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ABSTRACT

The Vision Transformer (ViT) architecture has emerged as the backbone of choice
for state-of-the-art deep models for computer vision applications. However, ViTs
are ill-suited for private inference using secure multi-party computation (MPC)
protocols, due to the large number of non-polynomial operations (self-attention,
feed-forward rectifiers, layer normalization). We propose PriViT, a gradient-based
algorithm to selectively “Taylorize” nonlinearities in ViTs while maintaining their
prediction accuracy. Our algorithm is conceptually simple, easy to implement,
and achieves improved performance over existing approaches for designing MPC-
friendly transformer architectures in terms of achieving the Pareto frontier in
latency-accuracy. We confirm these improvements via experiments on several
standard image classification tasks.

1 INTRODUCTION

Motivation. Deep machine learning models are increasingly being deployed by cloud-based providers,
accessible only by API calls. In such cases, user data privacy becomes paramount, motivating the
setting of private inference (PI) using secure multiparty computation (MPC). In its simplest form,
MPC-based private inference is a two-party setup where a user (the first party) performs inference of
their data on a model whose weights are owned by the cloud service provider (the second party), with
both sides encrypting their inputs using cryptographic techniques prior to inference.

The main technical barrier to widespread deployment of MPC-based PI protocols is the large number
of nonlinear operations present in a deep neural network model. Private execution of linear (or
low-degree polynomial) operations can be made fast using cryptographic protocols like homomorphic
encryption and/or secret sharing. However, private execution of nonlinear operations (such as ReLUs
or softmax operations) require Yao’s Garbled Circuits, incurring high latency and storage overhead.
Thus, unlocking fast, accurate, and efficient PI requires rethinking network design.

Consequently, an emerging line of work has made several forays towards the design of “MPC-friendly”
models; cf. more discussions below in Section 2. These methods approach PI from different angles.
Approaches such as Delphi (Mishra et al., 2020a) or Circa (Ghodsi et al., 2021) propose to replace
ReLUs with MPC-friendly approximations, while approaches such as CryptoNAS (Ghodsi et al.,
2020) and Sphynx (Cho et al., 2021) use neural architecture search (NAS) to search for network
backbones with a minimal number of ReLUs. Peng et al. (2023) propose hardware-aware ReLU-
reduced networks to achieve better latencies. The latest approaches in this direction (SNL by Cho
et al. (2022a), and SENet by Kundu et al. (2023)) derive inspiration from network pruning.

However, this body of work has gaps. The overwhelming majority of PI-aware model approaches have
focused on convolutional architectures, and have largely ignored transformer models. In particular,
the proper application of MPC to vision transformer architectures remains far less studied; see Table 1.
Vision transformers (Dosovitskiy et al., 2020) currently list among the best performing deep models
in numerous computer vision tasks, spanning image classification, generation, and understanding.
On the other hand, vision transformers are very bulky, possessing an enormous number of nonlinear
operations of different types: GELUs, softmaxes, and layer norms. As of early September 2023,
the only published approach addressing private inference for vision transformers is the MPCViT
framework of (Zeng et al., 2022); they use a carefully constructed combination of NAS, various
simplifications of the attention mechanism, and knowledge distillation (Hinton et al., 2015) to achieve
highly competitive results on common image classification benchmarks.
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Table 1: Comparison of various MPC-friendly approaches for deep image classification. NAS stands for
neural architecture search; GD stands for gradient descent. Our approach, PriViT, adaptively replaces various
nonlinearities present in transformers with their Taylorized versions in order to reduce PI latency costs without
drop in accuracy.

Approach Arch Methods Units removed
Delphi (Mishra et al., 2020a) ConvNets NAS + poly approx. ReLU layers
CryptoNAS (Ghodsi et al., 2020) ResNets NAS ReLU layers
Sphynx (Cho et al., 2021) ResNets NAS ReLU layers
DeepReDuce (Jha et al., 2021) ResNets manual ReLU layers
SNL (Cho et al., 2022a) ResNets GD Individual ReLUs
SENet (Kundu et al., 2023) ResNets GD Individual ReLUs
MPCFormer (Li et al., 2022) BERT NAS + poly approx. GELU layers, softmaxes
MPCViT (Zeng et al., 2022) ViT NAS + poly approx. GELU layers, softmaxes
PriViT (this paper) ViT GD + poly approx. Individual GELUs,

softmaxes

Our contributions and techniques. In this paper we introduce PRIVIT, an algorithm for designing
MPC-friendly vision transformers. PriVit considerably improves upon the previous best results for PI
using Vision Transformers (MPCViT) both in terms of latency and accuracy on TinyImagenet, and
competitive results on CIFAR 10/100.

At a high level, our approach mirrors the network linearization strategy introduced in the SNL method
by Cho et al. (2022a). Let us start with a pre-trained ViT model with frozen weights, but now replace
nonlinear operations with their switched Taylorized versions:

• Each GELU unit, GELU(xi) is replaced by ciGELU(xi) + (1− ci)xi; and
• Each row-wise softmax operation Softmax(Xi) is replaced by

siSoftmax(Xi) + (1− si)SquaredAttn(Xi).

where SquaredAttn is just the unnormalized quadratic kernel, and binary switching variables ci, si.
These switches decide whether to retain the nonlinear operation, or to replace it with its Taylor
approximation (linear in the case of GELU, quadratic in the case of softmax1). Having defined this
new network, we initialize all switch variables to 1, make weights as well as switches trainable, and
proceed with training using gradient descent.

Some care needs to be taken to make things work. We seek to eventually set most of the switching
variables to zero since our goal is to replace most nonlinearities with linear units or low-degree
polynomials; the surviving switches should be set to one. We achieve this by augmenting the standard
cross-entropy training loss with a ℓ1-penalty term that promotes sparsity in the vector of all switch
variables, apply a homotopy-style approach that gradually increases this penalty if sufficient sparsity
is not reached, and finally binarize the variables via rounding. We can optionally perform knowledge
distillation; see Section 3 for details.

Discussion and implications. We note that the previous state-of-the-art, MPCViT, also follows a
similar strategy as (Cho et al., 2022a): selectively replace both GELUs and softmax operations in
vision transformers with their linear (or polynomial) approximations. However, they achieve this via
a fairly complex MPC-aware NAS procedure. A major technical contribution of their work is the
identification of a (combinatorial) search space, along with a differentiable objective to optimize over
this space. Our PriViT algorithm, on the other hand, is conceptually much simpler and can be applied
out-of-the-box to any pre-trained ViT model. The only price to be paid is the computational overhead
of training the new switching variables, which incurs extra GPU memory and training time.

While our focus in this paper is sharply on private inference, our results also may hold implications
on the importance of nonlinearities at various transformer layers. Indeed, we see consistent trends in
the architectures obtained via PriViT. First, most nonlinear operations in transformers are redundant.
PriViT is able to remove nearly 83% of GELUs and 97% softmax operations with less than 0.5%
reduction in accuracy over CIFAR100 (Krizhevsky et al., 2009). Second, given a target overall budget
of softmaxes and GELUs, PriViT overwhelmingly chooses to retain most of the nonlinearities in

1Via several ablation studies we justify why we choose these particular approximations for these functions.
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Table 2: Accuracy-latency tradeoffs between PriVit and MPCViT. All latencies are calculated with the Secretflow
Ma et al. (2023) framework using the SEMI2k Cramer et al. (2018) protocol. Detailed methodology is reported
in Appendix A Left: Comparison of PriViT versus MPCViT on TinyImagenet. PriViT achieves 6.6× speedup
for isoaccuracy approximately 63%. Right: Comparison of PriVIT versus MPCViT on CIFAR-100. Due to ViT
architecture differences, PriViT uses a much larger model with 3× more input tokens, and is able to achieve
nearly percentage points increase in CIFAR-100 accuracy with only 27% increase in latency. Mirroring the
MPCViT+ approach, we also report the effect of PriViT with all GELUs replaced with ReLUs, and again show
competitive performance.

PriViT MPCViT

Acc Latency (s) Acc Latency (s)

78.88 31.77 62.55 150.83
78.16 28.45 63.7 95.75
75.5 20.47 63.36 71.04

64.46 14.41 62.62 43.96

PriViT (with GELU) MPCViT PriVit (with ReLU) MPCViT+

Acc Latency (s) Acc Latency (s) Acc Latency (s) Acc Latency (s)

78.51 17.75 77.8 9.16 78.37 16.77 77.1 9.05
80.49 14.21 76.9 8.76 78.73 13.46 76.8 8.77
78.5 14.08 76.9 8.21 77.1 10.62 76.3 8.37

77.74 11.69 76.4 7.86 76.59 12.43 76.2 7.94

earlier layers, while discarding most of the later ones. These suggest that there is considerable room
for designing better architectures than merely stacking up identical transformer blocks, but we defer
a thorough investigation of this question to future work.

2 PRELIMINARIES

Private inference. Prior work on private inference (PI) have proposed methods that leverage existing
cryptographic primitives for evaluating the output of deep networks. Cryptographic protocols can be
categorized by choice of ciphertext computation used for linear and non-linear operations. Operations
are computed using some combination of: (1) secret-sharing (SS) (Shamir, 1979; Micali et al., 1987);
(2) partial homomorphic encryptions (PHE) (Gentry & Halevi, 2011), which allow limited ciphertext
operations (e.g., additions and multiplications), and (3) garbled circuits (GC) (Yao, 1982; 1986).

In this paper, our focus is exclusively on the Delphi protocol (Mishra et al., 2020a) for private
inference. We choose Delphi as a matter of convenience; the general trends discovered in our
work hold regardless of the encryption protocol, and to validate this we measure latency of our
PriViT-derived models using multiple protocols. Delphi assumes the threat model that both parties
are honest-but-curious. Therefore, each party strictly follows the protocol, but may try to learn
information about the other party’s input based on the transcripts they receive from the protocol.
Wang et al. (2022), Peng et al. (2023), Lu et al. (2021), Qin et al. (2022)

Delphi is a hybrid protocol that combines cryptographic primitives such as secret sharing (SS)
and homomorphic encryptions (HE) for all linear operations, and garbled circuits (GC) for ReLU
operations. Delphi divides the inference into two phases to make the private inference happen:
the offline phase and an online phase. Delphi’s cryptographic protocol allows for front-loading
all input-independent computations to an offline phase. By doing so, this enables ciphertext linear
computations to be as fast as plaintext linear computations while performing the actual inference. For
convolutional architectures, the authors of Delphi shows empirical evidence that ReLU computation
requires 90% of the overall private inference time for typical deep networks. As a remedy, Delphi
and SAFENET (Lou et al., 2021) propose neural architecture search (NAS) to selectively replace
ReLUs with polynomial operations. CryptoNAS (Ghodsi et al., 2020), Sphynx (Cho et al., 2021) and
DeepReDuce (Jha et al., 2021) design new ReLU efficient architectures by using macro-search NAS,
micro-search NAS and multi-step optimization respectively.

Protocols for nonlinearities. To standardize across different types of non-linear activations, we
compare their Delphi (online) GC computation costs. We use the EMP Toolkit (Wang et al.,
2016), a widely used GC framework, to generate GC circuits for nonlinear functions. High-
performance GC constructions implement AND and XOR gates, where XOR is implemented using
FreeXOR (Kolesnikov & Schneider, 2008) and AND using Half-Gate (Zahur et al., 2015). With
FreeXOR, all XOR gates are negligible, therefore we count the number of AND gates as the cost of
each nonlinear function (Mo et al., 2023b). To be consistent with prior work (Ghodsi et al., 2021),
the activation functions also consider value recovery from Secret Sharing. Figure 1 (left) breaks
down the GC cost of ViT for different nonlinearities, and (right) shows the # AND gates in Softmax
and GeLU. Figure 2 breaks down softmax into fundamental operations, these operations are already
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synthesized and included in the EMP Toolkit library. Thus we simply add all the AND gates of these
basic operations to arrive at the total number of AND gates of softmax operations.
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Figure 1: Breakdown of latency in ViT-Tiny model
of different non-linearities based on Delphi.
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Figure 2: Detailed steps of benchmarking the non-
linearity cost for softmax.

3 PRIVIT: PRIVACY FRIENDLY VISION TRANSFORMERS

3.1 SETUP

Following (Cho et al., 2022a; Ghodsi et al., 2020; Mo et al., 2023a), we exclusively focus on
Delphi (Mishra et al., 2020b) as the protocol for private inference. However, we emphasize this
choice is only due to convenience, and that our approach extends to any privacy-preserving protocol
that relies on reducing nonlinearities to improve PI latency times.

Let fW : Rn×d → [0, 1]C be a vision transformer that takes as input n tokens (each of d dimensions)
and outputs a vector of probabilities for each of C classes. Each of these tokens is a patch sampled
from the original image, X and is indexed by i. As described, the transformer architecture consists
of stacked layers of multi-headed self-attention blocks with nonlinearities like GeLU (Hendrycks &
Gimpel, 2016) and Layernorm (Ba et al., 2016). ViTs use dot-product self-attention (see Equation 1)
which additionally consists of n row-wise softmax operations.

o =
Softmax(XWqW

T
k X

T )√
d

XWv. (1)

To frame the computational challenges inherent to Vision Transformers (ViTs), consider the ViT-base
(12 layer) model designed for 224× 224 images. Delving into its architecture reveals a composition
of (approximately) 726, 000 GeLUs, 28, 000 softmax, and 4000 layer norms. All the non-linearities,
when viewed through the lens of the Delphi protocol, become extremely resource-intensive operations.

Our PriViT algorithm designs an architecture that circumvents these computationally heavy operations.
Our proposition is to surgically introduce appropriate Taylor approximations of the GeLU and
softmax attention operations wherever possible (under the constraint that accuracy drops due to
such approximations should be minimal. The main challenge is to figure out where to do these
approximations, which we describe below,

Our algorithm can be viewed as an extension of SNL (Cho et al., 2022b), a network linearization
approach. SNL allows for automatic linearization of feed-forward networks through the use of
parametric ReLU activations and optimizing a Lasso-like loss (Tibshirani, 1996). While SNL can
reasonably be used to linearize ReLUs (GeLUs) in ViTs, it does not support linearizing softmax
operations, which form a large proportion of nonlinearities in ViTs. We therefore add a reparametrized
normalization layer that allows a choice between softmax and SQUAREDATTN. Note that this is
distinct to many existing approaches (Qin et al., 2022; Lu et al., 2021; Wang et al., 2020; Song, 2021)
which also propose blanket alternatives to softmax attention throughout the network.

3.2 PRIVIT ALGORITHM

To begin, we focus on softmax and GeLUs and ignore layernorms; we found that these were far
harder to Taylorize. For the former, we introduce auxiliary variables to act as switches. Given
fW, let C and S be the total number of GeLUs and softmaxes. Further, let S = [s1, s2, ..., sS ] and
C = [c1, c2, . . . , cG] be collections of binary switch variables defined for all instances of GeLU and
softmax activations. Our goal here is to learn W,S, and C to ensure high accuracy with as few
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nonlinearities as possible. We also use N to denote the number of tokens, H to denote the number
of heads and m to denote the size of the token embedding (and consequently the output size of the
feedforward MLP).

GELU. In the case of GELU operations, we define a switched version of the GeLU activation:

f(ci,xi) = ciGELU(xi) + (1− ci)xi (2)

y =
[
f(c1, x1), f(c2, x2), . . . , f(cn, xn)

]
, (3)

where ci is the corresponding auxiliary variable for the ith token, xi is the ith input token embedding
of dimension m (m being the MLP dimension) and y ∈ RN×m is the output. During training, ci
are initially real-valued, trainable, and are initialized to 1 at the start of training. During inference,
we binarize all ci using an indicator function, 1ci>ϵ, where ϵ is an appropriately chosen threshold.
ci = 1 implies that the GELU is preserved whereas ci = 0 reverts to the linear activation. Figure 13
in the Appendix shows a graphical representation of the GELU parametrization. Note that GELU is a
pointwise function and therefore is applied to elementwise.

Softmax Attention. The next step is to reparameterize softmax attention. However unlike GELUs,
choice of parameterization is not obvious here. As per the Delphi protocol, exponents are extremely
expensive to calculate. On the other hand, polynomials are comparatively cheaper. Also division by a
constant can be folded away compared to division by a number that is input dependent as in the case
of softmax. Therefore, we propose a modified ‘Squared Attention’ block;

SQUAREDATTN(X) =

(
XWqW

T
k X

T
)2

N
XWv, (4)

wherein we apply pointwise squaring instead of a row-wise softmax and divide by the number of
tokens. Squared attention is MPC friendly for the properties described above, all the while preserving
performance compared to original softmax. Similar to our approach with GELUs, we further add a
learnable auxiliary variable, si for every row-wise softmax operation in the attention layer.

o = siSoftmax(Xi) + (1− si)SQUAREDATTN(Xi), (5)

where Xi is the ith row of the attention matrix. As before, sis are initially real-valued, trainable
and initialized to 1. The variables are binarized during inference allowing use of either Softmax
or squared attention based on the values of si. Further ablations of different candidate attention
functions are presented in the results sections.

3.3 TRAINING PRIVIT

To train PriVit models, we need to train three sets of variables: the weights of the transformer, W,
the switch variables for the GELU parameterization, C, and the switch variables for the attention
parametrization, S. Our goal is to train a model that minimizes the number of nonlinearities to
satisfy a given nonlinearity budget, that is, ∥C∥0 < C, and ∥S∥0 < S, while increasing the overall
performance. This is reminiscent of standard LASSO-style (Tibshirani, 1996) optimization. We
therefore propose the following loss function to train the model,

Lprivit = L(fW(X), y) + λg

|G|∑
i=0

|ci|+ λs

|S|∑
j=0

|si|, (6)

where L is the standard cross-entropy loss. We then optimize for each of the variables until the
required softmax attention and GELU budgets. We show pseudocode for our training algorithm in
Algorithm 1 in the Appendix.

Optionally, we can also make use of knowledge distillation during both training and fine-tuning. We
introduce a KL divergence loss on the soft labels generated by the teacher and student ViT model.
This loss is added to the Lprivit loss defined in eq. 6. Thus our final minimization objective looks as
follows,

min
W,C,S

L(fW(X), y) + λg

|G|∑
i=0

|ci|+ λs

|S|∑
j=0

|si|+ Lkl(fW(X), fT(X)) (7)
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where T denotes the weights of the teacher model, and Lkl is the KL divergence loss. After every
epoch, we count the number of GELUs and softmax attention operations by thresholding the si
and ci values. Once the model satisfies the required budgets, we freeze the chosen GELUs and
softmax attention operations by binarizing all si and ci values and fine-tune the model weights for
the classification task. Figure 15 provides a complete illustration.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Architecture and dataset. We apply PriViT algorithm to a pretrained checkpoint of ViT-Tiny(Steiner
et al., 2021) that is trained on ImageNet-21k (14 million images, 21,843 classes) at resolution
224×224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224×224.
The pretrained ViT Tiny checkpoints are made available by (WinKawaks, 2022). In this research
work we focus on finetuning an existing model checkpoint like ViT Tiny on a target standard image
classification dataset (CIFAR10/100 (Krizhevsky et al., 2009) and Tiny-ImageNet). CIFAR10/100
has images of size 32×32 while Tiny-ImageNet has 64×64. These images were resized to 224×224
before being given as an input. CIFAR10 has 10 classes with 5000 training images and 1000 test
images per class. CIFAR100 has 100 classes with 500 training images and 100 test images per class.
Tiny-ImageNet has 200 classes with 500 training images and 50 test images per class. We also
perform hyperparameter tuning and present more details in Appendix A

ViT teacher pretraining. As the base model, we finetune a pretrained ViT-Tiny on CIFAR10/100 for
10 epochs. We use AdamW (Loshchilov & Hutter, 2017) as the optimizer with an initial learning
rate and weight decay as 0.0001 and 0.0001 respectively, and decay the learning rate after every 30
epochs by multiplying it by 0.1. Batch size used is 64. We use the same hyperparameters for the
TinyImagenet model as well. We use these weights to initialize PriViT and start KD.

Joint optimization of student ViT and parametric non linearities. We use Adam (Kingma & Ba,
2014) optimizer with learning rate equal to 0.0001. We use knowledge distillation and use soft labels
generated by the teacher model with a temperature of 4. The total loss is then, L = LPriViT + LKL,
where LPriViT is Equation 6 and LKL is the KL divergence loss between the logits of teacher and
student model. The Lasso coefficient (Tibshirani, 1996) for parametric attention and GELU mask
are set to λg = 0.00003 and λs = 0.00003 respectively at the beginning of the search. We set
warmup epochs to 5 during which we don’t change any hyperparameters of the model. Post warmup,
we increment λg by a multiplicative factor of 1.1 at the end of each epoch if the number of active
GELUs of current epoch do not decrease by atleast 2 as compared to previous epoch. Note that a
GELU/softmax is considered active if it’s corresponding auxiliary variable is greater than threshold
hyperparameter ϵ = 0.001. We follow the same approach for λs, with a multiplicative factor of 1.1
and an active threshold of 200.

Binarizing parametric nonlinearities, finetuning. When the GELUs and softmax budgets are
satisfied, we binarize and freeze the the GELU and softmax auxiliary variables. We subsequently
finetune the model for 50 epochs using AdamW with a learning rate 0.0001, weight decay 0.0001
and a cosine annealing learning rate scheduler (Loshchilov & Hutter, 2016). Our finetuning approach
continues to use knowledge distillation as before.

Non-linearity cost comparison. We conduct experiments to assess the computational cost of non-
linear functions such as layernorm, softmax, and GeLU in comparison to ReLU within GC. The
detailed results are reported in Table 7, brackets considers amortizing to a vector of inputs, e.g., a
Layernorm(192) is an operation over a vector length of 192 is equivalent to 6504× than the cost
of a ReLU. It demonstrates that with a vector length of 197, all layernorm and softmax functions
incur higher computational costs (i.e., number of ANDs) than ReLU. Specifically, they exhibit costs
6504×, 18586× higher than that of ReLU respectively and for pointwise GELU, we saw a cost 270×
higher than that of ReLU. The cost of denominator of layernorm and softmax can be amortized to the
whole vector and thus incur less cost than GELU. We estimate the latency of each model generated
by PriViT using these conversion factors. To show an example, we estimate the non-linearity cost of
a hypothetical model with 1000 softmax operation, 1000 layernorm operations and 1000 GELUs, by
taking the weighted sum of each operations with their corresponding latency factor.

6



Under review as a conference paper at ICLR 2024

Table 3: Base model architecture of PriViT and MPCViT

Model Layers Width MLP Heads Image size Patch size params (M)

PriViT 12 192 768 3 224×224 16×16 5.8
MPCViT (Tiny Imagenet) 9 192 384 12 64×64 4×4 -
MPCViT (Cifar 10/100) 7 256 512 4 32×32 4×4 3.72

Table 4: Comparison of PriViT-R, PriViT-G, and
MPCViT over Tiny Imagenet

PriViT - R PriViT - G MPCViT

Accuracy Latency (M) Accuracy Latency (M) Accuracy Latency (M)

64.73 69.11 69.8 151.75 62.55 381.42
61.05 67.08 66.98 128.23 63.7 331.35
56.83 69.28 64.46 110.60 63.36 307.45
57.65 82.77 60.53 93.72 62.62 282.42

Table 5: Comparison of training efficiency between
PriViT and MPCViT on ViT-Tiny

PriViT MPCViT

Dataset Latency Accuracy Epochs Latency Accuracy Epochs

TinyImagenet 151.75 69.8 293 381.42 62.55 600
128.23 66.98 351 331.35 63.7 600
110.60 64.46 342 307.45 63.36 600

CIFAR 100 88.24 78.5 403 72.21 77.8 900
75.92 77.74 447 71.77 76.9 900
67.54 75.47 498 71.40 76.9 900

GELU replacement post training. Mirroring the MPCViT+ approach, we also report the effect
of PriViT with all GELUs replaced with ReLUs, we call this model PriViT - R, and the original
PriViT model as PriViT - G. It is important to note that such an optimization is effective in low GELU
budgets as it introduces very minimal errors. In high GELU budgets the error is quite significant that
it affects the overall performance.

4.2 COMPARISON WITH PRIOR ART

We benchmark PriViT against MPCViT, using the checkpoints publicly shared by the authors. We
use the latency estimates reported in Section 4.1 and report the total latency. Specifically we convert
latency contribution of non-linear operations to ReLU equivalents. We refer to the latency of a single
RELU operation as ‘RELUOps’ for a given system. We can therefore measure other non-linearities
in terms of RELUOps. This proxy has the advantage that it abstracts away system level variables like
hardware, memory and bandwidth which often cause variance in bench marking performance. Table
3 highlights the differences in base model architecture of PriViT and MPCViT.

Pareto analysis of PriViT over TinyImagenet, and Cifar10/100. In our evaluation on various
datasets, the performance of PriVit was benchmarked against both MPCViT and MPCViT+. We
measure two metrics of importance – the latency (measured in terms of RELUOps), and accuracy.
An ideal private inference algorithm will achieve high accuracy with low latency.

1. Tiny ImageNet: Using a Pareto analysis on the Tiny ImageNet dataset, PriViT showcases notable
improvement. On Tiny imagenet, for an isoaccuracy of approximately 63% , PriViT G and PriViT
R achieved 3× and 4.7× speedup compared to MPCViT respectively as reported in Table 4.

2. CIFAR-10: We observe from our results in Figure 3 that in certain latency regimes PriVit performs
just as well as MPCViT and slightly worse than MPCViT+ in the trade-off between performance
and computational efficiency.

3. CIFAR-100: Turning our attention to the CIFAR-100 dataset, the performance nuances became
more evident. PriViT G performs just as well as MPCViT but is slightly worse compared to
MPCViT+. However, when benchmarked against PriViT R, PriVit’s performance was much better
than MPCViT and MPCViT+, indicating the competitive nature of the two algorithms on this
dataset.

Table 5 shows that PriViT, at a similar accuracy ( 64%), requires about half the training epochs
compared to MPCViT on TinyImagenet. For an isolatency of 75M on CIFAR 100, PriViT also needs
only about 50% of MPCViT’s training epochs. This demonstrates PriViT’s enhanced efficiency and
scalability, making it a promising alternative to MPCViT, particularly in situations valuing efficiency
and performance.

4.3 ABLATION STUDIES

Contribution by Knowledge Distillation. In PriViT, we incorporate knowledge distillation (KD)
alongside supervised learning. To assess the contribution of KD to the overall performance, we
trained PriViT on the TinyImagenet dataset with varying non-linearity budgets. We then compared its
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Figure 3: Comparison of PriViT over CIFAR 10/100 benchmarked against MPCViT, and MPCViT+.
The latency is calculated as per Section 4.1

Table 6: Latency comparison between
PriViT and PriViT w/o Pretrain

PriViT PriViT w/o pretrain

Latency (M) Accuracy (%) Latency (M) Accuracy (%)

271.59 75.5 234.18 53.57
151.74 69.8 194.78 54.66
128.23 66.98 167.20 55.59
93.71 60.53 153.31 55.92

Table 7: Non-linearity cost normalized to the cost of one ReluOp
which is 1 ReLU operation over a scalar value.

PriViT MPCViT TinyImagenet MPCViT CIFAR10/100

Function # ReluOps Function # ReluOps Function # ReluOps

Softmax(197) 18586 ReLU Softmax(257) 4428 ReLU Softmax(65) 1133
Layernorm(192) 6504 Layernorm(192) 6504 Layernorm(256) 8614
GeLU(1) 270 GeLU(1) 270 GeLU(1) 270
x2(197) 3248

performance to a version of PriViT (as outlined in Figure 15) that does not employ a teacher model
for knowledge distillation. Our results in figure 4 indicate that, under identical latency conditions,
incorporating KD enhances performance by approximately 5%.
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Figure 4: We evaluated PriViT with and without
KD. The x axis represents latency measured as per
Section 4.1, while the y axis shows the accuracy on
TinyImagenet. We observe an overall improvement in
the latency-accuracy curve motivating the use of KD.
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Figure 5: We evaluated the PriViT algorithm us-
ing three attention operations: Uniform, Linear, and
Squared Attention. The x-axis represents the target
softmax count, while the y-axis shows the test accu-
racy on CIFAR100.

Contribution of pretraining. In PriViT, we utilize a pretrained checkpoint, which is subsequently
fine-tuned. Post fine-tuning, we introduce a parametric GeLU and attention mechanisms to decrease
non-linearities in the model. To gauge the impact of using a pretrained model on the overall
performance, we contrast the performance of PriViT with a variant of PriViT that is not built upon a
pretrained model. Instead, this variant employs weights initialized from scratch and is trained with the
same parametric non-linearity mask as used in PriViT to minimize non-linearities. The comparative
outcomes of these approaches are presented in Table 6. Our findings reveal that, for comparable
latencies, PriViT with the pretrained checkpoint outperforms its counterpart without it, registering a
14% enhancement in accuracy.

Choice of softmax approximation. To highlight the contribution of different attention candidate, we
run PriViT over different softmax budget over CIFAR100, and report the accuracy of the resulting
model versus the number of original softmax attention retained. Lower number of softmax operations
implies higher the number of softmax attention replaced with our candidate attention operation.
As per Figure 5 we see almost no performance drop for SQUAREDATTN, roughly 5% drop in
performance for SCALEATTN and 10% drop in performance for UNIFORMATTN in low budgets.
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Table 8: Comparing PriViT and layerwise linearization of GeLU in a ViT model with 200k GeLUs. Six models
were generated by replacing two GeLU layers at a time with Identity.

Layerwise GELU linearizing Pri-ViT

Gelu (K) Acc (%) Gelu (K) Acc (%)

197 96.07 200 95.59
193 95.91 150 95.34
187 94.28 100 95.58
181 93.33 50 94.98
174 93.04 10 94.24
164 92.06 1 93.96
123 82.48
0 56.64

Thus SquaredAttention outperformed the others across all softmax budgets, motivating its selection
to replace the standard softmax attention in PriViT.

Fine-grained versus layer-wise Taylorization PriVit employs a unique approach where it selectively
Taylorizes softmax and GELU operations. To probe the effectiveness of this method, we contrasted it
with an alternative PriViT approach that Taylorizes a ViT model progressively, layer by layer. As
illustrated in Table 8, our observations underscored the superiority of selective Taylorization.

Visualization of non-linearity distribution. To understand which nonlinearities are preserved, we
investigate the distribution of PriViT models under different softmax and GELU budgets. From our
observations in Figure 6 we can conclude that GELUs in earlier encoder layers are preferred over
the ones in the later layers. From figure 7 we observe a similar trend in softmax distributions. We
find this interesting, since the trends reported in earlier work on convolutional networks are in the
reverse direction: earlier layers tend to have a larger number of linearized units. Understanding this
discrepancy is an interesting question for future work.

1 2 3 4 5 6 7 8 9 10 11 12

104

105

106

G
eL

U
15

0K

Base PriVit

1 2 3 4 5 6 7 8 9 10 11 12

104

105

106

Layer Index

G
eL

U
50

0k

Figure 6: Comparison of GELU distribution be-
tween ViT-base (Base) and PriViT without softmax
linearization. The x-axis represents the model’s
layer index, while the y-axis shows log-scaled
GELU operations per layer. With an input ten-
sor size of 197× 3072 for the GELU layer, each
layer contains 197 × 3072 = 605184 GELU op-
erations. Top: 150K target GELU. Bottom: 500K
target GELU.

1 2 3 4 5 6 7 8 9 10 11 12

0

1,000

2,000

So
ft

m
ax

Base PriVit

1 2 3 4 5 6 7 8 9 10 11 12

0

1,000

2,000

Layer Index

So
ft

m
ax

Figure 7: Comparison of softmax distribution
in ViT-base model (Base) versus PriViT without
GeLU linearization. The x-axis denotes the layer
index, while the y-axis shows the softmax opera-
tions per layer. With a 197× 197 attention matrix
across 12 heads, the ViT-base model totals 2364
softmax operations per layer. Notably, PriViT
tends to substitute earlier layer softmaxes with lin-
ear operations. Top: 1K target softmax; Bottom:
10K target softmax.

5 CONCLUSION

We introduce PriViT, a new algorithm for designing MPC-friendly vision transformers, and showed
its competitive performance on several image classification benchmarks. A natural direction of future
work is to extend similar techniques for designing other families of transformer architectures, such
as Swin Transformers and Data Efficient image transformers (DEiT), as well as encoder-decoder
transformer architectures. A key limitation of PriViT is it’s inability to Taylorize layernorms without
introducing instability in the training.
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Table 9: Benchmarking PriViT and MPCViT over CIFAR 10 dataset on SEMI2k protocol.

PriViT G MPCViT PriVit R MPCViT+

Acc Latency (s) Acc Latency (s) Acc Latency (s) Acc Latency (s)

96.31 21.13 94.3 10.39 94.45 18.74 93.3 5.57
95.31 19.27 94.2 9.85 92.45 17.83 93.9 6.38
95.58 15.99 94.1 9.39 92.36 13.26 94.2 7.39
95.14 14.43 93.6 8.96 92.39 13.01 94.3 6.83
94.52 14.37 91.08 10.24
94.44 11.6

A SUPPLEMENTARY RESULTS

Additional PI results. Following Zeng et al. (2022) we benchmark our method over SEMI2k using
secretflow framework, the client and server are 64GB RAM, Intel(R) Xeon(R) Platinum 8268 CPU @
2.90GHz. We run PI over LAN settings between two nodes of HPC cluster, hence there is a variation
of the total inference latency from what is reported in Zeng et al. (2022), but to keep a consistent
comparison, we benchmark both PriViT and MPCViT under our system settings. We report additional
bench marking results on CIFAR 10 data in the Table 9.

PriViT on different architectures. Figure 8 provides a comparison of PriViT over different ViT
variants from 5M (ViT-Tiny) to 80M (ViT-Base) parameters. We see that PriViT is able to produce a
similar latency accuracy trade off across different model sizes emphasizing it’s generalizability.
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Figure 8: PriViT produces similar latency accuracy trade off for a variety of ViT models over CIFAR
10, highlighting it’s scalability to large model sizes

Analysis of performance degradation. In this analysis, we aim to compare the performance of
trained PriViT models with their finetuned versions. Our analysis is based on the class-level accuracy
metric from the Tiny ImageNet dataset, which consists of 200 classes. We focus on three specific
parameters to understand the performance degradation:

Maximum Difference in Accuracy: We assess the greatest disparity in accuracy across all 200 classes
between the PriViT and finetuned models.

Overall Accuracy Difference: We compute the average accuracy difference between the finetuned
and the PriViT models across all 200 classes.

Variance in Accuracy Difference: We analyze the consistency of the differences in accuracy across
the 200 classes by calculating the variance.
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Table 10: Performance degradation of PriViT models compared to finetuned model on tinyimagenet.

Accuracy Latency (M) Max Difference Mean Difference Variance (10× 10−3)

69.8 151.75 30.00% 1.85% 6.8
66.98 128.23 34.00% 4.68% 6.9
64.46 110.60 34.00% 7.21% 8
60.53 93.72 40.00% 11.13% 9
59.55 86.51 34.00% 12.12% 9.4
59.58 84.78 36.00% 12.08% 9.8
59.04 84.13 36.00% 12.63% 9.9
58.74 69.42 40.00% 12.92% 9.4
58.2 67.43 36.00% 13.48% 8.7

Table 10 highlights that average accuracy degradation is anywhere between 1-13% for different
non-linearity budgets but certain classes seem to be more adversely affected even in low budgets as
the max class level difference in accuracy is consistent around 30%.

Hyperparameter Tuning. Following (Hassani et al., 2021) we use CutMix (Yun et al., 2019), Mixup
(Zhang et al., 2017), Randaugment (Cubuk et al., 2020), and Random Erasing (Zhong et al., 2020) as
data augmentation strategy. We probed multiple hyperparameter strategies for the joint optimization
phase of PriViT to ensure consistent good performance over multiple configurations of non-linearity
budgets of softmax and GELUs. Specifically we describe these strategies as follows:

Late-Binarized Epoch (Strategy 1): This strategy involved 10 post-linearization training epochs.
The binarization of auxiliary parameters, s and c, occurred late in the process, specifically after the
linearization was complete. The penalty increment condition for this method was checked when the
reduction in the softmax and GELU coefficients per epoch was less than 200 and 2, respectively.
Both masks began with identical penalties, signifying an ’equal’ starting penalty.

Late-Binarized Incremental (Strategy 2): This strategy also encompassed 10 training epochs with
late binarization. Here, the penalty increment condition was activated with an increase in the softmax
and GELU coefficients per epoch. The starting penalty for both masks was ’equal’.

Late-Binarized Divergent Penalty (Strategy 3): Much like Strategy 2, this involved 10 epochs with
late binarization and an increment condition based on softmax and GELU coefficient rises. However,
the initial penalty was set to ’unequal’, making the softmax penalty 20 times higher than the GELU
penalty.

Early-Binarized Incremental (Strategy 4): This strategy shared several similarities with Strategy
2, including 10 training epochs and an increment condition based on coefficient increases. The
difference, however, lay in its early binarization, occurring during the freezing of the auxiliary
parameters. The starting penalty was kept ’equal’ for both masks.

Prolonged Early-Binarized Epoch (Strategy 5): Spanning 50 post-linearization training epochs,
this strategy adopted an early binarization approach. The penalty increment condition was activated
when the reduction in softmax and GELU coefficients per epoch was under 200 and 2, respectively.
The masks were initialized with ’equal’ penalties.

Each of these strategies offered unique configurations in terms of epoch durations, binarization
timings, increment conditions, and starting penalties, enabling a comprehensive assessment of the
PriViT algorithm’s performance under various conditions.

We test the different finetuning strategies described here by taylorizing PriViT for different softmax
and GELU budgets and compare the test accuracy of the resulting model over CIFAR100. Table 11
highlights the comparative performance of all the strategies that we described. Strategy 5 seems to be
performing best over different configuration of nonlinearity budget which is important as we would
want to find the best model peformance for a particular non-linearity budget.

Grid search of softmax and GELU configuration. In order to elucidate the nuanced trade-off
between softmax and GeLU operations, we executed a systematic grid search across an extensive
parameter space encompassing varied softmax and GeLU configurations. Upon analysis of models
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Table 11: We test the different finetuning strategies described in A. We run PriViT for different
softmax and GELU budgets and compare the test accuracy of the resulting model over CIFAR100.
We observe that strategy 5 works the best across a wide range of target softmax and GELU budgets.

# Softmax # Gelu Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5
(K) (K) (Acc. %) (Acc. %) (Acc. %) (Acc. %) (Acc. %)

10 5 77.68 76.74 - 77.82 78.83
5 5 76.27 75.99 75.72 - 77.63
5 1 76.73 75.21 76.24 - 77.08
2 10 76.04 75.23 - 74.65 76.35
2 1 75.92 74.84 76.45 - 76.97
1 5 76.12 74.99 76.32 - 76.96

exhibiting iso-latencies, as demarcated by the red lines in figure 9, it became evident that the trade-off
dynamics are non-trivial. Specifically, configurations with augmented softmax values occasionally
demonstrated enhanced performance metrics, whereas in other scenarios, models optimized with
increased GeLU counts exhibited superior benchmark results.
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Figure 9: The PriViT algorithm produces a Pareto surface mapping the tradeoff between GeLU and
softmax budgets over cifar 100.

Taylorizing only one type of non-linearity. The PriViT algorithm’s standout capability is its simulta-
neous linearization of GELU and softmax operations, enabling a myriad of model configurations. In
our focused experiment, we exclusively linearized GELU operations and anchored the auxiliary soft-
max parameter S, binarizing it to activate only the SoftmaxAttention mechanism. Despite extensive
GELU substitutions, as reported in 10 the PriViT model displayed notable resilience on CIFAR10 and
CIFAR100 datasets, with only slight performance drops, underscoring its robustness in varied setups.

Effect of using pre-trained checkpoints. To further investigate why using pretrained checkpoint is
improving performance, we report the non-linear distributions searched by PriViT and compare it with
PriViT without pretrain for the nonlinearity budget of 315k and 320k respectively. We observe from
our findings in figures 11,12 that the distribution found by the two methods differs across each layer.
This supports our theory as to how PriViT operates under a strategic ’top-down’ paradigm. Starting
with a fine-tuned model, it has the advantage of an architecture that has not just discerned overarching
generalization patterns but has also selectively pruned irrelevant information, streamlining its focus
for a specific downstream task. This reduction of redundancy, undertaken from a vantage point of a
pre-existing knowledge base, gives PriViT an edge.

B SUPPLEMENTARY GRAPHICS

The following figure shows a graphical representation of the switching operation.
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Figure 10: PriViT’s ability to linearize GeLU operations visualized through performance on CIFAR
datasets. As GELU operations decrease, CIFAR-100 and CIFAR-10 accuracies are affected, showcas-
ing the trade-off between operation count and accuracy.
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Figure 11: We compare the distribution of 208 GELU and 200 GELU oper-
ations distributed by PriViT w/o pretrain and PriViT respectively over tiny
imagenet dataset.
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Figure 12: We compare the distribution of 973 softmax operations and 998
softmax operations operations distributed by PriViT w/o pretrain and PriViT
respectively over tiny imagenet dataset.

Search granularity. An important characteristic of PriViT is it’s flexibility to search over different
granularity of non-linearities. GELU is a pointwise functions, thus PriViT can search either at
embedding level or at a token level. On the other hand, softmax is a token level operation, thus it
cannot be broken into a finer search space. Note that softmax operations can be extended to search
over the head space or layer space, and similarly GELU can be searched over the layer space. Figure
14 illustrates the search granularity over token and embedding space.

Parametric mask. Figure 13 is an illustration of the working mechanism of the parametric mask
introduced in PriViT. When the parameters are binarized it selects one of the two candidate function
in the attention mechanism, and the gelu activation.

PriViT overview. Figure 15 provides an illustration of the complete PriViT algorithm, there are three
distinct phases namely Finetuning the teacher, joint optimization of network and parametric masks,
and final finetuning.
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Figure 13: Parameterized Gelu and Self-Attention operations. Top: Tokens undergo softmax and
squared attention in training. Post-training, parameter S is frozen and binarized, selecting only
one operation. Bottom: Embeddings pass through GeLU and Identity during training. Afterwards,
parameter C is frozen and binarized, choosing a single operation.

Figure 14: Left: The green blocks are SQUAREDATTENTION, and the grey blocks are Softmax
Attention. For parametric attention, tokens emerge from a blend of softmax and square attention (refer
to fig 13). Post-training, auxiliary variable S is set to 0 or 1, resulting in 2N×H potential combinations
per encoder block. Right: The green blocks are Identity function, and the grey blocks are GELU
activation. Embeddings combine GELU and identity operations during training, as seen in fig 13.
After training, parameter C is frozen and binarized. This yields potential combinations of either
2H×N or 2N×H×m for each ViT encoder block. Note that GELU being a pointwise function, we
possess the flexibility to expand our search space either to tokens or directly to individual embeddings.

C PRIVIT ALGORITHM

We provide detailed pseudocode to implement the PriViT algorithm in Algorithm 1.

D ROLE OF DELPHI IN OUR FRAMEWORK

Delphi Mishra et al. (2020a) encompasses two primary elements: a secure communication protocol
and a NAS technique, specifically an evolutionary method. The secure communication aspect focuses
on cryptographic protocols for neural networks within a multi-party computation setting. The NAS
technique, known as Delphi’s planner, is designed primarily to eliminate ReLU operations from
neural architectures.

17



Under review as a conference paper at ICLR 2024

Algorithm 1 PRIVIT: Privacy Friendly ViT
1: Inputs: fW: pre-trained network, λs: Lasso coefficient for Softmax mask, λg: Lasso coefficient for GeLU

mask, κ: scheduling factor, G: GeLU budget, S: Softmax budget, ϵ: threshold.
2: Set C = 1: same dimensions to all GeLU mask.
3: Set S = 1: same dimensions to all Attention Heads.
4: Set Cbudget = False: GeLU budget flag.
5: Set Sbudget = False: Softmax budget flag.
6: W← (W,C,S)
7: Lowest GeLU Count← ∥1(C > ϵ)∥0
8: Lowest Softmax Count← ∥1(S > ϵ)∥0
9: while GeLU Count > G or Softmax Count > S do

10: Update W via ADAM for one epoch.
11: GeLU Count← ∥1(C > ϵ)∥0
12: Softmax Count← ∥1(S > ϵ)∥0
13: if Lowest GeLU Count - GeLU Count < 2 then
14: λg ← κ · λg .
15: end if
16: if Lowest Softmax Count - Softmax Count < 200 and Sbudget = False then
17: λs ← κ · λs.
18: end if
19: if Lowest GeLU Count > GeLU Count then
20: Lowest GeLU Count← GeLU Count
21: end if
22: if Lowest Softmax Count > Softmax Count then
23: Lowest Softmax Count← Softmax Count
24: end if
25: if GeLU count <= G and Cbudget = False then
26: C← 1(C > ϵ)
27: Cbudget = True

28: W← (W,S)
29: end if
30: if Softmax count <= S and Sbudget = False then
31: S← 1(S > ϵ)
32: Sbudget = True

33: W← (W,C)
34: end if
35: end while

In our paper, we utilize Delphi’s secure communication protocol for private inference. Further-
more, we took inspiration from Delphi’s planner to design an effective method to reduce non-linear
operations for attention-based architectures, particularly in Vision Transformers (ViTs). This enhance-
ment was necessary because the original Delphi’s planner is not optimally equipped for reducing
non-linearities like softmax, gelu, and layernorms in ViT architectures.

Figure 16 provides an estimate of Delphi’s planner lower bound on latency on ViT-Base with 80M
parameters. To estimate this lower bound, we run PriVit on ViT-Base but only replace GELU
operations with identity operations, till no Gelus were left to linearize, i.e. the left most point in the
cyan curve indicates a network with no Gelus. All softmax and layernorms are left intact, Delphi’s
planner lower bound on latency is defined by the red vertical line which represents the latency of
a model with no GELUs, and all softmax/layernorm intact. We compare this lower bound with the
latency accuracy curve produced by PriViT on ViT-Base that Taylorize both softmax and GELUs.

E ATTENTION VARIANTS

Here we describe formally the different attention variant we ablated. Uniform form attention is
basically described by the following equation

UNIFORMATTN(X) =
(1)

N
XWv, (8)

Where N is the number of tokens, so for each token the attention weights are equal hence the name
UniformAttention.
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Figure 15: Left: Step 1 - Fine-tuning of a pretrained ViT over target dataset to produce the ’teacher
ViT’. Middle: Step 2 - Duplicate teacher ViT, introduce parametric GELUs and attention mask to
form ’student ViT’. Train using cross-entropy loss, KL divergence, and L1 penalty to gradually find a
sparse mask. Binarize the mask post desired non-linearity budget. Right: Step 3 - With a frozen,
binarized mask, further fine-tune the student model using cross-entropy loss and KL divergence with
the teacher.
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Figure 16: Estimation of Delphi’s latency lower bound compared to PriViT. We use ViT-Base as our
architecture and CIFAR 100 as our dataset.

ScaleAttn is the softmax candidate used in the work Zeng et al. (2022) which is essentially described
as

SCALEATTN(X) =

(
XWqW

T
k X

T
)

N
XWv, (9)
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