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Abstract

Harnessing the power of pre-training on large-scale datasets like ImageNet forms a funda-
mental building block for the progress of representation learning-driven solutions in com-
puter vision. Medical images are inherently different from natural images as they are
acquired in the form of many modalities (CT, MR, PET, Ultrasound etc.) and contain
granulated information like tissue, lesion, organs etc. These characteristics of medical im-
ages require special attention towards learning features representative of local context. In
this work, we focus on designing an effective pre-training framework for 3D radiology im-
ages. First, we propose a new masking strategy called local masking where the masking
is performed across channel embeddings instead of tokens to improve the learning of local
feature representations. We combine this with classical low-level perturbations like adding
noise and downsampling to further enable low-level representation learning. To this end,
we introduce Disruptive Autoencoders, a pre-training framework that attempts to re-
construct the original image from disruptions created by a combination of local masking
and low-level perturbations. We curate a large-scale dataset to enable pre-training of 3D
medical radiology images (MRI and CT). The proposed pre-training framework is tested
across multiple downstream tasks and achieves state-of-the-art performance. Notably, our
proposed method tops the public test leaderboard of BTCV multi-organ segmentation chal-
lenge. Our code can be found here.
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Figure 1: Disruptive Autoencoders.

Inception of transformers (Vaswani et al.,
2017; Dosovitskiy et al., 2020) has led to
a significant shift from convolution neu-
ral network (ConvNet) based methods (He
et al., 2016; Ronneberger et al., 2015;
Krizhevsky et al., 2017) to transformer-
based methods (Dosovitskiy et al., 2020;
Liu et al., 2021; Valanarasu et al., 2021;
Valanarasu and Patel, 2022; Chen et al.,
2021) for many computer vision applica-
tions. However, the fact that pre-training
plays an irreplaceable role in model devel-
opment has not changed in the past decade
(Radford et al., 2021). Model weight ini-
tialization is an important step in train-
ing deep neural networks (Kumar, 2017) as
good starting weights are necessary for effi-
cient training towards a particular task.

Pre-training for natural computer vision
tasks is usually not constricted by the avail-
ability of data as natural images are abun-
dant and there is no scarcity and less restric-
tions in obtaining them. Unfortunately, the
same does not translate to medical images as they are scarce (acquisition cost is high) and
also difficult to obtain (requires specialized hardware). There is complexity involved to
release them publicly due to heavy privacy regulations (Saliba et al., 2012).

Recently, masked image modelling methods (He et al., 2022) have gained significant
traction as an efficient self-supervised pre-training framework. They are used to develop
robust pre-trained models that can generalize well to the downstream tasks. Masked Auto-
Encoders MAEs learn a feature representation by trying to reconstruct the original im-
age while masking out randomly selected tokens in the input space. MAEs are designed
specifically for transformers as masked tokens help reduce the computation. However, im-
provements are needed in medical imaging domain: while trying to adopt vanilla MAEs for
medical images, we observed that although MAEs do lead to a performance boost for further
finetuning, the reconstructions were poor and most of the anatomical structures were miss-
ing after reconstruction. This has also been observed in some recent works (Hatamizadeh
et al., 2022; Zhou et al., 2022). Unlike natural images, most of the vital information in
medical images are in the fine details (e.g. small lesions, finer boundaries of organs, tiny
structures of bones that need to be delineated etc).

In this work, we focus on designing an effective pipeline for pre-training on 3D medical
volumes. First, we design a new pre-training strategy that is better than MAEs at extracting
low-level details. We introduce local masking where we do not mask at the token dimension
but at the channel embedding dimension. Unlike MAEs, certain amount of masking is done
to all tokens as only the channel embeddings are perturbed (visualized in Fig. 1), helping
the network reconstruct sharp details and learn better local context. We also explore
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using various low-level vision tasks like denoising and super-resolution for pre-training.
We observe that these tasks help extract better low-level features and result in sharper
reconstructions (as seen in Fig. 2 it can be seen that MAEs cannot reconstruct the bones
and other fine structures while the low-level techniques do) . In summary, we introduce
Disruptive Autoencoders (DAE) where we first create a combination of these perturbations
(local masking, downsampling, and adding noise) to disrupt the tokens (visualized in Fig. 1).
Then, an autoencoder is trained to reconstruct the original medical volume from these
disrupted tokens. DAEs result in sharper reconstructions, and a better performance on
downstream tasks. We also devise a cross modal contrastive loss for our framework in
such a way it can discriminate between the features extracted from different modalities.
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Figure 2: Comparison of reconstructions.

In summary, the following are the major
contributions of this work:

• We propose Local Masking, a new
masking strategy which helps learn
useful features to reconstruct local de-
tails like small anatomical and func-
tional structures.

• We introduce Disruptive Autoen-
coders, which aim to reconstruct the
original volume from tokens disrupted
from a combination of low-level per-
turbations such as local masking,
downsampling, and adding noise.

• We curate a public pre-training
dataset for CT and MRI radiol-
ogy images with over 10,000 3D
volumes and conduct extensive ex-
periments on multiple segmentation
datasets and show state-of-the-art
performance. The pipeline achieves
best performance on a public multi-
organ segmentation challenge leader-
board.

2. Disruptive Autoencoders

We propose DAE, a pre-training strategy that focuses on learning strong low-level represen-
tative features of the medical image to reconstruct local context. Here, we first take a cubic
patch from a 3D medical volume, perturb and tokenize it to get disrupted tokens in 3D. The
disrupted tokens are then passed through a transformer encoder to learn a feature repre-
sentation. The latent features are passed through a decoder and are learned to reconstruct
the original image back. The tokens are disrupted using a combination of different low-level
perturbations: i) Local Masking ii) Adding Noise and iii) Downsampling. Local Masking is
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a novel masking strategy proposed by this work. Denoising and super-resolution (recovering
downsampled images) are classic low-level tasks, we are one of the first to explore them as
pre-training tasks for medical imaging motivated by the tasks ability to affect low-level finer
features of the images. In the next sections, we discuss these in greater detail.

Local Masking The 3D input images are of dimension (H,W,Ch) where H, W , and
Ch denote the height, width, and number of channels in the image respectively. After
tokenization, the tokens are of the dimensions (N,C) where N represents the number of
tokens and C denotes the embedding dimension. Masked image modelling methods like
MAE and SimMIM (Simple Mask Image Modelling) (Xie et al., 2022b) follow a token
masking approach where some tokens X out of N are set to zero and the network tries
to reconstruct the original image back. The percentage of tokens masked here is a hyper-
parameter. Token masking approach done in MAEs can be considered a global masking
approach as the entire token chosen to be masked is set to zero. To be more specific,
the entire C dimension of the chosen X tokens that are to be masked are set to zero.

MAE/SimMIM Local Masking

        Transformer Encoder         Transformer Encoder

Data Masked

Figure 3: Local Masking

The entire C dimension, when set to
zero, disrupts the image globally, thereby
directing the network to learn global con-
text with the objective to reconstruct the
original image. This globally disruptive
process of setting C does not always help
in obtaining a good reconstruction for med-
ical images as most of the information in
medical images are not global but in the
finer local details. Not being able to learn
features representative of the local details like anatomy also affects the fine-tuning per-
formance of MAEs. To this end, instead of masking X tokens out of N , we propose to
mask X channels out of C channel embedding dimension. This ensures that there is some
information preserved for each token so that local details do not get completely destroyed.
The perturbation is done locally as we set certain embeddings of each token as zero. We
call this approach local masking as the masking is done to local details. Local masking has
been visualized in Fig. 3. The masking ratio r here is a hyper-parameter which defines the
percentage of C embeddings being masked.

Other Low-level Perturbations While local masking helps us extract features repre-
sentative of local context, we further try to employ other tasks like denoising and super-
resolution for pre-training which would help learn more low-level information. Noise and
low resolution are commonly found issues in realistic clinical medical acquisition pipelines
and hence having them in the pre-training pipeline is meaningful (Zhao et al., 2019).

Adding Noise: To obtain a good denoised image, a model must be able to restore all local
details of the image like edges and corners. To enable denoising as a pre-training task, we
first add noise to the original input and try to restore the original image from the noisy
input using the network. Given that the most common additive Gaussian noise, we define
the perturbed input x̂ as follows:

x̂ = x + N(µ, σ), (1)
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where x is the original input and N is the normal distribution. For each sample, we randomly
sample from a normal distribution to get the noise. This way, there is no specific pattern
for the network to easily restore the input. The mean and variance are hyper-parameters
which can be used to control the noise level injected.

Downsampling: Super resolution helps generate high-resolution scans from otherwise low-
resolution images. To use super-resolution as a pre-training strategy, we first downsample
the input image x to get the LR image x̂. We formulate this downsampling process as
follows:

x̂ = D(x, ϵ), (2)
where D is the downsampling function and ϵ is the downsampling ratio. We use linear
interpolation for downsampling. We follow a pre-upsampling super-resolution setup where
we upsample the LR to same spatial dimension before converting it to HR. The model is
trained to recover the HR image x from the LR input x̂. Super-resolution is a low-level
vision task as we need a features representing fine details to get a HR estimate from blurry
LR inputs. Thus, to produce a good HR image, the network needs to learn features that
provide rich information to recover all the fine details of the image.

In DAEs, we use a combination of all the above perturbations. We first add noise and
downsample the image, then add the two perturbations. Then, the resultant 3D image is
tokenized with a local masking strategy. We name these tokens as disrupted tokens and
pass it to the transformer encoder. These features are then passed through a decoder for
reconstruction and for cross-modal contrastive learning.

Network and Training: We use Swin-UNETR (Tang et al., 2022) as our backbone archi-
tecture for all the experiments. For pre-training we use a combination of L1 reconstruction
loss and the cross modal contrastive learning loss LCMCL.

First, we explain how to obtain LCMCL. Inspired from (Radford et al., 2021) we train
the network to predict which of the B × B possible pairings across a batch B. The goal
is to maximize the cosine similarity of the embeddings of the true pairs in the batch while
minimizing the cosine similarity of the embeddings of the incorrect pairings. We optimize
a symmetric cross entropy loss over these similarity scores.

zsim = zi ∗ zTi ∗ exp(t), (3)
where zi is the mini-batch feature vector, zsim is the similarity matrix and i is the mini-batch
index. t here is the temperature parameter and is set to 0.07. Note that the total number of
data points is N and each mini-batch has B data points which means the mini-batch index
i goes from 1 to N/B. Now, we apply a simple binary cross entropy loss on the similarity
matrix zsim to perform contrastive learning.

We define CMCL loss as follows:
LCMCL = α ∗ CE(zsim, zlabel), (4)

where CE represents the binary cross entropy loss, α represents the scale and zlabel denotes
the labels. CE loss is applied across each axis in the zsim matrix. zlabel is the label matrix
that is created based on the positive pairs and negative pairs as per the meta-data.

The total pre-training loss can be defined as:
Lpretrain = L1 + LCMCL. (5)

The α in CMCL is set to 0.05 to match the range of both losses. We pre-train Swin-UNETR
on a curated set of medical volumes without any labels then use those weights as starting
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weights for our downstream fine-tuning experiments. For finetuning experiments, we use a
Dice loss to train the model.

3. Experiments

3.1. Datasets

Pre-training Dataset: We various public radiology CT and MRI datasets BraTS21
(Bakas et al., 2018), LUNA16 (Setio et al., 2015), TCIA Covid19 (Desai et al., 2020), HN-
SCC (Grossberg et al., 2018), TCIA Colon (Johnson et al., 2008), and LiDC (Armato III
et al., 2011) to construct our pre-training dataset. The corresponding number of 3D vol-
umes for brain, chest, abdomen and head/neck volumes are 1, 310× 4 (4 modalities), 2,018,
1,520 and 1,223, respectively. The number of brain MRI volumes of each modalities T1,
T2, T1ce and FLAIR is 1,310. The total data cohort contains 10001 MR and CT scans
of various body region of interests (ROI) such as head, neck, chest, abdomen, brain and
pelvis. The details about the pre-training dataset can be found in Table 1.

Dataset Region of Interest #Total Samples Train/Validation

BraTS21 - T1 Brain 1251 1188/63
BraTS21 - T2 Brain 1251 1188/63
BraTS21 - T1ce Brain 1251 1188/63
BraTS21 - FLAIR Brain 1251 1188/63
LUNA16 Chest 888 844/44
TCIA Covid19 Chest 761 723/38
HNSCC Head/Neck 1287 1223/64
TCIA Colon Abdomen/pelvis 1599 1520/79
LiDC Chest 475 451/24

Table 1: Pre-training Datasets.

Finetuning Dataset - i) BTCV: Beyond
the Cranial Vault (BTCV) abdomen chal-
lenge dataset (Landman et al., 2015) con-
sists of abdominal CT scans of 30 subjects.
The annotations contain 13 organs which
are annotated by interpreters under super-
vision of radiologists at Vanderbilt Univer-
sity Medical Center. Each CT scan is ac-
quired with contrast enhancement phase at
portal venous consists of 80 to 225 slices
with 512 × 512 pixels and slice thickness ranging from 1 to 6 mm. The multi-organ seg-
mentation problem is formulated as a 13-class segmentation task.

ii) FeTA: Fetal Tissue Annotations dataset (FeTA) (Payette et al., 2021) consists of publicly
available database of 120 manually segmented pathological and neurotypical fetal MRI T2-
weighted brain volumes. These volumes are across a range of gestational ages (20 to 33
weeks) and are segmented into 7 different tissue categories (external cerebrospinal fluid,
grey matter, white matter, ventricles, cerebellum, deep grey matter, brainstem/spinal cord).
The training images were acquired at two different sites with 1.5T and 3T MR scanners.
The data were provided with histogram based matching and zero-padded for 256×256×256
voxels. Data of both sites was also sampled at 0.5 mm isotropic spacing as per challenge
design. The dataset was split into 5-folds of 80/20 for training and validation.

3.2. Implementation Details

Our deep learning models were implemented in PyTorch (Paszke et al., 2019) and MONAI.
For pre-training experiments, we used a batch-size of 2 per GPU. The volumes were ran-
domly cropped into 96×96×96 cubes while pre-training. We used an initial learning rate of
4e−4, momentum of 0.9 and decay of 1e−5 for 20K iterations. We trained the model using
an AdamW (Loshchilov and Hutter, 2017) optimizer with a warm-up cosine scheduler of
500 iterations. We use hyper-parameters r = 60%, σ = 0.1, ϵ = 4 when training the DAE.
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For BTCV fine-tuning experiments, a five-fold cross validation strategy is used to train
the models. The models were trained for 600 epochs with a learning rate of 4e−4 and the
batch-size was set to 4 per GPU. Multiple augmentations such as gaussian noise, contrast
scaling, zoom and random flipping across the axis were utilized. We select the best model
in each fold and ensemble their outputs for final segmentation predictions. For FeTA, the
intensities were normalized to a scale of 0 to 1. The learning rate was set to 4e−4 and batch
size was set to 4 per GPU. All models were trained for 600 epochs, which was determined
by convergence for the full dataset. Augmentations like random flipping on all 3 axes,
Gaussian noise etc. were utilized during the training process. The final layer of the network
is also changed from the pre-training configuration to accommodate the fine-tuning task
at hand. All pre-training and fine-tuning models are trained using NVIDIA DGX-1 V100
servers with 8 and 4 GPUs, respectively.

3.3. Results

Method HD MSD Dice

ResDSN 24.55 1.814 0.813
3D FCN 38.59 4.601 0.792

RandomPatch 18.98 1.423 0.856
nnUNET 18.39 1.335 0.888
UNETR 39.05 1.275 0.891

Swin-UNETR 20.53 0.810 0.918
DAE (Ours) 16.82 0.654 0.921

Table 2: Leaderboard 1results on BTCV.
HD: Hausdorff Distance, MSD: Mean
Surface Distance.

We compare our proposed method with previous
self-supervised methods like contrastive coding
(Chen et al., 2020; Tang et al., 2022), rotation
prediction (Taleb et al., 2020; Tang et al., 2022),
and masked image modelling methods (He et al.,
2022; Xie et al., 2022b). We use Swin-UNETR
as our network backbone for all these experi-
ments. We note that MAE and SimMIM are
very similar to each other, the only difference
being MAEs discard masked tokens while Sim-
MIM includes them. So, we just utilize a masked
image modelling configuration but with Swin-UNETR as the backbone and call this configu-
ration MAE in all upcoming discussions. For BTCV, we directly validated our predictions in
the public leaderboard and so that we can compare our method with all previous backbone
methods. For the leaderboard submissions, we submit to the free competition (no specific
registration process required). We train all our models with 80 subjects (20% as validation
set), and evaluates on the 20 images test set with spacing resolution of 1×1×1mm. Within
the 80 images, 30 scans are from the public challenge data and 50 extra CT scans anno-
tated by radiologists are used to boost the training performance. We perform 4 rounds of
five-fold cross validation experiments and ensemble models to obtain the final prediction.
The ensemble process are effective to exclude outliers. In addition, test time augmentation,
boundary smoothing and connected component analysis are used for post-processing the
labels. Note that this pipe-line for BTCV leaderboard submission is similar to the previous
approaches like (Tang et al., 2022) for fair comparison.

These results are tabulated in Table 2. We note that our proposed method performs the
best and outperforms all the previous baselines. Specifically, we note that we outperform
Swin-UNETR (Tang et al., 2022) which also uses SSL pre-training consisting of 3 different
SSL pretext tasks. In particular, we obtain a significant improvement in terms of Hausdorff
Distance (HD) and Mean Surface Distance (MSD) compared to previous methods. We also
conduct a paired t-test between our BTCV test Dice scores and Swin-UNETR’s results.
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We obtain a two-tailed p-value of 0.0318 which shows our improvement is statistically
significant (p ≤ 0.05). We also note we obtain better results than even recent methods like
UniMiSS (Xie et al., 2022a) which works on the same dataset. Table 3 shows the results
of DAE compared with MAE and from scratch on FeTA dataset. In Table 4, we show the
comparison of DAE with MAE as well as previous SSL techniques on the five-fold BTCV
cross validation dataset. It can be seen that DAE is better than the previous methods.

Data Method Fold1 Fold2 Fold3 Fold4 Fold5 Avg

Scratch 0.840 0.848 0.826 0.838 0.844 0.839
100 % MAE 0.836 0.845 0.826 0.837 0.846 0.838

DAE 0.843 0.850 0.826 0.841 0.850 0.842

Scratch 0.654 0.693 0.650 0.645 0.667 0.662
50 % MAE 0.660 0.694 0.658 0.640 0.669 0.664

DAE 0.680 0.713 0.663 0.641 0.670 0.673

Scratch 0.610 0.620 0.619 0.598 0.644 0.618
20 % MAE 0.615 0.640 0.610 0.616 0.642 0.625

DAE 0.636 0.671 0.648 0.633 0.669 0.651

Table 3: Dice score on 5-fold cross validation on
FeTA dataset.

Ablation Study: In Table 5, we con-
duct an ablation study on DAE. We
compare with each of the disruptions
separately and then compare against
a combination of them. These exper-
iments are conducted on the five-fold
BTCV cross validation dataset. For
this task, we observe that all three
methods perform better than scratch
while local masking performs the best
out of the three. The combination of
the disruptions obtains better perfor-
mance. We note that this trend totally depends on the downstream task but with a com-
bination of these perturbations, the pre-trained weights are always better at performance
than random initialization.
Impact of CMCL: To understand the impact of CMCL, we conduct an experiment on
DAE with and without CMCL loss. This experiment is conducted on single fold of the
BTCV dataset. It can be observed in Table 6 that CMCL provides a benefit in terms of
fine-tuning performance.

Pre-training Method Dice (↑)

Scratch 0.8343
Contrastive Coding 0.8367
Rotation Prediction 0.8356

Swin-UNETR 0.8472
MAE 0.8448

DAE (Ours) 0.8512

Table 4: Comparison.

Pre-training Disruption Strategy Dice (↑)

Scratch 0.8343
Noise 0.8485

Downsampling 0.8489
MAE 0.8448

Local Masking 0.8501
DAE 0.8512

Table 5: Ablation Study.

Pre-training
Strategy Dice (↑)

Scratch 0.789
DAE w/o CMCL 0.841
DAE with CMCL 0.849

Table 6: Impact of CMCL.

4. Conclusion

In this work, we proposed a new pre-training framework for 3D medical images called
Disruptive Autoencoders, where tokens are disrupted using a combination of perturbations:
local masking, additive noise, and downsampling. In particular, local masking is a new
masking strategy where the masking is performed across channel embeddings instead of
tokens to improve the learning of local feature representations. DAE as a pre-training
framework performs better than other pre-training strategies across multiple segmentation
datasets. Notably, using our proposed method we also achieve the best performance in a
public multi-organ segmentation challenge leaderboard and state-of-the-art results on the
other public datasets.
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Appendix A. Related Works

Self-supervised Pre-training: Self-supervised pre-training approaches can be broadly
categorized into two types: 1) generative and 2) discriminative. Generative methods focus
on mapping the input to a latent space to learn a representation and then decode it back
to a new space.

Masked Autoencoders (MAE) (He et al., 2022) propose a way to mask out some tokens
and make the network reconstruct the original image back thus helping the model learn
useful representative features. It uses an asymmetric encoder-decoder design by having a
small transformer decoder to reduce the computation burden. Beit (Bao et al., 2021) pro-
posed a masked image modeling task to pretrain vision transformer while using two views
of the input: image patches as well as a discrete visual token. SimMIM (Xie et al., 2022b)
simultaneously performs representation encoding and pretext prediction, due to which the
decoder design can be changed to be as simple as a single dense layer. Masked feature
prediction (Wei et al., 2022) proposes a technique where instead of the original image, man-
ual features like Histogram of Gradients (HOG) are extracted to learn the representation.
Latent contextual regressors and alignment constraints have been proposed to map the pre-
dicted representations of masked patches to the targets. Masked Pre-training has not been
applied only for images but also for point-clouds (Yu et al., 2022), videos (Girdhar et al.,
2022), and multi-spectral images (Cong et al., 2022).

Discriminative pre-training methods try to design a discriminative loss to differentiate
between the features extracted for different inputs. Typically ground truth in the form of
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annotations or labels is not used for pre-training, pretext tasks like solving jigsaw puzzles
(Noroozi and Favaro, 2016) or predicting rotation (Gidaris et al., 2018) are used to extract
meaningful information. It is also worthy to note CLIP (Radford et al., 2021) uses a
contrastive loss for multi-modal data to learn robust visual representations from image and
text pairs. Contrastive methods have been shown to be useful in many other multi-modal
contexts (Zhang et al., 2022).

Pre-training for Medical Images: Model Genesis (Zhou et al., 2019) proposes a unified
self-supervised learning framework using the recurrent anatomy in medical images. Azizi et
al. (Azizi et al., 2021) perform a stage-wise pre-training on natural images followed by task
specific medical images. A Multi-Instance Contrastive Learning based approach is proposed
to perform self-supervised pre-training. Several other methods (Kalapos and Gyires-Tóth,
2022) also follow similar contrastive strategies for specific medical imaging tasks. In (Tang
et al., 2022), a self-supervised framework using a combination of contrastive coding, rota-
tion prediction, and inpainting was proposed for pretraining on CT volumes. MAE-based
pre-training methods have been quickly adopted for self-supervised pre-training on medi-
cal images (Zhou et al., 2022; Chen et al., 2022). These works show that masked image
modelling methods provides better performance than previous contrastive methods. Unlike
these works, we propose a new pre-training setup which efficiently pre-trains on multiple
modalities contrastively while also learning all the low-level anatomical details using an
autoencoder to have a better representative power. Dira (Haghighi et al., 2022) proposed a
SSL method combining discriminative, restorative, and adversarial learning for 2D medical
image pre-training. (Hosseinzadeh Taher et al., 2023) proposed an anatomy aware approach
to pre-train foundation models for 2D medical images. Lvm-Med (MH Nguyen et al., 2024)
and (Nguyen et al., 2023) look into methods combining 2D and 3D effectively for medical
image pre-training while Lvm-Med also trained encoders on around 1.3M images of various
modalities.

Appendix B. What do MAEs lack for medical images?

MAEs have shown impressive results for vision based image pre-training. To this end, we
first adapted MAEs to operate on 3D volumes for pre-training medical volumes. However,
we observed that the reconstruction quality was low as the reconstructions lose the finer
anatomical details. Such observations are also seen in other works that try to use vanilla
MAEs for medical image pre-training as depicted in Fig. 3. of(Hatamizadeh et al., 2022) &
Fig. 2. of (Zhou et al., 2022). Although using these pre-trained weights do improve down-
stream tasks, we argue that there is significant potential for further improvement in learning
better representations as compared to MAEs for medical images. Coarse reconstructions
might be sufficient to understand a high-level semantic understanding which is useful for
classifying natural images. For tasks like segmentation of medical images, we postulate that
coarse features result in poor reconstructions and are not sufficient to enable efficient fine-
tuning. MAEs lack in the aspect of learning features that reflect a deeper understanding
of the medical image as the tokens are masked globally and no special attention is given to
learn the local details. This is a complete version of a proof sketched in the main text.
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Appendix C. Qualitative Results

We also visualize some sample qualitative results of the BTCV dataset in Fig. 4. It can be
observed that DAEs result in better segmentation predictions specifically performing better
at segmenting small anatomy when compared to MAEs and other baselines.

DAE nnUNet SwinUNETR MAEGround Truth

Figure 4: Qualitative visualizations of the proposed DAE and baseline methods for BTCV
dataset on two randomly chosen subjects.

Appendix D. Empirical Analysis to prove low-level features matter

Since a major premise of this work is to improve pre-training pipeline by extracting better
low-level features, we conduct a simple experiment to show that low-level features are
the most important for fine-tuning. We use CKA (Kornblith et al., 2019) as the feature
similarity metric. CKA is used to represent the correlation between any two feature vectors
in the latent space. For this experiment, we use MAE and DAE pretrained weights and
finetune it on a single fold of BTCV. Now, we feed forward the test images to both the
pre-trained model and the fine-tuned model. The CKA calculated between the features
extracted from pre-trained model and fine-tuned model across different stages is reported
in Table 7. This value gives us an estimate of how much features changed from the initial
pre-trained weights to the final fine-tuned model. It can be observed that the deeper layers
have the least CKA meaning most of the high-level features have changed after fine-tuning.
On the other hand, the early layers have a higher CKA meaning more low-level feature
representations were retained from the pre-trained weights to the fine-tuned model. As
high-level features undergo a relatively heavier change compared to low-level features after
fine-tuning, therefore it is important to focus on learning stronger low-level features during
pre-training.

Stage 1 2 3 4 5

MAE 0.068 0.013 0.012 0.006 0.001
DAE 0.091 0.012 0.011 0.003 0.001

Table 7: CKA values across different levels of the network calculated between pre-trained
and fine-tuned model.
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Figure 5: BTCV Leaderboard. It can be observed that our method performs the best when
compared to all the previous methods.

Appendix E. Limitations and Future Work

There is scope for improvement in picking the best combination of σ, ϵ, r for the pre-trained
weights. A grid search on these parameters would be time-consuming but would lead to
better pre-trained weights. Moreover, it can be noted that it takes a lot of time and
compute to conduct pre-training experiments with large-scale datasets on dense medical
volumes. There is also scope for improvement in increasing the size of the pre-training
dataset to obtain more generalizable weights. For future work, we plan on explanding to
more modalities like US, XRs, etc.

Appendix F. BTCV Leaderboard Submission Details

For the leaderboard submissions, we submit to the free competition (no specific registration
process required). We train all our models with 80 subjects (20% as validation set), and
evaluates on the 20 images test set with spacing resolution of 1 × 1 × 1mm. Within the
80 images, 30 scans are from the public challenge data and 50 extra CT scans annotated
by radiologists are used to boost the training performance. We perform 4 rounds of five-
fold cross validation experiments and ensemble models to obtain the final prediction. The
ensemble process are effective to exclude outliers. In addition, test time augmentation,
boundary smoothing and connected component analysis are used for post-processing the
labels.

The public leaderboard as of the day of supplementary deadline has been visualized in
Fig 5. As there are 100+ submissions, we only display the top performing method in the
figure.

Appendix G. Further Ablation Studies

In the main paper, we conducted ablation studies to estimate the impact of Cross-Modal
Contrastive Learning (CMCL) and also the effects of individual perturbations introduced
via Disruptive Autoencoders (DAE). Here, we conduct more elaborate ablation studies to
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study theimpact of hyperparameters σ (denoising), ϵ (downsampling), and r (masking ratio
of local masking) on the downstream performance. All the experiments are conducted on a
single fold of Beyond the Cranial Vault Abdominal Segmentation (BTCV) dataset.

G.1. Impact of Noise level

In Table 8, we study the impact of noise level during pre-training on the fine-tuning perfor-
mance. The parameter σ is the variance of the gaussian noise. Note that in this experiment,
we do not include other perturbations of local masking and downsampling. Upon visual-
izing the degraded image across different noise levels, we performed experiments on three
different variances σ = 0.05, σ = 0.1, σ = 0.2. It can be observed that the downstream
performance is the best while σ = 0.1. The results can be interpreted in an intuitive man-
ner as it’s known that a higher amount of noise hyper-parameter will degrade the image
significantly and thus makes it more difficult for the model to learn any useful low-level rep-
resentations. While a low amount of noise does not help in learning good representations
as the image hardly goes through any kind of degradation and is likely to be directly copied
by the network to get the reconstruction.

Table 8: Impact of noise level. Dice scores are from experiments done on first fold of BTCV
dataset.

Noise Level Dice (↑)

σ = 0.05 84.56
σ = 0.1 85.90
σ = 0.2 85.43

G.2. Impact of downsampling factor

In Table 9, we study the impact of downsampling ratio during pre-training on the fine-
tuning performance. Note that in this experiment, we do not include other perturbations of
local masking and adding noise. The parameter ϵ is the factor of downsampling operation
done. Upon visualizing the degraded image across ϵ, we performed experiments on three
different variances ϵ = 2, ϵ = 4, ϵ = 8. It can be observed that the best performance is when
ϵ = 4. The reason here is also similar as that of noise level as a higher perturbation makes it
difficult to learn useful representation while lower perturbation does not distort the image
much hence the network just learns to copy information from input to reconstruction.

Table 9: Impact of downsampling ratio. Dice scores are from experiments done on first fold
of BTCV dataset.

Downsampling ratio Dice (↑)

ϵ = 2 85.3
ϵ = 4 85.64
ϵ = 8 85.18
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G.3. Impact of local masking ratio

In Table 10, we study the impact of masking ratio of local masking during pre-training. The
parameter r is the factor of downsampling operation done. Note that in this experiment,
we do not include other perturbations of downsampling and adding noise. We observe a
good performance when masking ratio is 0.4 while the performance decreases as we increase
it.

Table 10: Impact of masking ratio of local masking. Dice scores are from experiments done
on first fold of BTCV dataset.

Masking Ratio Dice (↑)

R = 0.4 85.55
R = 0.6 84.13
R = 0.8 83.71
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