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ABSTRACT

Visual deep reinforcement learning (RL) enables robots to acquire skills from
visual input for unstructured tasks. However, current algorithms suffer from low
sample efficiency, limiting their practical applicability. In this work, we present
MENTOR, a method that improves both the architecture and optimization of RL
agents. Specifically, MENTOR replaces the standard multi-layer perceptron (MLP)
with a mixture-of-experts (MoE) backbone, enhancing the agent’s ability to handle
complex tasks by leveraging modular expert learning to avoid gradient conflicts.
Furthermore, MENTOR introduces a task-oriented perturbation mechanism, which
heuristically samples perturbation candidates containing task-relevant information,
leading to more targeted and effective optimization. MENTOR outperforms state-
of-the-art methods across three simulation domains—DeepMind Control Suite,
Meta-World, and Adroit. Additionally, MENTOR achieves an average of 83%
success rate on three challenging real-world robotic manipulation tasks including
Peg Insertion, Cable Routing, and Tabletop Golf, which significantly surpasses the
success rate of 32% from the current strongest model-free visual RL algorithm.
These results underscore the importance of sample efficiency in advancing visual
RL for real-world robotics. Experimental videos are available at mentor-vrl.

Peg Insertion Cable Routing Tabletop Golf

Figure 1: MENTOR is validated in real-world tasks. We design three challenging robotic learning
tasks for the agent to acquire skills through real-world visual reinforcement learning. MENTOR
achieves the most efficient and robust policies compared to the baselines.

1 INTRODUCTION

Visual deep reinforcement learning (RL) focuses on agents that perceive their environment through
high-dimensional image data, closely aligning with robot control scenarios where vision is the
primary modality. Despite substantial progress in this field (Kostrikov et al., 2020; Yarats et al., 2021;
Schwarzer et al., 2020; Stooke et al., 2021; Laskin et al., 2020a), these methods still suffer from low
sample efficiency. As a result, most visual RL pipelines have to be first trained in the simulator and
then deployed to the real world, inevitably leading to the problem of sim-to-real gap (Zhao et al.,
2020; Salvato et al., 2021).
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To bypass this difficulty, one approach is to train visual RL agents from scratch on physical robots,
which is known as real-world RL (Dulac-Arnold et al., 2019; Luo et al., 2024; Zhu et al., 2020).
Given the numerous challenges of real-world RL, we argue that the fundamental solution lies not in
task-specific tweaks, but in developing substantially more sample-efficient RL algorithms. In this
paper, we introduce MENTOR: Mixture-of-Experts Network with Task-Oriented perturbation for
visual Reinforcement learning, which significantly boosts the sample efficiency of visual RL through
improvements in both agent network architecture and optimization.

In terms of architecture, visual RL agents typically use convolutional neural networks (CNNs) for
feature extraction from high-dimensional images, followed by multi-layer perceptrons (MLPs) for
action output (Yarats et al., 2021; Zheng et al., 2023; Cetin et al., 2022; Xu et al., 2023). However,
the learning efficiency of standard MLPs is hindered by intrinsic gradient conflicts in challenging
robotic tasks (Yu et al., 2020a; Liu et al., 2023; Zhou et al., 2022; Liu et al., 2021), where the
gradient directions for optimizing neural parameters across different stages of the task trajectory or
between tasks may conflict. In this work, we propose to alleviate gradient conflicts by integrating
mixture-of-experts (MoE) architectures (Jacobs et al., 1991; Shazeer et al., 2017; Masoudnia &
Ebrahimpour, 2014) as the backbone to the visual RL framework. Intuitively, MoE architectures can
alleviate gradient conflicts due to their ability to dynamically allocate gradients to specialized experts
for each input through the sparse routing mechanism (Akbari et al., 2023; Yang et al., 2024).

In terms of optimization, visual RL agents often struggle with local minima due to the unstructured
nature of robotic tasks. Recent works have shown that periodically perturbing the agent’s weights
with random noise can help escape local minima (Nikishin et al., 2022; Sokar et al., 2023; Xu et al.,
2023; Ji et al., 2024). However, the choice of perturbation candidates (i.e., the network weights used
to perturb the current agent’s weights) has not been thoroughly explored. Building on this idea, we
propose a task-oriented perturbation mechanism. Instead of sampling from a fixed distribution, we
maintain a heuristically shifted distribution based on the top-performing agents from the RL history.
Unlike Self-Imitation Learning (Oh et al., 2018), which collects and re-exploits past high-rewarding
trajectories for policy gradient optimization, our approach directly updates agent through parameter
perturbation: We periodically sample weights from the aforementioned heuristic distribution to
perturb the current agent’s weights. The intuition is that the distribution gradually formed by the
weights of previous top-performing agents may accumulate task-relevant information, leading to
more promising optimization directions than purely random noise.

Empirically, we find MENTOR outperforms current state-of-the-art methods (Xu et al., 2023; Yarats
et al., 2021; Cetin et al., 2022; Zheng et al., 2023) across all tested scenarios in DeepMind Control
Suite (Tassa et al., 2018), Meta-World (Yu et al., 2020b), and Adroit (Rajeswaran et al., 2017). Fur-
thermore, we present three challenging real-world robotic manipulation tasks, shown in Figure 1: Peg
Insertion – inserting three kinds of pegs into the corresponding sockets; Cable Routing – maneuvering
one end of a rope to make it fit into two non-parallel slots; and Tabletop Golf – striking a golf
ball into the target hole while avoiding getting stuck into the trap. In these experiments, MENTOR
demonstrates significantly higher learning efficiency, achieving an average success rate of 83%,
compared to 32% for the state-of-the-art counterpart (Xu et al., 2023) within the same training time.
This confirms the effectiveness of our approach and underscores the importance of improving sample
efficiency for making RL algorithms more practical in robotics applications.

Our key contributions are threefold. First, we introduce the MoE architecture to replace the MLP
as the agent backbone in model-free visual RL, improving the agent’s learning ability to handle
complex robotic environments and reducing gradient conflicts. Second, we propose a task-oriented
perturbation mechanism which samples candidates from a heuristically updated distribution, making
network perturbation a more efficient and targeted optimization process compared to the random
parameter exploration used in previous RL perturbation methods. Third, we achieve state-of-the-art
performance in both simulated environments and three challenging real-world tasks, highlighting the
sample efficiency and practical value of MENTOR.

2 PRELIMINARY

Mixture-of-Experts (MoE). The concept of mixture-of-experts (MoE) was first introduced by Ja-
cobs et al. (1991) and Jordan & Jacobs (1994), proposing a simple yet powerful framework where
different parts of a model, called experts, specialize in different tasks or different aspects of a task.
A sparse MoE layer consists of multiple experts and a router. The router predicts a probability
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distribution over the experts for a given input. Based on this distribution, only top-k experts are
activated for processing the input (Shazeer et al., 2017). Assuming there are N experts, each of which
is a feed-forward network (FFN), the final output of the MoE can be written as

w(i;x) = softmax (topk (h(x)))[i], (1)

FMoE(x) =

N∑
i=1

w(i;x) FFNi(x), (2)

where w(i;x) is the gating function determining the utilization of the i-th expert for input x. h(x) is
the router’s output, producing logits for expert selection, and topk (h(x)) selects the top k experts.
softmax (·) normalizes these top-k values into probabilities.

Visual Reinforcement Learning. We employ visual reinforcement learning (RL) to train policies
for robotic systems, modeled as a Partially Observable Markov Decision Process (POMDP) defined by
the tuple (S,O,A, P, r, γ). Here, S is the true state space, O represents visual observations (a stack
of three image frames), A is the robot’s action space, P : S×A→ S defines the transition dynamics,
r(s, a) : S ×A→ R specifies the reward, and γ ∈ (0, 1] is the discount factor. The goal is to learn
an optimal policy πθ(at | ot) that maximizes the expected cumulative reward Eπ [

∑∞
t=0 γ

tr(st, at)].

Dormant-Ratio-based Perturbation in RL. The concept of dormant neurons, introduced by Sokar
et al. (2023), refers to neurons that have become nearly inactive. It is formally defined as follows:

Definition 1. Consider a fully connected layer l with N l neurons. Let linearli(x) denote the output
of neuron i in layer l for an input distribution x ∈ I. The score of neuron i is given by:

sli =
Ex∈I |linearli(x)|

1
N l

∑
k∈l Ex∈I |linearlk(x)|

(3)

A neuron i in layer l is considered τ -dormant if its score satisfies sli ≤ τ .

Definition 2. In layer l, the total number of τ -dormant neurons is denoted by Dl
τ . The τ -dormant

ratio of a neural network θ is defined as:

βτ =

∑
l∈θ D

l
τ∑

l∈θ N
l

(4)

As shown by Xu et al. (2023); Ji et al. (2024), the dormant ratio is a critical indicator of neural
network behavior and can be leveraged in RL algorithms as an effective metric to improve learning
efficiency through parameter perturbation. This process periodically resets the network weights by
softly interpolating between the current parameters and randomly initialized values (Ash & Adams,
2020; D’Oro et al., 2022):

θk = αθk−1 + (1− α)ϕ, ϕ ∼ initializer (5)

Here, α is the perturbation factor, θk−1 and θk are the network weights before and after the reset,
respectively, and ϕ represents randomly initialized weights (typically drawn from Gaussian noise).
The value of α is dynamically adjusted based on the dormant ratio β as α = clip(1−µβ, αmin, αmax),
where µ is the hyperparameter called the perturbation rate.

3 METHOD

In this section, we introduce MENTOR, which includes two key enhancements to the architecture and
optimization of agents, aimed at improving sample efficiency and overall performance in visual RL
tasks. The first enhancement addresses the issue of low sample efficiency caused by gradient conflicts
in challenging scenarios, achieved by adopting an MoE structure in place of the traditional MLP as
the agent backbone, as detailed in Section 3.1. The second enhancement introduces a task-oriented
perturbation mechanism that optimizes the agent’s training through targeted perturbations, effectively
balancing exploration and exploitation, as outlined in Section 3.2. The framework of our method is
illustrated in Figure 2.
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Figure 2: Overview. MENTOR uses an MoE backbone with a CNN encoder to process visual inputs.
A router selects and weights the relevant experts based on the inputs to generate the final actions. In
addition to regular reinforcement learning updates, periodic task-oriented perturbations are applied
during training by sampling from top-performing agents to adjust the current agent’s weights.

3.1 ARCHITECTURE: MIXTURE-OF-EXPERTS AS THE POLICY BACKBONE

In challenging robotic learning tasks, RL agents are often assigned K ≥ 2 different tasks or subgoals,
each associated with a loss function Li(θ). The goal is to find optimal agent weights θ ∈ Rm that
minimize losses across all objectives. In practice, a common approach is to reduce the average
loss over all tasks: θ∗ = argminθ∈Rm

{
L0(θ)

∆
= 1

K

∑K
i=1 Li(θ)

}
. If the agent uses a shared set of

parameters θ (e.g., MLP), meaning all parameters must be simultaneously active to function, the
optimization process using gradient descent may compromise individual loss optimization. This
issue, known as conflicting gradients (Yu et al., 2020a; Liu et al., 2021), hinders the agent’s ability to
optimize its behavior when facing complex scenarios effectively.

To address this issue, we propose to utilize an MoE architecture as a substitute for the MLP back-
bone in RL agents. The MoE structure is characterized by its composition of modular experts,
θMoE = {θ1, θ2, . . . , θN}, which allows the agent to activate different experts via a dynamic routing
mechanism flexibly. This enables gradients from different tasks or subgoals to correspond to different
sets of parameters. Specifically, the parameters of a given expert are updated only by gradients from
similar task scenarios, thereby effectively alleviating the gradient conflict problem.

As illustrated in Figure 2, the MoE agent first processes visual inputs using a CNN-based encoder,
transforming them into a latent space Z. The router h computes a probability distribution h(i | z)
over the experts i for a given latent vector z ∈ Z. The top-k experts are selected based on this
distribution, and their softmax weights wi are computed. The outputs ai from these top-k experts are
weighted combined to produce the final output a, as shown in Equations 1 and 2. This MoE structure
enables the agent to route input visual features to specialized experts based on specific objectives,
optimizing its performance in challenging scenarios such as multi-tasking or multi-stage processes.

To better illustrate the important role of dynamic modular expert learning for RL agents, we conduct
a multi-task experiment (MT5) in Meta-World (MW) (Yu et al., 2020b), where the agent (#Experts =
16, k = 4) is trained to acquire five opposing skills: Open tasks (Door-Open, Drawer-Open, Window-
Open) and Close tasks (Drawer-Close, Window-Close). As shown in Figure 3a, in addition to sharing
some experts for handling common knowledge, the Open and Close tasks have their own dedicated
experts (Experts 3, 7 for Open and Experts 9, 10 for Close). We evaluate the cosine similarities (Yu
et al., 2020a) for both MLP and MoE agents, as shown in Figure 3b. The MLP’s gradients show
significant conflicts between opposing tasks, resulting in a performance gap (100% success for Close
tasks, 82% for Open tasks). In contrast, the MoE model demonstrates higher gradient compatibility,
achieving 100% success in both task types.

This structural advantage can also be propagated to challenging single tasks, as the dynamic routing
mechanism automatically activates different experts to adjust the agent’s behavior throughout the
task, alleviating the burden on shared parameters. We illustrate this through training a same-structure
MoE agent on a single, highly challenging Assembly task from Meta-World (MW). Figure 4 shows
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Figure 3: MoE in multi-task scenarios. Left: Expert usage intensity distribution of the MoE agent in
opposing tasks. Right: Gradient conflict among opposing tasks for both MLP and MoE agents. The
MLP agent frequently encounters gradient conflicts (indicated by negative cosine similarity) when
learning multiple skills, while the MoE agent avoids these conflicts (indicated by positive values).

the engagement of the k = 4 most active experts during task execution, with Expert 15 serving as
the shared module throughout the entire policy execution. The other experts vary and automatically
divide the task into four distinct stages: Expert 9 handles gripper control for grasping and releasing;
Expert 13 manages arm movement while maneuvering the ring; and Expert 14 oversees the assembly
process as the ring approaches its fitting location. More detailed results about how MoE alleviates
gradient conflicts in the single task are shown in Appendix G.

Grasp ReleaseMove Assemble

Figure 4: MoE in multi-stage scenarios. We present the expert usage intensity during the Assembly
task in MW. While Expert 15 remains highly active throughout the entire process, other experts are
activated with varying intensity over time, automatically dividing the task into four distinct stages.

3.2 OPTIMIZATION: TASK-ORIENTED PERTURBATION MECHANISM

Neural network perturbation is employed to enhance the exploration capabilities in RL. Two key
factors influence the effectiveness of this process θk = αθk−1+(1−α)ϕ, ϕ ∼ Φ. α is the perturbation
factor controlling the mix between current agent and perturbation candidate weights. ϕ represents
the perturbation candidate sampled from a distribution Φ, which typically is a fixed Gaussian noise
N (µ, σ). Previous works (Sokar et al., 2023; Xu et al., 2023; Ji et al., 2024) have investigated the
use of the dormant ratio to determine α, resulting in improved exploration efficiency (see Section 2).
However, the selection of perturbation candidates has not been thoroughly examined. In this work,
we propose sampling ϕ from a heuristically updated distribution Φoriented, generated from past high-
performing agents, to provide more task-oriented candidates that better facilitate optimization.

We define Φoriented as a distribution from which the weights of high-performing agents can be sampled.
To obtain this distribution, we dynamically maintain a fixed-size set Stop = {(θ,R)}, where (θ,R)

5
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denotes an agent with the weights θ and achieves episode reward R. The desired distribution is
approximated using a Gaussian distribution, specifically Φoriented = N (µtop

θ , σtop
θ ), where µtop

θ and
σtop
θ represent the mean and standard deviation of the weights in Stop. As shown in Figure 2, the set

Stop is updated during training: at episode t, if the agent with weights θt achieves reward Rt higher
than the lowest in Stop, the tuple (θt, Rt) replaces the one with the lowest reward. This update ensures
that Φoriented accurately reflects the current set of high-performing agents, thus providing improved
perturbation candidates ϕ for future iterations. The pseudocode is shown in Algorithm 1.

Algorithm 1 Task-Oriented Perturbation Mechanism

1: Initialize the top-performing set Stop = ∅, perturb interval Tp

2: for each episode t = 1, 2, . . . do
3: Execute policy πθt and obtain episode reward Rt and dormant ratio β
4: if |Stop| < N then
5: Add (θt, Rt) to Stop
6: else if Rt > min{Ri | (θi, Ri) ∈ Stop} then
7: Replace (θj , Rj) = argmin{Ri | (θi, Ri) ∈ Stop} with (θt, Rt)
8: end if
9: if (Number of steps since last perturb) ≥ Tp then

10: Compute mean µtop
θ and standard deviation σtop

θ from Stop

11: Sample perturbation candidate ϕ ∼ Φoriented = N (µtop
θ , σtop

θ )
12: Calculate perturb factor as in Sokar et al. (2023): α = clip(1− µβ, αmin, αmax)
13: Update agent weights: θt = αθt + (1− α)ϕ
14: end if
15: end for

For illustration, we conduct experiments on the Hopper Hop task from the DeepMind Control
Suite (DMC), comparing task-oriented perturbation approach to leading model-free visual RL base-
lines (DrM (Xu et al., 2023) and DrQ-v2 (Yarats et al., 2021)). Our approach solely replaces DrM’s
perturbation mechanism with task-oriented perturbations. Both our method and DrM outperform
DrQ-v2 due to dormant-ratio-based perturbation, but our method achieves faster skill acquisition
and maintains a lower, smoother dormant ratio throughout training (Figure 5a and 5b). By directly
testing perturbation candidates as agents in the task (Figure 5c), we observe that candidates sampled
from Φoriented steadily improve throughout training, sometimes even surpassing the performance of
the agent they perturb. This demonstrates that Φoriented progressively captures the optimal weight
distribution, rather than simply interpolating from past agents, leading to more targeted optimization.
In contrast, perturbation candidates from DrM (initialized with Gaussian noise) consistently yield
zero reward, indicating the lack of task-relevant information.

(b)(a) (c)

Figure 5: Validation of task-oriented perturbation on Hopper Hop. Our method consistently
achieves higher episode rewards with a consistent lower dormant ratio. The episode reward obtained
by ϕ sampled from our method continuously increases and sometimes even surpasses that of the
corresponding RL agent (replotted as the semi-transparent line), whereas it remains at zero in DrM.
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4 EXPERIMENTS

In this section, we present a comprehensive empirical evaluation of MENTOR. Our experimental
setup consists of two parts. In Section 4.1, we demonstrate the effectiveness of our method across three
simulation benchmarks: DeepMind Control Suite (DMC) (Tassa et al., 2018), Meta-World (MW) (Yu
et al., 2020b), and Adroit (Rajeswaran et al., 2017). These benchmarks feature rich visual features
and complex dynamics, demanding fine-grained control. Our method consistently outperforms
leading visual RL algorithms across these domains. Moreover, one critical limitation in visual RL
research is the over-reliance on simulated environments, which raises concerns about the practical
applicability of such methods. To mitigate this gap, in Section 4.2, we go beyond simulations and
validate the effectiveness of MENTOR in real-world settings on three challenging robotic learning
tasks, highlighting the importance of real-world testing.

4.1 SIMULATION EXPERIMENTS

Baselines: We compare MENTOR against four leading model-free visual RL methods: DrM (Xu
et al., 2023), ALIX (Cetin et al., 2022), TACO (Zheng et al., 2023), and DrQ-v2 (Yarats et al., 2021).
DrM, ALIX, and TACO all use DrQ-v2 as their backbone. DrM periodically perturbs the agent’s
weights with random noise based on the proportion of dormant neurons in the neural network; ALIX
adds regularization to the encoder gradients to mitigate overfitting; and TACO employs contrastive
learning to improve latent state and action representations.

Experimental Settings: We evaluate MENTOR on a diverse set of tasks across three simulation
environments with complex dynamics and even sparse reward. The DMC includes challenging tasks
like Dog Stand, Dog Walk, Manipulator Bring Ball, and Acrobot Swingup (Sparse), focusing on long-
horizon continuous locomotion and manipulation challenges. The MW environment provides a suite
of robotic tasks including Assembly, Disassemble, Pick Place, Coffee Push (Sparse), Soccer (Sparse),
and Hammer (Sparse), which test the agent’s manipulation abilities and require sequential reasoning.
The Adroit environment includes complex robotic manipulation tasks such as Door and Hammer,
which involve controlling dexterous hands to interact with articulated objects. Notably, DMC tasks
are evaluated using episode reward, while tasks in MW and Adroit are assessed based on success
rate. For each method on each task, we conducted experiments using four random seeds; detailed
hyperparameters and training settings are provided in Appendix B.

Results: Figure 6 presents performance comparisons between MENTOR and the baselines. In the
DMC tasks, Dog Stand and Dog Walk feature high action dimensionality with a 38-dimensional
action space representing joint controls for the dog model. These tasks also have complex kinemat-
ics involving intricate joint coordination, muscle dynamics, and collision handling, making them
challenging to optimize. Our method outperforms the top baseline, achieving approximately 17%
and 10% higher episode rewards, respectively. In the MW tasks, the Hammer (Sparse) task stands
out. It requires a robotic arm to hammer a nail into a wall, with highly sparse rewards: success
yields significantly larger rewards than merely touching or missing the nail. In fact, the reward for
failure is only one-thousandth of the success reward, making the task extremely sparse. However, our
task-oriented perturbation effectively captures these sparse rewards, reducing the required training
frames by 70% compared to the best baseline. In the Adroit tasks, our method achieves nearly 100%
success with significantly less training time, while the most competitive counterpart (DrM) requires
more frames, and other baselines fail to match performance even after 6 million frames. A key
highlight is the Door task, which involves multiple stages of dexterous hand manipulation—grasping,
turning, and opening the door. Leveraging the MoE architecture, our method reduces training time
to achieve over 80% success by approximately 23% compared to the best baseline. In summary,
MENTOR demonstrates superior efficiency and performance compared to the strongest existing
model-free visual RL baselines across all 12 tasks. For ablation studies of the significance of MoE
and Task-oriented Perturbation separately, please refer to appendix F. For the robustness against
disturbances of agent trained by MENTOR, please see appendix H.

4.2 REAL-WORLD EXPERIMENTS

Our real-world RL experiments evaluate the practical applicability of MENTOR in robotic manip-
ulation tasks. We design three tasks to highlight key challenges in real-world robotics: multi-task
learning, multi-stage deformable object manipulation, and dynamic skill acquisition.
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Figure 6: Performance comparisons in simulations. This figure compares the performance of our
method to DrM, DrQ-v2, ALIX, and TACO across 12 tasks with four random seeds in three different
benchmarks (DMC, MW, and Adroit). The shaded region indicates standard deviation in DMC and
the range of success rates in MW and Adroit.

Experimental Settings: All tasks use a Franka Panda arm for execution and RealSense D435 cameras
for RGB visual observations, which include both overall and close-up views to capture global and
local information. The reward functions are based on the absolute distance between the current
and desired states. To prevent trajectory overfitting, the end-effector’s initial position is randomly
sampled from a predefined region at the start of each episode. Tasks are described below and shown
in Figure 7. Further details can be found in Appendix C.

Peg Insertion: This task simulates an assembly-line scenario where fine-grained insertion of various
objects are required. The agent needs to develop multi-task learning skills to insert pegs with three
different shapes (Star, Triangle, and Arrow) into corresponding sockets. Training such agents in
simulators is difficult due to the complexities of contact-rich interactions, making this task ideal for
real-world reinforcement learning and evaluation.

Cable Routing: Manipulating deformable cables presents significant challenges due to the complexi-
ties of modeling and simulating their physical dynamics, making this task ideal for direct, model-free
visual RL training in real-world environments. In this scenario, the robot must guide a cable into
two parallel slots. Since both slots cannot be filled simultaneously, the agent must perform the task
sequentially, requiring long-horizon, multi-stage planning to successfully accomplish the task.

Tabletop Golf: In this task, the robot uses a golf club to strike a ball on a grass-like surface, aiming
to land it in a target hole. An automated reset system retrieves the ball when it reaches the hole, enters
a mock water hazard, or rolls out of bounds, and randomly repositions it. The agent must learn to
approach the ball, control the club’s striking force and direction to guide the ball toward the hole
while avoiding obstacles through real-world interaction.

Results: Our policies demonstrate robust performance during evaluation as shown in Figure 7. In
Peg Insertion, the agent randomly selects a peg from the shelf and inserts it from varying initial
positions. It gradually learns to align the peg shape with the corresponding hole and adjust the angle
for accurate insertion. During one execution, as the peg nears the hole, we manually disturb by
altering the robot arm’s pose significantly. Despite this interference, the agent successfully completes
the task relying solely on visual observations. In Cable Routing, where the cable cannot be placed
into parallel slots simultaneously, the agent learns to prioritize routing it into the farther slot first, then
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Start Execution Disturbance Success!

Figure 7: Real-world experiments (up to down rows: Peg Insertion, Cable Routing, and Table
Golf). This set of images illustrates the execution of the learned visual policy trained using MENTOR.
The agent consistently and accurately accomplishes tasks even in the presence of human disturbances.

into the closer one. This second step requires careful handling to avoid dislodging the cable from the
first slot. During execution, if the cable is randomly removed from the slot, the agent can visually
detect this issue and re-route it back into position. In Tabletop Golf, the agent must master two key
skills: striking the ball with the correct direction and force, and repositioning the club to follow the
ball after the strike. Due to a "water hazard", the ball cannot be struck directly toward the target hole
from its starting position. The agent learns to angle its shots to bypass the hazard and guide the ball
into the hole. No interference is applied during this task, as the ball’s rolling on the grass-like surface
introduces sufficient variability.

Table 1: Comparison of success ratios between MENTOR and ablations with equal training
times. Peg Insertion and Cable Routing are trained for 3 hours, and Tabletop Golf for 2 hours. During
evaluation, each subtask in Peg Insertion is rolled out 10 times, while Cable Routing and Tabletop
Golf are rolled out 20 times.

Method
Peg Insertion (Subtasks)

Cable Routing Tabletop Golf
Star Triangle Arrow

MENTOR w/ pretrained encoder 1.0 1.0 1.0 0.9 0.8
MENTOR 1.0 1.0 1.0 0.8 0.7
MENTOR w/o MoE 1.0 0.7 0.6 0.45 0.55
DrM 0.5 0.2 0.1 0.2 0.5

Ablation Study: We conduct a detailed ablation study to demonstrate the effectiveness of MENTOR
in improving sample efficiency and performance, as shown in Table 1.

The first two rows reveal that utilizing the pretrained visual encoder (Lin et al., 2024) instead of
a CNN trained from scratch results in an average performance improvement of 9%. However, no
significant performance gain is observed in simulation benchmarks with this substitution. This
discrepancy may arise from the gap between simulation and real-world environments, where real
scenes offer richer textures more aligned with the pretraining domain.

Furthermore, the results confirm the effectiveness of our technical contributions. When the MoE
structure is removed from the agent (i.e., replaced with an MLP, as in MENTOR w/o MoE), overall
performance drops by nearly 30%. Additionally, further switching the task-oriented perturbation
mechanism to basic random perturbation (as in DrM) leads to an additional performance decline
of approximately 30%. We further extend the training process of the DrM baseline to reach the
same performance level as MENTOR, with the training time comparison shown in Figure 8, which
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demonstrates an average 37% improvement in time efficiency for our method. These findings
underscore the importance of each component in achieving superior results.

5 RELATED WORK

Peg Insertion Cable Routing Tabletop Golf
Real-World Tasks

0
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Figure 8: Time Efficiency Comparison.
This figure compares the training time re-
quired for DrM to reach the performance level
of MENTOR, as shown in Table 1.

Visual reinforcement learning. Visual reinforce-
ment learning (RL), which operates on pixel obser-
vations rather than ground-truth state vectors, faces
significant challenges in decision-making due to the
high-dimensional nature of visual inputs and the dif-
ficulty in extracting meaningful features for policy
optimization (Ma et al., 2022; Choi et al., 2023; Ma
et al., 2022). Despite these challenges, there has been
considerable progress in this area. Methods such
as Hafner et al. (2019; 2020; 2023); Hansen et al.
(2022) improve visual RL by building world models.
Other approaches (Yarats et al., 2021; Kostrikov et al.,
2020; Laskin et al., 2020b), use data augmentation to
enhance learning robustness from pixel inputs. Con-
trastive learning, as in Laskin et al. (2020a); Zheng
et al. (2023), aids in learning more informative state
and action representations. Additionally, Cetin et al.
(2022) applies regularization to prevent catastrophic
self-overfitting, while DrM (Xu et al., 2023) enhances
exploration by periodically perturbing the agent’s pa-
rameters. Despite recent progress, these methods still suffer from low sample efficiency in complex
robotic tasks. In this paper, we propose enhancing the agent’s learning capability by replacing the
standard MLP backbone with an MoE architecture. This dynamic expert learning mechanism helps
mitigate gradient conflicts in complex scenarios.

Neural network perturbation in RL. Perturbation theory has been explored in machine learning
to escape local minima during gradient descent (Jin et al., 2017; Neelakantan et al., 2015). In deep
RL, agents often overfit and lose expressiveness during training (Song et al., 2019; Zhang et al.,
2018; Schilling, 2021). To address this issue, Sokar et al. (2023) identified a correlation where
improved learning capability is often accompanied by a decline in the dormant neural ratio in agent
networks. Building on this insight, Xu et al. (2023); Ji et al. (2024) introduced parameter perturbation
mechanisms that softly blend randomly initialized perturbation candidates with the current ones,
aiming to reduce the agent’s dormant ratio and encourage exploration. However, previous works
have not fully explored the choice of perturbation candidates. In this work, we uncover the potential
of targeted perturbation for more efficient policy optimization by introducing a simple yet effective
task-oriented perturbation mechanism. This mechanism samples perturbation candidates from a
time-variant distribution formed by the top-performing agents collected throughout RL history.

6 CONCLUSION

In this paper, we present MENTOR, a state-of-the-art model-free visual RL framework that achieves
superior performance in challenging robotic control tasks. MENTOR enhances learning efficiency
through two key improvements in both agent network architecture and optimization. MENTOR
consistently outperforms the strongest baselines across 12 tasks in three simulation benchmark
environments. Furthermore, we extend our evaluation beyond simulations, demonstrating the effec-
tiveness of MENTOR in real-world settings on three challenging robotic manipulation tasks. We
believe MENTOR is a capable visual RL algorithm with the potential to push the boundaries of RL
application in real-world robotic tasks. While MENTOR has demonstrated its efficacy, the evaluated
environments primarily focus on single tasks with a single robot embodiment. Future work could
explore scaling the number of experts in MoE to tackle more complex scenarios, such as developing a
single policy capable of generalizing across hundreds of tasks or diverse robot embodiments, paving
the way for broader real-world applications.
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APPENDIX

A ALGORITHM DETAILS

We illustrate the overview framework of MENTOR in Section 3, where we employ two enhancements
in terms of agent structure and optimization: substituting the MLP backbone with MoE to alleviate
gradient conflicts when learning complex tasks, and implementing a task-oriented perturbation
mechanism to update the agent’s weights in a more targeted direction by sampling from a distribution
formed by the top-performing agents in training history. The detailed implementation of task-oriented
perturbation is shown in Algorithm 1, and the implementation of using MoE as the policy backbone
is described as follows:

Algorithm 2 illustrates how MENTOR employs the MoE architecture as the backbone of its policy
network. In addition to the regular training process, using MoE as the policy agent requires adding
an additional loss to prevent MoE degradation during training—where a fixed subset of experts is
consistently activated. The MoE layer computes the output action while simultaneously calculating
an auxiliary loss for load balancing (Lepikhin et al., 2020; Fedus et al., 2022). Specifically, we extract
the distribution over experts produced by the router for each input. By averaging these distributions
over a large batch, we obtain an overall expert distribution, which we aim to keep uniform across all
experts. To achieve this, we introduce an auxiliary loss term—the negative entropy of the overall
expert distribution (Chen et al., 2023; Shen et al., 2023). This loss reaches its minimum value of
− log(Ne), where Ne is the number of experts in the MoE, when all experts are equally utilized, thus
preventing degradation. This auxiliary loss is added to the actor loss and used to update the actor
during the RL process.

Algorithm 2 Mixture-of-Experts as the Policy Backbone

1: Input: Batch of visual inputs {xb}Bb=1

2: Output: Final actions {ab}Bb=1, Load balancing loss LLB
3: Initialize experts {FFN1,FFN2, . . . ,FFNN}
4: {zb}Bb=1 ← Encoder({xb}Bb=1)
5: {hb}Bb=1 ← h({zb}Bb=1)
6: for each input b = 1 to B do
7: Eb ← topk(hb, k)
8: wb(i)← softmax(hb,Eb

)[i], ∀i ∈ Eb
9: for each expert i ∈ Eb do

10: fb,i ← FFNi(zb)
11: end for
12: ab ← ActionProjector

(∑
i∈Eb

wb(i) fb,i
)

13: end for
14: // Compute load balancing loss
15: {prb}Bb=1 ← softmax({hb}Bb=1)

16: p(i)← 1
B

∑B
b=1 prb(i), ∀i

17: LLB ← −H(p) =
∑N

i=1 p(i) log(p(i))

B SIMULATION EXPERIMENTAL SETTINGS

The hyperparameters employed in our experiments are detailed in Table 2. In alignment with previous
work, we predominantly followed the hyperparameters utilized in DrM (Xu et al., 2023).

C REAL-WORLD EXPERIMENTAL SETTINGS

The training and testing videos are available at mentor-vrl. The hyperparameters for the real-world
experiments are the same as those used in the simulator, as shown in Table 2. We use 16 experts, with
the top 4 experts activated.
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Table 2: Hyper-parameters used in our experiments.

Parameter Setting
Architecture Features dimension 100 (Dog)

50 (Others)
Hidden dimension 1024
Number of MoE experts 4 or 16 or 32
Activated MoE experts (top-k) 2 or 4
MoE experts hidden dimension 256

Optimization Optimizer Adam
Learning rate 8× 10−5 (DMC)

10−4 (MW & Adroit)
Learning rate of policy network 0.5 lr or lr
Agent update frequency 2
Soft update rate 0.01
MoE load balancing loss weight 0.002

Perturb Minimum perturb factor αmin 0.2
Maximum perturb factor αmax 0.6 (Dog, Coffee Push & Soccer)

0.9 (Others)
Perturb rate αrate 2
Perturb frames 200000
Task-oriented perturb buffer size 10

Replay Buffer Replay buffer capacity 106

Action repeat 2
Seed frames 4000
n-step returns 3
Mini-batch size 256
Discount γ 0.99

Exploration Exploration steps 2000
Linear exploration stddev. clip 0.3
Linear exploration stddev. schedule linear(1.0, 0.1, 2000000) (DMC)

linear(1.0, 0.1, 3000000) (MW & Adroit)
Awaken exploration temperature T 0.1
Target exploitation parameter λ̂ 0.6
Exploitation temperature T ′ 0.02
Exploitation expectile 0.9

C.1 OBSERVATION SPACE

The observation space for all real-world tasks is constructed from information only provided by
several cameras. Each camera delivers three 84x84x3 images (3-channel RGB, with a resolution of
84x84), which capture frames from the beginning, midpoint, and end of the previous action.

For the Peg Insertion and Tabletop Golf tasks, the observation space is provided by two cameras: a
wrist camera and a side camera. As shown in Figure 9, these two cameras in Tabletop Golf offer
different perspectives. The wrist camera is attached to the robot arm’s wrist, capturing close-up
images of the end-effector, while the side camera provides a more global view. As previously
mentioned, each camera provides three images, resulting in a total of six 3-channel 84x84 images.

In the Cable Routing task, the observation space is constructed using three cameras: a side camera
for an overview, and two dedicated cameras for each slot to capture detailed views of the spatial
relationship between the slots and the cable. This setup results in a total of nine 3-channel 84x84
images.
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Wrist Camera View Side Camera View

Figure 9: Agent’s visual observation example in tabletop golf. MENTOR only uses visual data as
policy input. At every step, we capture and stack the frames at the beginning, midpoint, and end of
the actuation process. The images captured from cameras are resized to a resolution of 84x84 before
being input to the agent.

C.2 ACTION SPACE

The policy outputs an end-effector delta pose from the current pose tracked by the low-level controller
equipped in robot arm. Typically, the end-effector of a robotic arm has six degrees of freedom (DOF);
however, in our tasks, the action space is constrained to be fewer. The reason for this restriction
in DOF is specific to our setting: in our case, we train model-free visual reinforcement learning
algorithms directly in the real-world environment from scratch, without any initial demonstrations
and prior knowledge toward the tasks. As a result, the exploration process is highly random, and
limiting the degrees of freedom is crucial for safeguarding both the robotic arm and the experimental
equipment. For instance, in the Peg Insertion task, the use of rigid 3D-printed materials means
allowing the end-effector to attempt insertion at arbitrary angles could easily cause damage. Similarly,
in the Cable Routing task, an unrestricted end-effector might collide with the slot, posing a risk to the
equipment.

Peg Insertion: The end-effector in this task has four degrees of freedom: x, y, z, and r. Here, x
and y represent the planar coordinates, z represents the height, and r denotes the rotation around the
z-axis. The x, y, and z dimensions are normalized based on the environment’s size, ranging from -1
to 1, while r is normalized over a feasible rotation range of 0.6π.

The action space is a 4-dimensional continuous space (∆x,∆y,∆z,∆r), where each action updates
the end-effector’s state as:

(x, y, z, r)→
(
x+

∆x

8
, y +

∆y

8
, z +

∆z

10
, r +

∆r

8

)
.

Cable Routing: In this task, the end-effector is constrained to two degrees of freedom: x and z. The
x-axis controls movement almost perpendicular to the cable, while the z-axis controls the height.
Both dimensions are normalized based on the environment’s size, with values ranging from -1 to 1.
Although we restrict the action space to two dimensions, this task remains extremely challenging
for the RL agent to master, as it requires inserting cable in both slots sequentially, making it the
most time-consuming task among the three, as shown in Figure 8. The difficulty stems largely from
the structure and parallel configuration of the two slots: the agent cannot route the cable into both
slots simultaneously and must insert one first. However, as shown in Figure 10b, without a hook-like
structure to secure the cable in the slot, the cable easily slips out when the agent attempts to route it
into the second slot. This task therefore requires highly precise movements, forcing the agent to learn
the complex dynamics of soft cables.

The action space is a 2-dimensional continuous space (∆x,∆z), where each action updates the
end-effector’s position as:

(x, z)→
(
x+

∆x

5
, z +

∆z

5

)
.
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Tabletop Golf: The end-effector in this task has three degrees of freedom: x, y, and r. Here, x and y
represent the planar coordinates, and r denotes the angle around the normal vector to the xy plane.
The x and y dimensions are normalized based on the environment’s size, ranging from -1 to 1, while
r is normalized over a feasible rotation range of 0.5π.

The action space has four dimensions: three spatial dimensions (∆x,∆y,∆r) and a strike dimension,
where the values range from -1 to 1. The end-effector’s state is updated as:

(x, y, r)→
(
x+

∆x

10
, y +

∆y

10
, r +

∆r

8

)
,

and if strike > 0, the end-effector performs a swing with strength proportional to the value of strike.

C.3 REWARD DESIGN

In this section, we describe the reward functions for the three real-world robotic tasks used in our
work: Peg Insertion, Cable Routing, and Tabletop Golf. The basic principle behind these functions is
to measure the distance between the current state and the target state. These reward functions are
designed to provide continuous feedback—though they can be extremely sparse, as seen in Cable
Routing—based on the task’s progress, enabling the agent to learn efficient strategies to achieve
the goal. Notably, we trained two visual classifiers for the Cable Routing task to determine the
relationship between the cables and the slots for reward calculation. Other positional information is
obtained through feedback from the robot arm or image processing algorithms. The lower and upper
bounds of each dimension in the pose are normalized to -1 and 1, respectively. The coefficients used
in the reward functions are listed in Table 3.

Peg Insertion: The reward is computed as the negative absolute difference between the current robot
arm pose and the target insertion pose, which varies for each peg.

Rpeg =
1

2

((√
2− ∥xg − xc∥

)
· C1 + (2− |∆z|) · C2 +

(π
2
− |θc − θg|

)
· C3 − C4

)
(6)

Where:

• xg and xc: Represent the goal position and the current position of the robot’s end-effector in the
x-y plane.

• ∥xg − xc∥: Euclidean distance between the goal and current positions of the end-effector.

• ∆z: The height difference between the current and target z positions.

• θc and θg: Current and goal angles of the end-effector, respectively.

Cable Routing: To provide continuous reward feedback, we trained a simple CNN classifier to detect
whether the cable is correctly positioned in the slot, awarding full reward when the cable is in the
slot and zero when it is far outside. The CNN classifier was trained by labeling images to classify
the spatial relationship between the cable and the slot into several categories, with different rewards
assigned based on the classification. However, when the cable remains in a particular category
without progressing to different stages, the agent receives constant rewards, making it difficult for the
agent to learn more refined cable manipulation skills.

Rcable = rslot1 + I(rslot1 ≥ 2) · (rslot2 + C5) (7)

Where:

• rslot1 : Reward for the first slot, determined by the position of the cable relative to the slot. The
possible rewards are:

– Outside the slot: rslot1 = −3
– On the side of the slot: rslot1 = −1
– Above the slot: rslot1 = 1

– Inside the slot: rslot1 = 5
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• rslot2 : Reward for the second slot, with more detailed classifications:

– Outside the slot: rslot2 = −3
– On the side of the slot: rslot2 = −1
– Partially above the slot: rslot2 = 1

– Above the slot and at the edge: rslot2 = 3

– Above the slot and close to the middle: rslot2 = 5

– Partially inside the slot: rslot2 = 10

– Fully inside the slot: rslot2 = 15

• I(rslot1 ≥ 2): Indicator function that activates only if the cable is inserted correctly in the first slot,
allowing the agent to receive rewards for the second slot.

Tabletop Golf: The reward consists of two components: the negative absolute distance between the
robot arm and the ball, and the negative absolute distance between the ball and the target hole. This
encourages the agent to learn how to move the robot arm toward the ball and control the striking force
and direction to guide the ball toward the hole while avoiding obstacles. Additional rewards include:
Rgolf+ = C6 (if the ball reaches the hole) and Rgolf− = C7 (if the ball goes out of bounds). In this
experiment, we deploy two cameras at the middle of two adjacent sides of the golf court. The pixel
locations of the ball in both cameras are used to roughly estimate its location to calculate the reward
function. Despite using an approximate estimation for the reward, MENTOR still quickly learns to
follow the ball and strike it with the appropriate angle and force, demonstrating the effectiveness of
our proposed method.

Rgolf = (2− ∥pclub − pball∥) · C8 + (2− ∥pball − phole∥) · C9 − I(strike)
+ (2− |θbest − θcurrent|) · C10 −max (0,pball[y]− pclub[y] + 0.05) · C11

(8)

Where:

• pclub and pball: Positions of the robot’s golf club and the ball, respectively.

• phole: Position of the target hole.

• ∥pclub − pball∥: Distance between the club and the ball.

• ∥pball − phole∥: Distance between the ball and the hole.

• θbest and θcurrent: Best calculated angle and current angle of the robot’s arm for optimal striking.

• I(strike): Indicator function that penalizes unnecessary strikes.

• pball[y] and pclub[y]: The y-axis is the long side of the golf course. The ball should be hit from the
positive to the negative y-axis, so the club should always be on the positive y-side of the ball.

Table 3: Coefficients used in the reward functions over three real-world robotic tasks.

Symbol Value
C1 16
C2 6
C3 8
C4 17
C5 3
C6 20
C7 5
C8 4
C9 8
C10 2
C11 10
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C.4 AUTO-RESET MECHANISMS

One major challenge in real-world RL is the burden of frequent manual resets during training. To
address this, we designed auto-reset mechanisms to make the training process more feasible and
efficient.

In the Peg Insertion task, the robot arm is set to frequently switch among different pegs to help
the agent acquire multi-tasking skills. To facilitate this, we design a shelf to hold spare pegs while
the robot arm is handling one. With the fixed position of the shelf, we pre-programmed a peg-
switching routine, eliminating the need for manual peg replacement. After switching, the robot arm
automatically moves the peg to the workspace and randomizes its initial position for training.

In the Cable Routing task, manual resets are unnecessary, as the robot arm can auto-reset the cable by
simply moving back to its initial position with added randomness.

In the Tabletop Golf task, we design an auto-collection mechanism to reset the task. As shown in
Figure 10c, the tabletop golf device has two layers: the top golf court surface and a lower inclined
floor. When the ball is hit into the hole or out of bounds, it rolls down to the corner of the lower layer,
where a light sensor triggers a motor to return the ball to the court. The variability in the ball’s initial
velocity during reset introduces randomness to its starting position.

(b)(a) (c)

Figure 10: Blueprints of the self-designed mechanisms for the three real-world robotic manipu-
lation tasks (from left to right: Peg Insertion, Cable Routing, and Tabletop Golf).

D TIME EFFICIENCY OF MENTOR

We run all simulation and real-world experiments on an Nvidia RTX 3090 GPU and assess the speed
of the algorithms compared to baselines. Frames per second (FPS) is used as the evaluation metric
for time efficiency.

For simulation, we use the Hopper Hop task to compare time efficiency, as shown in Table 4. While
MENTOR demonstrates significant sample efficiency, its time efficiency is relatively lower. This is
primarily due to the implementation of a plain MoE version in this work, where input feature vectors
are passed to all experts, and only the top-k outputs are weighted and combined to generate the final
output. In most tasks, the active expert ratio (i.e., top-k/total number of experts) is equal to or below
25%. More efficient implementations of MoE could significantly improve time efficiency, which we
leave for future exploration.

Table 4: Comparison of time efficiency in the simulation task (FPS).

Task Name MENTOR DrM DrQ-v2 ALIX TACO
Hopper 37 55 78 49 23

We also evaluate time efficiency on three real-world tasks, as shown in Table 5. In real-world
applications, the primary bottlenecks in improving time efficiency are data collection efficiency and
reset speed. Additionally, the sample efficiency of the RL algorithm plays a crucial role. If the
algorithm has low sample efficiency, it may take many poor actions over a long training period,
leading to frequent auto-resets and ultimately lowering the overall FPS.
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As a result, MENTOR and DrM achieve similar levels of efficiency. However, due to its superior
learning capability, MENTOR quickly acquires skills and transitions out of the initial frequent-reset
phase faster than DrM, leading to slightly better overall time efficiency during training.

Table 5: Comparison of time efficiency in real-world tasks (FPS).

Task Name MENTOR DrM
Peg Insertion 0.46 0.40
Cable Routing 0.67 0.62
Tabletop Golf 0.52 0.47

E MENTOR IN REAL-WORLD MULTI-TASKING PROCESS

Figure 11 shows the utilization of experts in the Peg Insertion task for various plug shapes. Each shape
is handled by some specialized experts, which aids in multi-task learning. This specialization helps
mitigate gradient conflict by directing gradients from different tasks to specific experts, improving
learning efficiency, as discussed in the main text.

0 2 4 6 8 10 12 14
Expert ID

Ta
sk

 ID

Expert Selection Heatmap

0.2

0.4

0.6

0.8

1.0

Figure 11: Expert utilization on Peg Insertion task. This figure shows the usage intensity of the 16
experts in MENTOR during the Peg Insertion task for three different plug shapes.

F ABLATION STUDY ON KEY CONTRIBUTIONS

More detailed rebuttal results could be found at REBUTTAL WEBSITE.

We conducted additional ablation studies on five diverse tasks: Hopper Hop, Disassemble, Coffee-
Push (Sparse), Soccer (Sparse), and Hammer (Sparse). These studies aim to decouple the effects of
the MoE architecture and the Task-oriented Perturbation (TP) mechanism proposed in our paper.

For the experiments, we evaluate four ablated versions of MENTOR using the same four random
seeds as in the original experiments, as shown in Figure 12:

• MENTOR: Full model with both MoE and Task-oriented Perturbation.

• MENTOR_w/o_TP: Task-oriented Perturbation is replaced with random perturbation.

• MENTOR_w/o_MoE: The policy backbone uses an MLP architecture instead of MoE.

• MENTOR_w/o_TP_MoE: Neither MoE nor Task-oriented Perturbation is used.
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The results, summarized below, demonstrate the individual contributions of each component:

MENTOR_w/o_MoE consistently outperforms MENTOR_w/o_TP_MoE and MENTOR_w/o_TP
outperforms MENTOR_w/o_TP_MoE in 4 out of 5 tasks, indicating that both the MoE architecture
and Task-oriented Perturbation independently contribute to improved policy learning.

However, the overall sample efficiency and performance of MENTOR_w/o_TP and MEN-
TOR_w/o_MoE remain lower than the full MENTOR model. This underscores the complementary
nature of these two components in enhancing the overall learning efficiency and robustness of
MENTOR.
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Figure 12: Ablation study on key contributions. This figure shows the experiment result of four
ablated versions of MENTOR using the same four random seeds as in the original experiments,
illustrating our Mixture-of-Experts (MoE) and Task-oriented Perturbation (TP) are both significant to
improving performance.

G MIXTURE-OF-EXPERTS ALLEVIATION GRADIENT CONFLICTS IN SINGLE
TASK

In Meta-World, manipulation tasks are associated with compound reward functions that typically
include components such as reaching, grasping, and placing. Conflicts between these objectives can
arise, creating a burden for shared parameters.

To validate this, we analyze the gradient cosine similarities for the Assembly task. The Assembly
task, as shown in Figure 4 can naturally be divided into four stages: Grasp, Move, Assemble, and
Release.

To illustrate how Mixture-of-Experts alleviates gradient conflicts in a single task, we evaluate the
cosine similarities of gradients on the corresponding four stages for both MLP and MoE agents, as
shown in Figure 13. The result show that the MLP agent experiences gradient conflicts between
grasping and the other stages. This can occur because the procedure of reaching to grasp objects could
increase the distance between the robot and the target pillar, leading to competing optimization signals.
In contrast, the MoE agent mitigates these conflicts, achieving consistently positive gradient cosine
similarities across all stage pairs. This validates the ability of the MoE architecture to alleviate the
burden of shared parameters and facilitate more efficient optimization, even in single-task scenarios.
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Figure 13: Cosine similarity of multistage in a single task. This figure shows the cosine similarities
of gradients on the corresponding four stages (Grasp, Move, Assemble, and Release) for both MLP
and MoE agents.

H RANDOM DISTURBANCES IN SIMULATION

To demonstrate the generalization capabilities of the agents trained by MENTOR, we have introduced
random disturbances in the real-world experiments presented in Section 4.2. Additionally, we make
evaluation of Meta-World Assembly task with random disturbance. In detail, the training phase
remains unchanged, but during evaluation, we introduce a random disturbance: after the robot
grasps the ring and moves toward the fitting area, the fitting pillar randomly changes its location
(Disturbance). This forces the robot agent to adjust its trajectory to the new target position. Figure 14
shows the agent consistently accomplishes Assembly task even with the disturbance, showing the
policies learned by MENTOR exhibit strong robustness against disturbances.

  

Start Execution Disturbance Success!

Figure 14: Random Disturbances in Simulation. This figure shows the execution of the learned
agent using MENTOR. The agent consistently accomplishes Assembly task even with the disturbance.
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