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ABSTRACT

Fair clustering aims at eliminating effects of sensitive information in clustering
assignment. Existing work on fair clustering addresses this problem as a vanilla
clustering with constraints that the distribution of protected groups on each clus-
ter should be similar. However, existing criteria for fair clustering does not take
into account clustering accuracy, and may restrain the performance of cluster-
ing algorithms. To tackle this problem, in this work, we propose a novel metric,
equalized confidence, for fair clustering based on the predicted clustering confi-
dence. Instead of enforcing similar distribution of sensitive attributes across dif-
ferent clusters, equalized confidence requires similar predicted confidence across
different sensitive groups, bypassing the problem of disparities in statistical fea-
tures across demographic groups. In light of the new metric, we propose a fair
clustering method to learn a fair and good representation for clustering. Com-
pared with conventional methods on fair clustering which try to adjust clustering
assignment, our method focuses on learning a fair representation for downstream
tasks. Our method proposes to eliminate the disparities of predicted soft labels of
samples in different demographic groups using Sinkhorn divergence, as well as
to learn clustering-favorable representations for clustering. Experimental results
show that our method performs better or comparably than state-of-the-art meth-
ods, and that our proposed metric fits better under clustering accuracy.

1 INTRODUCTION

While machine learning models have been shown to achieve remarkable performance in different
fields, there have been concerns that machine learning models can reveal real-world discrimination
unless proper regularization, especially in high-stakes social domains (Larson et al., 2016; Choulde-
chova, 2017; Dressel & Farid, 2018). Research on fairness in machine learning has received much
attention, and different notions and metrics have been proposed to quantify disparities of automatic
decision-making system, among which disparate impact (DI) and equalized odds (EOd) has been
widely studied and adopted in fair classification literature as group fairness metrics.

In recent years, fair clustering has become an arising topic in algorithmic fairness, where the goal
is to obtain a fair clustering assignment for unsupervised clustering tasks. Most existing work on
fair clustering formulates the problem of fair clustering as achieving balance within each cluster,
where samples from each sensitive group is expected to make up similar portions of the cluster. In
the context of group fairness, this formulation naturally agrees with DI, and a clustering assign-
ment with better balance also achieves lower DI. However, there are several problems with existing
fair clustering methods: most works focus on adjusting clustering assignment, instead of learning
fair representations for input features, limiting their applications in downstream tasks, and existing
works are mostly validated on low-dimensional or linear-separable data, while their performance
on high-dimensional data is not yet adequately discussed. Furthermore, existing metrics for fair
clustering do not agree with post-hoc notions in group fairness, including EOd and equal opportu-
nity (EOp). Furthermore, existing metrics for fair clustering do not agree with post-hoc notions in
group fairness, including EOd and EOp, as they do not take into account the performance disparities
across sensitive groups. Therefore we ask: Can we define similar metrics for post-hoc performance

disparity in the context of fair clustering?

Due to the unsupervised nature of clustering, it is infeasible to directly adopt current post-hoc no-
tions into fair clustering or incorporate relaxations of such notions with clustering process. Instead,
inspired by previous relaxations in group fairness (Madras et al., 2018), we consider regularizing
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the predicted soft clustering assignment of each sensitive group, where the idea is to make sure that
the predicted soft assignment within each cluster is equal for all sensitive subgroups. Following the
formulation of our fair clustering metric, equalized confidence, we propose a novel fair clustering
framework, where we use Sinkhorn divergence to measure the confidence difference in each cluster,
along with clustering regularizers to preserve clustering structure and encourage high predicted con-
fidence, and contrastive loss to learn linear-separable and clustering-favorable representations. We
summarize our contribution as follows:

1. Fairness metric: We formulate a novel fair clustering metric, equalized confidence, to relate with
post-hoc notions in group fairness.

2. Fair clustering: We propose a novel framework for fair clustering using Sinkhorn divergence to
address confidence difference in fair clustering.

3. We validate the effectiveness of our method in improving fairness on four benchmark datasets,
and we show the connection between notions in group fairness and fair clustering on color-reverse
MNIST dataset.

2 RELATED WORK

2.1 FAIR CLASSIFICATION

Fair classification aims at eliminating the effect of sensitive attributes on machine learning models,
and several notions have been proposed to quantify the disparities across senstive groups (Dwork
et al., 2012; Hardt et al., 2016; Kusner et al., 2017). Our work is most closely related with group
fairness notion in fair classification. In response, different methods have been proposed for obtaining
classifiers with fairness guarantee. Generally, these methods can be divided into three categories:
preprocessing (Sattigeri et al., 2018; Creager et al., 2019; Jiang & Nachum, 2020; Jang et al., 2021),
where the goal is to map input feature or label to some latent space, such that the processed data
obtains desired property in terms of fairness or disentanglement; inprocessing (Zafar et al., 2017;
Agarwal et al., 2018; Roh et al., 2021; Wang et al., 2022), where relaxations of fairness metrics
are incorporated during training as regularization terms or as means for sample reweighing; and
postprocessing (Hardt et al., 2016; Kim et al., 2019; Jang et al., 2022), where the goal is to adjust
the decision threshold in different sensitive groups to achieve expected fairness parity.

2.2 FAIR CLUSTERING

The concepts and notions of fair clustering are first proposed in (Chierichetti et al., 2017), where
fairness in clustering is formulated as balanced distribution of sensitive attributes in each cluster.
Chierichetti et al. (2017) proposes to first perform fair decomposition which separates input data
into smaller fairlets with balance guarantee, and uses a K-center algorithm to achieve fairness.
Since then, several works have been proposed to obtain balanced fair clustering (Backurs et al.,
2019; Bera et al., 2019; Abraham et al., 2019; Ahmadian et al., 2020; Liu & Vicente, 2021). These
methods usually focus on adjusting the clustering assignment to improve balance in each cluster and
formulate the problem as clustering with relaxed balance guarantee, and generally deals with con-
ventional clustering problems including K-means and K-center. Instead, Li et al. (2020) propose a
deep fair clustering method to learn fair embedding for clustering, where the latent representation
is expected to be independent of sensitive attributes. Other notions for fair clustering includes in-
dividual fairness (Mahabadi & Vakilian, 2020) and proportional fairness (Chen et al., 2019), where
the idea is to ensure bounded distance between samples and their corresponding clustering centers,
without accessing or assuming sensitive information.

3 PROBLEM DEFINITION

3.1 BALANCE

We begin by discussing the notion of balance in fair clustering. For simplicity, we discuss the
case with binary sensitive attribute. Generally, given a set of samples {(xi, ai), 1  i  N} with
xi 2 RP the input feature and ai 2 {0, 1} the binary sensitive attribute, let f : RP ! Rd be
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the function of encoder, g : Rd ! [0, 1]K be the function of clustering assignment which divides
the samples into K clusters, and let c : [0, 1]K ! {0, 1}K be the hard clustering assignment. A
clustering algorithm is said to achieve balance if the distribution of the protected group membership
is approximately equal in all the clusters:

1

N

NX

i=1

ai =
1

|Ck|
X

i2{j|c(g(f(xj)))=k}

ai, 8k 2 [K],

where Ck refers to the set of samples in the k-th cluster. And a clustering algorithm is said to be
✏-balance if the portion of protected group membership is lower-bounded by ✏ in each cluster:

inf
k,a

P
i (c(g(f(xi))) = k, ai = a)P

i (c(g(f(xi))) = k)
� ✏. (1)

Balance is naturally related to the content of DI in group fairness. Consider binary clustering as-
signment under binary ground truth label for simplicity, suppose the clustering algorithm achieve
✏-balance and without loss of generality, assume a = 1 to be the major group, it is easy to see that
the predicted positive rates of different sensitive groups are approximately equal, as each cluster
follows similar distribution over sensitive information:
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(2)

where Nj refers to the set of samples in j-th protected group, � = |N1|
|N0| is the empirical ratio, and the

last inequality is obtained based on the definition of ✏-balance in equation 1. Given �, we can observe
that the upper bound in equation 2 is monotonically decreasing w.r.t. ✏, that is, greater balance level
✏ indicates lower upper-bound of DI. As shown in Fig. 1, when the clustering algorithm achieves
perfect balance, the DI between blue and orange groups are also eliminated.

However, one drawback regarding DI is that it does not take into account the difference in base
rate between different demographic groups. If the distribution of training samples is uneven or
biased against certain demographic groups, strictly enforcing DI on the predictor could result in good
decisions on major group but poor or even random decisions on minor group. Besides, achieving
zero DI could be against an optimal classifier when statistical features of different demographic
groups vary. Similar problems also arises in fair clustering content when applying balance as fairness
metric. As in Fig. 1, the cluster assignment shown achieves perfect 50%-balance (that is, the ratio
of data from different sensitive groups in each cluster is exactly 1 : 1). However, the decision
boundary implied by current clustering induces severe disparities in both true positive rate (TPR)
and true negative rate (TNR), with EOd 1.027, while the optimal decision boundary under current
embedding reduces EOd by over 80%.

3.2 EQUALIZED CONFIDENCE

In light of the aforementioned limitations of balance, we seek to define alternative metrics for fair
clustering. Inspired by (Hardt et al., 2016), we can define equality of error rates across different
sensitive groups in clustering:

p(c(g(f(x))) 6= y|y, a) = p(c(g(f(x))) 6= y|y), 8a.

Similarly, we can define the EOd in fair clustering as follows:

EOd =
X

y,a

X

a0 6=a

|p(c(g(f(x))) 6= y|y, a)� p(c(g(f(x))) 6= y|y, a0)|.
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Figure 1: Demonstration of how balance does not ensure fairness in terms of clustering accuracy.
The circle/cross represent negative/positive samples, and different colors show different sensitive
groups. The dashed line represents the decision boundary obtained through fair clustering (w.r.t.
balance), and the solid line indicates the optimal linear decision boundary under current embedding.
Although the clustering assignment achieves perfect balance, the disparities in TPR and TNR are
still large.

However, since equality of error rates is a post-hoc criteria and we do not have access to label infor-
mation during training or validation, it is hard to incorporate such fairness metrics with clustering
tasks. Instead, we consider a relaxed measure, where our goal is to achieve equalized predicted
confidence across all the clusters. We define equalized confidence as follows:

E[g(f(x))|c, a] = E[g(f(x))|c].

And the confidence difference can be formulated as

confidence difference =
X

c,a

X

a0 6=a

|E[g(f(x))|c, a]� E[g(f(x))|c, a0]|.

4 METHOD

In this section, we discuss our fair clustering framework, bringing together the expectation of
equalized confidence and clustering-favorable network. Specifically, we formulate the requirement
of equalized confidence as a regularization term during training using Sinkhorn divergence, with
several additional regularizer for ensuring accuracy. We start by introducing the formulation of
Sinkhorn divergence.

4.1 SINKHORN DIVERGENCE

Sinkhorn divergence interpolates between Wasserstein distance and Maximum Mean Discrepancy
(MMD) (Feydy et al., 2019). Consider binary sensitive attribute for simplicity, let Xa 2 R|Na|⇥P

be the set of elements of the a-th group, the pairwise kernel distances between elements of X0 and
X

1 can be defined through the cost matrix:

M :=
⇥
�k

�
X

0
i , X

1
j

�⇤
ij
2 R|N0|⇥|N1|,

where k is some characteristic positive definite kernel. And the smoothed Wasserstein distance can
be defined as

W�(X
0
, X

1) := min
T2U|N0|,|N1|

� hT,Mi � E(T ),
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where hT,Mi is the Frobenius dot-product of T and M , E(T ) := �
P

ij Tij log (Tij) is the entropy
of T , and U|N0|,|N1| is the set of empirical joint distributions of X0 and X

1 such that their row and
column marginals equal 1|N0|
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|N1| respectively:
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�
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1 is formulated as
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As � ! 1, we have S� the W2 distance projected by some positive definite kernel, and as � ! 0,

we have T the maximal entropy table in U|N0|,|N1|, i.e., the outer product (
1|N0|1

T
|N1|)

|N0||N1| of the marginals,
and S� follows the unbiased estimator of MMD (Cuturi, 2013; Ramdas et al., 2017; Feydy et al.,
2019):
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And the optimal empirical distribution T
⇤ can be obtained via alternating optimization:

T
⇤ = ue

��M
v.

4.2 OBJECTIVE FUNCTION

Sinkhorn loss. We use Sinkhorn divergence between soft predictions of different sensitive sub-
groups to quantify disparities in predicted confidence across different sensitive groups. Specifically,
let Pjk := {g(f(xi))|ai = j, argmaxk(gk(f(xi))) = k} be the set of predicted soft assignment in
the j, k-th group, we formulate the Sinkhorn loss as follows:

L
f
� =

X

j,k

X

j0 6=j

S�(Gj0k, Gjk). (3)

Contrastive loss. Solving equation 3 along could lead to a degraded solution where the encoder
reduces to constant assignment. In light of this, we apply contrastive loss during training, where the
goal is to avoid model collapse, as well as to learn clustering-favorable representations for down-
stream tasks. For each training batch of size n, we apply random augmentation on each sample
twice, resulting in a subset {x̃i, 1  i  2n}. For each sample pair (x̃i, x̃

pos
i ), the contrastive loss is

calculated by

Lcontr(x̃i) = � log
exp(sim(f✓(x̃i), f✓(x̃

pos
i ))/⌧)P

j 6=i exp (sim (f✓(x̃i), f✓(x̃j)) /⌧)
,

where sim is the cosine similarity metric and ⌧ is the scaling hyper-parameter. The overall con-
trastive loss on current batch takes the average over all the augmented samples:

Lcontr =
2nX

i=1

Lcontr(x̃i).

Clustering regularizer. Inspired by (Caron et al., 2018; Li et al., 2020), we use the following
regularizer to encourage high predicted confidence:

Lre =
X

i

X

j

�gj(f(xi)) log(gj(f(xi))).

We defer the detailed discussion regarding the choice of regularizers to appendix.
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Training objective. The overall training objective can be written as follows:

L = ↵fL
f
� + Lcontr + ↵rLre.

Clustering assignment. Following (Xie et al., 2016), we use student’s t-distribution for clustering
assignment:

gk(f(x)) =

⇣
1 + kf(x)� Ckk2 /↵

⌘�↵+1
2

P
k02[K]

⇣
1 + kf(x)� Ck0k2 /↵

⌘�↵+1
2

,

where [K] is the set indices of clustering center and ↵ is the degree of freedom in student’s t-
distribution.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We validate our method on four datasets:

• Color reverse MNIST: We reverse the pixel value of images in MNIST dataset by p
0 =

255�p and concatenate the reversed data with original dataset, and the sample source is set
as sensitive attribute. We apply two different labelling methods: normal labelling (0 � 9)
and binary labelling (Krueger et al., 2021), where digital 0 � 4 is mapped to class 0 and
5� 9 to class 1.

• MNIST-USPS: The MNIST-USPS dataset is constructed using all the training samples
from MNIST and USPS dataset, and we set the data source as sensitive attribute. Similar
to Color reverse MNIST, We consider two different labelling setting: normal labelling and
binary labelling.

• Office-31: The Office-31 dataset contains 31 object categories in three domains: Amazon,
DSLR and Webcam. We use Amazon and Webcam for experiments which has the
largest domain diversity, and the sample source is set as sensitive attribute.

• MTFL: Multi-task Facial Landmark (MTFL) dataset is annotated with gender, smiling,
glasses and head pose annotations. We choose glasses as sensitive attribute and gender as
ground truth label.

We implement our method in PyTorch 1.10.1 with one NVIDIA RTX-3090 GPU. We use ResNet-50
as the encoder structure, and ↵ for the clustering assignment is set as 1. We use clustering accuracy
and normalized mutual information (NMI) for performance evaluation, and we apply four differ-
ent metrics for fairness evaluation: disparate impact (DI) (Rutherglen, 1987), balance, confidence
difference 3.2 and equalized odds (EOd) (Hardt et al., 2016). Following our previous discussion,
we consider balance as measure of the worst-case disparities in distribution of predicted soft as-
signments across different sensitive groups among all the clusters, and we calculate the metric as
follows:

Balance = min
i,j

|Ci \ Nj |
|Ci|

,

where Ci refers to the set of samples in the i-th cluster, and Nj refers to the set of samples in j-th
protected group. Larger balance value indicates smaller distributional disparities across sensitive
groups. Due to distributional disparities, we have balance upper-bounded by the empirical ratio:

Balance  min
i

|Ni|P
k |Nk|

We compare our method with four related clustering methods: DFC - Deep fair clustering method
with adversarial training to improve balance (Li et al., 2020). Falg - Fair clustering with balance
constraints (Bera et al., 2019). K-means - Vanilla Clustering by K-means. ResNet - Vanilla clus-
tering with feature preprocessed by ResNet-50. We repeat experiments on each dataset three times
and report the average results. In each repetition, we randomly split data into 64% training data,

6



Under review as a conference paper at ICLR 2023

16% validation data and 20% testing data. All the methods evaluated are trained and tested on the
same data partitions each time. Hyperparameters of compared methods are set as suggested by the
authors (Bera et al., 2019; Li et al., 2020). The hyperparameter of our method is tuned to find best
confidence difference gap on validation data.

5.2 EXPERIMENTAL RESULTS

Experimental results on the four datasets are shown in Tab. 1 - 6. Compared with baseline meth-
ods, our method achieves better accuracy on different datasets and under different labelling, and our
method shows an improvement in confidence difference and EOd, which is in line with our discus-
sion and formulation of equalized confidence. We also notice that on the four datasets, our method
also improves balance and DI, and this shows that when the base rate difference is not extreme,
it is possible to improve DI and EOd simultaneously, which is in line with previous empirical ob-
servation on fair classification. Compared with other fair clustering methods, our method achieve
comparable performance in terms of balance and DI, with improvement in confidence difference
and EOd, and we also notice that our method achieves better clustering accuracy on several datasets,
owing to the introduction of contrastive loss. We show part of ablation study in Tab. 7-10 to validate
the effectiveness of contrastive loss in improving clustering accuracy, and we defer full results to
appendix.

Method accuracy(%) NMI(%) Balance DI Conf. Dif. EOd
Ours 81.46±2.15 77.82±1.26 0.05±0.03 0.10±0.02 0.02±0.01 0.09±0.02
DFC 82.51±2.27 78.24±1.86 0.09±0.01 0.07±0.03 0.06±0.02 0.14±0.03
K-means 59.54±2.31 69.63±1.54 0.02±0.02 0.17±0.03 0.05±0.02 0.13±0.03
ResNet 72.61±1.53 64.51±2.27 0.02±0.01 0.16±0.02 0.05±0.01 0.16±0.03
Falg 63.14±2.54 51.16±2.84 0.06±0.03 0.09±0.03 0.04±0.02 0.13±0.02

Table 1: Experimental results on MNIST-USPS dataset. Conf. Dif. refers to confidence difference.
The dataset is constructed using all the samples from MNIST and USPS dataset, and the sample
source is set as sensitive attribute. Higher accuracy/NMI indicate better clustering performance.
Higher balance or lower DI/Confidence Difference/EOd correspond to better fairness.

Method accuracy(%) NMI(%) Balance DI Conf. Dif. EOd
Ours 73.67±1.86 70.23±1.36 0.07±0.03 0.07±0.02 0.02±0.01 0.08±0.02
DFC 72.26±1.17 70.41±1.21 0.09±0.04 0.06±0.03 0.06±0.01 0.16±0.03
K-means 63.21±1.84 52.27±1.87 0.04±0.03 0.12±0.03 0.10±0.03 0.17±0.02
ResNet 69.67±2.44 68.43±1.69 0.03±0.02 0.11±0.03 0.08±0.02 0.15±0.03
Falg 60.35±2.57 51.27±2.52 0.10±0.04 0.04±0.01 0.04±0.02 0.14±0.02

Table 2: Experimental results on MNIST-USPS dataset under binary labelling. The dataset is con-
structed using all the samples from MNIST and USPS dataset, and the sample source is set as
sensitive attribute.

Method accuracy(%) NMI(%) Balance DI Conf. Dif. EOd
Ours 71.36±2.27 72.31±2.26 0.11±0.02 0.07±0.02 0.03±0.01 0.07±0.02
DFC 69.23±1.34 71.82±1.64 0.12±0.02 0.06±0.02 0.03±0.01 0.12±0.03
K-means 59.45±2.44 60.61±1.69 0.07±0.03 0.13±0.03 0.07±0.04 0.15±0.03
ResNet 64.45±1.58 69.25±1.21 0.06±0.02 0.15±0.04 0.06±0.03 0.17±0.03
Falg 67.73±2.24 71.18±1.85 0.11±0.02 0.06±0.03 0.04±0.02 0.13±0.02

Table 3: Experimental results on Office-31 dataset. The Amazon and Webcam domains are chosen
for our experiments, and the domain source is set as the protected attribute.

5.3 EXPERIMENTAL RESULTS ON COLOR REVERSE MNIST WITH VARYING DATA
DISTRIBUTION

We move on to discuss the connections and conflicts between metrics in group fairness and fair
clustering. Specifically, we consider resampling the color reverse MNIST with binary labelling, and
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Method accuracy(%) NMI(%) Balance DI Conf. Dif. EOd
Ours 65.47±1.86 74.41±2.54 0.31±0.04 0.09±0.02 0.03±0.01 0.07±0.02
DFC 57.73±1.64 67.73±2.25 0.34±0.04 0.08±0.03 0.05±0.01 0.12±0.02
K-means 42.27±1.87 41.17±2.43 0.11±0.03 0.17±0.04 0.09±0.03 0.14±0.03
ResNet 59.54±2.31 69.63±1.54 0.14±0.02 0.16±0.04 0.08±0.03 0.13±0.03
Falg 31.37±1.53 21.24±1.75 0.29±0.03 0.12±0.03 0.07±0.02 0.13±0.02

Table 4: Experimental results on color reverse MNIST dataset. The sample source from reversed or
original dataset is set as the protected attribute.

Method accuracy(%) NMI(%) Balance DI Conf. Dif. EOd
Ours 62.27±2.31 69.61±2.54 0.34±0.03 0.08±0.02 0.02±0.01 0.06±0.02
DFC 52.27±2.46 62.34±2.26 0.37±0.02 0.07±0.03 0.05±0.01 0.13±0.02
K-means 39.25±2.23 41.12±2.26 0.14±0.02 0.18±0.04 0.10±0.03 0.14±0.03
ResNet 54.43±2.67 64.41±2.17 0.12±0.02 0.19±0.04 0.11±0.03 0.14±0.03
Falg 29.27±2.16 19.84±1.47 0.31±0.04 0.09±0.02 0.05±0.03 0.13±0.03

Table 5: Experimental results on color reverse MNIST dataset under binary labelling. The sample
source from reversed or original dataset is set as the protected attribute.

Method accuracy(%) NMI(%) Balance DI Conf. Dif. EOd
Ours 72.23±1.86 20.23±1.46 0.04±0.03 0.11±0.02 0.02±0.01 0.09±0.02
DFC 70.76±2.62 19.94±1.43 0.07±0.02 0.07±0.03 0.06±0.01 0.14±0.02
K-means 46.54±3.67 11.34±2.45 0.01±0.01 0.16±0.03 0.09±0.03 0.17±0.03
ResNet 64.83±1.47 18.14±1.44 0.02±0.02 0.19±0.04 0.09±0.02 0.18±0.04
Falg 65.63±2.11 18.87±1.25 0.05±0.02 0.09±0.02 0.06±0.03 0.14±0.03

Table 6: Experimental results on MTFL dataset. Glasses-wearing is chosen as sensitive attribute and
gender is chosen as label.

Method Accuracy NMI
Our method 72.23±1.86% 20.23±1.46%
Our method (w/o contrastive loss) 69.62±1.36% 19.14±1.58%
Our method (w/o Sinkhorn divergence) 74.27±1.62% 20.84±2.31%
Our method (w/o regularization) 71.34±1.18% 19.83±2.64%

Table 7: Ablation study on MTFL dataset.

Method Balance DI Conf. Dif. EOd
Our method 0.13±0.04 0.09±0.02 0.02±0.01 0.09±0.02
Our method (w/o contrastive loss) 0.12±0.03 0.10±0.02 0.02±0.01 0.11±0.02
Our method (w/o Sinkhorn divergence) 0.08±0.04 0.12±0.02 0.05±0.01 0.16±0.03
Our method (w/o regularization) 0.13±0.04 0.09±0.02 0.03±0.01 0.09±0.02

Table 8: Ablation study on MTFL dataset.

Method Clustering accuracy NMI
Our method 71.36±2.27% 72.31±2.26%
Our method (w/o contrastive loss) 67.57±2.51% 70.52±2.64%
Our method (w/o Sinkhorn divergence) 73.51±1.72% 72.67±1.36%
Our method (w/o regularization) 71.23±1.87% 72.26±2.51%

Table 9: Ablation study on Office-31 dataset.

we vary the inner-class distribution w.r.t. sensitive attribute for both positive and negative samples
to increase the disparities between distributions of the two subgroups, while keeping the number
of samples from each group identical. As shown in Fig. 2, enforcing balance constraints during
training leads to large increase in Eod while relatively small increase in DI as the degree of imbalance
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Method Balance DI Conf. Dif. EOd
Our method 0.11±0.02 0.07±0.02 0.03±0.01 0.07±0.02
Our method (w/o contrastive loss) 0.11±0.02 0.07±0.02 0.04±0.02 0.09±0.02
Our method (w/o Sinkhorn divergence) 0.08±0.02 0.10±0.02 0.06±0.01 0.14±0.02
Our method (w/o regularization) 0.12±0.02 0.07±0.02 0.03±0.01 0.08±0.02

Table 10: Ablation study on Office-31 dataset.

becomes extreme. This shows the alignment between balance and DI and disaccord between balance
and Eod under larger base rate difference. However, compared with other methods, our method
shows a smaller increase in Eod and larger increase in DI and large decrease in balance as the
degree of imbalance increases, which shows the alignment between confidence difference and EOd
and disaccord between confidence difference and DI.

Figure 2: Results on color-reverse MNIST dataset under binary labelling. The number of reversed
and original images are the same, but the number of positive samples in each group varies. The
degree of imbalance is calculated by NA=1,y=1

NA=0,y=1
.

6 CONCLUSION

Fair clustering with performance parity has yet received less attention. In this paper, we discuss
the inherent connection between existing fair clustering notion and DI, and we consider a novel fair
clustering metric, equalized confidence, which naturally adopts the property of error-based group
fairness metrics. We propose a novel fair clustering method for learning fair and clustering-favorable
representation, which utilizes Sinkhorn divergence to regulate the predicted confidence difference
between different sensitive groups. We validate from experiments that our method achieves better
or comparable performance in terms of both clustering accuracy and fairness, with an improvement
in confidence difference and EOd compared with baseline fair clustering methods, and we show
from experiments the connection and conflicts between notions in group fairness and fair clustering.
Future directions of interest include alternative relaxations for other post-hoc fairness notions in
fair clustering and robustness of existing fair clustering notions under noisy sensitive attribute or
adversarial perturbation.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Savitha Sam Abraham, Sowmya S Sundaram, et al. Fairness in clustering with multiple sensitive
attributes. arXiv preprint arXiv:1910.05113, 2019.

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudı́k, John Langford, and Hanna Wallach. A re-
ductions approach to fair classification. In International Conference on Machine Learning, pp.
60–69. PMLR, 2018.

Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Fair correlation cluster-
ing. In International Conference on Artificial Intelligence and Statistics, pp. 4195–4205. PMLR,
2020.

Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and Tal Wagner. Scal-
able fair clustering. In International Conference on Machine Learning, pp. 405–413. PMLR,
2019.

Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms for
clustering. Advances in Neural Information Processing Systems, 32, 2019.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for un-
supervised learning of visual features. In Proceedings of the European conference on computer

vision (ECCV), pp. 132–149, 2018.

Xingyu Chen, Brandon Fain, Liang Lyu, and Kamesh Munagala. Proportionally fair clustering. In
International Conference on Machine Learning, pp. 1032–1041. PMLR, 2019.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through
fairlets. Advances in Neural Information Processing Systems, 30, 2017.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data, 5(2):153–163, 2017.

Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa Weis, Kevin Swersky, Toniann Pitassi,
and Richard Zemel. Flexibly fair representation learning by disentanglement. In International

conference on machine learning, pp. 1436–1445. PMLR, 2019.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural

information processing systems, 26, 2013.

Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism. Science

advances, 4(1):eaao5580, 2018.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer science confer-

ence, pp. 214–226, 2012.
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