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Abstract 

Background: The tumor microenvironment (TME) has been shown to strongly influ-
ence treatment outcome for cancer patients in various indications and to influence the 
overall survival. However, the cells forming the TME in gastric cancer have not been 
extensively characterized.

Results: We combine bulk and single-cell RNA sequencing from tumors and matched 
normal tissue of 24 treatment-naïve GC patients to better understand which cell types 
and transcriptional programs are associated with malignant transformation of the 
stomach. Clustering 96,623 cells of non-epithelial origin reveals 81 well-defined TME 
cell types. We find that activated fibroblasts and endothelial cells are most prominently 
overrepresented in tumors. Intercellular network reconstruction and survival analysis of 
an independent cohort imply the importance of these cell types together with immu-
nosuppressive myeloid cell subsets and regulatory T cells in establishing an immuno-
suppressive microenvironment that correlates with worsened prognosis and lack of 
response in anti-PD1-treated patients. In contrast, we find a subset of IFNγ activated 
T cells and HLA-II expressing macrophages that are linked to treatment response and 
increased overall survival.

Conclusions: Our gastric cancer single-cell TME compendium together with the 
matched bulk transcriptome data provides a unique resource for the identification of 
new potential biomarkers for patient stratification. This study helps further to elucidate 
the mechanism of gastric cancer and provides insights for therapy.
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Background
Gastric cancer (GC) is the fifth most common malignancy and the third-leading cause 
of cancer-related mortality worldwide [1]. Despite a gradual decrease in incidence, the 
global burden remains high, especially in certain regions such as Asia and Latin America 
[2]. Although early detected gastric cancer responds well to treatment, advanced gastric 
cancer tends to be an aggressive disease with median survival times of only 9–10 months 
[3]. Molecular profiling of gastric cancers yielded several sub-classes, including Epstein–
Barr virus (EBV)-positive, microsatellite instable (MSI), genomically stable (GS), or 
chromosomal instable (CIN) [4, 5]. Immune checkpoint inhibition (ICI) therapy has 
shown promising results in metastatic gastric cancer patients with EBV-positive or MSI 
tumors with both achieving nearly 100% overall response rate (ORR). In contrast, CIN 
and GS tumors only attained an ORR of 12 and 5%, respectively [6]. Aside from tumor 
cells, immune cells and fibroblasts in the tumor microenvironment have been shown to 
affect the efficacy of cancer immunotherapy [7]. It is therefore important to stratify the 
baseline cellular milieu of the stomach to clarify the composition and property of tumor-
infiltrating immune cells and stromal plasticity in gastric cancer.

The tumor microenvironment (TME) largely composed of lymphocytes, myeloid 
cells, endothelial cells, and cancer-associated fibroblasts is known for its contribution to 
inflammation, cancer immune suppression, angiogenesis, and metastasis [8, 9]. In gas-
tric cancer, stromal cell signatures have been associated with worsened patient survival 
along with therapy resistance [10, 11] and promote tumor invasion through activating 
matrix remodeling, immune crosstalk, metabolic effects, and soluble secreted factors [9, 
12]. However, the cell types contributing to these malignant characteristics of the gastric 
TME and their abundance in normal and tumor tissue are still poorly understood.

Applying single-cell RNA-seq has been very successful in characterizing the TME of 
other cancer indications at high resolution and was used recently to characterize gastric 
cancer cells [13–15]. Here we used scRNA-seq to comprehensively profile the TME of 
tumor and matched normal samples from 24 gastric cancer patients to generate a high-
resolution cell atlas of the gastric tumor stroma. By combining this single-cell data with 
matched bulk RNA-seq data, we captured important deregulated biological processes 
and identified the cell types associated with poor survival and resistance to anti-PD1 
treatment in gastric cancer.

Results
Global cellular microenvironment landscape in gastric cancer

To characterize the TME in gastric cancer, we performed bulk tissue RNA sequencing 
(RNA-seq) and whole exome-sequencing together with single-cell RNA-seq (scRNA-
seq) of tumor and matched non-malignant gastric tissue samples from 24 treatment-
naive gastric cancer patients (Fig.  1a, Additional file  1: S1a and Additional file  2: 
Table  S1). For identifying the cell types constituting the gastric TME, samples were 
rapidly digested into single cells, depleted for EPCAM-positive epithelial cells by fluo-
rescent-activated cell sorting (FACS) to enrich for all cells of non-epithelial origin and 
analyzed using scRNA-seq. The resulting 96,623 cells were clustered into eleven major 
cell types and further into 81 subtypes (Fig. 1b, Additional file 1: Fig. S1f and “Methods”). 
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The major clusters were annotated according to the expression of defining marker genes 
as either B cells (CD19, MS4A1), plasma cells (IGHG1, CD79A),  CD4+ T cells (CD3D, 
CD4),  CD8+ T cells (CD3D, CD8A), natural killer (NK) cells (NCR1, FGFBP2), myeloid 
cells (CD14, CD68), mast cells (TPSAB1, TPSB2), endothelial cells (RAMP2, PECAM1), 
fibroblasts (DCN, LUM), mural cells (PDGFRB, ACTA2), glial cells (PLP1, SOX10), or 
epithelial cells (PGC, PGA3) (Fig. 1c). To characterize the differences between the TME 
and normal gastric stroma in the following, we quantified the change in abundance and 
cellular activity associated with malignant transformation for each of the stromal cell 
types.

Tumor stroma is characterized by the presence of activated fibroblasts

To determine if any fibroblast and related mural cell subtypes are associated with 
malignant transformation, we performed re-clustering of the corresponding 16,492 
cells in our dataset which resulted in 15 cell clusters (Fig. 2a). By evaluating the expres-
sion of specific marker genes across these clusters, we found mural cells to be clearly 
separated from fibroblasts and to be comprised of pericytes characterized for instance 
by the expression of RGS5, and smooth muscle cells expressing among other genes 
ACTA2 and DES (Additional file  1: Fig. S2a). Fibroblasts on the other hand were dis-
tinctly divided into resting and activated cells as could be inferred from the expression 
of markers for resting fibroblasts such as S100A4, CFD, and DPT and markers for active 
cells like POSTN, CXCL14, and COL3A1 [9, 16–18] (Fig. 2b, S2a). A closer look at the 
individual cell subtypes revealed multiple unique genes for each cluster, underlining 
the heterogeneity of both gastric fibroblast and mural cells (Fig. 2b). Applying consen-
sus non-negative matrix factorization (cNMF) [19], we identified distinct gene expres-
sion programs for the different fibroblast subtypes confirming that the different clusters 

Fig. 1 Cellular landscape of EPCAM-negative cells in non-malignant and malignant gastric patient samples. 
A Study overview: matched malignant and non-malignant stomach samples were obtained from a total 
of 24 patients. Samples were processed in parallel as bulk specimen through RNA and exome-sequencing 
and single cells through droplet RNA sequencing after depleting of EPCAM-positive cells. B UMAP of 96,623 
cells, color coded for major cell type. C Dotplot showing the scaled average expression together with the 
percentage of expression of marker genes per major cell type
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indeed represent either different cell subtypes or cell activation states (Additional file 1: 
Fig. S3a-b). The fibroblast subtypes further displayed different characteristics in extra-
cellular matrix-related gene expression, pointing to possible distinct functions in shap-
ing the extracellular matrix (Additional file 1: Fig. S3c-h). Cluster fraction comparison 
between malignant and non-malignant samples highlighted subtype F13-CTHRC1 as 
highly cancer-associated fibroblasts (CAFs) while revealing a drastic reduction of several 
resting fibroblast clusters in the gastric TME (Fig. 2b and S2b). In line with this find-
ing, expression of CTHRC1 is upregulated in tumors from many different indications in 
the cancer genome atlas (TCGA) cohort (Additional file 1: Fig. S2c). Comparing subtype 
F13-CTHRC1 to a recently published fibroblast compendium revealed a strong similar-
ity of these cells to activated myofibroblasts specifically expressing for instance COL3A1, 
ACTA2, and CTHRC1 [18]. Diffusion map analysis between resting and activated fibro-
blasts positioned resting fibroblasts F01-SLPI and F13-CTHRC1 at both ends of a trajec-
tory (Additional file 1: Fig. S2d), pointing towards activated fibroblasts emerging from 
resting fibroblasts.

Expression of CTHRC1‑positive fibroblast‑specific genes is linked to poor survival

In addition to changes in cell type frequencies, many molecular pathways have been 
described to be deregulated in gastric tumors compared to healthy normal tissue [20]. To 
better characterize transcriptional changes associated with malignant transformation, 
we integrated our bulk and single-cell RNA-seq data and identified upregulated (des-
ignated by capital U) and downregulated (designated by a capital D) gene clusters that 
harbor different expression patterns across the single-cell populations (“Methods” and 
Additional file 1: Fig. S4a). Multiple upregulated and downregulated gene clusters spe-
cifically expressed in individual fibroblast subsets were identified (Additional file 1: Fig. 

Fig. 2 Transcriptional reprogramming in cancer-associated fibroblasts. A UMAP of 16,492 fibroblast cells 
color coded for tissue (top) and cluster annotation (bottom). B Log ratio of average fraction per fibroblast 
cluster in tumor to normal tissue (n = 20) (top). Wilcoxon rank-sum test with holm correction, *: p < 0.05, **: 
p < 0.01, ***: p < 0.001. Dotplot showing the scaled average expression and the percentage of expression 
of top markers per fibroblast cluster (bottom). C Scaled average expression of fibroblast implicated gene 
clusters (Additional file 1: Fig. S4). D Top marker genes for F12-ANGPT2 and F13-CTHRC1 connected to gene 
cluster U6 and U7 respectively. E Overall survival of gastric cancer patients in TCGA, groups split by the top 
20 marker gene signature of F13-CTHRC1. Gene signatures U1, U6, and U7 reflect gene clusters that were 
upregulated in gastric tumor samples while gene signatures D9 and D11 reflect gene clusters that were 
downregulated in gastric tumor samples
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S4b-c). Among upregulated clusters, U1 was expressed in resting and activated fibro-
blasts and strongly enriched with genes associated with gene ontology (GO) terms linked 
to remodeling of the extracellular matrix. In addition, clusters U6 and U7 were highly 
expressed in L12-ANGPT2 pericytes and F13-CTHRC1 CAFs, respectively (Fig.  2c, 
S4c). Cluster U6 thereby contained genes like ACAN and COL5A3 which are involved in 
extracellular matrix organization as well as genes like ANGPT2, EGFL6, PDGFRB, and 
PGF (Additional file 1: Fig. S4b, S4d) which are connected to growth factor responses 
and angiogenesis in the GO ontology. These genes have also been reported as highly 
expressed in multiple cancer types and as being associated with angiogenesis and tumor 
invasion [21]. Cluster U7 contained genes related to fibroblast proliferation (WNT5A 
and WNT2), matrix remodeling (MMP1 and MMP3), and cell migration (PDPN and 
TWIST1) (Fig. 2d, S4b,d). All genes from cluster U7 were specifically expressed in F13-
CTHRC1 activated fibroblasts and were associated with poor survival in an independent 
gastric cancer cohort (Fig. 2e) as well as in several cancer indications from TCGA (Addi-
tional file 1: Fig. S2e-f ). This is in alignment with previous reports that implicated these 
genes in cancer progression and bad outcome [22–26].

Tumor endothelial cells swap immune attraction for angiogenic pathways

Endothelial cells are key components of the TME since supply of energy and nutrients 
through active blood circulation, rather than passive diffusion, is required for continu-
ous tumor growth [27]. Upon analyzing the 3684 endothelial cells in our data, we found 
nine clusters that corresponded to six different endothelial cell subtypes (Fig. 3a). These 
endothelial clusters were associated with arteries (GJA5, TSPAN2), capillaries (CA4, 
BTNL9), immature endothelial cells (HSPG2, VWA1), tip cells (PGF), lymphatic cells 
(PROX1, LYVE1), and vein cells (ACKR1) which could be further delineated into post-
capillary cells (CPE), activated (POSTN), and IL6-expressing cells (Fig. 3b). This obser-
vation is in line with a recently reported taxonomy of endothelial cells obtained from 
healthy human lung and lung carcinoma samples [28], demonstrating the consistent 

Fig. 3 Hybrid endothelial cell states in gastric cancer. A UMAP of 3684 endothelial cells color coded for tissue 
(left) and cluster annotation (right). B Log ratio of average fraction per endothelial cell cluster in tumor to 
normal tissue (n = 20) (top). Wilcoxon rank-sum test with holm correction, **: p < 0.01. Dotplot of top markers 
per cluster showing the scaled average expression and the percentage of expression (bottom). C Heatmap of 
differentially expressed genes between endothelial cells of non-malignant and malignant biopsies contained 
in indicated gene ontology terms. Shown is the scaled average expression and the percentage of expression. 
D, E Overall survival of gastric cancer patients in TCGA, groups split by SERPINE1 levels and top 20 marker genes 
of EN10 cluster, respectively. 
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character of these vasculature-associated cell types across tissues. Cluster fraction com-
parison between normal and malignant gastric tissue identified clusters EN10-SER-
PINE1 and EN03-ESM1, hereafter referred to as activated endothelial cells, as almost 
exclusively tumor-specific cell types (Fig. 3b, S2g).

To define the functionality of tumor endothelial cells, we first performed differential 
gene expression analysis between activated endothelial cells and the remaining endothe-
lial cells (Additional file 4: Table S3). Subsequent gene set enrichment analysis performed 
on the significantly differentially expressed genes revealed an increase of angiogenic 
and cell motility response pathways together with a decrease of antigen-presenting 
and immune defense genes in both EN10-SERPINE1 and EN03-ESM1, indicating that 
immune cell attraction through endothelial cells is reduced in gastric cancer (Fig. 3c). 
This confirms observations from other cancer indications that point to a decrease of 
antigen-presenting pathways in endothelial cells [29, 30] and could be a reason for the 
synergistic effect of anti-angiogenic therapy together with ICI [31].

In line with angiogenesis being critical for sustained tumor growth, we speculated that 
these cell types might be linked to poor survival and found that SERPINE1 expression 
was associated with a drastically worsened survival in the independent gastric cancer 
cohort from TCGA (Fig. 3d). SERPINE1 is a serine protease inhibitor that mainly func-
tions as a regulator of cell adhesion and spreading and has been reported as upregulated 
in multiple other cancer indications such as head and neck squamous cell carcinoma, 
leading to a poor prognosis [32]. SERPINs have been described as important genes in 
cancer and vascular co-option and therefore play an important role in cancer progres-
sion leading to tumor metastasis [33]. We found a comparable difference in survival 
using the signature of the 20 most specific genes of the EN10-SERPINE1 cluster (Fig. 3e). 
Together, these findings indicate that EN10-SERPINE1 endothelial cells could be tar-
geted to block the metastatic spread of gastric tumors.

Macrophages display an inflammation dichotomy

To shed light on myeloid populations present in gastric tumors, we re-clustered the 
10,546 myeloid cells in our dataset and identified fifteen subclusters which were sub-
sequently determined to be either macrophages (CD68, CD14), dendritic cells (FLT3, 
FCER1A), or neutrophils (CSF3R) (Fig. 4a). The four dendritic cell clusters in our data 
matched dendritic cells found in hepatocellular and colorectal carcinoma [34, 35] and 
were annotated as conventional cDC1 M16-CLEC9A, cDC2 M03-CD1C, plasmacytoid 
M18-CLEC4C, and M17-LAMP3 dendritic cells (Fig.  4b). Through differential gene 
expression analysis, macrophage clusters were identified as either proinflammatory 
(S100A8, S100A9 [36], IL1B [37], and CXCL8 [38]), anti-inflammatory (APOE [39], MAF 
[40], C1QB, and SEPP1 [41]), or tissue-resident macrophages (F13A1 [42] and CCL2 
[43]) (Fig. 4b). Tissue-resident macrophages were found to be distinct from anti-inflam-
matory macrophages through the expression of various genes including FOLR2, CCL2, 
LYVE1, SEPP1, and F13A1, all of which have been reported as markers of tissue-resident 
macrophages [44]. Myeloid cells were drastically increased in the TME with only tissue-
resident macrophages higher in healthy stomach tissue. In particular, the gastric TME 



Page 7 of 25Kang et al. Genome Biology          (2022) 23:265  

was characterized by a significant increase in M07-APOE, M11-SPP1, and M04-C3 anti-
inflammatory macrophages (Fig. 4c, S5).

Surprisingly, we found the expression of the above pro- and anti-inflammatory gene 
signature to be anti-correlated across patient samples in both our data as well as in the 
independent stomach adenocarcinoma cohort from TCGA (Fig. 4d). In line with a recent 
publication that linked poor survival to the presence of anti-inflammatory myeloid cells 
[45], the expression of our anti-inflammatory signature was significantly associated with 
reduced survival in the TCGA gastric cancer cohort (Fig. 4e). However, the abundance 
of the corresponding macrophage populations as determined by CIBERSORTx decon-
volution of the bulk RNA-seq samples was not predictive for outcome (data not shown).

Lymphocytes divert towards immunosuppressive and differentiation phenotypes

In contrast to  CD8+ T cells, whose fraction stayed nearly unchanged between tumor 
and normal samples, we observed an over fivefold increase in  CD4+ T cells in the gas-
tric tumor samples. To understand which T cell subsets most differentially invaded the 
gastric TME, we reclustered the 12,905  CD4+ T cells into eight subclusters which we 
then assigned to six T helper cell subtypes including regulatory (FOXP3, IL2RA), helper 
17 (IL17A), naïve (CCR7), central memory (CM) (ANXA1, CCR7), effector memory (EM) 
(ANXA1, CCL5), and follicular T helper cells (CXCL13) (Fig. 5a and S6a). In addition, the 
31,705  CD8+ lymphocytes and 2,658 NK cells reclustered into thirdteen subclusters, 12 
of which corresponded to eight different CD8 T cell subtypes and one corresponded to 
NK cells. The  CD8+ T cells were designated as naïve (IL7R), effector (GLNY), effector 
memory (ANXA1, GZMK), effector memory expressing CD45RA (LMNA, CREM), resi-
dent memory (ANXA1, GZMB), exhausted (HAVCR2), intraepithelial (CD160) [46], and 
 CD8+ T cells with a tertiary lymphoid signature (CXCL13) (Fig. 5b and Additional file 1: 

Fig. 4 Pro- and anti-inflammatory macrophages are negatively correlated and highly diverse between 
gastric cancer patients. A UMAP of 10,646 myeloid cells color coded for tissue (bottom) and cluster 
annotation (top). B Bar plot of a proinflammatory (IL1B, CCL20, S100A8, S100A9) and anti-inflammatory (CD163, 
MAF, SEPP1, APOE) gene score per cell cluster (top). Dotplot of top markers per myeloid cluster showing the 
scaled average expression and the percentage of expression (bottom). C Log ratio of the average fraction per 
myeloid cluster annotation in tumor to normal tissue (n = 20). Wilcoxon rank-sum test with Holm correction, 
*: p < 0.05, **: p < 0.01, ***: p < 0.001. D Bar plot of the proinflammatory and anti-inflammatory gene signature 
from B in scRNA-seq data of our cohort (n = 20) and the TCGA-STAD cohort (n = 407). E Overall survival 
of gastric cancer patients in TCGA, groups split by expression level of the proinflammatory (left) and 
anti-inflammatory (right) gene signatures from B
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Fig. S6b). The expression profile associated with these T cell clusters closely resembled 
those of T cell subtypes reported in other cancer indications [47, 48]. Immunosuppres-
sive Th17 and Treg cells were among the most increased  CD4+ T cells while naive  CD8+ 
T cells were reduced in tumors (Fig. 5c), likely reflecting the activation and expansion 
of T cells in the tumor. Besides gastric cancer, disproportionate  CD4+ over  CD8+ T cell 
ratios have also been observed in CRC [30, 49].

Our bulk and single-cell integration found one gene cluster U4 upregulated in gas-
tric cancer that was preferentially expressed in T01-ICOS (Fig. 5d). Upon observing this 
cluster in more detail, we found many genes associated with activated regulatory T cell 
like FOXP3 and CCR8, inhibition of apoptosis such as PMAIP1, and immune suppres-
sion such as CD274, ALOX15, and SERPINB9 [50], emphasizing a strong activation of 
regulatory T cells and immune suppression in the gastric TME.

We identified 16,883 plasma cells and annotated them through gene signatures for 
heavy and light chain as well as kappa and lambda immunoglobulins, as IgAλ, IgAκ, 
IgGλ, IgGκ, IgMλ, IgMκ (Additional file 1: Fig. S7a). Comparing the ratio of plasma cell 
clusters between distal non-malignant gastric tissue and gastric tumor showed a high 
increase of IgG isotypes in gastric cancer whereas IgA isotypes decreased, suggesting 
a systemic change in the immune microenvironment (Additional file  1: Fig. S7b). The 
increase of IgG-positive plasma cells in gastric cancer is intriguing and has been docu-
mented in previous studies on other cancer indications [51].

Cell communication network uncovers potential drivers of gastric cancer development

To investigate cellular interactions in the gastric cancer tumor microenvironment, 
we constructed a cell communication network based on ligand and matching recep-
tor expression information from our single-cell atlas. The microenvironment was 
found to display a wide range of communications across different cell subtypes. 

Fig. 5 Immunosuppresive T cell dynamics in gastric cancer. A,B UMAP of 12,537  CD4+ T cells (A) and 28,772 
 CD8+ T cells (B) color coded for cluster annotation. C Pairwise analysis of T cell cluster fraction per patient 
in normal and tumor tissue, showing the most up- and downregulated T cells. Paired Wilcoxon rank-sum 
test, Holm-adjusted p-values per cluster shown. D Average expression of T cell implicated gene cluster U4 
visualized on  CD4+ T cell UMAP (Additional file 1: Fig. S3). E Heatmap of genes from gene cluster U4, color as 
scaled average expression
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Communication models derived from the cells of the TME and from normal gas-
tric tissue thereby differed significantly in their structure, with different cell sub-
types ranked most central in the interaction networks for TME and normal tissue, 
and F13-CTHRC1 as a central network hub in the TME but not in normal tissue 
(Additional file  1: Fig. S8c-d). F13-CTHRC1 thereby exhibited the highest central-
ity index in the TME network, with significant connections to many cell subtypes 
(Fig. 6a, S8a) including other fibroblasts, vasculature-associated endothelial cells, and 
immune cells (Fig. 6b, 6e). Many genes upregulated in gastric cancer participated in 
the F13-CTHRC1 as well as in endothelial cell-specific interactions, while none of 
the downregulated genes were interacting, further pointing towards the existence of 
a tumor-specific cell communication program (Fig.  6d). Notably, F13-CTHRC1 was 
predicted to communicate with the tumor-enriched EN10-SERPINE1 and EN03-
VWA1 endothelial cells through WNT5A-MCAM and LRP1-SERPINE1 interactions, 
both of which are highly expressed by these cell types and have been characterized 
as molecular switches for cell motility and angiogenesis [52, 53]. Moreover, by engag-
ing endothelial cells and macrophages via integrin signaling, F13-CTHRC1 might 

Fig. 6 Cell communication inferred from single-cell transcriptome profiles in gastric cancer show a 
central role of F13-Activated-CTHRC1 fibroblasts. A Closeness centrality ranking of all cell subtypes in 
the inferred cluster-wise cell communication network, top 10 subtypes are shown. B Communication 
strength of F13-Activated-CTHRC1 fibroblasts with other cell subtypes, only significant communication 
(connectivity > 0.05) are drawn. C Significant ligand-receptor pairs in F13-Myeloid communication 
highlight tumor-enriched activation of integrin-Akt pathway in myeloid cells by F13-CTHRC1 cells. D 
Significant ligand-receptor pairs in F13-Endothelial communication show a tumor-restricted program for 
intercellular communication. The X-axis represent ligand and receptor pairs, with the first gene expressed 
on F13-Act-CTHRC1 cells and second gene expressed on the interacting cell types denoted in the Y-axis. 
Red: upregulated gene in tumor bulk RNA-seq. Blue: downregulated in tumor bulk (none present). E 
Communication strength of F13-CTHRC1 with other cell subtypes, red line denotes the cluster-wise 
connectivity cutoff of 0.05 (see “Methods”)
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not only foster tumor remodeling through angiogenic stimulation but might  also 
enhance the development of anti-inflammatory macrophages [54] (Fig.  6c). Finally, 
F13-CTHRC1 harbors immunosuppressive interactions with T cells and DCs through 
TSLP-IL7R signaling, respectively (Additional file 1: Fig. S9c, S9d). TSLP is responsi-
ble for the expansion of regulatory T cells [55] and initiates T helper 2 responses in 
the tumor which are associated with worse survival prognosis [56]. Together, these 
findings indicate a potential role for F13-CTHRC1 as driver of gastric cancer progres-
sion through angiogenesis-stimulating and immune suppressive interactions with 
endothelial cells and immune cells.

Top ligand‑receptor interactions between gastric tumor cells and the TME point 

to mechanisms of immune evasion

Although we applied  EPCAM+ cell depletion before single-cell sequencing to enrich for 
cells of the TME, our dataset also contains 7210 epithelial cells. These cells clustered into 
fifteen groups (Additional file 1: Fig. S10a) which were annotated as gland mucus cells 
(GMCs) (MUC6 and TFF2), pit mucus cells (PMCs) (MUC5AC and TFF1), parietal cells 
(ATP4A and ATP4B), chief cells (PGA3 and PGA4), enterocytes (FABP1 and APOA1), 
and malignant cells (Additional file  1: Fig. S10a-b). The latter were identified via the 
copyKAT algorithm (Additional file 1: Fig. S10d) that quantifies the level of aneuploid 
chromosomal regions in cells. Malignant cells (designated EP11-MSC-CLDN7) were 
found only in the tumor samples (Additional file 1: Fig. S10a-b) and expressed the high-
est levels of EPCAM (Additional file 1: Fig. S10e) although more sporadic expression of 
this marker was also seen in the other epithelial cell clusters including enterocytes and 
GMCs, indicating that our EPCAM cell depletion has been incomplete. High EPCAM 
levels in EP11-CLDN7 correlated positively with the presence of cell cycle markers in 
this cluster further confirming the malignant nature of these cells. (Additional file 1: Fig. 
S10e).

Malignant cell cluster EP11-CLDN7 was connected to 33 cell types in the cell-inter-
action network (Fig.  6A). The top interacting cell types were thereby  CD8 + T cells as 
well as neutrophils and F13-CTHRC1 fibroblasts (Additional file 1: Fig. S10f ). The inter-
action between EP11-CLDN7 and  CD8+ T cells was dominated by the interactions of 
LGALS9—HAVCR2 and HVEM—CD160 both of which are well-known checkpoints 
that inhibit  CD8 + T cell functionality (Additional file 1: Fig. S10g), suggesting an immu-
nosuppressive function of the gastric tumor cells. EP11-CLDN7 and F13-CTHRC1 cells 
are predicted to interact through FZD5–WNT5A, reinforcing the hypothesis of F13-
CTHRC1 potentially facilitating tumor cell migration [57]. Lastly, neutrophils were con-
nected to EP11-CLDN7 cells via chemokine-receptor pairs CXCL1/2/3/5/8–CXCR1/2 
which could be an important axis for the attraction of immune suppressive neutrophils 
[58, 59].

Cell type signatures predict patient outcome in an independent gastric cancer cohort

Our precise mapping of diverse non-malignant cells in the gastric cancer microenvi-
ronment provided a comprehensive reference for interrogating the impact of different 
cell populations on patient prognosis from other types of data, especially the bulk tran-
scriptome data from the TCGA gastric cancer cohort. Using transcriptomic information 
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from our single-cell data as reference, we used CibersortX [57] to infer the fraction 
of each cell subtype in the TCGA samples and subsequently assessed the survival dif-
ferences between patients with higher and lower fractions of each cell subtype. Nota-
bly, patients with higher fraction of tumor-associated cell subtypes F13-CTHRC1 and 
EN10-SERPINE1 had significantly reduced survival time (Fig. 7a, b). In addition, several 
other endothelial and epithelial subtypes also displayed significant negative impact on 
gastric cancer patient survival (Additional file 1: Fig. S8), pointing towards being poten-
tially relevant in gastric cancer progression. In contrast, the fraction of cDC1 dendritic 
cells (M16-cDC-CLEC9A) had significant positive impact on patient survival (Fig. 7c). 
Although being a rather rare population in the tumor microenvironment, intratumoral 
cDC1 cells are considered critical for antitumor immunity as they attract, stimulate, 
and support tumor-infiltrating cytotoxic T cells through different molecular signals 
[60–62]. Consistent with this functional role [63], in our network analysis we found 
M16-CLEC9A to interact with a wide collection of  CD8+ T cell and NK cell populations 
through a number of communication signals including most prominently the XCL1/
XCL2-XCR1 receptor-ligand axis (Fig. 7d). Accordingly, combining these inversely cor-
related signatures resulted in an even more pronounced survival difference between 
F13-enriched/M16-depleted and F13-depleted/M16-enriched patients (Fig. 7e).

Fig. 7 Deconvolution of bulk RNA-seq from an independent gastric cancer cohort reveal prognostic 
impact of cell subtypes. A–C Kaplan–Meier curve of TCGA Gastric Cancer patients with high or low 
F13-Activated-CTHRC1 (A), EN10-Activated-SERPINE1 (B), and M16-cDC-CLEC9A (C) scores. D Significant 
ligand-receptor pairs in M16-cDC-CLEC9A communication suggest CLEC9A + cDC1 supports antitumor 
immunity through XCL1-XCR1 signaling. The X-axis represents ligand and receptor pairs. The Y-axis represents 
cell subtypes interacting with M16-cDC-CLEC9A. E Kaplan–Meier curve of patients with high F13 score and 
low M16 score achieve best prognosis
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Integration of gastric cancer immunotherapy bulk RNA‑seq reveals cellular and molecular 

predispositions to response

Immunotherapy via blocking the PD1/PDL1 axis or via blocking CTLA4 signaling 
has become standard of care in several cancer indications and has yielded promising 
results in gastric cancer as well [64, 65]. However, many gastric cancer patients do not 
profit from ICI treatment [66]. To identify what cell types and TME signaling pathways 
might contribute to resistance to ICI treatment, we obtained bulk RNA-seq data from a 
recent gastric cancer study [6] that evaluated gene expression in tumor samples from 45 
patients treated with anti-PD-1 (pembrolizumab) therapy. Differential gene expression 
analysis yielded 696 and 1382 genes significantly higher expressed in pretreated samples 
from the 12 responding and 33 non-responding patients, respectively (Fig. 8a).

Bi-clustering the set of 696 genes associated with response across our single-cell 
expression data yielded 8 gene groups, designated R1 to R8 (Fig. 8b, S12a). Cluster R1 
was exclusively expressed in T cells and NK cells and was strongly enriched for genes 
associated with IFN-γ signaling [67]. Genes associated with peptide presentation via 
MHC I complexes (R7) [68] and MHC II complexes (R8) [69] were also found to be 
overexpressed in responders and specifically associated with lymphoid cells and mye-
loid cells, respectively (Additional file 1: Fig. S12b). Interestingly, cluster R8 contained 
prominent marker genes such as C1QA and C1QB and was most strongly expressed in 
M11-SPP1 anti-inflammatory macrophages, suggesting a positive influence of these cells 
on immunotherapy response (Fig. 8c).

Bi-clustering of the 1382 non-responder genes in our single-cell data yielded 13 dif-
ferent clusters, designated NR1 to NR13, with high specificity to endothelial cells and 

Fig. 8 Cellular origin of response and non-response genes to cancer immunotherapy. A Differential 
expression analysis between responders (complete and partial responders, n = 12) and non-responders 
(stable and progressive disease, n = 33) performed on bulk RNA-seq from a total of 45 gastric cancer patients 
that underwent immunotherapy. Genes for downstream analysis (red) with adjusted p-value < 0.1 and log2 
fold change > 0.25. B Up- and downregulated genes (A) were clustered based on their expression in minor 
cell types of the single-cell RNA-seq data (Additional file 1: Fig. S3). Here, a heatmap of the scaled average 
expression from the upregulated gene clusters is shown per major cell types of the single-cell RNA-seq on 
gastric cancer. C,D Annotation and UCell score of myeloid cells with gene cluster R8 (C) and fibroblasts with 
gene clusters NR10-13 (D) visualized on UMAP. E ROC curves of gene signature scores corresponding with 
specific cell subtypes on response data from cohort in A 
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fibroblast as well as epithelial and plasma cells (Fig.  8b, S12c). Gene set enrichment 
analysis identified as main associated pathways angiogenesis in endothelial cells, and 
IL6 signaling in myeloid cells (Additional file 1: Fig. S12d). Fibroblast have been linked 
to immunotherapy resistance in several cancer types [70, 71]. Correspondingly, here we 
found four different gene clusters, NR10, NR11, NR12, and NR13 highly specific for per-
icytes, resting fibroblasts, F13-CTHRC1, and activated fibroblast, respectively (Fig. 8d). 
Cluster NR12 was specifically enriched for pathways involving extracellular matrix deg-
radation and expressed several metalloproteinases including MMP9  which has been 
shown to mediate anti-PD1 resistance in melanoma.

To understand the distribution of these gene clusters in gastric cancer, we calculated a 
signature score for all eight responder and 13 non-responder clusters for each of the 295 
gastric cancer RNA-seq samples from the gastric cancer TCGA cohort. Hierarchical bi-
clustering of the scores clearly separated response and non-response gene signatures and 
revealed differential expression of each signature across different patient groups (Addi-
tional file 1: Fig. S12e). Non-responder clusters NR3, NR5, and NR8 were thereby found 
to be clearly distinct from the other non-responder gene clusters likely due to their asso-
ciation with plasma and epithelial cells. Classifying the TCGA tumors based on recently 
identified molecular subtypes revealed that responder signatures were enriched in ICI 
sensitive EBV and MSI patients while non-response signatures were enriched in CIN 
and GS patients (Additional file 1: Fig. S12f ).

To investigate if any of the 11 main cell types or 81 subtypes identified in the gastric 
TME could be used to predict response to immunotherapy, we analyzed the power of 
a binary classification model consisting of the top marker genes from each cell type 
(see “Methods”) to predict treatment outcome in the above gastric cancer immunother-
apy cohort [6]. With an area under the ROC curve of 0.85, the presence of T27-cycling 
 CD8+ T cells followed by the presence of pan CD8 T cells (AUROC of 0.81) was found 
to best predict treatment outcome in this cohort (Fig.  8e). Presence of F14-ADAM28 
activated fibroblasts followed by presence of pan-fibroblasts was best predictive for non-
response with AUROCs of 0.82 and 0.7, respectively (Fig. 8e) and up to 100% specificity 
(Additional file 1: Fig. S12h-i and Additional file 7: Table S6).

Discussion
In this study, we performed bulk and single-cell RNA sequencing on matching malignant 
and non-malignant samples from a total of 24 gastric cancer patients. By integrating bulk 
and single-cell RNA sequencing, we were able to link cancer-associated transcriptional 
programs to different cell populations. This approach also allowed to integrate many 
lowly expressed genes oftentimes not well detected in single-cell data such as HOX9A 
and CXCL9 (Additional file 3: Table S2) which are important in cancer progression and 
T cell recruitment, respectively. One of the key molecular programs we found was asso-
ciated with the strong immunosuppressive phenotype of T01-ICOS activated regulatory 
T cells and M17-LAMP3 dendritic cells. Both T01-ICOS and M17-LAMP3 cells were 
increased in the TME and formed strong immune suppressing interactions with  CD8+ 
T cells via receptor-ligand interactions such as CTLA4/CD80 and CD274/PDCD1. Fur-
thermore, mapping genes associated with response to anti-PD1-treatment to our single-
cell atlas revealed cell types that separate ICI responders from non-responders. Whereas 
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immune activation and antigen presentation connected to  CD8+ T cells and dendritic 
cells were overexpressed in patients responding to immunotherapy, non-responding 
tumors featured upregulated angiogenic, matrix remodeling, and pro-tumorigenic sign-
aling pathways connected to activated fibroblasts and endothelial cells. In general, we 
did not observe significant differences in the TME based on ethnicity or tumor muta-
tional burden. However, we found the marker gene signature from F14-ADAM28 fibro-
blasts to be differentially expressed in genomically stable patients (Additional file 1: Fig. 
S12j-k), who in general do not respond to immunotherapy treatment.

Key molecular features and cell subtypes identified in this study resembled previ-
ous findings from both gastric as well as other cancer indications. For instance, in line 
with our results, a recently published atlas of gastric cancer TME also found RSPO3 
signaling in fibroblasts and Notch signaling in endothelial cells (Additional file 1: Fig. 
S13). Another cell compendium of cross-tissue fibroblast [18], described steady-state 
fibroblast, positive for PI16 and COL15A1, which were strikingly similar to resting 
fibroblast in our gastric cancer data. Steady-state fibroblasts in cancer were described 
to progress towards activated CAFs expressing for instance CTHRC1, and COL11A1, 
similar to the differentiation trajectory we found for F13-CTHRC1 activated fibro-
blasts in gastric cancer. Presence of activated fibroblasts has also been correlated with 
lack of response to immunotherapy in pancreatic and breast cancer [70, 72]. Besides 
activated fibroblasts, we also found two clusters of activated endothelial cells in gas-
tric cancer. Activated endothelial subtypes have been documented in prostate cancer 
and were shown to express CAF markers [73]. These activated endothelial cell sub-
types were enriched with angiogenic and matrix remodeling pathways and progres-
sively increased in number with cancer stage, highlighting their role in invasion and 
aggressive cancer advancement. Another common theme not only observed in gas-
tric cancer but in the TME from various indications including breast, liver, colorectal, 
and lung cancer is the appearance of a cluster of activated and immune suppressive 
regulatory T cells expressing activation markers such as 4-1BB and CCR8 [30, 35, 
47, 74]. These CCR8-positive activated Tregs possessed strong immunosuppressive 
functionality through production of immune suppressive metabolites like extracellu-
lar AMP, as well as blocking CD80/CD28 signaling via high expression of ICOS and 
CTLA-4. They also have been associated with stromal cell activation and communica-
tion with CAFs through CD73, DPP4, and B7H3 [75]. Activated forms of dendritic 
cells and macrophages in the TME have been reported as a cluster of LAMP3-pos-
itive dendritic cells in hepatocellular carcinoma and colorectal cancer [34, 35] and 
as SPP1-positive macrophages in colorectal cancer [30], respectively. LAMP3-posi-
tive dendritic cells mediated immunosuppression through the expression of immune 
checkpoints CD274 and IDO1 in gastric cancer, while SPP1-positive macrophages 
expressed both proinflammatory as well as anti-inflammatory signatures making their 
role in gastric tumor progression unclear and in need of further investigation.
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Conclusions
Here, we presented an encyclopedic view of tissue-resident and infiltrating cells in 
human gastric tumors and matched non-malignant stomach tissue at single-cell reso-
lution. We analyzed a total of 96,623 cells derived from samples of 24 gastric can-
cer patients and identified 81 different cell subtypes associated with the gastric tumor 
microenvironment. This comprehensive single-cell atlas allowed us to identify not 
only changes in cell type frequencies between tumor and normal gastric tissue but also 
changes in the transcriptional programs associated with malignant transformation. We 
found the gastric TME to be marked by a significant remodeling of its stromal compo-
nent with EN10-SERPINE1 endothelial cells and F13-CTHRC1 activated fibroblasts rep-
resenting tumor-specific cell populations. Our cell communication network revealed 
crosstalk between EN10-SERPINE1 and F13-CTHRC1 and proposes interaction axes 
that could play a role in angiogenesis, migration, and facilitating epithelial to mesenchy-
mal transition of the gastric tumor cells [22, 23, 76, 77]. Using our single-cell atlas to 
deconvolute the bulk RNA-seq data from gastric cancer cohort from  TCGA, we found 
an association of certain dendritic and stromal cell subtypes to patient survival. While 
high levels of M16-CLEC9A dendritic cells were associated to a prolonged survival, high 
numbers of F13-CTHRC1 activated fibroblasts and EN10-SERPINE1 endothelial cells 
were correlated with poor survival for gastric cancer patients. In addition, our bulk/
single-cell integration applied to a PD1-treated gastric cancer cohort identified gene 
programs expressed in  CD8+ T cells and activated fibroblasts of the TME that contrast-
ingly influenced the outcome of immunotherapy response. Together, these findings 
suggest novel opportunities for predictive biomarkers. For example, we showed that a 
gene signature of cycling  CD8+ T cells was highly predictive for response to immuno-
therapy especially in GS and CIN patients. Furthermore, non-responder gene programs 
were associated with stromal, plasma, and EPCAM-negative PMCs as well as EPCAM-
positive malignant epithelial cells and highlight potential targets for patient selection or 
therapeutic intervention. The presence of tumor-specific  activated stromal cells in our 
data  suggest the applicability of cell type  depletion strategies that are currently under 
development such as LRRC15 [78] and CCR8 [79] antibody drug conjugates  in gastric 
cancer. The data also suggests novel therapeutic directions such as blocking IL-6 sign-
aling from myeloid cells and plasminogen activation in activated endothelial cells for 
treating gastric cancer.

Methods
Gastric cancer sample collection

Twenty-four gastric cancer patients were enrolled in this study. None of the patients 
was treated with chemotherapy, radiation, or any other antitumor medicines prior to 
tumor resection (Additional file 2: Table S1). This study was approved by Peking Uni-
versity IRB. All patients enrolled in this study provided written informed consent for 
sample collection and data analyses. The experimental methods comply with the Decla-
ration of Helsinki. Fresh tumor and adjacent normal tissue samples (at least 2 cm from 
matched tumor tissues) were surgically resected from the above-described patients and 
shipped in RPMI-1640 medium (Gibco) at 4 °C. The available clinical characteristics and 
sequencing chemistry information are summarized in Additional file 2: Table S1.
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Bulk WES and RNA‑seq analysis

WES and RNA-seq are performed on bulk samples separated from the collected tis-
sue. WES was performed using the Agilent V6 Human Exome Capture Chip, with the 
sequences aligned and annotated using the GATK 4.0 [80] pipeline and GRCh38 ref-
erence genome. Copy number variation of tumor sample is subsequently computed 
using Control-FREEC (v5.7) [81] against the paired normal sample, using param-
eters breakPointType = 4, breakPointThreshold = 1.2, noisyData = TRUE, readCount-
Threshold = 50. RNA-seq was performed using the RNeasy Mini Kit (QIAGEN), with 
the sequences quantified using Kallisto (v0.45.0) [82] against the GRCh38 reference 
genome (Ensembl 93 annotation). Downstream tumor-normal differential expression 
analysis was performed using R package DESeq2 [83], using the parameters adjusted 
p-value < 1 ×  10−5,  log2FC > 2.

Single‑cell dissociation, sorting, library preparation, and sequencing

Tumors and adjacent non-cancer tissues were cut into approximately 1–2-mm3 pieces in 
the RPMI-1640 medium (Gibco) with 10% fetal bovine serum (FBS, GIBCO), and enzy-
matically digested with gentleMACS (Miltenyi) for 60 min on a rotor at 37 °C, accord-
ing to the manufacturer’s instruction. The dissociated cells were subsequently passed 
through a 100-µm SmartStrainer and centrifuged at 400  g for 5  min. After the super-
natant was removed, the pelleted cells were suspended in red blood cell lysis buffer 
(TIANDZ) and incubated on ice for 1–2 min to lyse red blood cells. After washing twice 
with 1 × PBS (Gibco), the cell pellets were re-suspended in sorting buffer (PBS supple-
mented with 1% fetal bovine serum (FBS, Gibco)).

Single-cell suspensions were stained with antibodies against CD326 (EPCAM, BioLe-
gend, Cat #324,207) and 7-AAD (eBioscience, Cat# 00–6993-50) for FACS sorting, per-
formed on a BD Aria SORP instrument. Expression levels of EPCAM and permeability 
of 7-AAD were gated by their negative controls of unstained cells and positive controls 
of beads stained by each antibody. Based on FACS analysis, single cells were sorted into 
1.5 ml tubes (Eppendorf ) and counted manually under the microscope. The concentra-
tion of single-cell suspensions was adjusted to 500–1200 cells/µl. Cells were loaded to 
the 10 × Chromium Microfluidic Chips for single-cell RNA and TCR library prepara-
tion. All the subsequent steps were performed following the standard manufacturer’s 
protocols. Purified libraries were analyzed by an Illumina Hiseq-4000 sequencer with 
150-bp paired-end reads.

Single‑cell sequencing data processing

The 10X droplet-based single-cell RNA sequencing data were processed using Cell-
Ranger toolkit (version 3.0.0) provided by 10X Genomics. Gene expression levels are 
quantified using GRCh38 reference genome (Ensembl 93 annotation). For each cell iden-
tified by CellRanger, we calculated the total number of detected genes, total number of 
UMI counts, and proportion of mitochondrial reads. A set of quality thresholds was 
applied to filter out low-quality cells, including detection of 200–7500 genes, 500–75,000 
UMI counts, and less than 10% mitochondrial reads, resulting in a total cell number of 
117,506 post-filter cells that were used for clustering analysis.
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Normalization and batch effect correction

Cells passing quality filter were normalized with SCTransform [84] using the default 
parameters. Independent component analysis (ICA) was applied on the normalized 
gene-cell matrix to identify potential batch effects. Out of 128 independent components, 
an independent component (IC_15) was found to have a highly sample-specific distri-
bution (Additional file 1: Fig. S1b). We further inspected the top weighted genes in this 
independent component and found this IC populated by a heat-shock protein-related 
program (Additional file  1: Fig. S1c), potentially derived from enzymatic stimulation 
during tissue dissociation [85]. The gene expression program driven by IC_15 was then 
subtracted from the normalized gene-cell matrix to remove this dissociation-derived 
batch effect.

Stepwise integration and unsupervised clustering analysis

To achieve stable and un-biased identification of cell populations, we used a stepwise 
approach implemented with SCANPY [86] for cell clustering. First, using top 1000 genes 
with the highest variance selected from the normalized cell-gene matrix, principal com-
ponent analysis (PCA) was applied on the global population to reduce dimensionality 
to 100 principal components. Next, BBKNN [87] was applied to construct a balanced 
k-nearest neighbor graph across the 10X 3′ and 5′ chemistries (Additional file  1: Fig. 
S1e). Then, the Leiden clustering algorithm was applied on the balanced KNN and iden-
tified 25 clusters. One cluster was identified as low-quality and excluded for downstream 
analyses according to its high mitochondrial content, resulting in a total number of 
96,623 cells used for downstream analyses (Additional file 1: Fig. S1d). To prevent over-
clustering, the rest 24 clusters were merged into 12 major populations (B, plasma, mast, 
myeloid, epithelial, endothelial, fibroblast, CD4 T, CD8 T/NK, Cell Cycle CD4 T, cell 
cycle CD8 T, cell cycle B) based on stable expression of their canonical markers.

Next, the normalized cell-gene matrix of each major population was extracted for 
identification of subpopulations. The top 600 variable genes were used for PCA, and 
the first 25–30 principal components were used for BBKNN. Leiden clustering algo-
rithm was applied to identify distinct subpopulations from the major population. When 
clusters are determined, the Wilcoxon rank-sum test was used to identify differentially 
expressed genes (DEGs) among clusters. Genes are considered differentially expressed 
if the Benjamini-Hochberg-adjusted p-value < 0.05, and the fraction of cells express-
ing the gene is over 30% (Additional file 3: Table S2). Some clusters with low median of 
expressed genes (around 200) and that did not yield any unique DEGs were annotated as 
low-quality and removed from subsequent analyses resulting in a total of 81 minor clus-
ters, these clusters were as follows: F04, F15, B03, B08, T03-05, T16, T21 EN08, EN09, 
EN11, EN13, EP12, and M15. Each subpopulation (cluster) was then annotated accord-
ing to their gene expression profile (Additional file 1: Fig. S1f ). Due to the small popula-
tion size and homogeneous gene expression profiles of mast, cell cycle B, cell cycle CD4 
T, and cell cycle CD8 T cells, this second round of cell clustering was not applied on 
them. The states of fibroblast subclusters were further analyzed by cNMF [19] using the 
recommended k selection criteria and the default parameters. After cNMF decomposi-
tion, k = 11 was chosen, and the weights (usages) of 11 expression modules in every cell 
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were then summarized for subclusters using arithmetic mean. For plotting (Additional 
file 1: Fig. S3B), the average module weight was z-score scaled for each module.

Dimensionality reduction analysis applied to the expression data revealed that cells 
clustered primarily based on their tissue origins and subtypes but not based on patient 
origin. To further evaluate cluster compositions, we counted the number of patient sam-
ples contributing to each of our 81 minor cluster and found that all clusters contained 
samples from at least five or more patients (Additional file 1: Fig. S1g).

Bi‑clustering for integration of bulk and scRNA‑seq data

Differentially expressed genes were first identified from bulk RNA-seq data between the 
matched non-malignant and malignant bulk samples (Additional file  5: Table  S4) and 
responders vs non-responders of an anti-PD-1-treated gastric cancer cohort (Additional 
file 5: Table S5). The significantly up- and downregulated genes were then bi-clustered 
according to their expression across the single-cell landscape. Gene mapping from dif-
ferentially expressed genes were mapped onto the single-cell expression data using the 
function plotMarkerHeat from the genesorteR R package [88], setting averageCells to 
 106 and clusterGenes to TRUE.

To assess the robustness of the results obtained by the bi-clustering approach against 
changes in cell frequencies in the single-cell data, we applied the algorithm to 100 down-
sampled versions of our dataset where each time 90% of the fibroblast cells had been 
randomly selected and removed. Results obtained from the original and downsampled 
data were found to be highly similar with almost all clusters preserving at least 75% of 
the genes that were originally assigned to them (Additional file 1: Fig. S4f-h).

Cell communication analysis

We used the method described by Ren and colleagues [89] to estimate the cell–cell affin-
ity. Briefly, the cell–cell affinity contributed by a ligand pair Li and Ri expressed by cell C1 
and cell C2 is defined by the following formula:

And the total affinity between cell C1 and cell C2, contributed by all ligand-receptor 
pairs:

where Li and Ri denote the ith ligand and receptor in all the ligand-receptor pairs used 
for computation, EC1,Li denotes the normalized expression of Li in cell C1, and EC1,Ri 
denotes the normalized expression of Ri in cell C1. The SCTransform-normalized gene 
expression values were used in the calculation of cell–cell affinities. After generation 
of the cell–cell affinity matrix, a modified k-nearest neighbor network was constructed 
based on strongest cell–cell affinities. Then, partition-based graph abstraction (PAGA) 
[90] was applied on the cluster groupings assigned in the stepwise clustering process to 
quantify cluster-wise communication strength. Inter-cluster connections with connec-
tivity > 0.05 were considered significant.

AffinityC1,C2,Li,Ri = EC1,Li × EC2,Ri

AC1,C2 =

i

EC1,Li × EC2,Ri +

i

EC1,Ri × EC2,Li
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For identification of important ligand and receptor pairs in the cluster-wise commu-
nication, the average affinity and contribution of a ligand-receptor pair L1R1 in the total 
interaction between two clusters M and N was calculated by the following formulae:

where Cm ∈ M, Cm ∈ N. Ligand-receptor pairs with a contribution > 0.01 are plotted.

Deconvolution of RNA‑seq data

Fraction of cell subtypes in TCGA-STAD was inferred using CIBERSORTx. FPKM 
and meta data of TCGA-STAD RNA-seq samples were downloaded from UCSC Xena 
Browser (https:// xenab rowser. net/). Single-cell reference data were prepared by sam-
pling 100 cells per cluster from the normalized gene expression matrix, then processed 
with the CIBERSORTx Create Signature Matrix function using default parameters. 
Fractions of the cell subtypes in each TCGA-STAD sample were then calculated using 
the CIBERSORTx Impute Cell Fractions function in the relative mode using default 
parameters.

To assess the accuracy of deconvoluting 81 minor cell types with CIBERSORTx, we 
created a pseudobulk dataset from our scRNA-seq and calculated cell fractions based 
on the same procedure as described above. We first checked how well the CIBERSORTx 
predictions for our 10 major cell types correlate with the actual single-cell fractions in 
our study. All cell types showed highly significant Pearson correlations (Additional file 1: 
Fig. S14a) between predictions and actual cell type frequencies. We then looked into the 
prediction accuracy of CIBERSORTx for the 81 cell subtypes. As shown in Additional 
file 1: Fig. S14b, results were in highly significant agreement with the preselected single-
cell abundances for the vast majority of the cell subtypes. Over 80% of the cell subtype 
frequencies predicted by CIBERSORTx had a Pearson correlation higher than 0.5 with 
the actual data (Additional file 1: Fig. S14b). These include the cell subtypes F13, EN10, 
and M16 which we highlight in the paper. For these cell types, Pearson correlation coef-
ficients of 0.86, 0.74, and 0.59 were obtained, respectively (Additional file 1: Fig. S14b). 
Only 18 cell types had correlation coefficients below 0.5. We noticed that these cell types 
either had very low abundance close to the detection limit (Additional file 1: Fig. S14c) 
or possessed only few specific marker genes as is the case for some plasma cell types. 
Overall, we were astonished by the accuracy of the results and believe they demonstrate 
that marker gene-based deconvolution via CIBERSORTx can successfully be used to 
deconvolute the presence of most cell types in bulk RNA-seq data.

Survival analysis

For each cell subtype, TCGA-STAD patients were divided into two groups (fraction-high 
and fraction-low) based on median of the CIBERSORTx inferred cell fractions in bulk 
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RNA-seq samples. The Kaplan-Meyer curve and log-rank test (Mantel-Cox test) p-val-
ues of overall survival were used to quantify the difference of fraction-high and fraction-
low groups in survival time. Cox-PH model was applied to compute the hazard ratio of 
each grouping based on inferred cell fractions. For combined survival analysis of two 
cell subtypes, patients were divided into four groups (A-high + B-high, A-high + B-low, 
A-low + B-high, A-low + B-low, where A and B are two cell subtypes) based on median 
of the inferred cell fractions. This analysis was performed using the R package survival 
(version 3.2) and survminer (version 0.4.8). The survival analysis of single genes or sig-
natures (Figs. 2e, and 3d) on TCGA-STAD cohort was performed using Gepia2 [91] with 
default parameters.

Tumor—normal cell cluster abundance comparison

Before conducting tumor to normal comparisons, quality control was performed and 
patient samples with less than 200 cells (P180305N, P190125N, and P180606N) were 
removed from the dataset (Additional file 1: Fig. S1a). In addition, for ratio calculations 
on myeloid cells, fibroblast/mural cells, endothelial cells, and T cells, samples with less 
than 50 cells of the corresponding cell type were excluded from the analysis of the cor-
responding cell type. To normalize for differences in the total cell count per sample, we 
next calculated the percentage of every cell type per sample. To identify cell types whose 
abundance changes with malignant transformation, we then performed a Wilcoxon 
rank-sum test (figures S2b, S2h, S5, and S10c) on samples from normal and tumor tis-
sue. To visualize cell type abundances, we finally calculated a fold change between tumor 
and normal based on the average of the cell type percentages across all included patient 
samples.

Analysis of gene set scores

Gene signature scores were calculated with the AddModuleScoreUCell function from 
the UCell [92] package using default parameters.

ROC analysis

Classification of the top marker genes from all 81 subtypes on a gastric cancer bulk 
RNA-seq cohort with response information was performed with the R package ROCit. 
Top marker genes were defined by taking the three highest ranked genes by highest aver-
age fold change and lowest Wilcoxon rank-sum test with Holm correction of the minor 
subtype compared to the other subtypes.

Gene set enrichment

Gene set enrichment was performed with the msigdbr package on the C2 reactome 
and C5 gene ontology biological processes.
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