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ABSTRACT

Designing modern imitation learning (IL) policies requires making numerous de-
cisions, including the selection of feature encoding, architecture, policy represen-
tation, and more. As the field rapidly advances, the range of available options
continues to grow, creating a vast and largely unexplored design space for IL
policies. In this work, we present X-IL, an accessible open-source framework
designed to systematically explore this design space. The framework’s modular
design enables seamless swapping of policy components, such as backbones (e.g.,
Transformer, Mamba, xLSTM) and policy optimization techniques (e.g., Score-
matching, Flow-matching). This flexibility facilitates comprehensive experimen-
tation and has led to the discovery of novel policy configurations that outperform
existing methods on recent robot learning benchmarks. Our experiments demon-
strate not only significant performance gains but also provide valuable insights
into the strengths and weaknesses of various design choices. This study serves
as both a practical reference for practitioners and a foundation for guiding future
research in imitation learning.

1 INTRODUCTION

Imitation learning (IL) Osa et al. (2018) has emerged as a powerful paradigm for teaching agents
complex behaviors by mimicking demonstrations, eliminating the need for explicit reward engi-
neering Argall et al. (2009). However, the rapid development of novel machine-learning techniques
across various domains makes it challenging to assess their potential impact on imitation learning.
To address this, we introduce X-IL, a novel framework designed to integrate and explore recently
developed techniques within an imitation learning pipeline. Our framework decomposes the imi-
tation learning process into four key modules: (1) observation representations, (2) backbones, (3)
architectures, and (4) policy representations. Each module is interchangeable, enabling systematic
exploration of the design space for imitation learning policies. This modularity facilitates rapid
prototyping, benchmarking, and deployment. Figure 1 provides an overview of our framework.

More specifically, we offer various observation representations, including 2D RGB inputs and 3D
point cloud representations, to accommodate diverse perception tasks. Our framework incorporates
versatile encoders, such as MLPs, ResNet He et al. (2015), ViT Dosovitskiy et al. (2021), and pre-
trained models, which can be tailored to different input types. Furthermore, we offer both Decoder-
only and Encoder-Decoder architectures. Decoder-only is simpler with fewer parameters, while
Encoder-Decoder supports additional representation learning for better generalization and scaling.
We define the backbone as the core computational unit of the policy architecture, offering support
for Transformer Vaswani et al. (2017), Mamba Gu & Dao (2024), and xLSTM Beck et al. (2024).
Lastly, we offer several state-of-the-art policy representations including popular diffusion- and flow-
based models Ho et al. (2020); Chi et al. (2023); Reuss et al. (2023); Lipman et al. (2023); Du et al.
(2022).

Our contributions can be summarized as follows:
*Correspondence to jia266163@gmail.com
†This work is not related to Han A. Wang’s position at Meta.
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Figure 1: Overview of X-IL framework. X-IL supports multi-modal inputs (Language, RGB, and
Point Cloud) and two architectures: Decoder-Only and Encoder-Decoder. Inside each architecture,
the Backbone serves as the core computational unit, offering support for Transformer, Mamba, and
xLSTM. For policy representations, X-IL supports Behavior Cloning (BC), Diffusion-based, and
Flow-based Policies, enabling diverse learning paradigms for imitation learning. Notably, each com-
ponent—input modality, architecture, backbone, and policy—can be easily swapped to efficiently
explore various model configurations.

1) We introduce X-IL, a user-friendly and highly modular framework for imitation learning that
supports multi-modal inputs, flexible encoders, diverse architectures and policy representations.

2) We leverage our framework to systematically explore the design space of IL policies. In doing so,
we obtain novel policy designs that achieve state-of-the-art results on the LIBERO Liu et al. (2023)
and RoboCasa Nasiriany et al. (2024) benchmarks.

3) Our extensive experiments yield valuable insights, such as the potential of recent sequence models
as strong alternatives to Transformers, or, that fusing different input modalities can lead to significant
performance improvements.

Our work is organized as follows. In Section 2, we review related work. Section 3 describes the
proposed framework, detailing design choices and its modular components. In Section 4, we pro-
vide experimental evaluations across multiple benchmarks, followed by a discussion of results and
observations in Section 5.

2 RELATED WORK

Multi-modal Imitation Learning. Early imitation learning methods relied on either state Schaal
(1996); Ho & Ermon (2016); Torabi et al. (2018) or images Pomerleau (1988); Lynch et al. (2020);
Young et al. (2021) to describe the environment and define the goal. However, obtaining accurate
state information in real-world setting is not straightforward, and state-based representation strug-
gles to capture the complexity of unstructured environments. Conversely, images provide a rich
representation for behavior learning Mandlekar et al. (2021) and can be directly acquired from raw
sensory input. Despite these advantages, using images as goal conditions in imitation learning is
limited by their ambiguity in goal representation and difficulty in goal specification, making them
less flexible for real-world deployment. To address this, natural language has been explored as an
alternative goal representation, offering a more intuitive and accessible way to specify tasks. Recent
studies Shridhar et al. (2022); Reuss et al. (2024b); Bharadhwaj et al. (2024) have explored the inte-
gration of language goals with image observation, enabling more flexible policy learning. Another
line of research fine-tunes Vision-Language Models (VLMs) models to obtain Vision-Language Ac-
tion Models (VLAs) Kim et al. (2024); Li et al. (2023; 2024). However, purely image-based repre-
sentation lack crucial 3D structural information, which is essential for many tasks. Therefore, there
is a recent trend on incorporating richer 3D scene presentations, such as point clouds, to enhance
policy performance Ke et al. (2024); Ze et al. (2024a).

Imitation Learning with Sequence Models. In recent years, sequence models have been increas-
ingly applied to learning human behaviors, as human decision-making is inherently non-Markov
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and requires incorporating historical observations Mandlekar et al. (2021). Early works utilized
RNN-based structuresMandlekar et al. (2021). However, these models suffers from vanish gradient
for handling long observation sequence and low training efficient due to the sequential processing
nature. To address this limitation, Transformer-based architectures have been widely adopted Shafi-
ullah et al. (2022a); Reuss et al. (2023); Bharadhwaj et al. (2024), offering superior scalability and
sequence modeling capabilities. Most recently, State-Space Models(SSM) Gu & Dao (2024); Jia
et al. (2024) have emerged as a promising alternative to Transformers, demonstrating remarkable
efficiency on small datasets and the ability to learn consistent representation. Additionally, im-
proved RNN-based architectures, such as xLSTM Beck et al. (2024), have shown potential to rival
both Transformer and SSMs in natural language processing. However, their application in imitation
learning remains largely unexplored. X-IL aims to bridge this gap by incorporating Transformers,
Mamba, and xLSTM as modular components and empirically evaluating their performance under
different tasks and representations.

Modular Imitation Learning Libraries. While numerous open-source libraries provide algorithm-
specific implementation of imitation learning methods Chi et al. (2023); Lee et al. (2024); Jia
et al. (2024), only a few offer modular design that spans multiple algorithms and architectures.
Robomimic Mandlekar et al. (2021) implements Behavior Cloning (BC) with MLP, RNN, and
Transformer-based policies, while Imitation Gleave et al. (2022) provides modular implementa-
tions of several imitation learning and inverse reinforcement learning methods. However, these
libraries do not include recent diffusion-based imitation learning approaches. To address this gap,
a recent work, CleanDiffuser Dong et al. (2024), introduces a modular implementation for diffu-
sion models in decision-making, supporting policy architectures such as MLP, UNet, ResNet, and
Transformer. However, its evaluation is limited to tasks with low dimensional state input and 2D
image input. In contrast, X-IL expands modularity by supporting multi-modal inputs, including 2D
images, point clouds, and language-conditioned goals. Additionally, X-IL integrates state-of-the-
art sequence models, such as Mamba and xLSTM, broadening its applicability to more complex
environments and diverse IL architectures.

3 THE X-IL FRAMEWORK

In this section, we introduce X-IL, a modular and open-source framework for imitation learning,
based on the following design principles:

Modularity. X-IL systematically decomposes the imitation learning pipeline into different modules
with different components that are easily interchangeable. This modular design enables flexible
integration and evaluation of different approaches, facilitating systematic exploration of the design
space of imitation learning policies.

Ease-of-use principle. Our framework is easy to use, supporting popular tools such as Hydra Yadan
(2019) for configuration management and Weights & Biases (Wandb) Biewald (2020) for logging
and visualization, streamlining the experimentation process.

Incorporation of Novel Techniques. X-IL integrates recent advancements such as Mamba Gu &
Dao (2024) and xLSTM Beck et al. (2024) for sequence modeling and Diffusion and Flow Matching
for policy learning, improving the efficiency and generalization of imitation learning policies.

To enable flexible experimentation, we decompose the imitation learning pipeline into four key mod-
ules: 1) observation representations, 2) backbones, 3) architectures, and 4) policy representations.
An overview of our framework is shown in Figure 1. Below, we provide a detailed description of
each module and its components.

3.1 OBSERVATION REPRESENTATIONS

Our framework considers three primary types of representations: RGB inputs, Point Cloud, and
Language. Below, we introduce these representations and how we encode them.

RGB Inputs. Visual imitation learning has received significant attention in recent research Chi et al.
(2023). RGB images, captured from multiple camera viewpoints, provide essential texture and se-
mantic information for object recognition and scene understanding. Prior works have demonstrated
that ResNet is a strong encoder for manipulation tasks, making it a widely adopted choice Shafiullah
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et al. (2022b); Wan et al. (2024); Zhu et al. (2023). To effectively leverage RGB data, X-IL sup-
ports various feature extractors, including ResNet, FiLM-ResNet Turkoglu et al. (2022), and CLIP
Radford et al. (2021), with a modular codebase that allows easy integration of additional image en-
coders. Each image is encoded as a single token and passed into the backbone (see Section 3.2) for
further processing, enabling flexible and efficient representation learning.

Point Cloud. Point clouds provide 3D spatial structures obtained from RGB-D cameras or LiDAR
sensors, offering geometric information for manipulation tasks. Unlike RGB images, point clouds
inherently encode object positions and shapes, making them ideal for tasks requiring fine-grained
spatial reasoning. Prior works have emphasized the importance of preserving geometric features for
effective representation learning Wan et al. (2024); Ze et al. (2024c); Gyenes et al. (2024). In X-IL,
we use Furthest Point Sampling (FPS) Qi et al. (2017) to downsample points, which helps preserve
the geometric structures of the 3d space. We adopt a token-based representation to capture scene
geometry efficiently. Our framework supports two encoders: a lightweight MLP with Max Pooling
Ze et al. (2024c) for computational efficiency and an attention-based encoder with class token for
enhanced feature extraction. The implementation details can be found in Appendix A.2.

Language. Language-guided imitation learning Stepputtis et al. (2020); Lynch & Sermanet (2021);
Mees et al. (2022); Yu & Mooney (2023); Reuss et al. (2024c) has gained increasing attention as it
provides a high-level, abstract way to describe tasks, object attributes, and robot actions, making it a
valuable modality in imitation learning. Unlike visual and geometric inputs, language offers context
that enhances generalization and adaptability across diverse tasks. To process language, X-IL inte-
grates the pre-trained language model CLIP Radford et al. (2021) to convert textual information into
dense embeddings. These embeddings are then fused with visual and point cloud features, enabling
a richer multimodal representation for policy learning.
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Figure 2: Network details of X-Block. X-Layer is the core part, which is used to process sequence
tokens; AdaLn conditioning is used to inject the context information. Details can be found in Ap-
pendix A.1.

3.2 BACKBONES: X-BLOCK

The choice of backbone architectures is critical for learning effective policies in imitation learning,
as it determines how different input modalities are processed and how sequential dependencies are
captured. We define backbones as the core components responsible for modeling sequential infor-
mation. Previous works Chi et al. (2023); Jang et al. (2022); Chen et al. (2021); Rouxel et al. (2024);
Shaier et al. (2022); Bertasius et al. (2021) have predominantly utilized convolutional 1D architec-
tures, such as U-Net Ronneberger et al. (2015), or Transformer-based models for sequence mod-
eling in imitation learning. However, recent advancements in sequence modeling, such as Mamba
and xLSTM, remain largely unexplored in this domain. We provide a comparative analysis of these
architectures:

Transformer Vaswani et al. (2017). A widely used attention-based model that has demonstrated
strong performance in imitation learning due to its ability to handle non-Markovian behavior in
human demonstrations. Most imitation learning models including Vision-Language Action Models
(VLAs) use transformers as the backbone.
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Mamba Gu & Dao (2024). A structured state-space model (SSM) that significantly improves the ef-
ficiency of SSMs while rivaling Transformers in performance. Unlike Transformers, Mamba main-
tains linear computational complexity. Mamba Imitation Learning (MaIL) Jia et al. (2024) has
shown that Mamba-based policies outperform Transformer-based policies with small datasets.

xLSTM Beck et al. (2024). A variant of LSTM that is designed to enhance long-term dependency
modeling while maintaining computational efficiency. Unlike standard LSTMs, which struggle with
long-range dependencies, xLSTM incorporates architectural improvements to mitigate vanishing
gradient issues. While recurrent models generally lack the expressiveness of self-attention, xLSTM
offers a balance between efficiency and performance, making it a potential alternative for imitation
learning tasks where computational constraints are a concern.

In X-IL, we aim to investigate the potential of these architectures for policy learning. Inspired by
the DiT-Block Peebles & Xie (2023) structure, our framework introduces X-Block, as illustrated
in Figure 2. The core component of X-Block is the X-Layer, which is responsible for processing
temporal information. We provide three backbone options: Transformer, Mamba, and xLSTM, al-
lowing flexibility in sequential modeling. Additionally, AdaLN conditioning Peebles & Xie (2023)
is incorporated—not only for conditioning time embeddings in diffusion models but also for in-
tegrating representation features. Our findings indicate that using representations as conditioning
signals enhances performance, further improving the effectiveness of policy learning.

3.3 ARCHITECTURES

The architecture of an imitation learning model defines how input representations are processed and
how action outputs are generated. X-IL supports two architectures: Decoder-Only and Encoder-
Decoder. Prior works such as ACT Zhao et al. (2023) and MDT Reuss et al. (2024c) adopt an
encoder-decoder design, whereas PearceTransformer Pearce et al. (2023) and MoDE Reuss et al.
(2024a) follow a decoder-only approach. Below, we introduce these architectures and explain their
integration within our framework. The illustrations of them are given in Figure 1.

Decoder-only Models. In X-IL, the Decoder-Only architecture is implemented by stacking multiple
X-Blocks, where both observations and actions are jointly processed within the decoder. The model
outputs only the action tokens, which are then used to train the policy representations.

Encoder-Decoder Models. The Encoder-Decoder architecture in X-IL follows a two-stage ap-
proach: the Encoder first encodes multi-modal inputs into a latent representation, and the decoder
then generates actions based on this structured embedding. Prior works primarily utilize cross-
attention to connect the encoder’s output with the decoder’s input. However, Mamba and xLSTM
lack a built-in mechanism to handle variable-length sequences in this manner. Instead, we find
that AdaLN conditioning provides an efficient and flexible alternative for constructing the Encoder-
Decoder architecture, enabling effective integration of encoded representations into the decoding
process.

3.4 POLICY REPRESENTATIONS

Besides naive behavior cloning approaches, our framework offers a variety of state-of-the-art policy
representations, which can be broadly categorized as diffusion-based and flow-based models.

Behavior Cloning Behavior cloning (BC) assumes a Gaussian distribution as policy representation
and maximizes the likelihood of predicted actions in the given ground truth distributions.

Diffusion-Based Policies Denoising diffusion probabilistic models (DDPM) Ho et al. (2020) cap-
tures the score function field and iteratively optimizes the action. BESO Reuss et al. (2023) is
based on a continuous-time diffusion framework. BESO allows for varying diffusion steps, as well
as diverse sampling techniques. Our framework supports both DDPM-style and continuous-time
BESO-style policies.

Flow-Based Policies Continuous-time normalizing flows trained via flow matching Lipman et al.
(2022) have recently gained a lot of attention and are also suitable as policy representations. These
methods, often referred to as rectified flows (RF) Liu et al. (2022) are fully supported in our frame-
work.
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More detailed description of the policy representations see Appendix A.4.

4 EXPERIMENTS

To explore the design space of Imitation Learning, we conduct extensive experiments on two robot
learning benchmarks: LIBERO and RoboCasa. Our study systematically examines various back-
bones, architectures, and policy designs for both visual and point cloud-based imitation learning.

4.1 SIMULATION BENCHMARK

LIBERO Liu et al. (2023) We evaluate our modular framework with various model architectures
and policy heads using RGB inputs on the LIBERO benchmark, which comprises four distinct task
suites: LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long. These task suites are
specifically designed to evaluate different aspects of robotic learning and manipulation capabilities.

To thoroughly compare the performance of each architecture, we conduct evaluations using both 10
trajectories (20% of the available demonstrations) and 50 trajectories (the full dataset). All models
were trained for 100 epochs in LIBERO task suites, and we used the last checkpoint for evaluation.
Following the official LIBERO benchmark settings, we simulated 50 rollouts for each sub-task,
totaling 500 simulations per task suite. We report the average success rate for each task suite over 3
seeds.

LI
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Figure 3: Illustration of LIBERO and RoboCasa. While LIBERO demonstrates minimal variations
in the same task, e.g. LIBERO-Spatial, RoboCasa provides diversities in different aspects. Cof-
feeServeMug is shown in the figure.

RoboCasa Nasiriany et al. (2024) is a large-scale simulation framework, which provides various
tasks in everyday scenarios. Besides the large amounts of tasks, there are extensive intra-task vari-
ations in RoboCasa. The variations include scenes, objects, and initial positions of the robot and
the objects, while LIBERO does not provide this kind of diversity. As shown in Figure 3, in the
CoffeeServeMug task, the coffee mugs, the coffee machine, and their surroundings are different and
indicate different constraints, i.e. the robot can not grasp the mug from left in the left third variation
due to the toast machine. This high level of diversity demands strong generalization from the model,
which makes this benchmark very challenging.

We evaluate 5 tasks in RoboCasa with 50 human demonstrations for each task. The 5 tasks contain
different behaviors, CloseSingleDoor, OpenDrawer, TurnOnStove, CoffeePressButton, and Cof-
feeServeMug. For training, we train each model for 200 epochs and rollout the models for 50
episodes for each task. We report the success rate over 3 seeds.

4.2 EXPERIMENTAL SETUP IN X-IL

To ensure a fair comparison, we match the model sizes of Transformer, Mamba, and xLSTM. For
both the diffusion policy and flow matching policy, we set the number of sampling steps to 4 in
the main experiments. In the LIBERO Benchmark, all models use ResNet-18 for image process-
ing, whereas in the RoboCasa Benchmark, we employ FiLM-ResNet18 for image encoding and an
attention-based encoder for point cloud inputs.

6



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

LIBERO-SPATIAL LIBERO-OBJECT LIBERO-GOAL LIBERO-LONG AVG.

EXISTING MODELS BACKBONES 20% 100% 20% 100% 20% 100% 20% 100% 20% 100%

DIFFUSION POLICY TRANSFORMER - 78.3±1.1 - 92.5±0.7 - 68.3±1.2 - 50.5±1.3 - 72.4

OCTO TRANSFORMER - 78.9±1.0 - 85.7±0.9 - 84.6±0.9 - 51.1±1.3 - 75.1

OPENVLA LLAMA - 84.7±0.9 - 88.4±0.8 - 79.2±1.0 - 53.7±1.3 - 76.5

MDT TRANSFORMER - 78.5±1.5 - 87.5±0.9 - 73.5±2.0 - 64.8±0.3 - 76.1

MAIL MAMBA 57.6±2.2 74.3±4.3 78.1±4.5 90.1±2.0 56.5±2.3 81.8±1.6 49.9±4.8 78.6±3.0 60.5 83.5

ATM TRANSFORMER 79.0±3.7 - 81.0±2.4 - 58.6±4.6 - 44.0±6.38 - 65.6 -
ENERVERSE TRANSFORMER - 91.2 - 97.7 - 85.0 - 80.0 - 88.5

X-BC (OURS)

DEC TRANSFORMER 63.6±1.8 91.7±2.7 89.7±1.6 97.4±1.0 57.4±2.0 87.1±4.0 24.3±5.9 79.1±1.5 58.8 88.8

MAMBA 66.2±10.7 84.1±2.7 72.8±25.0 97.9±0.4 72.5±2.4 88.4±2.3 34.3±1.8 72.1±2.9 61.5 85.6

XLSTM 72.8±3.3 89.8±1.2 93.5±1.2 96.7±0.9 72.7±3.2 91.7±1.7 47.6±2.7 78.6±1.1 71.6 89.2

X-BESO (OURS)

DEC TRANSFORMER 66.5±4.1 89.5±1.2 90.6±1.2 98.6±0.2 59.8±2.8 85.8±0.5 40.5±2.2 79.3±0.9 64.4 88.3

MAMBA 73.3±5.4 92.0±1.4 96.6±0.3 99.1±0.2 69.4±5.6 94.5±0.8 46.3±3.4 85.2±1.9 71.4 92.7

XLSTM 74.9±3.0 93.5±0.5 93.5±0.5 98.6±0.9 77.9±3.5 92.9±0.6 51.8±3.6 84.1±2.6 74.5 92.3

X-RF (OURS)

DEC TRANSFORMER 46.3±1.1 87.6±2.7 94.3±2.0 98.6±0.9 32.6±1.2 82.4±2.2 34.4±0.4 80.5±1.1 51.9 87.3

MAMBA 63.9±4.9 92.6±2.0 91.9±1.0 99.7±0.1 55.4±2.4 93.7±1.8 42.7±1.5 84.5±0.6 63.5 92.6

XLSTM 76.9±3.8 92.9±0.1 92.9±1.1 98.8±0.4 79.2±4.5 91.9±0.2 50.5±0.4 84.3±0.6 74.9 92.0

Table 1: Results on LIBERO benchmark with 20% and 100% demonstrations, averaged across three
seeds. The best overall results are highlighted in bold, with category-specific best results underlined.
DEC refers to the Decoder-only architecture.

4.3 BASELINES

We additionally report the performance of the following baselines:

BC-Transfromer BC-Transformer is used in RoboCasa Nasiriany et al. (2024). It uses a CLIP
model and a ResNet-18 with FilM layers to encode goal instructions and the the image-based obser-
vations, respectively.

Diffusion Policy Chi et al. (2023) is a visuomotor policy that optimizes the action distribution iter-
atively using a conditional denoising diffusion process on a learned gradient field.

Octo Octo Model Team et al. (2024) is an open-source vision-language-action (VLA) model trained
on a large-scale dataset. It uses a transformer-based diffusion policy that supports both language and
goal image as task input.

OpenVLA Kim et al. (2024) is an vision-language-action model based on a much larger model
Llama 2 7B.

MDT Reuss et al. (2024c) is a diffusion-based framework that is able to learn versatile behavior
from multimodal goal specification including images and languages.

MaIL Jia et al. (2024) uses MAMBA to replace transformer-based backbones in the imitation learn-
ing. It demonstrates superior performance compared to transformer-based architectures, especially
in the case of small datasets.

ATM Wen et al. (2024) Any-point Trajectory Modeling (ATM) is a framework learning from video
demonstrations. ATM predicts the trajectories of arbitrary points in a video frame using images and
language instructions as input.

EnerVerse Huang et al. (2025) is a framework designed for future space generation regarding
robotic manipulation tasks. A policy head is added to the video generator in order to predict the
corresponding action simultaneously.

3D Diffusion Policy (DP3) Ze et al. (2024b). DP3 extracts point-wise features from single-view
points clouds. Robot actions are generated conditioned on these features and the current robot
states.

More detailed description of the policy representations see Appendix C.1.
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INPUT TYPES METHODS BACKBONES CLOSESINGLEDOOR OPENDRAWER TURNONSTOVE COFFEEPRESSBUTTON COFFEESERVEMUG AVERAGE

RGB

BC-TRANSFORMER TRANSFORMER 56.0 42.0 32.0 48.0 22.0 40.0

X-BESO (OURS)
DEC-TRANSFORMER 72.0±1.6 56.7±2.5 30.7±3.8 58.0±1.6 18.0±4.3 47.1

DEC-MAMBA 73.3±1.9 68.0±2.8 28.0±3.3 72.0±4.3 20.7±3.4 52.4

DEC-XLSTM 70.0±1.6 68.0±9.9 34.7±2.5 64.7±0.9 30.7±5.2 53.6

POINT CLOUD

3D DIFFUSION POLICY UNET 62.0±2.8 35.8±3.2 29.3±0.9 15.3±5.1 16.7±2.5 31.8

X-BESO (OURS)
DEC-TRANSFORMER 62.0±4.9 24.0±1.6 46.7±6.2 5.3±3.8 5.3±3.4 28.7

DEC-MAMBA 62.0±3.3 34.7±11.6 54.0±2.8 9.3±3.4 4.7±4.1 32.9

DEC-XLSTM 66.0±4.3 36.0±7.1 49.3±0.9 5.3±3.4 7.3±5.0 32.8

POINT CLOUD + RGB X-BESO (OURS)
DEC-TRANSFORMER 72.0±1.6 45.3±3.4 37.3±5.0 76.0±1.6 38.0±5.7 53.7

DEC-MAMBA 72.7±1.9 53.3±0.9 44.0±1.6 79.3±3.8 44.0±4.3 58.7

DEC-XLSTM 74.7±2.5 50.7±6.6 42.7±8.2 88.0±5.9 48.7±1.9 60.9

Table 2: Results for RoboCasa using different input types with 50 human demonstrations, averaged
across three seeds. The best overall results are highlighted in bold, with category-specific best results
underlined. DEC refers to the Decoder-only architecture.

4.4 EVALUATION ON VISUAL INPUTS

LIBERO. We report the main results in Table 1. To evaluate our framework on LIBERO, we tested
BC, BESO, and RF policies using Decoder-only architectures across Transformer, Mamba, and xL-
STM backbones. Our results demonstrate that X-IL achieves state-of-the-art performance, surpass-
ing publicly available models. Specifically, xLSTM shows great potential in both 20% and 100%
data settings, where it achieves 74.5% average success and 92.3% average success respectively.

RoboCasa. We report the main results in Table 2. Compared to LIBERO, RoboCasa presents a
more challenging benchmark due to its dynamically changing background scenes and object varia-
tions across demonstrations and evaluations. We tested X-BESO on five tasks within RoboCasa and
observed that our approach outperforms the results reported in the original paper. Specifically, using
xLSTM-based models, we achieved a higher average success rate of 53.6%, compared to 40.0% of
BC-Transformer, demonstrating the effectiveness of our method in handling complex and dynamic
environments. Additionally, we observe that Mamba and xLSTM outperform Transformer-based
backbones, which is consistent with our findings from LIBERO. This result further highlights the
potential of leveraging new sequential models in imitation learning, suggesting that alternative ar-
chitectures beyond Transformers can offer improved efficiency and performance in complex robotic
tasks.
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Figure 4: Comparison on different architectures. Dec refers to the Decoder-only model, while
EncDec refers to the Encoder-Decoder model.

4.5 EVALUATION ON POINT CLOUD INPUTS

We report the main results in Table 2. We evaluate X-BESO using point cloud inputs on RoboCasa
and achieve superior results compared to 3D Diffusion Policy. An interesting observation from our
results is that point cloud-based inputs do not necessarily outperform RGB-based inputs.

Our analysis suggests that this is due to the complexity of RoboCasa’s scenarios, where point
clouds are captured from diverse sources, leading to significant information loss during sam-
pling—especially in tasks involving small objects. In such cases, only a sparse set of points remains,
limiting the effectiveness of point cloud representations. This highlights the potential benefits of
object-centric approaches that focus on preserving critical task-relevant details.
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Additionally, we evaluate the performance of combining Point Cloud and RGB inputs. A compact
representation is first extracted from the point cloud and then concatenated with the RGB features.
Experimental results demonstrate that incorporating both modalities significantly enhances perfor-
mance, particularly for the xLSTM-based model, which achieves a 60.9% success rate—compared
to 53.6% with RGB alone and 32.8% with Point Cloud alone. This highlights the importance of ex-
ploring more effective multi-modal fusion strategies to fully leverage the strengths of each modality.
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Steps DDPM [ms] BESO [ms] RF [ms]
1 4.91±0.05 4.98±0.09 5.02±0.03

4 14.62±0.28 14.91±0.29 14.63±0.34

8 27.39±0.48 28.00±0.68 27.65±0.66

12 40.40±0.80 40.43±0.75 40.11±0.74

16 53.39±1.21 53.78±1.17 52.96±1.08

Figure 5: Comparison of different inference steps for DDPM, BESO, and RF. Left: success rate;
Right: inference time.

4.6 COMPARISON ON DIFFERENT ARCHITECTURES

We conduct experiments on four tasks—Spatial (20%) and Long (20%) from LIBERO, as well
as TurnOnStove and CoffeeServeMug from RoboCasa—to compare the performance of Decoder-
only and Encoder-Decoder architectures. The results, presented in Figure 4, show that the AdaLN-
conditioned Encoder-Decoder architecture achieves superior performance on most tasks, highlight-
ing its effectiveness. Furthermore, by processing observations and actions separately, this design
offers more flexibility in choosing different layers for the encoder and decoder, making it more
scalable to larger models.

4.7 COMPARISON OF DIFFUSION MODELS ACROSS VARYING INFERENCE STEPS

We evaluate Decoder-only xLSTM with DDPM, BESO, and RF on the challenging TurnOnStove
task in RoboCasa, comparing performance and inference speed across 1, 4, 8, 12, and 16 inference
steps (Figure 5). DDPM struggles with a single step, while BESO and RF perform well and improve
with more steps. Their inference times are similar, and the speed advantage of flow matching is less
noticeable due to the lower action dimension.

4.8 COMPARISON ON DIFFERENT ENCODERS

We evaluate different image encoders on the RoboCasa dataset using Dec-xLSTM BESO, compar-
ing FiLM-ResNet18, FiLM-ResNet34, and CLIP (frozen) to assess their impact on performance. We
also compare the Max-Pooling and Attention-based Point Cloud encoders. The results are presented
in Figure 6.

Our findings reveal that despite RoboCasa’s requirement for generalization to new scenes and ob-
jects, frozen CLIP encoders perform poorly on most tasks. In contrast, fine-tuned ResNet18 and
ResNet34 demonstrate strong performance, suggesting that domain adaptation plays a crucial role
in achieving effective visual representations for imitation learning. A potential reason for CLIP’s
underperformance is the significant domain gap between its pretraining data and robot manipulation
datasets. This indicates that pretraining on robotics-specific datasets could further improve visual
representations for imitation learning.

Compared to the Max-Pooling encoder, the Attention-based encoder shows better performance on
most tasks, which indicates that attention can better capture the geometric structures of Point Cloud.
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Figure 6: Comparison of different image encoders and Point Cloud (PC) encoders.

5 DISCUSSION

Here, we list several general observations O1)-O4) that are based on the experiments from Section
4.

O1) Given similar model sizes, Mamba and xLSTM-based policies outperform Transformer-based
policies in both RGB inputs and Point Cloud inputs across LIBERO and RoboCasa, demonstrating
their potential as viable alternatives to Transformers in imitation learning.

O2) AdaLN conditioning is a strong method to build Encoder-Decoder architectures in imitation
learning and is suitable for all kinds of sequential models. Injecting observation representations
to the action decoder through adaLN conditioning could further improve the model’s performance
compared to the Decoder-only structure.

O3) Point cloud representations do not necessarily outperform RGB-based representations in im-
itation learning. While previous works have demonstrated strong performance using point cloud
inputs, their evaluations were typically conducted on simpler tasks, where the sampled points were
highly task-relevant.

For more complex tasks, however, the Furthest Point Sampling (FPS) method distributes points
evenly across the scene, often leading to significant information loss—especially for tasks requir-
ing fine-grained object interactions. This suggests that standard point cloud sampling techniques
may not always be optimal, and developing task-aware sampling or object-centric approaches could
further improve the effectiveness of point cloud representations in imitation learning.

O4) Better strategies for combining point cloud and image representations need further exploration.
Our experiments show that simply concatenating point cloud and RGB inputs to the policy improves
performance, but the gains are not significant. This suggests that a more structured fusion mecha-
nism is required to fully leverage the complementary nature of these modalities. Finding the right
balance between point cloud and image features remains an open challenge.

O5) Our experiments highlight the necessity of robot-specific trained encoders. Comparing fine-
tuned FiLM-ResNet with frozen CLIP, we observe that CLIP performs poorly on most tasks. We
attribute this to the fact that manipulation tasks require task-specific features, which are not well
captured by CLIP’s broad, vision-language pretraining.

6 CONCLUSION

We introduced X-IL, a modular and user-friendly framework for imitation learning, enabling sys-
tematic exploration of various policy design choices such as backbones, architectures, and policy
representations across multiple modalities. Our framework supports state-of-the-art encoders, effi-
cient sequential models, and multi-modal fusion, providing a unified platform for researchers and
practitioners. Through extensive evaluations on LIBERO and RoboCasa, we demonstrate superior
performance, improved data efficiency, and better representation learning strategies. Our findings
highlight the potential of alternative sequence models, task-adapted encoders, and optimized multi-
modal fusion in imitation learning. We hope X-IL serves as a valuable resource for advancing
scalable and generalizable policies.
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A X-IL DETAILS

A.1 X-BLOCK

An X-Block is similar to Diffusion Transformer (DiT) block, but generalized. The key difference
is the X-Layer which is capable to plug-in different backbones, including Transformer, Mamba and
xLSTM. The Adaptive LayerNorm (AdaLN) is used to make the input tokens conditionally activated
on the context. A MLP maps the given context to factors α, γ and β. These factors are then applied
to scaling and shifting operations in order to manipuate the latent embeddings.

A.2 REPRESENTATION ENCODERS

A.2.1 RGB

• ResNet ResNet-18 with a latent dimension of 512 is used in this paper.
• FiLM-ResNet FilM introduces a general conditioning layer for visual reasoning tasks.

ResNet-18 with a latent dimension of 512 is used for FilM-ResNet. The FilM has a condi-
tion dimension of 512.

A.2.2 POINT CLOUD

3D representationPoint Cloud token

…

Transformer

…

CLS

CLS

(a) Attention

…

MLP Max 
Pool

(b) MLP with max
pooling

Figure 7: Point cloud encoding.

• Attention We use a 4-layer self-attention Transformer to encode the point cloud tokens. A
CLS token is used to capture the whole geometric representation. See Figure 7a.

• MLP with MaxPooling We use the same point cloud encoder in 3D Diffusion Policy Ze
et al. (2024a), with a 3-layer MLP and Max Pooling to get the compact 3d representations.
See Figure 7b.

A.2.3 LANGUAGE

We used pre-trained CLIP to encode language. CLIP is a vision-language model that aligns the
latent embeddings of visual and language inputs. Pre-trained model ViT-B/32 is used as language
encoder. We freeze the weights of both models during the training.

A.3 BACKBONE DETAILS

Hyperparameters of three different backbones, i.e., Transformer, Mamba, and xLSTM, used in dif-
ferent policies are shown in the Table 3, 4 and 5. These hyperparameters are not tuned for a specific
task but are used for all tasks reported in this paper.
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POLICY DDPM BESO FM
TRANSFORMER DEC ENC-DEC DEC ENC-DEC DEC ENC-DEC

LAYERS 6 4 - 6 6 4 - 6 6 4 - 6

HEADS 8 8 8 8 8 8

EMBEDDINGS 512 512 512 512 512 512

BATCH SIZE 256 256 256 256 256 256

LEARNING RATE 1E-4 1E-4 1E-4 1E-4 1E-4 1E-4

OPTIMIZER ADAM ADAM ADAMW ADAMW ADAMW ADAMW

Table 3: Hyperparameters of Transformer

POLICY DDPM BESO FM
MAMBA DEC ENC-DEC DEC ENC-DEC DEC ENC-DEC

LAYERS 8 4 - 8 8 8 - 8 8 4 - 8

EMBEDDINGS 512 512 512 512 512 512

BATCH SIZE 256 256 256 256 256 256

LEARNING RATE 1E-4 1E-4 1E-4 1E-4 1E-4 1E-4

OPTIMIZER ADAM ADAM ADAMW ADAMW ADAMW ADAMW

Table 4: Hyperparameters of Mamba

A.4 POLICIES

Behavior Cloning Behavior cloning (BC) assumes a Gaussian distribution as policy representation
and has therefore limited model capacity. Maximizing the likelihood of the policy results in a mean
squared error (MSE) minimization between ground truth and predicted actions. Due to its simplicity,
BC is often used as a default naive baseline for comparing imitation learning policies.

Diffusion-Based Policies Denoising diffusion probabilistic models (DDPM) Ho et al. (2020) are a
popular choice for policy representation due to their simplicity and minimal design choices com-
pared to advanced models like BESO Reuss et al. (2023). BESO, based on a continuous-time diffu-
sion framework, allows for varying diffusion steps during training and inference, as well as diverse
sampling techniques such as DDIM. Despite these differences, both DDPM and BESO rely on re-
gression losses, either learning a score function or a denoising model. Our framework supports both
DDPM-style policies and continuous-time BESO-style policies.

Flow-Based Policies Continuous-time normalizing flows trained via flow matching Lipman et al.
(2022) have recently gained a lot of attention and are also suitable as policy representation. These
methods, often referred to as rectified flows (RF) Liu et al. (2022) or stochastic interpolants Albergo
& Vanden-Eijnden (2022), are fully supported in our framework.

B ADDITIONAL TASK DETAILS

B.1 LIBERO BENCHMARK

The LIBERO Benchmark comprises five distinct task suites: LIBERO-Spatial, LIBERO-Object,
LIBERO-Goal, LIBERO-Long, and LIBERO-90. Each suite is designed to evaluate distinct dimen-
sions of robotic learning and manipulation capabilities:

• LIBERO-Spatial evaluates spatial reasoning precision through tasks requiring differenti-
ation of identical objects (e.g., bowls) based solely on their relational positioning (e.g.,
placement relative to plates or other objects).

• LIBERO-Object tests object-centric manipulation by requiring precise recognition and in-
teraction with unique objects (e.g., pick-and-place tasks) in each trial, emphasizing percep-
tual discrimination.

• LIBERO-Goal assesses goal-conditioned adaptability by defining distinct objectives (e.g.,
placing objects in varying sequences or configurations) within fixed object-layout environ-
ments, necessitating dynamic behavioral adjustments.
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POLICY DDPM BESO FM
XLSTM DEC ENC-DEC DEC ENC-DEC DEC ENC-DEC

BLOCKS 8 4 - 8 8 8 - 8 8 4 - 8

EMBEDDINGS 512 512 512 512 512 512

BATCH SIZE 256 256 256 256 256 256

LEARNING RATE 1E-4 1E-4 1E-4 1E-4 1E-4 1E-4

OPTIMIZER ADAM ADAM ADAMW ADAMW ADAMW ADAMW

Table 5: Hyperparameters of xLSTM

• LIBERO-Long challenges long-term planning and endurance with multi-stage tasks de-
manding sustained execution, error mitigation, and coordination across extended timelines.

• LIBERO-90 serves as a generalization benchmark, aggregating 90 short-horizon tasks
across heterogeneous settings to evaluate robustness to variability in objects, layouts, and
objectives.

Figure 8: LIBERO benchmark suites with total 130 tasks in five different scenes

With the exception of LIBERO-90, which includes a diverse collection of 90 tasks, the remain-
ing suites each consist of 10 tasks accompanied by 50 demonstrations per task. For the purposes
of training and evaluation efficiency, our study focuses on the first four suites (LIBERO-Spatial,
LIBERO-Object, LIBERO-Goal, and LIBERO-Long).

B.2 ROBOCASA BENCHMARK

RoboCasa is a large-scale simulation framework developed to train generalist robots in realistic and
diverse home environments, with a particular focus on kitchen scenarios. The benchmark comprises
100 tasks, including 25 atomic tasks with 50 human demonstrations and 75 composite tasks with
auto-generated demonstrations. These tasks are centered around eight fundamental robotic skills
relevant to real-world home environments: (1) pick-and-place, (2) opening and closing doors, (3)
opening and closing drawers, (4) twisting knobs, (5) turning levers, (6) pressing buttons, (7) inser-
tion, and (8) navigation.

To comprehensively evaluate our method, we selected five tasks from the atomic tasks, each repre-
senting a distinct skill:

• Close Single Door : Opening and closing doors

• Open Drawer : Opening and closing drawers

• Turn on Stove : Twisting knobs

• Coffee Press Button : Pressing buttons

• Coffee Serve Mug : Insertion

One of the key advantages of RoboCasa is its provision of both image-based (RGB) and 3D ob-
servations, enabling evaluations across different sensing modalities. Accordingly, we assessed our
method using both RGB and 3D observations.
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C ADDITIONAL BASELINES DETAILS

C.1 BASELINES

Diffusion Policy Chi et al. (2023) is a visuomotor policy that optimizes the action distribution iter-
atively using a conditional denoising diffusion process on a learned gradient field. It demonstrates
the capability to capture the multi-modal action distributions. Incorporating techniques such as re-
ceding horizon control and visual conditioning, the learned visuomotor policy can be deployed to
real-world embodiments.

Octo Octo Model Team et al. (2024) is an open-source vision-language-action (VLA) model. It uses
a transformer-based diffusion policy that supports both language and goal image as task input. The
policy is trained on a large-scale dataset and can be deployed to various embodiments.

OpenVLA Kim et al. (2024)is another open-source vision-language-action model. Different from
Octo, OpenVLA is based on a much larger model Llama 2 7B. It uses 256 reserved tokens for action
values, providing higher resolution for robot control signals.

MDT Reuss et al. (2024c) is a diffusion-based framework that is able to learn versatile behavior
from multimodal goal specification including images and languages. It introduces latent goal repre-
sentations by aligning the latent embeddings of the goal image and the language instructions of the
same tasks. This alignment is especially beneficial when there are few language annotations in the
dataset.

MaIL Jia et al. (2024) uses MAMBA to replace transformer-based backbones in the imitation learn-
ing. It demonstrates superior performance compared to transformer-based architectures, especially
in the case of small datasets.

ATM Wen et al. (2024) Any-point Trajectory Modeling (ATM) is a framework learning from video
demonstrations. ATM predicts the trajectories of arbitrary points in a video frame using images
and language instructions as input. The robot action is derived from trajectory predictions and the
current video frame using MLP.

EnerVerse Huang et al. (2025) is a framework designed for future space generation regarding
robotic manipulation tasks. This framework uses Free Anchor View (FAV) and 4D Gaussian Splat-
ting (4DGS) to generate the next frames of the videos in manipulation scenarios. A policy head is
added to the video generator in order to predict the corresponding action simultaneously. EnverVerse
shows improved performance in long-horizon manipulation tasks.
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