that do not rely on ERM training information are identified with ⋆.
Mean and standard deviation are calculated over three runs.

Method Group Info Datasets

Train/Val Waterbirds CelebA UrbanCars CivilComments MultiNLI
GDRO (Sagawa et al., 2019) ✓/✓ 91.4 88.9 73.1 69.9 77.7

DFR⋆ (Kirichenko et al., 2023) ✗/✓✓ 92.9±0.2 88.3±1.1 79.6±2.2 70.1±0.8 74.7±0.7

GDRO + EIIL (Creager et al., 2021) ✗/✓ 77.2±1 81.7±0.8 76.5±2.6 67.0±2.4 61.2±0.5

JTT (Liu et al., 2021a) ✗/✓ 86.7 81.1 79.5 69.3 72.6
SELF (LaBonte et al., 2023) ✗/✓ 91.6±1.4 83.9±0.9 83.2±0.8 66.0±1.7 70.7±2.5

AFR⋆ (Qiu et al., 2023) ✗/✓ 90.4±1.1 82.0±0.5 80.2±2.0 68.7±0.6 73.4±0.6

EVaLS-GL⋆ (Ours) ✗/✓ 89.4±0.3 84.6±1.6 83.5±1.7 68.0±0.5 75.1±1.2

EVaLS⋆ (Ours) ✗/✗ 88.4±3.1 85.3±0.4 82.1±0.9 × ×
ERM ✗/✗ 66.4±2.3 47.4±2.3 18.67±2.0 56.3±4.8 64.8±1.9

4 EXPERIMENTS

Datasets Our approach, along with other baselines, is evaluated on Waterbirds (Sagawa et al., 2019),
CelebA (Liu et al., 2014), UrbanCars (Li et al., 2023), CivilComments (Borkan et al., 2019), and
MultiNLI (Williams et al., 2017). As per the study by Yang et al. (2023b), Waterbirds, CelebA, and
UrbanCars exhibit spurious correlation. CivilComments has class and attribute imbalance, whereas
MultiNLI exhibits attribute imbalance. For additional details, please refer to Appendix G.1.

Baselines We compare EVaLS with six baselines in addition to standard ERM: GroupDRO,
DFR (Kirichenko et al., 2023), GroupDRO + EIIL (Creager et al., 2021), JTT (Liu et al., 2021a),
ES Disagreement SELF (LaBonte et al., 2023), and AFR (Qiu et al., 2023). GroupDRO + EIIL,
JTT, ES Disagreement SELF, and AFR do not rely on group annotations for (re)training but need
group labels for model selection, unlike EVaLS. JTT, GroupDRO, and GroupDRO + EIIL require full
model training. ES Disagreement and SELF need early-stopped versions during ERM training. DFR,
AFR, and EVaLS, however, work entirely post-training without any information from ERM training,
making them useful when training data or checkpoints are unavailable or repeating training is costly.
More details on the baselines can be found in Appendix G.2

Setup Model selection and hyper-parameter fine-tuning are done according to the worst environment
(or group if annotations are assumed to be available) accuracy on the validation set. For each dataset,
we assess the performance of our model in two cases: fine-tuning the ERM classifier or retraining
it. We report results in two settings: (i) EVaLS, which incorporates loss-based instance sampling
for training the last layer, and environment inference for model selection. (ii) EVaLS-GL, similar to
EVaLS except in using ground-truth group labels for model selection. For more details on the setup,
ERM training and last layer training hyperparameters refer to the Appendix.

Results The results are shown in Table 1. Overall, our approaches outperform methods that do not
require group annotations for (re)training in 2 out of 3 datasets with spurious correlations. Moreover,
EVaLS-GL surpasses other methods with a similar level of group supervision on MultiNLI and
achieves state-of-the-art performance among all methods on UrbanCars . Furthermore, EVaLS and
EVaLS-GL, similar to DFR (Kirichenko et al., 2023) and AFR (Qiu et al., 2023), can be applied to
ERM-trained models without needing further information about their training.

The comparison between EVaLS and GroupDRO + EIIL indicates that when environments are
available instead of groups, our method, which uses environments solely for model selection and
utilizes loss-based sampling, is more effective than GroupDRO, a potent invariant learning method.

Our evaluation of EVaLS is based on the spurious correlation benchmarks. This is because, in other
instances of subpopulation shift, the attributes that differ across groups are not predictive of the label,
thereby reducing the visibility of these attributes’ effects in the model’s final layers (Lee et al., 2023).

5



Published as an SCSL Workshop Paper at ICLR 2025

Consequently, EIIL, which depends on output logits for prediction, might not effectively separate
the groups. This observation is further supported by our findings related to the degree of group
shift between the environments inferred by EIIL for each class in the CivilComments and MultiNLI
datasets. The average group shift (defined in the Section 3.2) in the environments of the minority
class of CivilComments is only 0.8±0.0%. Also, environments associated with Classes 1 and 2 in
MultiNLI show only 1.1±0.3% and 1.9±1.0% group shift respectively. More results and ablation
studies can be found in the Appendix.

4.1 MITIGATING UNKNOWN SPURIOUS CORRELATIONS
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Figure 1: (a) The Dominoes-CMF dataset, which contains two spurious attributes. (b) Performance
on Dominoes-CMF is measured by worst-group accuracy across varying levels of correlation between
the target label and the unknown spurious attribute (color). The performance gap between EVaLS
and EVaLS-GL with lower group supervision compared to DFR (Kirichenko et al., 2023) increases
with higher correlations.

To assess the performance of our method in scenarios with unknown spurious correlations, we
evaluate DFR (Kirichenko et al., 2023), AFR (Qiu et al., 2023), AFR + EIIL (Creager et al., 2021),
EVaLS-GL, and EVaLS on the Dominoes-CMF and CelebA-SHSG datasets (Section 2.2). It is worth
mentioning that in these two datasets, unlike UrbanCars Li et al. (2023), the spurious correlation
in the training set is also present in the validation data (which is used for retraining phase and
hyperparameter tuning). All methods are applied on the last layer of ResNet-18 models trained with
ERM. We set the spurious correlation of the known attribute to 75% in Dominoes-CMF and 80%
in CelebA-SHSG, and conduct experiments for various amounts of unknown spurious correlation.
During model selection, we calculate the worst-group accuracy on the validation set considering
only the label of the known shortcut, i.e., the lowest accuracy among the four groups based on the
combination of the target label and the single known shortcut label. However, the final results on
the test data are based on the worst-group accuracies, with groups defined by the labels of both
spurious attributes. The results on Dominoes-CMF are shown in Figure 1(b). Note that EVaLS
utilizes information about neither known nor unknown spurious attributes.

Our results reveal that methods using group labels mitigate reliance on the known shortcut but not
necessarily on the unknown one. DFR shows a significant drop in performance when it relies on
a single known spurious attribute for grouping, compared to the oracle that uses both grouping
attributes. EVaLS-GL mitigates this issue using loss-based sampling, but EVaLS even outperforms
EVaLS-GL. Combining loss-based sampling for last-layer training and environment-based model
selection results in a completely group-annotation-free method in a setting with unknown spurious
correlations, and successfully re-weights features to perform well with respect to multiple spurious
attributes. The effectiveness of removing the supervision on validation group labels in reducing the
worst-group accuracy is also observable in the comparison between AFR and AFR+EIIL. It is also
evident that increasing unknown spurious correlations results in a larger gap between the performance
of EVaLS and DFR. The complete results on Dominoes-CMF and Celeba-SHSG are in Appendix F.
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5 DISCUSSION

This study presents EVaLS, a novel approach to improve robustness to spurious correlations with zero
group annotation. EVaLS uses loss-based sampling to create a balanced training dataset and employs
environment inference to guide model selection. Unlike existing methods that rely on explicit group
supervision, EVaLS operates fully annotation-free, making it applicable to real-world scenarios where
spurious correlations are unknown or difficult to annotate. We also explore situations with multiple
spurious correlations, some of which are unknown. In this context, we introduce Dominoes-CMF and
CelebA-SHSG datasets, where two factors are spuriously correlated with the label, but only one is
identified. EVaLS—despite operating without group supervision—outperforms methods that depend
on partial group supervision in this setting. Additionally, EVaLS-GL, which uses group labels only
for model selection, surpasses state-of-the-art approaches that require group labels for training or
evaluation.

EVaLS enhances model fairness and can be applied to ERM-pretrained models without prior bias
knowledge. However, its effectiveness may decline on small datasets, and it is limited to cases where
spurious correlations exist. Future research could strengthen its theoretical foundations and extend
environment inference techniques to address other subpopulation shifts, such as attribute and class
imbalance.

6 IMPACT STATEMENT

This paper presents work aimed at advancing the field of Machine Learning by improving a trained
model’s robustness to spurious correlations it relies on without the need for group annotations.
Without such efforts, even if a model becomes robust to a known spurious correlation using current
approaches, a persistent concern remains about the presence of unknown spurious correlations.
Such correlations may affect the model’s predictions and remain undetected, posing significant
performance, fairness and safety risks. While previous methods could not be responsible for
achieving robustness to unknown spurious correlations, EVaLS mitigates the effects of known
and unknown spurious attributes and has the potential to contribute to more equitable AI systems,
particularly in applications like healthcare, hiring, and autonomous systems, where group labels are
difficult or costly to obtain due to privacy concerns, logistical challenges, or unknown bias sources.
As a post-hoc method, EVaLS is a usable approach for the robustification and improving fairness
criteria of models that are already trained and in use in the real world. While our approach offers
significant progress in fairness, we acknowledge that models can still inherit biases from data or
underspecified training objectives, underscoring the importance of rigorous validation in real-world
applications. This work supports broader efforts to develop more trustworthy AI systems, but its
application should be carefully considered in context-specific ethical discussions.
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A RELATED WORK

Several kinds of subpopulation shifts are defined in the literature, including class imbalance, attribute
imbalance, and spurious correlation (Yang et al., 2023b). Class imbalance occurs when there is a
difference between the proportion of samples from each class, while attribute imbalance arises when
instances with a certain attribute are underrepresented in the training data, even though this attribute
may not necessarily be a reliable predictor of the label. On the other hand, spurious correlation
occurs when various groups are differentiated by spurious attributes that are partially predictive
and correlated with class labels but are causally irrelevant. More precisely, we can consider a set
of spurious attributes S that partition the data into |S| × |Y| groups. When a spurious attribute is
strongly correlated with a label, deep models may use it as a shortcut instead of core features. This is
followed by a decrease in the model’s performance on groups that do not have this attribute.

Given a class, the group containing samples with correlated spurious attributes is referred to as
majority group of that class, while the other groups are called the minority groups. As an example, in
the Waterbirds dataset (Sagawa et al., 2019), for which the task is to classify images of birds into
landbird and waterbird, there are spurious attributes {water background, land background}. Each
background is spuriously correlated with its associated label, decompose the data into two majority
groups waterbird on water background, and landbird on land background, and two minority groups
waterbird on land background and landbird on water background.

Robustness to spurious correlation is a critical concern across various machine learning subfields. It
is a form of out-of-distribution generalization (Shen et al., 2021) where the distribution shift arises
from the disproportionate representation of minority groups—those instances that are devoid of the
correlated spurious patterns associated with their labels (Yang et al., 2023b). The issue of spurious
correlation also intersects with the discourse on fairness in machine learning (Seo et al., 2022; Mao
et al., 2023).

Past studies have proposed a range of strategies to mitigate the models’ reliance on spurious correla-
tion. Broadly speaking, these methods can be categorized according to the degree of supervision they
require regarding group labels.

Invariant learning (IL) methods (Arjovsky et al., 2020; Krueger et al., 2021; Rame et al., 2022)
operate under the assumption of having access to a collection of environments that comprise group
shift. By imposing invariant conditions on these environments, IL methods strive to create classifiers
robust against group-sensitive features. IRM (Arjovsky et al., 2020) is designed to learn a feature
extractor, which, when utilized, guarantees the existence of a classifier that would be optimal in
all training environments. VREx (Krueger et al., 2021) aims to decrease the risk variance among
different training environments. PGI (Ahmed et al., 2021) works by minimizing the distance between
the expected softmax distribution of labels, conditioned on inputs across both majority and minority
environments. Lastly, Fishr (Rame et al., 2022) focuses on bringing the variance of risk gradients
closer together across different training environments. For scenarios that the environments are not
available, environment inference methods (Creager et al., 2021; Liu et al., 2021b) are used to obtain
a set of environments. Creager et al. (2021) introduce environment inference for invariant learning
(EIIL), which tries to partition samples into two groups such that the objective of IRM (Arjovsky
et al., 2020) is maximized. HRM (Liu et al., 2021b) aims to optimize both an environment inference
module and an invariant prediction module jointly, with the goal of achieving an invariant predictor.

When group annotations are accessible, various methods leverage this information to equalize the
impact of different groups on the model’s loss. The Group Distributionally Robust Optimization
(GDRO) approach (Sagawa et al., 2019), for instance, focuses on optimizing the loss for the worst-
performing group during training. Kirichenko et al. (2023) has shown that models can still learn and
extract core data features even in the presence high spurious correlation. Consequently, They suggest
that retraining just the last layer of a model initially trained with Empirical Risk Minimization (ERM)
can effectively reduce reliance on spurious correlation for predicting class labels. This method,
termed Deep Feature Re-weighting (DFR), has been validated as not only highly effective but also
significantly more efficient than earlier techniques that necessitated retraining the full model (Nam
et al., 2021; Sagawa et al., 2019). However, availability of group annotations is considered a serious
restrictive assumption.
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Several recent studies have endeavored to enhance model robustness against spurious correlation,
even in the absence of group annotations (Liu et al., 2021a; Zhang et al., 2021; Qiu et al., 2023;
LaBonte et al., 2023; Yang et al., 2023a; Tsirigotis et al., 2023). Liu et al. (2021a) introduce a
two-stage method that involves training a model using ERM for a number of epochs before retraining
it to give more weight to misclassified samples. The study by Zhang et al. (2021) employs the same
two-stage training process, but with a twist for the second stage: they utilize contrastive methods.
The goal is to bring samples from the same class but with divergent predictions closer in the feature
space, while simultaneously increasing the separation between samples from different classes that
have similar predictions. Another method, known as automatic feature reweighting (AFR) (Qiu
et al., 2023), reweights the last layer of an ERM-pretrained model to favor samples that the original
model was less accurate on. LaBonte et al. (2023) refine the last layer of an ERM-trained model
through class-balanced finetuning, identifying challenging data points by comparing the classifier’s
predictions with those of an early-stopped version. While these methods have significantly reduced
the reliance on group annotations, they still required for validation and model selection. This remains
a constraint, particularly when the spurious correlation is completely unknown.

To make a trained model robust to subpopulation shifts with zero group annotations, LaBonte et al.
(2023) have recently demonstrated that class-balanced retraining of a model pretrained with ERM
can effectively improve the worst-group accuracy (WGA) for certain datasets. While this method
effectively reduces the impact of class imbalance, it fails in datasets with spurious correlations.
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B METHOD OVERVIEW

(a) Training ERM model _______
1 D= DTrU DLLUDMS U PTe
i

1' ^ERM = arg min
1 1 1 (xi,yi)\inDTr

(b) Environment inference ______ _
Environment

Inference
Module

{Envi,Env2i,
;Env3,Env4J

(e.g. EIIL) class 2

high/low
samples

(c) Loss-based sampling

ERM classifier loss-based sorting PBal (k=3)= 3)

(d) Last layer re-training model selection (EVaLS)

split class group sample

re-training

dll
1 minority

majority 0
2 minority

majority o

split class group sample

model selection 1 minority
majority

2 minority
majority

Figure 2: Overview of the proposed approach. (a) We randomly split the dataset D into DTr, DMS,
DLL and DTe. We train the initial classifier on DTr with empirical risk minimization (ERM). (b) An
environment inference method is utilized to infer diverse environments for each class of DMS. (c) We
evaluate DLL samples on the initial ERM classifier and sort high-loss and low-loss samples of each
class for loss-based sampling. (d) Finally, we perform last-layer retraining on the loss-based selected
samples DBal. Each retraining setting (e.g. different k for loss-based sampling) is validated based on
the worst accuracy of the inferred environments. Note that majority and minority groups are shown
with dark and light colors for better visualization, but are not known in our setting.

Algorithm 1 EVaLS

1: Input: Held-out dataset DVal, ERM-trained model fERM, maximum k value kmax
2: Output: Optimal number of samples k∗, best model f∗, best performance wea∗
3: (DLL,DMS)← splitDataset(DVal) {Split the held-out dataset}
4: Envs[y]← inferEnvs(DMS)[y] ∀y ∈ Y
5: sortedSamples[y]← sortByLoss(fERM,DLL[y]) ∀y ∈ Y
6: Initialize wea∗ ← 0, k∗ ← 0, f∗ ← None
7: for k = 1 to kmax do
8: highLossSamples[y]← sortedSamples[y][: k] ∀y ∈ Y {Select top-k high-loss samples}
9: lowLossSamples[y]← sortedSamples[y][−k :] ∀y ∈ Y {Select top-k low-loss samples}

10: DBal ← {highLossSamples, lowLossSamples} {Combine samples}
11: f ← retrainLastLayer(DBal) {Retrain the last layer with combined samples}
12: wea← evaluateWEA(f,Envs) {Evaluate the retrained model}
13: if wea > wea∗ then
14: wea∗ ← wea, f∗ ← f , k∗ ← k {Record the best configuration}
15: end if
16: end for
17: Return: k∗, wea∗, f∗

C ENVIRONMENT INFERENCE FOR INVARIANT LEARNING

Consider the training dataset DTr = {(x(i), y(i))|x(i) ∈ X , y(i) ∈ Y}, where X and Y represent the
input and output spaces, respectively. This dataset can be partitioned into different environments
Etr = {e1, ..., en}, such that for any i ̸= j, the data distribution in ei and ej differs. The objective
of invariant learning is to train a predictor that performs consistently across all environments in Etr.
Under certain conditions, this predictor is also expected to perform well on etst, a test environment
with a distribution distinct from the training data. Invariant Risk Minimization (IRM) (Arjovsky et al.,
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Table 2: The average and variation percentage (%)(across 3 seeds) of group shift between the inferred
environments using EIIL (Creager et al., 2021) for each class, which is the absolute difference
between the proportion of a minority group in the two environments of a class. Higher group shift
indicates better separation of environments. In most cases, a significant group shift is observed
between the inferred environments.

Class No. Dataset

Waterbirds CelebA UrbanCars

0 16.6±0.7 3.6±0.2 17.7±1.2, 23.5±0.1, 62.1±1.9

1 50.5±0.3 14.1±0.9 40.7±7.9, 13.8±0.1, 19.2±3.9

2020) approaches this problem by learning a feature extractor Φ(.) such that a classifier ω(.) exists,
where ω ◦ Φ(.) performs consistently across all training environments. The practical implementation
of the IRM objective is to minimize∑

e∈Etr

Re(Φ) + λ||∇ω̄R
e(ω̄ ◦ Φ)||2, (1)

where ω̄ is a constant scalar with a value of 1.0, λ is a hyperparameter, and Re(f) =
E(x,y)∼pe

[l(f(x), y)] is referred to as the risk on environment e.

In real-world scenarios, training environments might not always be available. To address this,
Environment Inference for Invariant Learning (EIIL) (Creager et al., 2021) partitions samples into
two environments in a way that maximizes the objective in Eq 1.

During the training phase, the EIIL algorithm replaces the hard assignment of environments to
samples with a soft assignment qi(e) = p(e|(x(i), y(i))), where qi is learnable. Consequently, the
relaxed version of the risk function is defined as R̃e(Φ) = 1

N

∑N
i qi(e)[l(Φ(x

(i)), y(i))]. Given a
model Φ that has been trained with ERM on the dataset, EIIL optimizes

q∗ = argmax
q

||∇ω̄R̃
e(ω̄ ◦ Φ)||. (2)

As discussed in Creager et al. (2021), using a biased base model Φ could lead to environments
exhibiting varying degrees of spurious correlation. During the inference phase, the soft assignment is
converted to a hard assignment. The average group shift between the inferred environments using
EIIL is illustrated in Table 2.
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Figure 3: The percentage of samples with the highest (lowest) losses across various thresholds that
belong to the minority (majority) group within different classes in DLL for (a) the Waterbirds and
(b) CelebA datasets. Minority group samples are more prevalent among high-loss samples, while
majority group samples dominate the low-loss areas. Note that in the CelebA dataset, only the “blond
hair” class includes a minority group. The error bars are calculated across three ERM models.

E THEORETICAL ANALYSIS ON LOSS-BASED SAMPLING

In this section, we establish a formal description of loss-based sampling for balanced dataset creation
and then prove it. We thoroughly analyze the close relationship between the availability of the
balanced dataset and the gap between spurious features of minority and majority groups.

E.1 FEASIBILITY OF LOSS-BASED GROUP BALANCING

Consider a binary classification problem with a cross-entropy loss function. Let logits be denoted
as L. Because loss is a monotonic function of logits, the tails of the distribution of loss across
samples are equivalent to that of the logits in each class. We assume that in feature space (output
of gθ) samples from the minority and majority of a class are derived from Gaussian distributions
N (hmin,Σmin) and N (hmaj,Σmaj), respectively. Before diving into the group balance problem we
initially show that the distribution of minority and majority samples in the logit space (output of hϕ)
are Gaussian too.

Lemma E.1. [Gaussain Distribution of Logits] Considering a Gaussian distribution Z ∼ N (h,Σ)
in feature space and W ∈ Rd, then the distribution of logits is as follows: L = ⟨W,Z⟩ ∼
N
(
Wh, ∥W∥2Σ

)
.

Proof. Let Z ∼ N (h,Σ).

Consider L = ⟨W,Z⟩ = WTZ, where W ∈ Rd. L is a linear combination of jointly gaussian
random variables which makes it an univariate gaussian random variable.

To find the distribution of L, we need to determine its mean and variance.

1. Mean of L

E[L] = E[⟨W,Z⟩] = E[WTZ] =

WTE[Z] = WTh = ⟨W,h⟩.

Therefore, the mean of L is Wh.

2. Variance of L:

The variance of L can be computed using the properties of covariance. Recall that if Z ∼ N (h,Σ),
then the covariance matrix of Z is Σ.

The variance of the linear combination L = WTZ is given by:
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Var(L) = Var(WTZ) = WTΣW = ∥W∥2Σ ,

where ∥W∥Σ denotes the Mahalanobis norm of W .

Thus, we have proved that if Z ∼ N (h,Σ), then the logits L = ⟨W,Z⟩ follow the distribution
N (Wh, ∥W∥2Σ).

From now on, we consider N (µmin, σ
2
min) and N (µmaj, σ

2
maj) as the distribution of minority and

majority samples in logits space.

Next, we prove the more formal version of the main proposition ??, which describes the existence of
a balanced dataset, only after we define a key concept, proportional density difference (illustrated in
figure 4) to outline our proof.
Definition E.1 (Proportional Density Difference). For any interval I = (a, b] and a mixture dis-
tribution εP1(x) + (1 − ε)P2(x), proportional density difference is defined by the difference of
accumulation of two component distributions in the interval I and is denoted by ∆εPmixture(I).

∆εPmixture(I)
∆
= εP1

(
x ∈ I

)
− (1− ε)P2

(
x ∈ I

)
Definition E.2 (Tail Proportional Density Difference). For a mixture distribution εP1(x) + (1 −
ε)P2(x), we define tailL(α) as ∆εPmixture

(
(−∞, α]

)
and tailR(β) as −∆εPmixture

(
(β,+∞)

)
.

Corollary E.1.
tailL(α) = εF 1(α)− (1− ε)F 2(α)

tailR(β) = (1− ε)
[
1− F 2(β)

]
− ε
[
1− F 1(β)

]
where F 1 and F 2 are CDF of two component distributions.

Proportional Density Difference

I

ε=0.4

Majority

Minority

(a)

βα

tailR(β)tailL(α)

ε=0.4

Majority

Minority

(b)

Figure 4: (a) Illustration of proportion density difference E.1, (b) equation of tailL(α) = tailR(β) at
E.2.
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Proposition E.1. [Feasiblity Of Loss-based Group Balancing] Suppose that L is derived from
the mixture of two distributions N (µmin, σ

2
min) and N (µmaj, σ

2
maj) with proportion of ε and 1 − ε,

respectively, where ε ≤ 1
2 . There exists α and β such that restricting L to the α-left and β-right tails

of its distribution results in a group-balanced distribution if and only if (i)

σmin ≥ σmaj, (3)

or (ii)

tailL(
−B +

√
∆

2A
) > 0 (4)

and

ϵ ≥ sigmoid

(
−

(µmaj − µmin
)2

2(σ2
maj − σ2

min)
− log

(σmaj

σmin

))
. (5)

where A =
(

1
2σ2

maj
− 1

2σ2
min

)
, B =

(
µmin
σ2

min
− µmaj

σ2
maj

)
and ∆ =

(µmin−µmaj)
2

σ2
minσ

2
maj

− 4
[
log
(

σmaj

σmin

)
+

log
(

ϵ
1−ϵ

)][
1

2σ2
maj
− 1

2σ2
min

]
.

A quick analysis of conditions in our method’s setting. If σmax > σmin, condition 5 suggests that
for a given degree of spurious correlation ϵ and variations σmaj, σmin, an essential prerequisite for the
efficacy of loss-based sampling is a sufficiently large disparity between the mean distributions of
minority and majority samples, denoted by ∥µmaj − µmin∥2. This indicates that the groups should be
distinctly separable in the logits space. In other case, σmin > σmaj, group-balance is always feasible.

Proof outline

Our proof proceeds with three steps. First, we reformulate the theorem as an equality of left- and
right-tail proportional distribution differences. In other words, we show that the more mass the
minority distribution has on one tail, the more mass the majority distribution must have on the other
tail. Afterward, supposing µmin < µmaj WLOG , we propose a proper range for β values on the right
tail. We show that when σmaj ≤ σmin, values for α trivially exist that can overcome the imbalance
between the two distributions. In the last step, for the case in which the variance of the majority is
higher than the minority, we discuss a necessary and sufficient condition for the existence of α and β
based on the left-tail proportional density difference using the properties of its derivative with respect
to α.

Step 1 Reformulating the problem based on proportional distribution difference.

We introduce a utility random variable Logit Value Tier as T , which is defined as a function of a
random variable L.

Tα,β =


High if L ≥ β

Mid if α < L < β

Low if L ≤ α

(6)

We can rewrite the problem in formal form as finding an α and β which satisfies the following
equation:

P
(
g = min

∣∣∣Tα,β ̸= Mid
)
= P

(
g = maj

∣∣∣Tα,β ̸= Mid
)

(7)

Equation 5 now can be rewritten to a more suitable form:
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P
(
g = min

∣∣∣Tα,β ̸= Mid
)
= P

(
g = maj

∣∣∣Tα,β ̸= Mid
)

(8)

⇐⇒
P
(
Tα,β ̸= Mid

∣∣∣g = min
)
P
(
g = min

)
P
(
Tα,β ̸= Mid

) =

P
(
Tα,β ̸= Mid|g = maj

)
P
(
g = maj

)
P
(
Tα,β ̸= Mid

) (9)

⇐⇒ P
(
Tα,β ̸= Mid

∣∣∣g = min
)
P
(
g = min

)
=

P
(
Tα,β ̸= Mid

∣∣∣g = maj
)
P
(
g = maj

)
(10)

⇐⇒ εP
(
Tα,β ̸= Mid

∣∣∣g = min
)
=

(1− ε)P
(
Tα,β ̸= Mid

∣∣∣g = maj
)

(11)

⇐⇒ ε

[
P
(
Tα,β = Low

∣∣∣g = min
)
+

P
(
Tα,β = High

∣∣∣g = min
)]

=

(1− ε)

[
P
(
Tα,β = Low

∣∣∣g = maj
)
+

P
(
Tα,β = High

∣∣∣g = maj
)]

(12)

⇐⇒ ε

[
P
(
L ≤ α

∣∣∣g = min
)
+

P
(
L ≥ β

∣∣∣g = min
)]

=

(1− ε)

[
P
(
L ≤ α

∣∣∣g = maj
)
+

P
(
L ≥ β

∣∣∣g = maj
)]

(13)

⇐⇒ ε

[
Fmin(α) +

(
1− Fmin(β)

)]
=

(1− ε)

[
Fmaj(α) +

(
1− Fmaj(β)

)]
(14)

⇐⇒ εFmin(α)− (1− ε)Fmaj(α) =

(1− ε)
[
1− Fmaj(β)

]
− ε
[
1− Fmin(β)

]
(15)

We can see the left side of equation 15 is just a function of alpha. The same goes for the right side of
the equation which is a function of β.

Rewriting the left side of the equation as tailL(α) and right side as tailR(β), the problem is now
reduced to finding an α and β that satisfies

tailL(α) = tailR(β) (16)

which is shown in figure 4.

Before reaching out to step two we discuss the properties of tailL and tailR in Lemma E.2.
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Lemma E.2. tailL(α) and tailR(β) are continuous functions and limα→−∞ tailL(α) = 0,
limα→+∞ tailL(α) = 2ε− 1 < 0 , limβ→+∞ tailR(β) = 0 and limβ→−∞ tailR(β) = 1− 2ε > 0.

Proof. Simply proved by the definition of tail functions and properties of CDF.

Step 2 Solving the equation 16 for simple cases.
Lemma E.3. tailR(µmaj) >

1
2 − ε ≥ 0

Proof.

tailR(µmaj)

= (1− ε)
[
1− Fmaj(µmaj)

]
− ε
[
1− Fmin(µmaj)

]
(17)

= (1− ε)
[
1− ϕ(0)

]
− ε
[
1− ϕ

(µmaj − µmin

σmin

)]
(18)

>
(1− ε)

2
− ε
(
1− 1

2

)
=

1− 2ε

2
=

1

2
− ε (19)

Corollary E.2. Because tailR is continuous and limβ→+∞ tailR(β) = 0, based on the intermediate
value theorem, any value between zero and (1−2ε)

2 is obtainable by selecting a β in [µ2,+∞).

According to the previous corollary E.2 finding a positive tailL(α) will satisfy our need. to find a
suitable point, we employ derivatives and properties of relative PDFs to maximize tailL(α) and find
a positive value.

dtailL(α)

dα
= εfmin(α)− (1− ε)fmaj(α) (20)

= εfmaj(α)
[fmin(α)

fmaj(α)
− 1− ε

ε

]
(21)

The term [ f
min(α)

fmaj(α)
− 1−ε

ε ] has the same sign with derivative of tailL(α), also it’s roots are critical

points of tailL, analyzing characteristics of log fmin(α)
fmaj(α)

is the key insight to find a proper α value.

log fmin(α)− log fmaj(α) = log
(1− ϵ

ϵ

)

⇒ log
(σmaj

σmin

)
− log

(1− ϵ

ϵ

)
− (α− µmin)

2

2σ2
min

+
(α− µmaj)

2

2σ2
maj

= 0

⇒
( 1

2σ2
maj
− 1

2σ2
min

)
α2+(µmin

σ2
min
−

µmaj

σ2
maj

)
α+

[ µ2
maj

2σ2
maj
− µ2

min

2σ2
min

+

log
(σmaj

σmin

)
+ log

( ϵ

1− ϵ

)]
= 0
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Figure 5: Tail thresholds for three cases: (a) minority group variance is less than majority (σmin <
σmaj), (b) the variance of two groups are equal (σmin = σmaj) and (c) the variance of the minority
group is more than majority (σmin > σmaj).

Because limα→−∞ tailL(α) = 0 and also limβ→+∞ tailR(β) < 0, to have a positive tailL(α), we
need to have an interval which dtailL(α)

dα is positive. For a second degree polynomial like ax2+bx+c

to have positive value, either a ≥ 0 or ∆ > 0, in our case a is
(

1
σ2

maj
− 1

σ2
min

)
. if σmin ≥ σmaj then

a ≥ 0 and the minority CDF function will dominate the majority CDF function in the left-side tail
and by choosing a negative number with big enough absolute value for alpha and tailL(α) will be
positive.

Step 3 Solving equation 16 for special case σmin < σmaj In case of σmin ≤ σmaj, having ∆ > 0

is a necessary condition, also derivative of tailL(α) is only positive in (−b−
√
∆

2a , −b+
√
∆

2a ) so the
maximum of tailL is either in −∞ or in −b+

√
∆

2a . Having tailL(
−b+

√
∆

2a ) > 0 next to ∆ > 0
condition, would be the necessary and also sufficient in this case.

B2 =
µ2

min

σ4
min

+
µ2

maj

σ4
maj
− 2

µmajµmin

σ2
majσ

2
min

4AC =
µ2

min

σ4
min
− µ2

min

σ2
majσ

2
min
−

µ2
maj

σ2
majσ

2
min

+
µ2

maj

σ4
maj

+

4
[
log
(σmaj

σmin

)
+ log

( ϵ

1− ϵ

)]
×[ 1

2σ2
maj
− 1

2σ2
min

]

∆ =
(µmin − µmaj)

2

σ2
minσ

2
maj

−

4
[
log
(σmaj

σmin

)
+ log

( ϵ

1− ϵ

)]
×[ 1

2σ2
maj
− 1

2σ2
min

]
≥ 0

⇐⇒ (µmin − µmaj)
2

≥ 2
[
log
(1− ϵ

ϵ

)
− log

(σmaj

σmin

)][
σ2

maj − σ2
min

]
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⇐⇒ ϵ ≥ sigmoid

(
−

(µmaj − µmin
)2

2(σ2
maj − σ2

min)
− log

(σmaj

σmin

))

Next, we investigate properties of the conditions of the proposition E.1 in case of σmaj < σmin.
Schematic interpretation of these conditions is presented in figure 6.

• As equation 5 indicates, the minority group is not allowed to be too underrepresented. This
especially has a direct relation with the difference of means. The more mean values of
groups are different, the more imbalance can be mitigated through loss-based sampling.
Mean value difference is especially affected by the spurious correlation, it escalates as the
model relies on spurious correlation and also when the spurious features between groups are
too different.

• On the other hand condition 4 is more complex and doesn’t have a simple closed form, we
analytically describe its behaviors by fixating the means and calculating the valid values for
ε. As the results show in figure 6, most of ε are feasible in for σmin < ∆µ as we can see the
possible region declines with an increase of σmin and valid ε values cease to exist.
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Figure 6: (a) Conditions if σmin > σmaj, (b), (c), (d) minimum, maximum and interval length of
feasible ε values across (σmin, σmaj) field for µmin = 0, µmaj = 1.

E.2 PRACTICAL JUSTIFICATION

As shown in Table 3, the standard deviation (σ) of the minority group is consistently greater than
that of the majority group across all analyzed datasets. Consequently, condition (i) (Eq. 3) of
Proposition E.1 is satisfied. Therefore, we theoretically expect the existence of properly balanced left
and right tails.
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E.3 HYPERPARAMETER TUNING AND PRACTICAL CONSIDERATIONS

Although the parameters α and β are theoretically established under certain conditions, their actual
values remain undetermined. Therefore, validation data is essential to identify the appropriate tails.
For practicality and simplicity, we assume an equal number k of samples for both tails and explore
this count (high- and low-loss samples) from a predefined set of values. By leveraging the worst
environment accuracy on validation data after last-layer retraining, as detailed in Section 3.2, we
identify the potential candidate that ensures uniform accuracy across all environments.

Table 3: Means, standard deviations (STD), and Earth Mover’s Distance across WaterBirds and
CelebA datasets.

Waterbirds CelebA
Class 1 Class 2 Class 2

Min Maj Min Maj Min Maj
Mean (µ) −6.77 −19.17 2.55 11.39 −1.02 6.42
STD (σ) 6.31 6.23 6.97 4.75 7.64 6.48

Earth Mover’s Distance 12.40 8.84 7.43
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Figure 7: (a) If all spurious attributes in a dataset are known, they can be utilized to fit a classifier that
captures the essential attributes. (b) In the absence of knowledge about all spurious attributes, the
model would rely on them for classification, leading to incorrect classification of minority samples.
(c) If some spurious attribute is unknown (Spurious 2), the model becomes robust only to the known
spurious correlations (Spurious 1), but still underperforms on minority samples. (d) The Dominoes-
CMF dataset, which contains two spurious attributes.

As mentioned in Section 2.2, when data contains multiple spurious attributes and annotations are only
available for one of them, models that depend on group annotation for training or model selection
would make the model robust only to the known spurious attributes. The illustrations in Figure 7(a-c)
depict the outlined scenario. A classifier trained using ERM is dependent on both spurious features
(Figure 7(b)). Yet, achieving robustness against one spurious correlation (Figure 7(c)), does not
ensure robustness against both (Figure 7(a)).

F.1 DOMINOES-COLORED-MNIST-FASHIONMNIST

Dominoes-Colored-MNIST-FashionMNIST (Dominoes-CMF) is a synthetic dataset. We adopt a
similar approach to previous works (Pagliardini et al., 2022b; Shah et al., 2020; Kirichenko et al.,
2023) using a modified version of the Dominoes binary classification dataset. This dataset consists
of images with the top half showing CIFAR-10 images (Krizhevsky & Hinton, 2009), divided into
two meaningful classes: vehicles (airplane, car, ship, truck) and animals (cat, dog, horse, deer). The
bottom half displays either MNIST (Deng, 2012) images from classes {0− 3} or Fashion-MNIST
(Xiao et al., 2017) images from classes {T-shirt,Dress,Coat,Shirt}. The complex feature (top half)
serves as the core feature and the simple feature (bottom half) is linearly separable and correlated
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with the class label at 75%. Furthermore, inspired by the approaches in Zhang et al. (2021); Arjovsky
et al. (2020), we intentionally introduce an additional spurious attribute by artificially coloring a
subset of images as follows: for three different datasets, 85%, 90%, and 95% of the images in the
bottom half of class c1 are randomly assigned a red color in each respective dataset, while 15%,
10%, and 5% of the images are assigned a green color, respectively. The same procedure is applied
inversely for class c2.

See Tables 4, 5, and 6 for more details about the dataset statistics and a comparison of the performance
of different methods on the dataset.

F.2 CELEBA-SHSG

CelebA-Straight Hair- Smiling- Gender (CelebA-SHSG) is a subset of the original CelebA (Liu
et al., 2014), where the label “Straight Hair” is correlated with the attributes of smiling and being
female. The “Straight Hair” attribute is considered as the label, “Smiling” as the known spurious
attribute, and “gender” as the unknown spurious attribute. Average accuracies and Worst-group
accuracies (WGA) are reported in Table 9 among 8 groups (all binary combinations of the label and
spurious attributes). We set the spurious correlation of the “Smiling” attribute to 80% and design
three datasets with 85%, 90% and 95% of correlation between the “gender” attribute and the label
(similar to the Dominoes-CMF experiments). Spurious correlations are imposed by subsampling
from the original CelebA dataset. See Tables 7, 8, and 9 for more details about the dataset statistics
and a comparison of the performance of different methods on the dataset.

Table 4: Dominoes-CMF Dataset Statistics for 85%, 90%, and 95% Correlation

Top part Bottom Part (85% Corr.) Bottom Part (90% Corr.) Bottom Part (95% Corr.)
CIFAR-10 Class Color MNIST Fashion-MNIST MNIST Fashion-MNIST MNIST Fashion-MNIST

c1 (Vehicle) Red 12,750 4,250 13,500 4,500 14,250 4,750
Green 2,250 750 1,500 500 750 250

c2 (Animal) Red 750 2,250 500 1,500 250 750
Green 4,250 12,750 4,500 13,500 4,750 14,250

Total 40,000 40,000 40,000

Table 5: ERM Accuracies on Dominoes-CMF Dataset. The mean and standard deviation are reported
based on three runs with different seeds.

Top part Bottom Part (85% Corr.) Bottom Part (90% Corr.) Bottom Part (95% Corr.)
CIFAR-10 Class Color MNIST Fashion-MNIST MNIST Fashion-MNIST MNIST Fashion-MNIST

c1 (Vehicle) Red 98.53±0.01% 95.61±1.1% 99.2±0.01% 95.2±1.1% 99.63±0.01% 98.11±1.1%
Green 89.33±2.4% 68.57±0.5% 84.5±2.4% 54.7±0.5% 63.1±1.4% 36.84±0.5%

c2 (Animal) Red 68.28±2.6% 86.18±2.4% 56.8±5.6% 86.7±2.4% 39.13±1.6% 68.53±2.4%
Green 93.97±0.5% 98.36±0.2% 96.2±0.5% 99.3±0.2% 97.92±0.5% 99.25±0.2%

Table 6: A Comparison of ERM, DFR, EVaLS, and EVaLS-GL on the Dominoes-CMF with different
spurious correlations for the unknown feature. Both the worst and average of test group accuracies
are presented. The mean and standard deviation are calculated based on runs with three distinct seeds.

85% Corr. 90% Corr. 95% Corr.
Method Worst Average Worst Average Worst Average

ERM 68.3±1.5 97.1±0.5 50.6±1.0 96.1±0.0 36.8±2.0 95.4±1.0

DFR (Oracle) 79.4±0.8 93.4±1.1 78.5±1.2 92.1±0.6 73.7±1.5 90.3±0.7

DFR 70.7±0.5 86.2±0.6 60.2±1.2 84.6±0.4 42.7±2.7 81.5±1.2

AFR 65.7±0.2 94.2±0.8 54.2±0.2 94.9±2.1 40.3±0.5 95.9±1.2

AFR + EIIL 69.1±0.1 92±1.3 61.5±0.2 92.1±1.9 40.4±0.1 92.9±1.5

EVaLS-GL 70.1±2.9 82.5±1.8 63.6±1.3 78.7±1.5 48.5±0.8 77.0±2.0

EVaLS 73.0±4.8 81.5±1.8 67.1±4.2 78.6±2.0 51.2±1.4 77.5±2.5
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Table 7: CelebA-SHSG Dataset Statistics for 85%, 90%, and 95% Correlation of the Known Spurious
Feature.

Label 85% Corr. 90% Corr. 95% Corr.
Gender Smiling = 0 Smiling = 1 Smiling = 0 Smiling = 1 Smiling = 0 Smiling = 1

“Straight Hair”= 0
Female 1676 419 1055 264 500 125
Male 9500 2375 9500 2375 9500 2375

“Straight Hair”= 1
Female 2375 9500 2375 9500 2375 9500
Male 419 1676 264 1055 125 500

Total 27,940 26,388 25,000

Table 8: ERM Accuracies on CelebA-SHSG Dataset. The mean and standard deviation are reported
based on three runs with different seeds.

label 85% Corr. 90% Corr. 95% Corr.
Gender Smiling = 0 Smiling = 1 Smiling = 0 Smiling = 1 Smiling = 0 Smiling = 1

“Straight Hair”= 0
Female 71.2±0.6 47.4±1.1 67.1±0.7 46.4±0.6 58.8±1.5 39.4±1.9

Male 94.1±0.6 76.8±1.0 95.0±0.0 80.5±0.4 96.5±0.7 88.0±1.1

“Straight Hair”= 1
Female 84.1±0.4 96.0±0.4 87.2±0.4 95.5±0.4 91.0±0.5 97.0±0.2

Male 28.3±0.6 61.6±0.8 23.9±1.5 55.8±2.2 15.6±2.6 37.5±3.3

G EXPERIMENTAL DETAILS

G.1 DATASETS

Waterbirds (Sagawa et al., 2019) The dataset comprises images of diverse bird species, classified
into two categories: waterbirds and landbirds. Each image features a bird set against a backdrop
of either water or land. Interestingly, the background scene acts as a spurious feature in this
classification task. Waterbirds are primarily shown against water backgrounds, and landbirds against
land backgrounds. Consequently, waterbirds on water and landbirds on land form the minority groups
in the training data. It’s important to note that the validation dataset for waterbirds is group-balanced,
meaning birds from each class are equally represented against both water and land backgrounds. This
dataset is mainly categorized as a spurious correlation dataset.

CelebA (Liu et al., 2014) is a widely used dataset in image classification tasks, featuring annotations
for 40 binary facial attributes such as hair color, gender, and age. Hair color classification is
particularly prominent in literature focusing on spurious correlation robustness. Notably, gender
serves as a spurious attribute within this dataset, where a significant majority 94% of individuals with
blond hair are women, while men with blond hair represent a minority group. In addition to spurious
correlation in the class of blond hair, this dataset also exhibits class imbalance.

MultiNLI (Williams et al., 2017) dataset involves a text classification task focused on determining
the relationship between pairs of sentences: contradiction, entailment, or neutral. Sentences con-
taining negation words such as “no” or “never” are underrepresented in all three classes, inducing
attribute imbalance in the dataset. Figure ?? illustrates the distinct behavior of this dataset compared
to other datasets that contain spurious attributes.

CivilComments (Borkan et al., 2019) dataset, as part of the WILDS benchmark, involves a
text classification task focused on labeling online comments as either “toxic” or “not toxic”. Each
comment is associated with 8 attributes, including gender (male, female), sexual orientation (LGBTQ),
race (black, white), and religion (Christian, Muslim, or other), based on whether these characteristics
are mentioned in the comment. While there is a small attribute imbalance in the dataset, it can
categorized into datasets with class imbalance. The detailed proportion of each attribute in each class
is described in Table 12. In this paper, we use the implementation of the dataset by the WILDS
package (Koh et al., 2021).
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Table 9: A Comparison of ERM, DFR, DFR (Oracle), AFR, AFR+EIIL, EVaLS, and EVaLS-GL on
the CelebA-SHSG with different spurious correlations for the unknown feature. Both the worst and
average of test group accuracies are presented. The mean and standard deviation are calculated based
on runs with three distinct seeds.

85% Corr. 90% Corr. 95% Corr.
Method Worst Average Worst Average Worst Average

ERM 28.3±0.6 68.2±0.6 23.9±1.5 67.3±0.3 15.6±2.6 63.5±0.8

DFR (Oracle) 63.1±0.9 71.7±1.2 59.2±1.9 70.0±1.1 58.4±5.0 67.7±1.5

DFR 27.2±2.2 67.7±0.2 18.9±0.7 64.9±0.3 12.3±1.6 60.1±0.3

AFR 28.1±0.4 68.0±0.4 24.3±2.1 65.7±0.0 15.7±2.6 63.1±0.0

AFR + EIIL 41.3±5.7 63.2±5.1 36.3±4.5 69.8±0.0 45.0±5.3 63.2±0.0

EVaLS-GL 30.5±5.2 68.6±2.3 26.3±6.4 67.4±1.0 19.3±3.2 61.6±3.4

EVaLS 45.2±2.9 59.5±2.7 44.9±3.1 62.7±1.8 45.7±2.2 64.4±1.8

Table 10: A comparison of the various methods, ours included, on spurious correlation datasets. The
Group Info column indicates if each method utilizes group labels of the training/validation data,
with ✓✓denoting that group information is employed during both the training and validation stages.
Both the average test accuracy and worst test group accuracy are reported. The mean and standard
deviation are calculated over three runs with different seeds. The numbers in bold represent the
highest results among all methods, while the underlined numbers represent the best results among
methods that may not require group annotation in the training phase.

Method Group Info Waterbirds CelebA UrbanCars

Train/Val Worst Average Worst Average Worst Average

GDRO (Sagawa et al., 2019) ✓/✓ 91.4 93.5 88.9 92.9 73.1 84.2±1.3

DFR (Kirichenko et al., 2023) ✗/✓✓ 92.9±0.2 94.2±0.4 88.3±1.1 91.3±0.3 79.6±2.22 87.5±0.6

GDRO + EIIL (Creager et al., 2021) ✗/✓ 77.2±1 96.5±0.2 81.7±0.8 85.7±0.1 76.5±2.6 85.4±2.1

JTT (Liu et al., 2021a) ✗/✓ 86.7 93.3 81.1 88.0 79.5 86.3
SELF (LaBonte et al., 2023) ✗/✓ 91.6±1.4 93.6±1.1 83.9±0.9 91.7±0.4 83.2±0.8 90.0±0.5

AFR (Qiu et al., 2023) ✗/✓ 90.4±1.1 94.21.2 82.0±0.5 91.3±0.3 80.2±2.0 87.1±1.2

EVaLS-GL (Ours) ✗/✓ 89.4±0.3 95.1±0.3 84.6±1.6 91.1±0.6 83.5±1.7 88.3±0.9

ERM ✗/✗ 66.4±2.3 90.3±0.5 47.4±2.3 95.5±0.0 18.67±2.01 76.5±4.6

EVaLS (Ours) ✗/✗ 88.4±3.1 94.1±0.1 85.3±0.4 89.4±0.5 82.1±0.9 88.1±0.9

UrbanCars (Li et al., 2023) is an image classification dataset with multiple shortcuts. Each image
in the dataset consists of a car in the center of the image on a natural scene background, with another
object to the right of the image. Images are labeled Urban or City according to the type of car present

Table 11: A comparison of the various methods, ours included, on CivilComments and MultiNLI.
The Group Info column indicates if each method utilizes group labels of the training/validation data,
with ✓✓denoting that group information is employed during both the training and validation stages.
Both the average test accuracy and worst test group accuracy are reported. The mean and standard
deviation are calculated over three runs with different seeds. The numbers in bold represent the
highest results among all methods, while the underlined numbers represent the best results among
methods that may not require group annotation in the training phase.

Method Group Info CivilComments MultiNLI

Train/Val Worst Average Worst Average

GDRO (Sagawa et al., 2019) ✓/✓ 69.9 88.9 77.7 81.4
DFR (Kirichenko et al., 2023) ✗/✓✓ 70.1±0.8 87.2±0.3 74.7±0.7 82.1±0.2

GDRO + EIIL (Creager et al., 2021) ✗/✓ 67.0±2.4 90.5±0.2 61.2±0.5 79.4±0.2

JTT (Liu et al., 2021a) ✗/✓ 69.3 91.1 72.6 78.6
SELF (LaBonte et al., 2023) ✗/✓ 65.9±1.7 89.7±0.6 70.7±2.5 81.2±0.7

AFR (Qiu et al., 2023) ✗/✓ 68.7±0.6 89.8±0.6 73.4±0.6 81.4±0.2

EVaLS-GL (Ours) ✗/✓ 68.0±0.5 89.2±0.3 75.1±1.2 81.6±0.2

ERM ✗/✗ 56.3±4.8 92.0±0.0 64.8±1.9 82.6±0.0
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Table 12: Proportion of attributes in each class for CivilComments dataset.

Toxicity (Class) Male Female LGBTQ Christian Muslim Other Religions Black White

0 0.11 0.12 0.03 0.10 0.05 0.02 0.03 0.05
1 0.14 0.15 0.08 0.08 0.10 0.03 0.1 0.14

in the center. However, each of the backgrounds and the additional objects is highly correlated with
the label. While the test set consists of 8 environments based on combinations of the core and two
spurious patterns, the training and validation set consist of four groups, based on combinations of the
label and only one of the shortcuts.

G.2 BASELINES

In this study, we compare EVaLS with six baselines in addition to standard ERM GroupDRO (Sagawa
et al., 2019) trains a model on the data with the objective of minimizing its average loss on the minority
samples, requiring group labels for both training and validation. DFR (Kirichenko et al., 2023)
first trains a model with ERM, then retrains the last linear classifier on a group-balanced subset of
validation or held-out held-out training data. While DFR reduces the number of group-annotated
samples, it still requires group labels in the training phase. GroupDRO + EIIL (Creager et al.,
2021) infers environments of the training set and trains a model with GroupDRO on the inferred
environments. JTT (Liu et al., 2021a) first trains a model with ERM on the dataset, and then retrains
it by upweighting the samples misclassified by the ERM model. ES Disagreement SELF (LaBonte
et al., 2023) fine-tunes the last layer of the ERM-trained model on samples selected based on output
differences between the ERM-trained model and its early-stopped version. AFR (Qiu et al., 2023)
trains a model with standard ERM, and retrains the classifier on a weighted held-out data. The
weights assigned to retraining samples are determined by the probability that the ERM-pretrained
model assigns to the ground-truth label, leading to an increased weighting of samples from minority
groups.

G.3 COMPLETE RESULTS

The complete results on Waterbirds, CelebA, and UrbanCars, in addition to complete results on
CivilComments and MultiNLI are reported in Tables 10 and 11 respectively. The reported results for
GroupDRO, DFR, JTT, and AFR except those for the UrbanCars are taken from Qiu et al. (2023).
For EIIL+Group DRO, the results for Waterbirds, CelebA, and CivilComments are reported from
Zhang et al. (2021). The results of SELF on CelebA and MultiNLI are reported from LaBonte et al.
(2023). We report only the worst-group accuracy of methods in Table 1. The average accuracies are
documented in the Appendix. The Group Info column shows whether group annotation is required
for training or model selection. Methods that do not require information regarding ERM training
(such as training data or checkpoints) are identified with a star in the table.

Also, the results of our method and DFR are shown in Table 6.

G.4 TRAINING DETAILS

ERM Similar to all the works mentioned in Section G.2, we use ResNet-50 (He et al., 2016)
pretrained on ImageNet (Russakovsky et al., 2015) for image classification tasks. We used random
crop and random horizontal flip as data augmentation, similar to Kirichenko et al. (2023). For a
fair comparison with the baselines, we did not employ any data augmentation techniques in the
process of retraining the last layer of the model. For the CivilComments and MultiNLI, we use
pretrained BERT (Devlin et al., 2019) and crop sentences to 220 tokens length. In EvaLS, we use the
implementation of EIIL by spuco package (Joshi et al., 2023) for environments inference on the
model selection set with 20000 steps, SGD optimizer, and learning rate 10−2 for all datasets.

For Waterbirds and CelebA, we utilize the ResNet50 checkpoints available in the GitHub repos-
itory of Kirichenko et al. (2023) as our base model. We use the ResNet-50 architecture pro-
vided by the torchvision package. In the case of CivilComments and MultiNLI, we adopt
a similar approach to Kirichenko et al. (2023), using BertForSequenceClassification.
from_pretrained(’bert-base-uncased’, ...) from the transformers package.
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The model is trained using the AdamW optimizer with a learning rate of 10−5, weight decay of 10−4,
and a batch size of 16 for a total of 5 epochs.

For the UrbanCars dataset, we adhere to the settings described in Li et al. (2023), which involves
training a ResNet-50 model pretrained on ImageNet using the SGD optimizer with a learning rate
of 10−3, momentum of 0.9, weight decay of 10−4, and a batch size of 128 for 300 epochs. For the
Dominoes-CMF dataset, we train a ResNet18 model pretrained on ImageNet for 20 epochs with a
batch size of 128 and an SGD optimizer with a learning rate of 10−3, momentum of 0.9, and weight
decay of 10−4.

For the image classification tasks, we used random crop and random horizontal flip as data augmenta-
tion, similar to Kirichenko et al. (2023). For a fair comparison with the baselines, we did not employ
any data augmentation techniques in the process of retraining the last layer of the model.

In EVaLS, we use the implementation of EIIL by spuco package (Joshi et al., 2023) for environments
inference on the model selection set with 20000 steps, SGD optimizer, and learning rate 10−2 for all
datasets.

EVaLS and EVaLS-GL For every dataset, EIIL was utilized with a learning rate of 0.01, a total
of 20000 steps, and a batch size of 128. The last layer of the model was trained on all datasets
using the Adam optimizer. A batch size of 32 and a weight decay of 10−4 were used for all datasets.
Our method was evaluated on the validation sets of each dataset, considering both fine-tuning and
retraining of the last layer. For all datasets, with the exception of MultiNLI and Urbancars, retraining
provided superior validation results. The hyperparameter search was conducted over a learning rate
range of [10−4, 10−3] and an ℓ1-regularization coefficient (λ) range of [0.001, 3]. For the number
of selected samples (k), we ensured that k ≪ |DLL|, typically selecting less than 25% of the last-
layer split. Notably, as k → |DLL|, the selected subset inherits the imbalance of the original split,
undermining our loss-based balancing strategy. Thus, the optimal k remains significantly smaller
than the full split to maintain the effectiveness of our approach.

G.5 SENSITIVITY TO HYPERPARAMETERS
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Figure 8: WGA heatmap on DMS for different hyperparameter settings across various datasets.

The parameters k (the number of selected samples from each loss tail) and λ (the ℓ1 regularization
factor) are automatically selected using the environment/group-based validation scheme proposed in
our method. Sensitivity heatmaps in Figure 8 demonstrate the impact of k and λ on the worst-group
validation accuracy (WGA) across various datasets. Importantly, our results demonstrate that for
most datasets, multiple hyperparameter combinations yield optimal or near-optimal performance,
reducing the need for exhaustive searches. This suggests that the hyperparameter tuning process is
not prohibitively difficult, and even relatively shallow or targeted hyperparameter searches suffice to
identify optimal hyperparameter configurations. The difference in WGA between the best and worst
hyperparameter settings for the Waterbirds, CelebA, and UrbanCars datasets is approximately 10%,
16%, and 25%, respectively.
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Table 13: Results of DFR and AFR with EIIL-inferred environment for model selection.

Method Waterbirds Celeba

DFR (with EIIL) 92.21± 0.02 85.55± 1.0
AFR (with EIIL) 82.6± 0.04 72.5± 0.01

Table 14: Performance comparison between misclassified sample selection and EVaLS on the
Waterbirds, CelebA, and UrbanCars datasets. The mean and standard deviation values are calculated
over three runs with different seeds.

Method Waterbirds CelebA UrbanCars

Worst Average Worst Average Worst Average

Misclassified Selection 77.8±5.2 94.0±0.4 85.9±1.0 89.4±0.8 78.4±4.5 86.9±1.4

EVaLS 88.4±3.1 94.1±0.1 85.3±0.4 89.4±0.5 82.1±0.9 88.1±0.9

H ABLATION STUDY

H.1 USE OF EIIL WITH DFR AND AFR

We conducted an ablation study to investigate the impact of using environments inferred from EIIL
on model selection. Specifically, we benchmarked the performance of DFR and AFR with EIIL-
inferred groups. The results, presented in Table 13, demonstrate the effectiveness of incorporating
EIIL-inferred groups in model selection. The results show that while EIIL-inferred groups reduce the
performance compared to ground-truth annotations for model selection, they still can be effective for
robustness to an extent. Moreover, EVaLS outperforms these two methods when using EIIL inferred
environments.

H.2 COMPARISON OF HIGH-LOSS AND MISCLASSIFIED-SAMPLE SELECTION

Several methods, such as JTT (Liu et al., 2021a), rely on misclassified points to address group
imbalances by treating these points as belonging to a minority group. To verify the effectiveness of
loss-based sampling in comparison with misclassification-based sample selection, we conducted an
experiment by replacing loss-based sampling in in EVaLS with selecting misclassified samples and
an equal number of randomly chosen correctly classified samples from each class. This results in
degraded performance compared to EVaLS on the Waterbirds and UrbanCars datasets, and only a
marginal improvement (with higher variance) on CelebA, as summarized in Table 14.

H.3 OTHER ENVIRONMENT INFERENCE METHODS

In addition to EIIL, other environment inference methods could be utilized for partitioning the model
selection set into environments.

Error Splitting JTT (Liu et al., 2021a) partitions data into two correctly classified and misclassified
sets based on the predictions of a model trained with ERM. We split each of these two sets based on
labels of samples, obtaining |Y| × 2 environments.

Random Linear Classifier on Top of the Features Space uses a random classifier to classify
features obtained from a model trained with ERM into correctly classified and misclassified sets.
Similar to error splitting, we split the sets based on class labels. The difference between error splitting
and random classifier splitting is solely in the reinitialization of the classification layer.

The results for EVaLS-ES (EVaLS+Error Sampling) and EVaLS-RC (EVaLS+Random Classifier) are
shown in Table 15. One limitation of error splitting is that in datasets with noisy labels or corrupted
images, samples that an ERM model misclassifies may not always belong to minority groups. In these
situations, choosing models based on their accuracy on corrupted data could lead to the selection of
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Table 15: The performances of three environment inference methods, when combined with loss-based
sample selection, are evaluated on spurious correlation benchmarks. The mean and standard deviation
values are calculated over three separate runs, each initiated with a different seed.

Method Waterbirds CelebA UrbanCars

Worst Average Worst Average Worst Average

EVaLS-ES 82.1±1.2 94.3±0.04 48.4±11.6 69.5±6.5 79.2±2.9 86.1±0.9

EVaLS-RC 88.7±1.0 94.3±1.1 78.1±5.1 93.5±0.2 82.4±3.2 88.2±0.8

EVaLS 88.4±3.1 94.1±0.1 85.3±0.4 89.4±0.5 82.1±0.9 88.1±0.9

models that are not robust to spurious correlations. This is demonstrated by the results of EVaLS-ES
on the CelebA dataset.

This shortcoming of error splitting can be alleviated by employing a random classifier instead of
the ERM-trained one. Due to the feature-level similarity between minority and majority samples
in datasets affected by spurious correlation (Sohoni et al., 2020; Kirichenko et al., 2023; Lee et al.,
2023), it is expected that the classifier can differentiate between the groups to some extent. This
further supports our claim regarding that the information in the feature space of a trained model could
be utilized for achieving robustness against spurious correlations on which a trained model relies.
As shown in Table 15, surprisingly, EVaLS-RC produces results that are generally comparable to
EVaLS. However, the performance of this method may have high variance, depending on the different
initializations of the classifier.

I COMPUTATIONAL RESOURCES

Each experiment was conducted on one of the following GPUs: NVIDIA H100 with 80G memory,
NVIDIA A100 with 80G memory, NVIDIA Titan RTX with 24G memory, Nvidia GeForce RTX
3090 with 24G memory, and NVIDIA GeForce RTX 3080 Ti with 12G memory.

J SOCIETAL IMPACTS

This paper presents work aimed at advancing the field of Machine Learning by improving a trained
model’s robustness to spurious correlations it relies on without the need for group annotations.
Without such efforts, even if a model becomes robust to a known spurious correlation using current
approaches, a persistent concern remains about the presence of unknown spurious correlations.
Such correlations may affect the model’s predictions and remain undetected, posing significant
performance, fairness and safety risks. While previous methods could not be responsible for
achieving robustness to unknown spurious correlations, EVaLS mitigates the effects of known
and unknown spurious attributes and has the potential to contribute to more equitable AI systems,
particularly in applications like healthcare, hiring, and autonomous systems, where group labels are
difficult or costly to obtain due to privacy concerns, logistical challenges, or unknown bias sources.
As a post-hoc method, EVaLS is a usable approach for the robustification and improving fairness
criteria of models that are already trained and in use in the real world. While our approach offers
significant progress in fairness, we acknowledge that models can still inherit biases from data or
underspecified training objectives, underscoring the importance of rigorous validation in real-world
applications. This work supports broader efforts to develop more trustworthy AI systems, but its
application should be carefully considered in context-specific ethical discussions.
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