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ABSTRACT

LLM-based agents have been widely applied as personal assistants, capable of
memorizing information from user messages and responding to personal queries.
However, there still lacks an objective and automatic evaluation on their memory ca-
pability, largely due to the challenges in constructing reliable questions and answers
(QAs) according to user messages. In this paper, we propose MemSim, a Bayesian
simulator designed to automatically construct reliable QAs from generated user
messages, simultaneously keeping their diversity and scalability. Specifically,
we introduce the Bayesian Relation Network (BRNet) and a causal generation
mechanism to mitigate the impact of LLM hallucinations on factual information,
facilitating the automatic creation of an evaluation dataset. Based on MemSim,
we generate a dataset in the daily-life scenario, named MemDaily, and conduct
extensive experiments to assess the effectiveness of our approach. We also provide
a benchmark for evaluating different memory mechanisms in LLM-based agents
with the MemDaily dataset. To benefit the research community, we have released
our project at https://anonymous.4open.science/r/MemSim.

1 INTRODUCTION

In recent years, large language model (LLM) based agents have been extensively deployed across
various fields (Guo et al., 2024; Wang et al., 2024; Xi et al., 2023; Ge et al., 2023; Wang et al., 2023;
Wu et al., 2023). One of their most significant applications is serving as personal assistants (Li
et al., 2024), where they engage in long-term interactions with users to address a wide range of
issues (Lu et al., 2023; Lee et al., 2023). For LLM-based personal assistants, memory is one of the
most significant capability (Zhang et al., 2024). To perform personal tasks effectively, these agents
must be capable of storing factual information from previous messages and recalling relevant details
to generate appropriate responses. For example, a user Alice might tell the agent, “I will watch a
movie at City Cinema this Friday in Hall 3, Row 2, Seat 9.” When Friday arrives, she might ask the
agent, “Where is my movie seat?” Then, the agent should recall the relevant information (i.e., the seat
number) to generate an appropriate response to Alice.

Previous research has proposed methods for constructing the memory of LLM-based agents (Zhong
et al., 2024; Modarressi et al., 2023; Lu et al., 2023; Packer et al., 2023; Shinn et al., 2024). However,
there remains a lack of objective and automatic methods to evaluate how well personal assistants can
memorize and utilize factual information from previous messages, which is crucial for developing
memory mechanisms. One conventional solution is to collect messages from real-world users, and
manually annotate answers to human-designed questions based on these messages. However, it
requires substantial human labor that lacks scalability. Another solution is to generate user messages
and question-answers (QAs) with LLMs. However, the hallucination of LLMs can severely undermine
the reliability of generated datasets, particularly in complex scenarios (Huang et al., 2023). Here, we
refer to the reliability of a dataset as the correctness of its ground truths to factual questions given
the corresponding user messages. Our research shows that due to the hallucination of LLMs, the
correctness of ground truths generated by vanilla LLMs is less than 90% in most scenarios and can
fall below 40% in some complex scenarios (see Section 5.2). For instance, when posing aggregative
questions like “How many people are under the age of 35?,” they often provide incorrect answers due
to hallucinations. Moreover, generating diverse user profiles through LLMs is also challenging, as
they tend to produce the most plausible profiles that lack diversity.
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To address these challenges, we propose MemSim, a Bayesian simulator designed to construct reliable
QAs from generated user messages, simultaneously keeping their diversity and scalability, which
can be utilized to evaluate the memory capability of LLM-based personal assistants. Specifically, we
introduce the Bayesian Relation Network (BRNet) to generate the simulated users that are represented
by their hierarchical profiles. Then, we propose a causal generation mechanism to produce various
types of user messages and QAs for the comprehensive evaluation on memory mechanisms. By
using BRNet, we improve the diversity and scalability of generated datasets, and our framework
can effectively mitigate the impact of LLM hallucinations on factual information, which makes the
constructed QAs more reliable. Based on MemSim, we create a dataset in the daily-life scenario,
named MemDaily, and perform extensive experiments in multiple aspects to assess the quality of
MemDaily. Finally, we construct a benchmark to evaluate different memory mechanisms of LLM-
based agents with MemDaily. Our work is the first one that evaluates memory of LLM-based personal
assistants in an objective and automatic way. Our contributions are summarized as follows:

• We analyze the challenges of constructing datasets for objective evaluation on the memory capability
of LLM-based personal assistants, focusing on the aspects of reliability, diversity, and scalability.

• We propose MemSim, a Bayesian simulator designed to generate reliable, diverse and scalable
datasets for evaluating the memory of LLM-based personal assistants. We design BRNet to generate
the simulated users, and propose a causal generation mechanism to construct user messages and QAs.

• We create a dataset in the daily-life scenario based on our framework, named MemDaily, which can
be used to evaluate the memory capability of LLM-based personal assistants. We perform extensive
experiments to assess the quality of MemDaily in multiple aspects, and provide a benchmark for
different memory mechanisms of LLM-based agents. To support the research community, we have
made our project available at https://anonymous.4open.science/r/MemSim.

The rest of our paper is organized as follows. In Section 2, we review the related works on the
evaluation of memory in LLM-based agents and personal assistants. In Section 3, we introduce the
details of MemSim, and the generation process of MemDaily. In Section 4, we assess the quality
of MemDaily. Section 5 provides a benchmark for evaluating different memory mechanisms of
LLM-based agents. Finally, in Section 6, we discuss the limitations of our work and draw conclusions.

2 RELATED WORKS

LLM-based agents have been extensively utilized across various domains, marking a new era for
artificial personal assistants (Li et al., 2024). For LLM-based personal assistants, memory is a critical
component that enables agents to deliver personalized services. This includes storing, managing,
and utilizing users’ personal and historical data (Zhang et al., 2024; Zhong et al., 2024; Shinn et al.,
2024; Yao et al., 2023). For instance, MPC (Lee et al., 2023) suggests storing essential factual
information in a memory pool with a summarizer for retrieval as needed. MemoryBank (Zhong et al.,
2024) converts daily events into high-level summaries and organizes them into a hierarchical memory
structure for future retrieval. These approaches primarily aim to enhance agents’ memory capability.

Previous studies have also attempted to evaluate the memory capability of LLM-based agents, but
there still exist limitations. Some studies use subjective methods, employing human evaluators to
score the effectiveness of retrieved memory (Lee et al., 2023; Zhong et al., 2024; Liu et al., 2023).
However, this approach can be costly due to the need for evaluators and may introduce biases from
varying annotators. Other studies use objective evaluations by constructing dialogues and question-
answer pairs (Packer et al., 2023; Hu et al., 2023; Maharana et al., 2024), but these methods still
require human involvement for creating or editing the QAs. Therefore, how to construct reliable QAs
according to user messages automatically is significant for the objective evaluation.

Some previous studies construct knowledge-based question-answering (KBQA) datasets to assess
Retrieval-Augmented Generation (RAG) (Lan et al., 2021; Peng et al., 2024), which is relative to
the data generation for memory evaluation. These studies typically either use knowledge graphs to
generate QAs through templates or manually annotate QAs with human input (Zhang et al., 2023;
Cao et al., 2020; Jin et al., 2024; Huang et al., 2024; Kwiatkowski et al., 2019; Yang et al., 2024).
However, most of these efforts focus on common-sense questions rather than personal questions
whose answers are only determined by the user messages in the same trajectory. They do not include
textual user messages and target indexes for retrieval evaluation (Cao et al., 2020; Jin et al., 2024;

2

https://anonymous.4open.science/r/MemSim


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Bayesian Relation Network Entity 𝒜𝒜𝑡𝑡 (b) Causal Generation Mechanism

(d) MemDaily Benchmark(c) MemDaily Dataset
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Alice told me her 26th birthday is next 
Monday. Remind me at that time.
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My mom said the iPhone 14 looks 
great. Please help me to remember 
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Bob is 29 years old, 
but he looks young.

April 3rd 2024 April 6th 2024

Question: David just asked me 
about Alice and Bob. So who is 
younger between Alice and Bob? 
Choices:
A. Alice B. Bob C. Same D. David
Answer/Retrieval Target:
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Choices:
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Answer/Retrieval Target:
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Trajectory

Figure 1: Overview of MemSim and MemDaily.

Huang et al., 2024; Yih et al., 2016; Talmor & Berant, 2018). Additionally, they are highly dependent
on the entities extracted from the given corpus, which limits their scalability (Cao et al., 2020; Yih
et al., 2016). Our work is the first one that evaluate memory of LLM-based personal assistants in an
objective and automatic way, which can generate user messages and QAs without human annotators,
keeping reliability, diversity and scalability.

3 METHODS

Our final goal is to evaluate memory mechanisms of LLM-based personal assistants in an objective
and automatic way. The whole pipeline is demonstrated in Figure 1. First of all, we propose MemSim
that can simulate users and generate evaluation datasets, mainly including the Bayesian Relation
Network and a causal generation mechanism. Then, we employ MemSim to create a dataset in the
daily-life scenario, named MemDaily. Finally, we construct a benchmark that evaluates different
memory mechanisms of LLM-based agents based on MemDaily. In this section, we will deliver the
details of MemSim and MemDaily, while the evaluation benchmark will be presented in Section 5.

3.1 OVERVIEW OF MEMSIM

In order to construct reliable QAs from generated user messages, we propose a Bayesian simulator
named MemSim, which includes two primary components. First, we develop the Bayesian Relation
Network to model the probability distribution of users’ relevant entities and attributes, enabling the
sampling of diverse hierarchical user profiles. Then, we introduce a causal mechanism to generate user
messages and construct reliable QAs based on these sampled profiles. We design various types of QAs
for comprehensive memory evaluation, including single-hop, multi-hop, comparative, aggregative,
and post-processing QAs, incorporating different noises to simulate real-world environments. Based
on the constructed QAs and generated user messages, researchers can objectively and automatically
evaluate the memory capability of LLM-based personal assistants on factual information from
previous messages, which can be helpful in developing advanced memory mechanisms.

3.2 BAYESIAN RELATION NETWORK

We introduce Bayesian Relation Network (BRNet) to model the probability distribution of users’
relevant entities and attributes, where we sample hierarchical profiles to represent simulated users
(see Figure 1(a)). Specifically, we define a two-level structure in BRNet, including the entity
level and the attribute level. The entity level represents user-related entities, such as relevant
persons, involved events, and the user itself. At the attribute level, each entity comprises several
attributes, such as age, gender, and occupation. Here, BRNet actually serves as a predefined meta-user.
Formally, let A1, . . . ,AN represent different entities, and each entity Ai comprises several attributes

3
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{Ai
1, A

i
2, . . . , A

i
Ni}, where N is the number of entities, and N i is the number of attributes belonging

to the entity Ai. Each attribute Ai
j corresponds to a random variable Xi

j , which can be sampled in a
value space. For example, the college’s (entity Ai) age (attribute Ai

j) is 28 years old (value xij ∼ Xi
j).

We denote BRNet as a directed graph G = ⟨V,E⟩ at the attribute level, where the vertex set V
includes all attributes, i.e., V =

⋃N
i=1{Ai

1, A
i
2, . . . , A

i
Ni}. The edge set E captures all the direct

causal relations among these attributes, defined as E = {⟨Ai
j , A

k
l ⟩ | ∀Xi

j , X
k
l ∈ X , Xi

j → Xk
l },

where X =
⋃N

i=1{Xi
1, X

i
2, . . . , X

i
Ni}. For better demonstration, in this subsection, we simplify

the subscripts of the variables in X as 1, 2, ...,
∑N

i=1Ni. The conditional probability distribution
among them can either be explicitly predefined or implicitly represented by LLM’s generation with
conditional prompts. It is important to note that we assume the causal structure is loop-free, ensuring
that BRNet forms a directed acyclic graph (DAG), which is typical in most scenarios (Heinze-Deml
et al., 2018). Additionally, the vertices (i.e., attributes), edges (i.e., causal relations), and conditional
probability distributions (i.e., prior knowledge) can be easily scaled to different scenarios.

So far, we have constructed the BRNet, where the joint probability distribution P (X1, X2, . . . , X|X |)
over all attributes can represent the user distribution in the given scenario. Then, we can sample differ-
ent values of attributes on entities from BRNet to represent various user profiles. One straightforward
approach is to compute the joint probability distribution and sample from it.
Assumption 1 (Local Markov Property). BRNet satisfies the local Markov property, which states that

Xt ⊥⊥ Xdes(Xt)
|par(Xt),∀Xt ∈ X ,

where des(Xt) denotes the non-descendant set of Xt, par(Xt) denotes the parent set of Xt, and the
notation · ⊥⊥ ·|· indicates the variables are conditionally independent.

Because the parents of an attribute can be extended to any non-descendant attributes of it by adding
a new edge if they have a direct causal relation. Therefore, given these parent attributes, other
non-descendent attributes are conditionally independent of that attribute.
Theorem 1 (Factorization). The joint probability distribution of BRNet can be expressed as

P (X1, X2, ..., X|X |) =
∏

Xt∈X
P (Xt|par(Xt)),

where par(Xt) denotes the set of parent attributes of Xt.

The proof of Theorem 1 is provided in Appendix A.1. However, calculating the joint probability
distribution and sampling from it may be impractical in our scenarios. First, the joint probability
distribution is often high-dimensional, making its calculation and sampling costly. Second, some
conditional probability distributions are difficult to represent in explicit forms, particularly when
using LLMs for value generation through conditional prompts. To address these issues, we introduce
the ancestral sampling process to obtain the values of attributes.
Assumption 2 (Conditional Sampling). In BRNet, an attribute can be sampled from the conditional
probability distribution given its parent attributes. Specifically, we have

x̃t ∼ P (Xt|par (Xt)) ,∀Xt ∈ X ,
where the conditional probability distribution can be expressed in either explicit or implicit forms.

The ancestral sampling algorithm is outlined as follows. First, we obtain the topological ordering
of BRNet using Kahn’s algorithm (Kahn, 1962). Next, we sample all attributes according to this
ordering. For top-level attributes without parents, the sampling is performed based on their marginal
probability distributions. For other variables like Xt, we sample their values using the conditional
probability distribution x̃t ∼ P (Xt|par (Xt)) as specified in Assumption 2. Finally, we consider
each sampling result {x̃1, x̃2, . . . , x̃|X |} as the attribute-level profiles of a user, which constitute
different entities as the entity-level profiles of the user. These two levels represent the user in different
grains, which are important to generate user messages and QAs subsequently.
Theorem 2 (Ancestral Sampling). For BRNet, the result of ancestral sampling is equivalent to that
of sampling from the joint probability distribution. Specifically, we have

P (x̃1, x̃2, ..., x̃|X |) = P (x1, x2, ..., x|X |),

where x1, x2, ..., x|X | ∼ P (X1, X2, ..., X|X |) are sampled from the joint probability distribution.
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Table 1: Overview of comprehensive questions and answers.

Types Descriptions Examples Causal Hints Retrieval Target

Single-hop Rely on one message to an-
swer the question directly.

Q: When is Alice’s birthday ?
A: June 1st.

(A(j),K(j), v(j)) {m(j)}

Multi-hop Require multiple messages
to answer the question
jointly.

Q: Where is the meeting that I
will attend next week?
A: Victoria Conference Center.

(At,K(j), x(j)),
(At,K(k), x(k))

{m(j),m(k)}

Comparative Compare two entities on a
shared attribute with multi-
ple messages.

Q: Who is younger between
Alice and Bob?
A: Bob.

(A(j),K, v(j)),
(A(k),K, v(k))

{m(j),m(k)}

Aggregative Aggregate messages about
more than two entities on
a common attribute.

Q: How many people are under
35 years old?
A: Three.

{(A(jk),K, v(jk))}dk=1{m(jk)}dk=1

Post-
processing

Involve extra reasoning
steps to answer with multi-
ple messages.

Q: What season was the
teacher that I know born in?
A: Spring.

(At,K(j), v(j)),
(At,K(k), v(k))

{m(j),m(k)}

The proof can be found in Appendix A.2. By employing ancestral sampling, we eliminate the need to
compute the joint probability distribution, making the sampling process more efficient and practical.
By utilizing BRNet, we introduce prior knowledge of the specific scenario into the graphical structure
and sampling process, which can improve the diversity and scalability of user profiles, thereby
enhancing the diversity and scalability of whole datasets.

3.3 CAUSAL GENERATION MECHANISM

Based on hierarchical user profiles, we propose a causal generation mechanism to generate user mes-
sages, and construct reliable QAs corresponding to them. Here, causal indicates that the generation
of user messages and the construction of QAs are causally dependent on the same informative hints
that are also causally derived from hierarchical user profiles. Specifically, we define a piece of hint
as a triple (Ai, Ai

j , x
i
j) that provides factual information in a structural format. In other words, the

hierarchical user profiles provide a structural foundation to get different hints, which then provide a
set of relevant information as the causation of both user messages and QAs, shown in Figure 1(b).

Construction of Informative Hints. We construct the hints of factual information based on hierar-
chical user profiles before creating the user messages and QAs. We select a target entity At at the
entity-level, and choose lt attributes {Kt

1,K
t
2, . . . ,K

t
lt} ⊆ At along with their corresponding values

{vt1, vt2, . . . , vtlt} from the attribute-level profiles. Then, we reformulate them into a list of triple hints

Ht = [(At,Kt
i , v

t
i)]

lt

i=1. For some complex types of QAs, we choose more than one target entities,
and concatenate their lists of hints. For better demonstration, we re-index the final list of hints as
H =

[
(A(j),K(j), v(j))

]l
j=1

, where l is the number of hints in the final list.

Construction of User Messages. Based on the j-th hint (A(j),K(j), v(j)) ∈ H , we construct the
corresponding user message m(j) with LLM, where we have m(j) = LLM(A(j),K(j), v(j)). Here,
the LLM only serves the purpose of rewriting structural hints, without any reasoning process. For
example, if the hint is (my uncle Bob, occupation, driver), the generated user message might be “The
occupation of my uncle Bob is a driver”. We generate user messages for all the hints in H , and we
finally get the list of user messages M =

[
m(j)

]l
j=1

.

Construction of Questions and Answers. In order to evaluate the memory capability of LLM-based
personal assistants more comprehensively, we propose to construct five representative types of QAs
to cover various complexities in real-world scenarios, as detailed in Table 1. For each question q, we
provide three forms of ground truths: (1) the textual answer a that can correctly respond to q, (2) the
correct choice a among confusing choices a′ (generated by LLM) as a single-choice format, and (3)
the correct retrieval target h ⊆M that contains the required factual information to the question.

(i.) Single-hop QA. Single-hop QA is the most basic type of QAs, relying on a single piece message to
directly answer the question. In constructing QA, we randomly select the j-th hint (A(j),K(j), v(j))
and generate the question q = LLM(A(j),K(j)) through LLM rewriting, where the answer is
a = v(j). Correspondingly, the retrieval target is h = {m(j)}.
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Table 2: Summary of the MemDaily dataset.

Statistics Simp. Cond. Comp. Aggr. Post. Noisy Total

Trajectories 500 500 492 462 500 500 2,954
Messages 4215 4195 3144 5536 4438 4475 26,003
Questions 500 500 492 462 500 500 2,954

TPM 15.48 15.49 14.66 14.65 17.07 16.14 15.59

(ii.) Multi-hop QA. Multi-hop QA necessitates the use of multiple messages to determine the correct
answer, making it more complex than single-hop QA. In constructing Multi-hop QA, we first sample
two hints (A(j),K(j), v(j)) and (A(k),K(k), v(k)) from the same bridge entity At (i.e., At = A(j) =
A(k)). We then mask this bridge entity and generate the question q = LLM(K(j), v(j),K(k))
through LLM rewriting, where the answer is a = v(k). The target message set is h = {m(j),m(k)}.
By incorporating additional entities, the questions can be easily extended to more hops.

(iii.) Comparative QA. Comparative QA is an extensive type of multi-hop QA, which involves
comparing two entities based on a shared attribute. We first select two hints (A(j),K(j), v(j)) and
(A(k),K(k), v(k)) from different entities with the same meaning attribute K (i.e., Aj ̸= Ak and K ∼=
K(j)

∼= K(k)). We then rewrite the question q = LLM(A(j),A(k),K) by LLM, where the answer
a = f(K, v(j), v(k)) is derived from the function f(·). The retrieval target is h = {m(j),m(k)}.

(iv.) Aggregative QA. Aggregative QA is a general type of comparative QA, which requires aggregat-
ing messages from more than two entities on a shared attribute. For construction, we choose d hints
{(A(jk),K, v(jk))}dk=1 from different entities with the same meaning attributeK. Then, we construct
the question q = LLM({A(jk)}dj=1,K), where we obtain the answer a = f(K, {v(jk)}dk=1). The
target message set should include all these related references, that is, h = {m(jk)}dk=1.

(v.) Post-processing QA. Post-processing QA addresses situations where personal questions require
additional reasoning steps for agents to answer, based on the retrieved messages. We first select
two hints (A(j),K(j), v(j)) and (A(k),K(k), v(k)) from the same bridge entity At. We then design a
reasoning factor ψ to generate the question q = LLM(K(j), v(j),K(k), ψ), and derive the answer
a = f(K(k), v(k), ψ), where ψ specifies the reasoning process. For example, it could be “the sum of
the last five digits of the phone number v(k)”. Similarly, the retrieval target will be h = {m(j),m(k)}.

Infusion of Noise in User Messages. We integrate two types of noise in user messages by concatena-
tion, in order to simulate real-world circumstances. The first type is entity-side noise, which refers
to noisy messages that contain the selected attributes from unselected entities. The second type is
attribute-side noise, which involves noisy messages that describe unselected attributes of the selected
entities. Both types of noise can impact agents’ ability to retrieve messages and generate answers.

Eventually, we formulate the trajectory ξ = (M, q, a, a′, h) by discarding all hints, where each
trajectory serves as a test instance for evaluating the memory capability of LLM-based personal
assistants. There are two insights into the causal generation mechanism. First, the factual information
of messages and QAs are causally constructed from the shared hints that are sampled from user
profiles, where LLMs are only responsible for rewriting based on the given information, rather
than imagining or reasoning. This pipeline mitigates the impact of LLM hallucination on the
factual information, keeping the reliability of QAs. It can also prevent contradictions among user
messages from the same trajectory, because their hints are derived from the same user profile.
Second, our method focuses on designing the asymmetric difficulty between constructing QAs (i.e.,
profiles→hints→messages, question and answer) and solving QAs (i.e., messages|question→answer),
which is critical for the automatic generation of evaluation datasets.

3.4 MEMDAILY: A DATASET IN THE DAILY-LIFE SCENARIO

Based on MemSim, we create a dataset in the daily-life scenario, named MemDaily, which can be
used to evaluate the memory capability of LLM-based personal assistants, shown in Figure 1(c).
Specifically, MemDaily incorporates 11 entities and 73 attributes (see details in Appendix E.1), all of
which are representative and closely related to users’ daily lives. We create 6 sub-datasets of different
QA types mentioned previously: (1) Simple (Simp.): single-hop QAs. (2) Conditional (Cond.):
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Table 3: Results of the evaluation on user profiles.

Methods R-Human R-GPT SWI-R SWI-O SWI-A

IndePL 1.35±0.53 4.32 0.464 0.231 0.347
SeqPL 1.64±0.73 4.40 1.471 1.416 1.443
JointPL 3.02±1.14 4.80 1.425 0.462 0.943

MemSim 4.91±0.30 4.68 3.206 2.895 3.050

multi-hop QAs with conditions. (3) Comparative (Comp.): comparative QAs. (4) Aggregative
(Aggr.): aggregative QAs. (5) Post-processing (Post.): post-processing QAs. (6) Noisy: multi-hop
QAs with additional irrelevant noisy texts inside questions. The summary of MemDaily is shown in
Table 2, where we present the number of trajectories, user messages, questions, and TPM (tokens per
message). More details and examples can be found in Appendix E.

4 EVALUATIONS

In this section, we evaluate the quality of MemDaily, which can reflect the effectiveness of MemSim.
Specifically, the evaluations are conducted in three parts: the user profiles, the user messages, and the
constructed QAs. Besides, we also conduct comprehensive case studies in Appendix E.

4.1 EVALUATION ON USER PROFILES

The generated user profiles are supposed to express both rationality and diversity, which also directly
influence the creation of user messages and QAs. Therefore, we evaluate these two aspects to reflect
their quality. Rationality means that the user profiles should possibly exist in the real world, with no
internal contradictions in their descriptions. Diversity indicates that the descriptions among users are
distinct, covering a wide range of user types.

Metrics. For rationality, we recruit six human evaluators to score the generated user profiles on a
scale from 1 to 5. Additionally, we use GPT-4o 1 as a reference for scoring. These two metrics are
denoted as R-Human and R-GPT. For diversity, we calculate the average Shannon-Wiener Index
(SWI) (Morris et al., 2014) on key attributes, using the following formula:

SWI-W = − 1

|W|
∑

Xk∈W

∑
xi∈Xk

p(xi) ln p(xi),

where W ⊆ X is the subset of attribute variables. Therefore, we calculate SWI-R, SWI-O, and SWI-
A, corresponding to role-relevant attributes, role-irrelevant attributes, and all attributes, respectively.

Baselines. We design several baselines to generate user profiles: (1) JointPL: prompting an LLM
to generate attributes jointly. (2) SeqPL: prompting an LLM to generate attributes sequentially,
conditioned on previous attributes in linear order. (3) IndePL: prompting an LLM to generate
attributes independently. We compare our method with these baselines on generating user profiles.

Results. As shown in Table 3, MemSim outperforms other baselines on R-Human, demonstrating the
effectiveness of BRNet as an ablation study. However, we also observe an inconsistency between
R-Human and R-GPT, which may be due to the inaccuracy of the LLM’s scoring (Chu et al., 2024).
Furthermore, our method achieves the highest diversity compared to the other baselines.

4.2 EVALUATION ON USER MESSAGES

We evaluate the quality of generated user messages in multiple aspects, including fluency, rationality,
naturalness, informativeness, and diversity. The first four aspects are designed to assess the quality
inside a trajectory, while the final one targets the variety across trajectories.

Metrics. For the inside-trajectory aspects, human evaluators score user messages on a scale from 1 to
5, denoted as F-Human (fluency), R-Human (rationality), N-Human (naturalness), and I-Human
(informativeness). GPT-4o scores are also available and detailed in Appendix C. To assess the

1https://openai.com/index/hello-gpt-4o/
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Table 4: Results of the evaluation on user messages.

Methods F-Human R-Human N-Human I-Human SWIP

ZeroCons 4.94±0.24 4.94±0.24 4.85±0.35 2.82±1.15 2.712
PartCons 4.98±0.14 4.94±0.37 4.97±0.18 4.01±1.18 6.047
SoftCons 4.93±0.30 4.80±0.77 4.91±0.42 4.37±0.98 5.868
MemSim 4.93±0.30 4.93±0.39 4.90±0.41 3.61±1.19 6.125

Table 5: Results of the evaluation on questions and answers.

Question Types Textual Answers Single-choice Answers Retrieval Target

Simple 100% 98% 100%
Conditional 100% 100% 100%
Comparative 100% 100% 100%
Aggregative 99% 99% 100%

Post-processing 100% 100% 99%
Noisy 100% 100% 100%

Average 99.8% 99.5% 99.8%

diversity across trajectories, we extract all entities and calculate their average Shannon-Wiener Index
per 10,000 tokens of user messages, referred to as SWIP.

Baselines. We implement several baselines that generate messages under different constraints
regarding user profiles and tasks: (1) ZeroCons: no constraints on attributes when prompting LLMs.
(2) PartCons: partial attributes of user profiles are constrained in prompts for LLMs. (3) SoftCons:
full attributes of user profiles are constrained in prompts but they are not forcibly for generation.
Our MemSim method imposes the most strict constraints, requiring both the integration of specific
attributes into user messages and ensuring that questions are answerable with established ground
truths based on the shared hints. Generally, higher constraint commonly means sacrifice of fluency
and naturalness, because it compulsively imposes certain information to benefit QA constructions.

Results. As shown in Table 4, our method maintains relatively high scores despite the rigorous
constraints on constructing reliable QAs. Additionally, MemSim exhibits the highest diversity index,
attributed to the BRNet and the causal generation mechanism that produces a wider variety of user
messages based on the provided hierarchical user profiles.

4.3 EVALUATION ON QUESTIONS AND ANSWERS

The primary challenge for constructing a reliable dataset is ensuring the accuracy of ground truths
for the constructed questions. To assess the reliability of MemDaily, we sample approximately 20%
of all the trajectories in MemDaily and employ human evaluators to verify the correctness of their
ground truths. Specifically, the evaluators are required to examine three parts of the ground truths:
textual answers, single-choice answers, and retrieval targets, and report their accuracy.

Metrics. The accuracy of textual answers assesses whether an answer correctly responds to the
question based on the user messages within the same trajectory. The accuracy of single-choice
answers indicates whether the ground truth choice is the sole correct answer for the question, given
the user messages, while other choices are incorrect. The accuracy of retrieval targets evaluates
whether the messages of the retrieval target are sufficient and necessary to answer the question.

Results. As shown in Table 5, MemDaily significantly ensures the accuracy of the answers provided
for constructed questions. In the few instances where accuracy is compromised, it is attributed to
the rewriting process by LLMs, which occasionally leads to information deviation. The results also
demonstrate that MemSim can effectively mitigate the impact of LLM hallucinations on factual
information, addressing a critical challenge in generating reliable questions and answers for memory
evaluation. Another baseline method that directly generates answers through LLMs based on targeted
user messages and questions performs much lower reliability. We implement this method and present
the results as OracleMem in our constructed benchmarks in Section 5.2.
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5 BENCHMARK

In this section, we create a benchmark based on the MemDaily dataset, in order to evaluate the
memory capability of LLM-based personal assistants. Our benchmark sets various levels of difficulty
by introducing different proportions of question-irrelevant daily-life posts.

5.1 EXPERIMENTAL SETTINGS

Levels of Difficulty. We utilize the MemDaily dataset as the basis of our benchmark. In order to
set different levels of difficulty, we collect question-irrelevant posts from social media platforms,
and randomly incorporate them into user messages by controlling their proportions. Specifically, we
denote MemDaily-vanilla as the vanilla and easiest one without extra additions, and create a series of
MemDaily-η, where we use η to represent the inverse percentage of original user messages. Larger η
indicates a higher level of difficulty in the benchmark. We primarily focus on MemDaily-vanilla and
MemDaily-100 as representatives. We also conduct evaluations on MemDaily-10, MemDaily-50,
and MemDaily-200, putting their experimental results in Appendix D.

Baselines. We implement several common memory mechanisms for LLM-based agents according to
previous studies (Zhang et al., 2024), including (1) Full Memory (FullMem): saves all previous mes-
sages and concatenates them into the prompt for LLM inference. (2) Recent Memory (ReceMem):
maintains the most recent k messages and concatenates them into the prompt for LLM inference, also
known as short-term memory. (3) Retrieved Memory (RetrMem): stores all previous messages
using FAISS (Johnson et al., 2019) and retrieves the top-k relevant messages for inclusion in the
prompt for LLM inference, which is commonly used to construct long-term memory. Specifically,
we use Llama-160m (Miao et al., 2023) to transform a message into a 768-dimensional embedding
and compute relevance scores using cosine similarity (Singhal et al., 2001). (4) None Memory (Non-
Mem): does not use memory for LLM inference. Additionally, we include two special baselines for
reference: (5) Noisy Memory (NoisyMem): receives only untargeted messages. (6) Oracle Memory
(OracleMem): receives only targeted messages. Here, the targeted messages indicate the messages
in the ground truth retrieval target. For all methods, we use the open-source GLM-4-9B (Team et al.,
2024) as the foundational model for its excellent ability in long-context scenarios.

Metrics. We propose to evaluate the memory of LLM-based agents from two perspectives: effective-
ness and efficiency. Effectiveness refers to the agent’s ability to store and utilize factual information.
The metrics for effectiveness include: (1) Accuracy: The correctness of agents’ responses, measured
by their ability to answer personal questions based on the factual information from historical user
messages. (2) Recall@5: The percentage of messages in retrieval target successfully retrieved within
the top-5 relevant messages. Efficiency mainly assesses the time cost associated with storing and
utilizing information from memory. We use two metrics to evaluate efficiency: (1) Response Time:
The time taken for an agent to respond after receiving a query, covering the retrieval and utilization
processes. (2) Adaptation Time: The time required for an agent to store a new message.

5.2 EFFECTIVENESS OF MEMORY MECHANISMS

Accuracy of factual question-answering. The results of accuracy are presented in Table 6. FullMem
and RetrMem demonstrate superior performance compared to other memory mechanisms, achieving
high accuracy across both datasets. ReceMem tends to underperform when a large volume of
noisy messages is present, as target messages may fall outside the memory window. We observe
that agents excel with simple, conditional, post-processing, and noisy questions but struggle with
comparative and aggregative questions. By comparing with OracleMem, we find the primary difficulty
possibly lies in retrieving target messages. Even with accurate retrieval, aggregative questions remain
challenging, indicating a potential bottleneck in textual memory. An interesting phenomenon we
notice is that NoisyMem shows higher accuracy than NonMem in MemDaily-vanilla but lower
accuracy in MemDaily-100. Similarly, FullMem unexpectedly outperforms OracleMem on simple
questions in MemDaily. We suspect that LLMs may perform better with memory prompts of medium
length, suggesting a potential limitation of textual memory mechanisms for LLM-based agents.

Recall of target message retrieval. We implement three retrieval methods to obtain the most relevant
messages and compare them with target messages to calculate Recall@5. Embedding refers to the
retrieval process used in RetrMem. Recency considers the most recent k messages as the result.
LLM directly uses the LLM to respond with the top-k relevant messages. The results are presented

9
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Table 6: Results of accuracy for factual question-answering.

MemDaily-vanilla

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem 0.976±0.022 0.982±0.017 0.859±0.054 0.320±0.079 0.848±0.045 0.966±0.028
RetrMem 0.898±0.048 0.882±0.040 0.771±0.078 0.317±0.061 0.800±0.054 0.786±0.040
ReceMem 0.832±0.080 0.798±0.046 0.631±0.069 0.257±0.040 0.760±0.051 0.764±0.042
NonMem 0.508±0.032 0.452±0.059 0.157±0.049 0.254±0.055 0.594±0.073 0.380±0.060

NoisyMem 0.512±0.044 0.468±0.054 0.204±0.067 0.239±0.058 0.590±0.045 0.388±0.048
OracleMem 0.966±0.020 0.988±0.013 0.910±0.032 0.376±0.057 0.888±0.053 0.984±0.017

MemDaily-100

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem 0.962±0.017 0.938±0.033 0.586±0.076 0.343±0.047 0.804±0.041 0.872±0.041
RetrMem 0.892±0.034 0.840±0.036 0.706±0.074 0.320±0.092 0.770±0.055 0.726±0.052
ReceMem 0.500±0.063 0.442±0.058 0.104±0.048 0.257±0.054 0.600±0.060 0.386±0.076
NonMem 0.508±0.032 0.454±0.065 0.159±0.052 0.252±0.043 0.594±0.032 0.380±0.057

NoisyMem 0.458±0.071 0.422±0.051 0.261±0.068 0.283±0.041 0.566±0.064 0.348±0.044
OracleMem 0.966±0.020 0.988±0.016 0.912±0.045 0.372±0.062 0.888±0.038 0.984±0.012

Table 7: Results of recall@5 for target message retrieval.

MemDaily-vanilla

Methods Simp. Cond. Comp. Aggr. Post. Noisy

LLM 0.888±0.025 0.851±0.020 0.947±0.018 0.544±0.021 0.800±0.028 0.846±0.036
Embedding 0.735±0.064 0.717±0.041 0.845±0.022 0.515±0.059 0.693±0.033 0.648±0.018

Recency 0.514±0.052 0.513±0.038 0.698±0.034 0.237±0.026 0.511±0.053 0.504±0.047

MemDaily-100

Methods Simp. Cond. Comp. Aggr. Post. Noisy

LLM 0.612±0.021 0.479±0.037 0.683±0.036 0.290±0.027 0.439±0.047 0.430±0.059
Embedding 0.698±0.049 0.653±0.061 0.778±0.048 0.490±0.037 0.567±0.042 0.543±0.034

Recency 0.002±0.003 0.003±0.004 0.002±0.003 0.000±0.001 0.002±0.003 < 0.001

in Table 7. We find that LLM performs best in short-context scenarios, while Embedding achieves
higher recall scores in longer contexts. Additionally, we notice that separating the retrieval and
inference stages may exhibit different performances compared with integrating them.

5.3 EFFICIENCY OF MEMORY MECHANISMS

We put the results in Appendix B due to the page limitation. We find that RetrMem consumes the
most response time in short-context scenarios, and FullMem also requires more time for inference
due to longer memory prompts. However, the response time of FullMem increases significantly faster
than that of other methods as the context lengthens. Regarding adaptation time, we observe that
RetrMem requires substantially more time because it needs to build indexes in the FAISS system.

6 LIMITATIONS AND CONCLUSIONS

In this paper, we propose MemSim, a Bayesian simulator designed to generate reliable datasets for
evaluating the memory capability of LLM-based agents. MemSim comprises two primary compo-
nents: The bayesian Relation Network and the causal generation mechanism. Utilizing MemSim,
we generate MemDaily as a dataset in the daily-life scenario, and conduct extensive evaluations
to assess its quality. Additionally, we provide a benchmark on different memory mechanisms of
LLM-based agents and provide further analysis. However, as the very initial study, there are several
limitations. Firstly, our work focuses on evaluating the memory capability of LLM-based agents on
factual information, but does not address higher-level and abstract information, such as users’ hidden
preferences. Additionally, our evaluation does not include dialogue forms, which are more complex
and challenging to ensure reliability. In future works, we aim to address these two issues.
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A PROOF IN BAYESIAN RELATION NETWORK

A.1 PROOF OF THEOREM 1

Theorem 1 (Factorization). The joint probability distribution of BRNet can be expressed as

P (X1, X2, ..., X|X |) =
∏

Xt∈X
P (Xt|par(Xt)),

where par(Xt) denotes the set of parent attributes of Xt.

Proof. Because BRNet is DAG, we can certainly find a topological ordering

O =
[
o1, o2, ..., o|X |

]
.

Then, we inverse the sequence to get a reversed topologically ordering

Õ =
[
õ1, õ2, ..., õ|X |

]
.

Then, we utilize the theorem of conditional probability according to the order Õ, and we have

P (X1, X2, ..., X|X |) = P (Xõ1 |Xõ2 , ..., Xõ|X|) · P (Xõ2 |Xõ3 , ..., Xõ|X|) . . . P (Xõ|X|).

=

|X |∏
i=1

P (Xõi |X
[
õi+1 : õ|X |

]
),

where X
[
õi+1 : õ|X |

]
means all the variables after õi+1 in the reversed topologically ordering, and

there are no descendant variables inside. According to Assumption 1, we have

P (Xõi |X
[
õi+1 : õ|X |

]
) = P (Xõi |par(Xõi)).

Finally, we rewrite it and obtain

P (X1, X2, ..., X|X |) =
∏

Xt∈X
P (Xt|par(Xt)).

A.2 PROOF OF THEOREM 2

Theorem 2 (Ancestral Sampling). For BRNet, the result of ancestral sampling is equivalent to that
of sampling from the joint probability distribution. Specifically, we have

P (x̃1, x̃2, ..., x̃|X |) = P (x1, x2, ..., x|X |),

where x1, x2, ..., x|X | ∼ P (X1, X2, ..., X|X |) are sampled from the joint probability distribution.

Proof. We first calculate the reversed topologically ordering

Õ =
[
õ1, õ2, ..., õ|X |

]
.

Then, we have

P (x̃1, x̃2, ..., x̃|X |) =

|X |∏
i=1

P (x̃õi |x̃
[
õi+1 : õ|X |

]
)

=

|X |∏
i=1

P (x̃õi |par(x̃õi)).

where x̃
[
õi+1 : õ|X |

]
means the values of all the variables after õi+1 in the reversed topologically

ordering. According to Assumption 2, we have

P (x̃1, x̃2, ..., x̃|X |) =

|X |∏
i=1

P (xõi |par(xõi))

= P (x1, x2, ..., x|X |).
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B BENCHMARK ON THE EFFICIENCY OF MEMORY MECHANISMS

The results of efficiency are presented in Table 8 and Table 9.

Table 8: Results of response time for generating answers (seconds per query).

MemDaily-vanilla

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem 0.139±0.001 0.141±0.001 0.132±0.001 0.154±0.002 0.152±0.002 0.150±0.003
RetrMem 0.290±0.007 0.277±0.007 0.267±0.009 0.236±0.009 0.257±0.004 0.284±0.007
ReceMem 0.126±0.001 0.127±0.001 0.125±0.000 0.125±0.001 0.135±0.001 0.134±0.001
NonMem 0.118±0.000 0.119±0.000 0.118±0.000 0.118±0.000 0.121±0.001 0.121±0.000

NoisyMem 0.118±0.000 0.119±0.000 0.118±0.001 0.118±0.000 0.121±0.001 0.121±0.000
OracleMem 0.122±0.001 0.122±0.001 0.122±0.000 0.131±0.001 0.129±0.002 0.128±0.001

MemDaily-100

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem 1.632±0.097 1.648±0.101 1.196±0.077 2.522±0.129 1.782±0.136 1.799±0.102
RetrMem 0.207±0.020 0.223±0.005 0.228±0.011 0.205±0.008 0.228±0.029 0.284±0.022
ReceMem 0.120±0.000 0.125±0.008 0.121±0.001 0.120±0.000 0.125±0.001 0.124±0.001
NonMem 0.119±0.001 0.119±0.000 0.119±0.000 0.119±0.001 0.123±0.000 0.122±0.001

NoisyMem 1.578±0.124 1.591±0.187 1.153±0.073 2.424±0.138 1.717±0.095 1.735±0.158
OracleMem 0.122±0.001 0.123±0.001 0.123±0.001 0.132±0.001 0.130±0.001 0.129±0.001

Table 9: Results of adaptation time for storing messages (seconds per message).

MemDaily-vanilla

Methods Simp. Cond. Comp. Aggr. Post. Noisy

RetrMem 0.222±0.009 0.182±0.004 0.151±0.009 0.136±0.010 0.133±0.004 0.112±0.005
Others < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

MemDaily-100

Methods Simp. Cond. Comp. Aggr. Post. Noisy

RetrMem 0.064±0.008 0.072±0.004 0.066±0.007 0.064±0.006 0.056±0.002 0.066±0.005
Others <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

C EXTENSIVE EVALUATION ON USER MESSAGES BY GPT-4O

We also let GPT-4o score on user messages as a reference, and the results are shown in Table 10.

Table 10: Results of evaluation on user messages by GPT-4o.

Methods F-GPT R-GPT N-GPT I-GPT

ZeroCons 4.04 4.80 4.60 3.04
PartCons 4.28 4.88 4.80 4.28
SoftCons 4.20 5.00 5.00 3.96
MemSim 4.04 4.84 4.68 3.60
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D EXTENSIVE BENCHMARK ON MORE COMPOSITE DATASETS

D.1 RESULTS ON MEMDAILY-10

The results of accuracy are shown in Table 11. The results of recall@5 are shown in Table 12. The
results of response time are shown in Table 13. The results of adaptation time are shown in Table 14.

Table 11: Results of accuracy on MemDaily-10.

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem 0.962±0.040 0.966±0.028 0.665±0.058 0.243±0.072 0.810±0.036 0.922±0.029
RetrMem 0.896±0.033 0.882±0.047 0.759±0.068 0.315±0.045 0.782±0.065 0.764±0.053
ReceMem 0.534±0.047 0.482±0.064 0.147±0.049 0.248±0.067 0.604±0.088 0.430±0.048
NonMem 0.510±0.090 0.450±0.078 0.159±0.041 0.254±0.065 0.594±0.032 0.380±0.057

NoisyMem 0.428±0.068 0.402±0.059 0.169±0.046 0.280±0.046 0.584±0.090 0.350±0.077
OracleMem 0.966±0.022 0.988±0.010 0.910±0.031 0.372±0.037 0.888±0.030 0.888±0.030

Table 12: Results of recall@5 on MemDaily-10.

Methods Simp. Cond. Comp. Aggr. Post. Noisy

LLM 0.794±0.035 0.872±0.019 0.518±0.027 0.732±0.036 0.756±0.038 0.846±0.036
Embedding 0.704±0.039 0.833±0.026 0.506±0.052 0.643±0.043 0.609±0.027 0.648±0.018

Recency 0.032±0.017 0.011±0.010 0.013±0.011 0.030±0.012 0.009±0.007 0.504±0.047

Table 13: Results of response time on MemDaily-10 (seconds per query).

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem 0.243±0.008 0.243±0.008 0.208±0.003 0.306±0.008 0.263±0.006 0.262±0.010
RetrMem 0.213±0.002 0.230±0.005 0.246±0.008 0.212±0.002 0.240±0.004 0.292±0.014
ReceMem 0.120±0.000 0.121±0.000 0.120±0.000 0.119±0.002 0.126±0.001 0.124±0.001
NonMem 0.119±0.000 0.119±0.001 0.119±0.000 0.117±0.002 0.122±0.000 0.119±0.002

NoisyMem 0.205±0.005 0.207±0.007 0.181±0.004 0.253±0.010 0.223±0.005 0.222±0.006
OracleMem 0.121±0.001 0.123±0.001 0.122±0.000 0.131±0.001 0.130±0.001 0.128±0.001

Table 14: Results of adaptation time on MemDaily-10 (seconds per message).

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
RetrMem 0.073±0.003 0.079±0.006 0.084±0.006 0.069±0.003 0.073±0.003 0.075±0.006
ReceMem < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
NonMem < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

NoisyMem < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
OracleMem < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
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D.2 RESULTS OF MEMDAILY-50

The results of accuracy are shown in Table 15. The results of recall@5 are shown in Table 16. The
results of response time are shown in Table 17. The results of adaptation time are shown in Table 18.

Table 15: Results of accuracy on MemDaily-50.

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem 0.962±0.027 0.948±0.020 0.602±0.065 0.296±0.072 0.802±0.046 0.880±0.041
RetrMem 0.886±0.035 0.864±0.037 0.724±0.062 0.320±0.071 0.780±0.059 0.748±0.049
ReceMem 0.508±0.042 0.434±0.052 0.108±0.044 0.237±0.054 0.588±0.066 0.376±0.099
NonMem 0.510±0.061 0.452±0.055 0.159±0.039 0.254±0.066 0.594±0.078 0.380±0.055

NoisyMem 0.454±0.040 0.416±0.083 0.229±0.071 0.272±0.073 0.568±0.078 0.360±0.084
OracleMem 0.966±0.025 0.988±0.010 0.910±0.053 0.376±0.042 0.888±0.032 0.984±0.012

Table 16: Results of recall@5 on MemDaily-50.

Methods Simp. Cond. Comp. Aggr. Post. Noisy

LLM 0.725±0.047 0.640±0.053 0.773±0.018 0.373±0.031 0.591±0.039 0.561±0.050
Embedding 0.710±0.041 0.674±0.021 0.790±0.037 0.497±0.039 0.591±0.037 0.564±0.053

Recency 0.011±0.009 0.005±0.004 0.006±0.006 0.001±0.002 0.003±0.004 0.001±0.003

Table 17: Results of response time on MemDaily-50 (seconds per query).

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem 0.776±0.031 0.783±0.067 0.596±0.021 1.134±0.054 0.841±0.032 0.847±0.062
RetrMem 0.203±0.003 0.206±0.004 0.215±0.004 0.204±0.003 0.229±0.005 0.324±0.020
ReceMem 0.120±0.001 0.121±0.002 0.118±0.000 0.118±0.001 0.123±0.002 0.123±0.001
NonMem 0.118±0.001 0.118±0.002 0.117±0.002 0.118±0.001 0.121±0.001 0.119±0.001

NoisyMem 0.728±0.037 0.737±0.041 0.562±0.027 1.060±0.055 0.787±0.028 0.794±0.058
OracleMem 0.121±0.001 0.122±0.001 0.121±0.001 0.131±0.001 0.129±0.001 0.128±0.001

Table 18: Results of adaptation time on MemDaily-50 (seconds per message).

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
RetrMem 0.059±0.001 0.057±0.003 0.057±0.004 0.060±0.003 0.062±0.003 0.089±0.005
ReceMem < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
NonMem < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

NoisyMem < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
OracleMem < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
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D.3 RESULTS OF MEMDAILY-200

The results of accuracy are shown in Table 19. The results of recall@5 are shown in Table 20. The
results of response time are shown in Table 21. The results of adaptation time are shown in Table 22.

Table 19: Results of accuracy on MemDaily-200.

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem 0.932±0.040 0.932±0.036 0.563±0.061 0.309±0.056 0.782±0.045 0.866±0.044
RetrMem 0.874±0.052 0.844±0.034 0.704±0.061 0.315±0.065 0.766±0.046 0.714±0.052
ReceMem 0.486±0.046 0.420±0.057 0.114±0.036 0.272±0.054 0.570±0.055 0.366±0.051
NonMem 0.470±0.057 0.454±0.077 0.157±0.045 0.257±0.069 0.592±0.082 0.380±0.048

NoisyMem 0.398±0.052 0.398±0.068 0.282±0.058 0.276±0.068 0.564±0.037 0.350±0.035
OracleMem 0.990±0.013 0.988±0.013 0.910±0.034 0.374±0.063 0.888±0.056 0.984±0.012

Table 20: Results of recall@5 on MemDaily-200.

Methods Simp. Cond. Comp. Aggr. Post. Noisy

LLM 0.457±0.066 0.356±0.051 0.556±0.035 0.176±0.022 0.342±0.048 0.322±0.043
Embedding 0.674±0.052 0.641±0.044 0.753±0.036 0.484±0.050 0.544±0.054 0.508±0.052

Recency 0.001±0.003 0.001±0.002 0.001±0.002 0.000±0.001 0.001±0.003 0.000±0.000

Table 21: Results of response time on MemDaily-200 (seconds per query).

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem 4.028±0.161 3.914±0.213 2.697±0.100 6.365±0.374 4.252±0.328 4.307±0.283
RetrMem 0.236±0.023 0.241±0.018 0.238±0.024 0.585±0.230 1.012±0.690 1.252±0.427
ReceMem 0.130±0.002 0.120±0.002 0.118±0.001 0.119±0.001 0.124±0.001 0.123±0.001
NonMem 0.139±0.006 0.119±0.001 0.119±0.001 0.117±0.001 0.121±0.001 0.121±0.001

NoisyMem 3.947±0.209 3.832±0.203 2.637±0.118 6.221±0.325 4.158±0.226 4.214±0.288
OracleMem 0.141±0.003 0.122±0.001 0.121±0.001 0.131±0.002 0.128±0.002 0.128±0.001

Table 22: Results of adaptation time on MemDaily-200 (seconds per message).

Methods Simp. Cond. Comp. Aggr. Post. Noisy

FullMem <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
RetrMem 0.080±0.011 0.080±0.013 0.080±0.010 0.220±0.076 0.264±0.089 0.420±0.120
ReceMem <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
NonMem <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

NoisyMem <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
OracleMem <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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E CASE STUDIES

In this section, we present several case studies to illustrate the effectiveness of the data generated
by MemDaily. First, we will display the hierarchical user profiles generated from BRNet. Next, we
will present examples of user messages created by our method. Finally, we will provide examples of
questions and answers for each type.

E.1 CASE STUDY ON GENERATED USER PROFILES

In MemDaily, we incorporate 11 entities that cover 7 types, with 73 attributes of them. The summary
of entities and attributes of MemDaily are provided in Table 23.

We introduce prior knowledge as several rules according to our scenarios to constrain among attributes.
For example, a relative role is highly possible to share the same hometown with the user, because
they are likely to come from the same place. All of these constraints are expressed in BRNet with
causal relations. We generate 50 graphical user profiles and conduct observations, finding that most
profiles align well with real-world users without contradictions.

Here is a case of user profiles, and we translate them into English for better demonstration:

An example of Generated User Profiles

User Profiles:
(Gender) Male; (Name) Qiang Wang; (Age) 38; (Height) 166cm; (Birthday) December
1st.; (Hometown) Beijing; (Workplace) Shenzhen, Guangdong; (Education) High School;
(Occupation) Bank Teller; (Position) Head Teller; (Company) Huayin Financial Service
Center; (Hobbies) Model Making; (Personality) Outgoing; (Phone) 13420824898; (Email)
wangqiang1201@huayinfinance.com; (ID Number) 640168198612016598; (Passport Num-
ber) NZ0448096; (Bank Card Number) 6222022612177604; (Driver’s License Number)
640168198612012730;
College Role 1:
(Gender) Female; (Relationship) Supervisor; (Name) Yalin Zhao; (Age) 44; (Height) 165cm;
(Birthday) Febrary 5th.; (Hometown) Chongqing; (Workplace) Shenzhen, Guangdong; (Edu-
cation) High School; (Occupation) Bank Teller; (Position) Bank Manager; (Company) Huayin
Financial Service Center; (Hobbies) Sports; (Personality) Patient; (Phone) 13651039007;
(Email) zhaoyalin0205@szfinancecenter.com;
College Role 2:
(Gender) Male; (Relationship) Colleague; (Name) Zhihong Sun; (Age) 39; (Height) 164cm;
(Birthday) April 24th.; (Hometown) Chengdu, Sichuan; (Workplace) Shenzhen, Guangdong;
(Education) High School; (Occupation) Bank Teller; (Position) Senior Teller; (Company)
Huayin Financial Service Center; (Hobbies) Attending concerts; (Personality) Enthusiastic;
(Phone) 15391721618; (Email) sunzhihong0421@huayinfinance.com;
Relative Role 1:
(Gender) Male; (Relationship) Cousin; (Name) Wei Zhang; (Age) 36; (Height) 169cm;
(Birthday) July 15th.; (Hometown) Beijing; (Workplace) Hangzhou, Zhejiang; (Education)
Doctor; (Occupation) Doctor; (Position) Chief Physician; (Company) West Lake Hospital;
(Hobbies) Playing Video Games; (Personality) Patient; (Phone) 13225162475; (Email)
zhangwei0715@westlakehospital.com;
Relative Role 2:
(Gender) Female; (Relationship) Cousin; (Name) Tingting Li; (Age) 36; (Height) 164cm;
(Birthday) June 23rd.; (Hometown) Beijing; (Workplace) Shanghai; (Education) Master;
(Occupation) Teacher; (Position) Middle School Language Teacher; (Company) Pudong
No.1 Middle School; (Hobbies) Yoga; (Personality) Patient; (Phone) 13401551341; (Email)
litingting0623@pdxzyz.com;
Work Event 1:
(Type) Job Fair; (Content) Job Fair for Bank Teller Supervisors in the Shenzhen area, sharing
professional experience, recruiting talented individuals, and jointly creating a brilliant future
for the banking industry.; (Location) Shenzhen, Guangdong; (Time) At 7 PM on the Sunday
after next; (Title) Bank Teller Job Fair; (Scale) Around 500 People; (Duration) Eight Weeks;
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An example of Generated User Profile

Work Event 2:
(Type) Academic Exchange Conference; (Content) Discuss the development trends of finan-
cial technology, share experiences in innovative banking services, and promote communi-
cation and cooperation among industry elites.; (Location) Beijing; (Time) Next Saturday at
2 PM; (Title) Financial Technology Elite Forum; (Scale) Around 3000 People; (Duration)
Seven days;
Entertainment Event 1:
(Type) Art Exhibition; (Content) Displaying selected model works, exchanging making
techniques, experiencing creative handicrafts, and feeling the charm of art.; (Location)
Beijing; (Time) At 7 PM on the coming Monday; (Title) Model Art Feast; (Scale) Around
900 People; (Duration) Seven Days; (Relationship) Live;
Entertainment Event 2:
(Type) Outdoor Hiking; (Content) Conduct outdoor hiking activities, combined with model
making, taking natural scenery along the way, creating outdoor landscape models, and sharing
modeling techniques.; (Location) Guangdong, Shenzhen; (Time) The Wednesday evening at
seven in two weeks; (Title) Outdoor Hiking Model Creation Journey; (Scale) Around 900
People; (Duration) Seven Days; (Relationship) Eight weeks;
Place:
(Type) Residential Community; (Name) Oasis Home; (Comment) Oasis Home is really a nice
place to live, with a high green coverage rate and a beautiful environment. It’s especially great
to walk and relax here after work every day. However, the commercial facilities are slightly
lacking, and it would be perfect if there were more convenience stores and restaurants.;
(Relationship) Use;
Item:
(Type) Sports Shoes; (Name) ASICS Gel-Kayano 26; (Comment) These ASICS Gel-Kayano
26 shoes are really great, especially for their stability and support, which is perfect for standing
work for long periods. Wearing them, my feet feel much more comfortable. However, it
would be perfect if they had better breathability.;

From the case profile in MemDaily, we find that our generated user profiles can greatly align with
that in real-world scenarios.
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Table 23: Summary of entities and attributes of MemDaily.

Entity Attribute Entity Attribute

User (self)

Gender

Relative Roles

Name
Name Age
Age Height

Height Birthday
Birthday Hometown

Hometown Workplace
Workplace Education
Education Occupation

Occupation Position
Position Company

Company Hobbies
Hobbies Personality

Personality Phone
Phone Email

Email

Work Events

Type
ID Number Content

Passport Number Location
Bank Card Number Time

Driver’s License Number Title

College Roles

Gender Scale
Relationship Duration

Name

Entertainment Events

Type
Age Content

Height Location
Birthday Time

Hometown Title
Workplace Scale
Education Duration

Occupation

Places

Relationship
Position Type

Company Name
Hobbies Comment

Personality

Items

Relationship
Phone Type
Email Name

Relative Roles
Gender Comment

Relationship Total (7) Total (73)
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E.2 CASE STUDY ON USER MESSAGES

Based on the generated user profiles, we further generate user messages without inside contradictory
according to Section 3.3. Here is a case of message list (translated into English) in Table 24.

Table 24: A case of user messages.

Index Message Time Place
0 My colleague’s email is sunzhi-

hong0421@huayinfinance.com.
April 1, 2024, Monday, 08:07 Guangdong Shenzhen

1 My colleague really likes to attend con-
certs.

April 2, 2024, Tuesday, 07:01 Guangdong Shenzhen

2 My colleague’s phone number is
15391721618.

April 2, 2024, Tuesday, 08:23 Guangdong Shenzhen

3 My colleague’s birthday is on April 21st. April 2, 2024, Tuesday, 17:02 Guangdong Shenzhen
4 My colleague’s name is Zhihong Sun. April 3, 2024, Wednesday, 07:49 Guangdong Shenzhen
5 Wei Zhang’s email address is zhang-

wei0715@westlakehospital.com.
April 3, 2024, Wednesday, 19:07 Guangdong Shenzhen

6 Tingting Li’s email address is litingt-
ing0623@pdxzyz.com.

April 4, 2024, Thursday, 07:16 Guangdong Shenzhen

7 Yalin Zhao’s email address is zhaoy-
alin0205@szfinancecenter.com.

April 4, 2024, Thursday, 13:38 Guangdong Shenzhen

8 I am going to attend the bank teller job
fair.

April 5, 2024, Friday, 16:21 Guangdong Shenzhen

9 The time for the bank teller job fair is at
seven o’clock in the evening on the next
Sunday.

April 6, 2024, Saturday, 07:18 Guangdong Shenzhen

10 The location of the bank teller job fair is
in Guangdong Shenzhen.

April 6, 2024, Saturday, 16:58 Guangdong Shenzhen

11 The main content of the bank teller job
fair is the job fair: Shenzhen area bank
head teller, sharing professional experi-
ence, recruiting talent, creating a brilliant
bank career together.

April 7, 2024, Sunday, 07:21 Guangdong Shenzhen

12 The time for the Financial Technology
Elite Forum is at two o’clock in the after-
noon next Saturday.

April 7, 2024, Sunday, 21:33 Guangdong Shenzhen

13 The time for the Model Art Banquet is at
seven o’clock in the evening next Mon-
day.

April 8, 2024, Monday, 12:45 Guangdong Shenzhen

14 The time for the Outdoor Hiking Model
Creation Journey is at seven o’clock in
the evening on the next Wednesday.

April 9, 2024, Tuesday, 07:36 Guangdong Shenzhen

By utilizing our mechanisms, we can ensure that there is no contradiction among user messages. We
further demonstrate the list of hints that correspond to the above messages in Table 25.
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Table 25: A case of the hint list.

Index Entity Attribute Value

0 Colleague Role 2 Email sunzhihong0421@huayinfinance.com
1 Colleague Role 2 Hobbies Attend Concerts
2 Colleague Role 2 Phone 15391721618
3 Colleague Role 2 Birthday April 21st
4 Colleague Role 2 Name Zhihong Sun
5 Relative Role 1 Email zhangwei0715@westlakehospital.com
6 Relative Role 2 Email litingting0623@pdxzyz.com
7 Colleague Role 1 Email zhaoyalin0205@szfinancecenter.com
8 Work Event 1 Title Bank Teller Job Fair;
9 Work Event 1 Time At 7 PM on the Sunday after next
10 Work Event 1 Location Shenzhen, Guangdong
11 Work Event 1 Content Job Fair for Bank Teller Supervisors in

the Shenzhen area, sharing professional
experience, recruiting talented individu-
als, and jointly creating a brilliant future
for the banking industry

12 Work Event 2 Time Next Saturday at 2 PM; (Title) Financial
Technology Elite Forum

13 Entertainment Event 1 Time At 7 PM on the coming Monday
14 Entertainment Event 2 Time The Wednesday evening at seven in two

weeks
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E.3 CASE STUDY ON QUESTIONS AND ANSWERS

In this section, we will show the cases of questions and answers of different types. We leave out the
time and place of each message in this section, where they do not influence the QA in these cases.
We have translated all texts into English for better demonstration.

Simple (Simp.) Simple QAs in single-hop.

A Case of Simple Questions and Answers

Messages:
[0] My cousin’s email address is zhangwei0715@westlakehospital.com.
[1] My cousin works in Hangzhou, Zhejiang.
[2] My cousin is 169 cm tall.
[3] My cousin is from Beijing.
[4] My cousin is 36 years old this year.
[5] My sister is of her 36 age as well.
[6] My boss is 44 years old.
[7] My colleague is 39 years old this year.
Question:
How old is my cousin now?
Answer(Text):
36 years old.
Choices:
A. 35 years old.
B. 37 years old.
C. 34 years old.
D. 36 years old.
Answer(Choice): D
Answer(Retrieval): [4]
Time: April 5, 2024, Friday 07:54

Conditional (Cond.) Conditional QAs in multi-hop.

A Case of Conditional Questions and Answers

Messages:
[0] My boss only has a high school education.
[1] My boss works as a bank teller.
[2] My boss’s contact phone number is 13651039007.
[3] My boss is 165cm tall.
[4] My boss works in Shenzhen, the one in Guangdong.
[5] My cousin works in Hangzhou, Zhejiang.
[6] My cousin works in Shanghai.
[7] My colleague works in Shenzhen, in Guangdong.
Question:
Where does the person with only a high school education work now?
Answer(Text):
Shenzhen, Guangdong.
Choices:
A. Zhuhai, Guangdong.
B. Shenzhen, Guangdong.
C. Shenzhen, Guangzhou.
D. Xiamen, Fujian.
Answer(Choice): B
Answer(Retrieval): [0, 4]
Time: April 6, 2024, Saturday 07:24
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Comparative (Comp.) Comparative QAs in multi-hop.

A Case of Comparative Questions and Answers

Messages:
[0] Yalin Zhao is my boss, who is 44 years old.
[1] Wei Zhang is my cousin, and he is 36 years old.
[2] Tingting Li is my cousin, and she is 36 years old.
[3] Zhihong Sun is my colleague, and he is 39 years old.
Question:
Who is older, Yalin Zhao or Wei Zhang?
Answer(Text):
Yalin Zhao.
Choices:
A. Yalin Zhao.
B. Wei Zhang.
C. Both are the same age.
D. Neither is correct.
Answer(Choice): A
Answer(Retrieval): [0, 1]
Time: April 3, 2024, Wednesday 14:38

Aggregative (Aggr.) Aggregative QAs in multi-hop.

A Case of Aggregative Questions and Answers

Messages:
[0] Wei Zhang is my cousin, and his educational background is a Ph.D.
[1] Tingting Li is my cousin, and her educational background is a master’s degree.
[2] Yalin Zhao is my boss, and her educational background is high school.
[3] Zhihong Sun is my colleague, and his educational background is high school.
[4] Wei Zhang is my cousin, and his hometown is Beijing.
[5] Tingting Li is my cousin, and her hometown is Beijing.
[6] Yalin Zhao is my boss, and her hometown is Chongqing.
[7] Zhihong Sun is my colleague, and his hometown is Chengdu, Sichuan.
Question:
How many people have an educational background of high school or below?
Answer(Text):
2 people.
Choices:
A. 3 people.
B. 1 people.
C. 4 people.
D. 2 people.
Answer(Choice): D
Answer(Retrieval): [0, 1, 2, 3]
Time: April 5, 2024, Friday 07:27
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Post-processing (Post.) Multi-hop QAs that requires extra reasoning steps.

A Case of Post-processing Questions and Answers

Messages:
[0] My cousin works in Hangzhou, Zhejiang.
[1] My cousin likes to play video games.
[2] My cousin’s birthday is July 15th.
[3] My cousin’s email address is zhangwei0715@westlakehospital.com.
[4] My cousin’s phone number is 13225162475.
[5] Tingting Li works in Shanghai.
[6] Yalin Zhao works in Shenzhen, Guangdong.
[7] Zhihong Sun works in Shenzhen, Guangdong.
Question:
Which of the following descriptions matches the work location of the person whose birthday
is July 15th?
Answer(Text):
A city with beautiful West Lake scenery and a developed internet industry.
Choices:
A. Capital, political and cultural center.
B. International metropolis, economic and financial center
C. A city with beautiful West Lake scenery and a developed internet industry.
D. Special economic zone, an important city for technological innovation.
Answer(Choice): C
Answer(Retrieval): [0, 2]
Time: April 6, 2024, Saturday 07:51

Noisy (Nois.) Multi-hop QAs that add extra noise in questions.

A Case of Noisy Questions and Answers

Messages:
[0] My boss is 44 years old this year.
[1] My boss is the head of a bank.
[2] My boss works in Shenzhen, Guangdong.
[3] My boss really likes sports.
[4] My boss’s phone number is 13651039007.
[5] My cousin really likes to play video games.
[6] My cousin likes to practice yoga.
[7] My colleague really likes to attend concerts.
Question:
Oh, the weather has been so unpredictable lately, it was hot enough to wear short sleeves
yesterday, but today I had to put on a jacket. Speaking of which, my favorite season is autumn,
not too cold, not too hot, it’s the most comfortable time for a walk. By the way, that coffee
shop recommended by a friend last time seems pretty good, I should find some time to try
it. What I wanted to ask is, what are the hobbies of the person who works in Shenzhen,
Guangdong?
Answer(Text):
Sports.
Choices:
A. Traveling.
B. Photography.
C. Sports.
D. Reading.
Answer(Choice): C
Answer(Retrieval): [2, 3]
Time: April 4, 2024, Thursday 18:08

26


	Introduction
	Related Works
	Methods
	Overview of MemSim
	Bayesian Relation Network
	Causal Generation Mechanism
	MemDaily: A Dataset in the Daily-life Scenario

	Evaluations
	Evaluation on User Profiles
	Evaluation on User Messages
	Evaluation on Questions and Answers

	Benchmark
	Experimental Settings
	Effectiveness of Memory Mechanisms
	Efficiency of Memory Mechanisms

	Limitations and Conclusions
	Proof in Bayesian Relation Network
	Proof of Theorem 1
	Proof of Theorem 2

	Benchmark on the Efficiency of Memory Mechanisms
	Extensive Evaluation on User Messages by GPT-4o
	Extensive Benchmark on More Composite Datasets
	Results on MemDaily-10
	Results of MemDaily-50
	Results of MemDaily-200

	Case Studies
	Case Study on Generated User Profiles
	Case Study on User Messages
	Case Study on Questions and Answers


