
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CEDAR: A COUNTER-EXAMPLE DRIVEN AGENT
WITH REGULAR RESTRICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce CEDAR, a Counter-Example Driven Agent with Regular Restriction
in Minecraft, which learns and encodes informal specifications and skills as reg-
ular languages. Large language models (LLMs) interpret intent and help select a
compact, task-specific sub-alphabet; deterministic finite automata (DFAs) provide
a canonical, composable temporal scaffold for execution and checking. CEDAR
learns skill DFAs via active grammatical inference, reuses them by template adap-
tation (verb-fixed, noun-substituted alphabets), and enforces human constraints
by DFA composition (e.g., intersection with “sleep at night”). A counterexam-
ple loop ties together environment logs, specifications, and learned DFAs under
a probabilistic membership oracle. Across Minecraft and iTHOR, CEDAR im-
proves controllability and amortized efficiency over program-generating agents
under matched wall-clock and LLM-query budgets, while enabling symbolic skill
retrieval and verification.

1 INTRODUCTION

LLM-based agents have achieved significant success in control and planning within complex open-
world environments Wang et al. (2023a); Liu et al. (2024b); Zhu et al. (2023); Liu et al. (2023);
Yan et al. (2023); Yao et al. (2023b); Tsai et al. (2023); Wang et al. (2024b). Early research ex-
plored using LLM-generated structured programming techniques to enhance robotic manipulation
and gameplay Liang et al. (2023); Sun et al. (2020); Zhao et al. (2021); Singh et al. (2022); Wang
et al. (2024a). To improve the quality of the generated code, researchers are incorporating environ-
ment feedback Huang et al. (2022); Shinn et al. (2023), advanced prompts Wei et al. (2023); Yao
et al. (2023b), and external knowledge retrieval Wang et al. (2024c); Zhu et al. (2023).

Despite these advancements in control, planning remains a significant challenge in open-world en-
vironments Kolve et al. (2017a); Fan et al. (2022); Puig et al. (2023). Various planning approaches
have been developed, such as task decomposition Wang et al. (2023a); Zhu et al. (2023), elaborate
prompts Wang et al. (2024b); Zhang et al. (2023), multi-modal information Qin et al. (2024); Zheng
et al. (2023); Wang et al. (2023b); Zhao et al. (2024), and skill management Wang et al. (2023a);
Yuan et al. (2023); Zhu et al. (2023). Goal completion is a common way to evaluate the effectiveness
of these planning methods in open-world environments Wang et al. (2023a); Zhu et al. (2023); Wang
et al. (2023b), as it requires understanding natural language and mapping high-level commands to
precise, executable actions in specific contexts. However, there is currently no way to logically
verify if the LLM-generated executable policy fully understands and obeys human specifications,
potentially leading to unexpected or harmful results Yao et al. (2024); Gu et al. (2024); Moos et al.
(2022).

To ensure that LLM-generated executable policies adhere to human instructions and bridge the gap
between natural and regular language, we implement a logic verifier. This is complemented by
methods like autoformalization Wu et al. (2022); Giannakopoulou et al. (2021) and LLM-based
automata learning Vazquez-Chanlatte et al. (2024); Alsadat et al. (2024); Chen et al. (2024). In this
paper, we utilize LLM-based automata learning to formalize informal specifications and address the
challenge of planning in open-world environments while adhering to human specifications.

To achieve this, we introduce CEDAR, a Counter-Example Driven Agent in Minecraft that learns
skills through DFA learning to align with informal specifications. CEDAR consists of three main
components: 1. DFA Learner, which learns skills in the form of DFAs based on formalized human

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: CEDAR Workflow. CEDAR is built around three essential components: 1. DFA Learner
which leverages active learning algorithms for continuous, lifelong learning and goal-directed skill
acquisition, to construct DFAs representing various skills. 2. Skill Manager which manages the
repository of learned skills and adapts them to new tasks by adjusting the DFA’s alphabet as needed.
3. Verifier which ensures that the DFAs learned by the system conform to human specifications.
It converts these natural language specifications into DFAs and then cross-checks them against the
skill DFAs to detect any discrepancies.

specifications utilizing DFA learning algorithms. The LLM oracle answers membership queries
for active DFA learners. 2. Skill Manager that is responsible for storing the learned skills and
extending them to new tasks by modifying the alphabet of the corresponding DFA. 3. Verifier, which
takes human specifications as input and formalizes them into DFAs using a human-in-the-loop DFA
learning paradigm where the human provides counterexamples to the hypothesis learned by an LLM.
The output formal specifications are given to the DFA learner. Once the DFA learner has learned
a skill, the verifier checks if this hypothesis DFA violates any formalized human specifications and
provides a counterexample.

We encode both skills and human specifications as DFAs over a compact, LLM-assisted
sub-alphabet; the environment supplies counterexamples while the LLM answers (noisy) member-
ship queries, and we refine policies until execution and specifications agree. DFAs give CEDAR
three concrete advantages over program-generation baselines such as VOYAGER Wang et al.
(2023a): (i) a minimal canonical structure with closure under intersection for constraint enforce-
ment; (ii) an explicit failure interface (counterexamples) that repairs skills; and (iii) template adapta-
tion—reusing verb-specific automata by substituting object/event symbols—enabling data-efficient
transfer.

Our main contributions are: (i) A practical regular-language scaffold for embodied skills:
LLMs ground intent; DFAs supply verifiable temporal structure. (ii) RAG-based sub-alphabet con-
struction that makes learning tractable in large action/object/event spaces. (iii) Template-DFA adap-
tation and a bidirectional counterexample loop that keep specifications, skills, and environment
behavior consistent under noisy oracles.

2 RELATED WORK

Active DFA learning. Classical active automata learning (e.g., L* Angluin (1987)) identifies a
target DFA using membership queries (MQs) and equivalence queries (EQs) posed to a (minimally
adequate) teacher. Numerous refinements study counterexample processing, efficiency, and prac-
tical robustness; passive state-merging methods such as RPNI/EDSM Lang et al. (1998); Oncina
& Garcı́a remain influential but require labeled corpora rather than interaction. Recent work treats
noisy oracles and probabilistic teachers, introducing consistency mechanisms and query budgets;
our instantiation follows the probabilistic MAT (pMAT) view with LAPR for cache consistency
under stochastic MQs Chen et al. (2024). In CEDAR (Sec. 3.2), the environment implements
the EQ oracle and the LLM implements the MQ oracle, enabling on-policy data collection and
counterexample-driven refinement.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A growing line of work uses LLMs to induce or interact with formal structure. Closest to us are
approaches that use LLMs as (noisy) teachers for regular languages—answering MQs, proposing
candidate DFA structure, or summarizing traces into symbolic events Chen et al. (2024). Or-
thogonal but complementary are methods translating natural language into temporal logics, e.g.,
NL2LTL Fuggitti & Chakraborti (2023), data-efficient NL→LTL for robot tasking Pan et al. (2023),
and Lang2LTL-2 for grounded spatiotemporal commands Liu et al. (2024a). These typically per-
form one-shot translation and do not execute or refine policies online; they also fixed to one certain
area (e.g. where the pre-train dataset from); CEDAR instead executes and repairs DFAs via coun-
terexamples, while remaining compatible with LTL front-ends (e.g., compiling LTL monitors to
regular abstractions when possible).

ReAct Yao et al. (2023a) synergizes reasoning traces with tool-use to interleave “thought” and “act.”
It improves sample-efficiency and transparency in web and question-answering settings, but does
not endow agents with canonical temporal controllers or formal operations over behaviors. Voy-
ager Wang et al. (2023a) pioneered open-ended skill discovery in Minecraft by prompting an LLM
to synthesize executable JavaScript skills, storing them in a growing library with automatic curricu-
lum and retrieval. While powerful, code-based skills lack canonical structure, making formal veri-
fication and composition (e.g., intersection for constraint enforcement) difficult. CEDAR replaces
free-form programs with minimal DFAs over a task-specific alphabet obtained via RAG (Fig. 2), en-
abling symbolic retrieval, exact composition (intersection/concatenation), and online repair through
counterexamples (Sec. 3.4).

ADAM Yu & Lu (2025) advocates causal graphs as intermediate structure for embodied agents in
open worlds. Such structure is complementary to our RAG-based alphabet construction: causal re-
lations can guide symbol discovery (e.g., prerequisite events) and suggest safer exploration policies
before DFA synthesis. SELP Wu et al. (2025) demonstrates majority-group voting schemes to vali-
date LLM-generated plans. In our setting, similar aggregation can be used to denoise MQ answers
before caching (cf. LAPR), or to vet counterexample explanations prior to updating the hypothesis
DFA.

Compared to code-generating agents (e.g., Voyager), CEDAR trades some expressivity for canoni-
cality, verifiability, and compositionality. Compared to NL→LTL translators, CEDAR targets online
policy learning and repair with environment-supplied counterexamples, while remaining compati-
ble with temporal-logic front-ends. Relative to ReAct-style planners, CEDAR supplies an explicit,
minimal controller with closure properties and a clear failure semantics (rejecting states and prod-
uct constructions). Finally, while classic passive learners (RPNI/EDSM) inform our background,
CEDAR’s operational loop is fully active, leveraging a probabilistic teacher and an environment EQ
oracle to support both goal completion and continual (lifelong) acquisition.

3 METHOD

3.1 LLM–ASSISTED DFA LEARNING

Notation. Let APact,APobj,APevt be the global sets of action, object, and event–monitor sym-
bols. The global alphabet is Σglobal := APact ⊎ APobj ⊎ APevt (disjoint union). For a task,
Retrieval–Augmented Generation (RAG) returns a finite sub-alphabet Σ ⊆ Σglobal. A word is a
sequence w ∈ Σ∗ extracted from logs; a language is L ⊆ Σ∗. We denote the stochastic membership
oracle byOMQ : Σ∗→{0, 1} and maintain caches CMQ, CEQ ⊆ Σ∗×{0, 1} for answered MQs and
EQ labels/counterexamples.

LLMs map informal instructions to semantic neighborhoods (verbs, objects, conditions) but do not
provide canonical temporal structure or guarantees. DFAs provide minimal, canonical automata
with closure properties and efficient checking. CEDAR fuses the two: LLMs select a compact
sub-alphabet and answer noisy membership queries; DFAs scaffold execution and verification; coun-
terexamples circulate between the environment and specifications to repair both.

Sub-alphabet construction (RAG). Because the Minecraft interface exposes many APIs, skills,
and > 1000 objects, selecting Σ is a specification-decomposition step. Each symbol in Σglobal has
a textual description. Given a human specification, we embed it and retrieve symbol candidates by
cosine similarity; top candidates from APact,APobj,APevt are injected into prompts so the LLM

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Global Alphabet

Actions

Control Primitives
Craft[]
exploreUntil[]
getPlaced[]back
Kill[]
Mine[]
Place[]
Shoot[]
Smelt[]
Get[]FromChest
Deposit[]IntoChest

Events
Inventory Changes
Time of Day
On Ground
Life Status
In Water
In Lava
Movements
Collisions

Objects

"andesite"
"andesite_wall"
"attached_pumpkin_stem"
"barrel"
"basalt"
"beacon"
"bedrock"
…
"zombified_piglin_spawn_egg"

Specification

Text Embedding

Prompter

Symbols

LLM

Please use the symbols provided in `{}` to construct an alphabet for a DFA
representing the specification `{}` in Minecraft. Follow these rules:
1. Combine verbs with appropriate nouns: some verbs (e.g., "mine",
"exploreUntilFind") should only be paired with blocks, others (e.g., "smelt", "place")
with items, and some (e.g., "kill") with entities.
2. Events should be stand-alone symbols and not combined with other symbols.
3. If certain symbols are irrelevant to the specification, omit them.

Figure 2: Global alphabet and RAG. From Σglobal (control primitives, objects, events), RAG
retrieves task-relevant symbols to form a sub-alphabet Σ.

proposes Σ (details in Appx. A.4). If Σ is incomplete, the target DFA cannot be learned (often yield-
ing no accepting state in practice). We analyze the erroneous DFA and reuse EQ counterexamples
to refine retrieval and expand Σ (Fig. 2).

Finite abstractions. Although DFAs cannot count unboundedly, many tasks admit milestone mon-
itors (e.g., has ≥3 cobblestone) that render a finite Σ. We encode bounded accumulation via
such monitors.

3.2 DFA LEARNER

We learn DFAs actively via queries in a probabilistic MAT (pMAT) setting Angluin (1987); Chen
et al. (2024). An active learner maintains a DFA hypothesis and interacts with two oracles: (i)
an LLM that answers membership queries (MQs) stochastically, and (ii) an environment-backed
equivalence oracle (EQ) that returns counterexamples when the hypothesis is wrong. We use LAPR
Chen et al. (2024) to ensure cache consistency under noisy MQs.

We distinguish DFAs for specifications and for skills; the former are used by the verifier (Sec. 3.4),
while this section focuses on skill learning with a single unified active loop.

Active learning loop. Given Σ, the learner repeatedly:

1. issues MQs on words w∈Σ∗; the LLM returns labels recorded in CMQ,

2. synthesizes/updates a DFA hypothesis consistent with CMQ under LAPR,

3. queries the EQ oracle by executing the hypothesis in a wrapper environment that logs events
and a word extractor that maps logs to words; any mismatch yields a labeled counterexam-
ple added to CEQ,

4. if counterexamples indicate missing symbols, re-query RAG to refine Σ and restart the loop
on the expanded alphabet.

Goal completion. The loop terminates when the environment confirms the goal has been achieved
and no counterexamples are found within the time/interaction budget. The resulting DFA is stored
in the Skill Manager.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: DFA Intersection Operation: The intersection creates a new DFA that accepts only the
words accepted by both original DFAs. The top DFA represents the specification “Please sleep at
night,” while the bottom DFA corresponds to the skill “Mine diamond ore.” Edges to rejecting
states are omitted for clarity.

Lifelong learning. CEDAR continues beyond a single goal: after completion, it discovers the
next goal, constructs a new sub-alphabet via RAG, and re-runs the same active loop to produce a
new DFA. We initialize action symbols with control primitives aligned with VOYAGER Wang et al.
(2023a) (lightly renamed to improve prompting). Actions outside the current Σ default to rejection
until RAG expands Σ in response to counterexamples. This continual process accumulates a library
of DFAs that grow in scope and robustness.

3.3 SKILL MANAGER

A skill is stored as a tuple ⟨A, v, n, E,D⟩, where v ∈ APact is a verb, n ∈ APobj is an object,
E ⊆ APevt is the set of success events, and D ⊆ Σ∗×{0, 1} collects labeled evidence used to
construct A. For learned DFAs,

D = {(w, y) | (w, y) ∈ CMQ} ∪ {(w, y) | (w, y) ∈ CEQ}.
We write the induced positive and negative sets as D+ = {w | (w, 1) ∈ D } and D− = {w |
(w, 0) ∈ D }. To use DFAs as policies, we execute actions along the shortest path from the cur-
rent state to an accepting state. If an invoked action is absent from logs, we treat it as a failure,
temporarily remove the corresponding edge, and recompute a shortest accepting path.

Retrieval and templating. Given a query (v′, n′), the manager matches stored (v, n) skills. If
both match, we return the skill. If v′ ̸= v, no skill is returned. If v′ = v but n′ ̸= n, we retrieve all
skills with verb v and pass them as context to the LLM to select a template DFA; the noun-specific
sub-alphabet is substituted and all transition symbols δA (and examples in D) are updated accord-
ingly. The modified DFA is then refined by the active learner rather than trained from scratch.

3.4 VERIFIER

The verifier ensures that learned skills align with human specifications (goals and constraints given
in natural language). It translates each specification into a regular language via active DFA learning:
the LLM answers MQs, while humans serve as the EQ oracle to validate counterexamples and
maintain intent; LAPR keeps MQ/EQ caches consistent. Alphabet selection for each specification
uses the same RAG pipeline as skills (see Fig. 1 and Appx. A.4).

There are two main advantages to representing human specifications and skills as DFAs. First,
DFAs derived from specifications can check compliance by matching words extracted from new
logs. When a violation is detected, we merge alphabets and take the intersection of the skill and
specification DFAs to obtain a compliant policy (Fig. 3). Formally, for skills

s1 = ⟨A1, v1, n1, E1, D1⟩, s2 = ⟨A2, v2, n2, E2, D2⟩,
their conjunctive merge is

sconj = ⟨A∩, v, n, E1 ∪ E2, D1 ∪D2⟩,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: Comparison of action counts and average health across time for VOYAGER and CEDAR.
The human instruction here is to ”craft a diamond pickaxe and keep collecting diamonds. Please
sleep at night. You are given a bed.” (a) and (b) depict the number of actions per 1000 ticks for the
VOYAGER and CEDAR agents; (c) and (d) show the average health of the agent per 1000 ticks for
VOYAGER and CEDAR. The results were averaged over five trials that last three days each time on
the same map.

with acceptance w ∈ L(A∩) ⇐⇒ w ∈ L(A1) ∧ w ∈ L(A2) and A∩ = A1 ∩ A2 (product
construction, accepting states F1 ∩ F2).

Second, DFAs support skill chaining via concatenation, even without specifications. Let A1 (e.g.,
craft and equip a pickaxe) and A2 (mine a diamond). Concatenate by merging each accepting state
of A1 with the initial state of A2 (state relabeling) to obtain

scon = ⟨A◦, v, n, E1 ∪ E2, D1 ◦D2⟩,

with w ∈ L(A◦) ⇐⇒ ∃x, y ∈ Σ∗ : w = x · y, x ∈ L(A1), y ∈ L(A2), and D1 ◦D2 = {w1·w2 |
w1 ∈ L(A1), w2 ∈ L(A2) }.

4 EMPIRICAL RESULT

In this section, we evaluate our method within the Minecraft game environment and the iTHOR
simulator (Kolve et al., 2017b), demonstrating its advantages over the popular VOYAGER Wang
et al. (2023a). We begin by assessing the CEDAR agent’s ability to follow human instructions across
various settings. Following this, we measure our method’s performance in terms of the success rate
in completing specific tasks. We then compare the lifelong learning efficiency of our method against
VOYAGER. Finally, we test the generality of our approach by extending the learned skills to unseen
tasks. The LLMs we used in the evaluation are gpt-4o for task decomposition and answering
membership queries, gpt-4o-mini for JSON translation, and text-embedding-3-large
for computing text embeddings. To ensure a fair comparison with VOYAGER, human-provided
counterexamples (CEs) are not used in any task-completion experiment, including those reported in
Tables 2 and 1. All CEs during evaluation are collected automatically from environment interaction
via the EQ-oracle. Human-provided CEs are used only to refine high-level constraint DFAs in our
specification-following demonstrations and are not required for learning task-specific skills.

4.1 HUMAN SPECIFICATION FOLLOWING STUDY

In the experiments focused on following human specifications, both the VOYAGER and CEDAR
agents were given a goal with a specification to constrain the agent’s policy. In real-world scenar-
ios, agents often face potential dangers, represented here by randomly generated zombies at night
in Minecraft. Using sleep to bypass the night is an effective strategy in such situations. For this
experiment, the goal was to collect diamonds with the specification to sleep at night. The difficulty
of the game is set to normal for monster generation. Both VOYAGER and CEDAR were spawned
in the same location and world, and each was provided with a bed to eliminate the variable of bed
crafting, allowing us to focus on how well each agent understands and follows the human specifi-
cation. The results in Figure 4 demonstrate that CEDAR, which enforces strict adherence to human
instructions using DFAs, successfully prevents the agent from working during midnight. Notably,
the CEDAR agent maintains higher health levels during the night, reflecting its compliance with the
sleep instruction, while VOYAGER chooses to contend with monsters spawned at night.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Statistics on the action count and objects gained for our approach and popular MineCraft
agent VOYAGER. The results are presented as mean ± standard deviation (successful trials / total
trials).

Method Action Counts Underground Overground Items Gained Objects
VOYAGER 106± 5 152± 47 50± 10 27± 7 229± 44
CEDAR (Ours) 138± 10 195± 31 136± 18 58± 6 388± 36

In Minecraft, having a well-crafted plan that guides the agent on what to do and when to do it
is crucial for efficient exploration, as some activities are highly time-sensitive like villager trading
and honey collection. In this experiment, we assigned the agents the goal of exploring the world
with the specific instruction to mine minerals only at night. Since mining can be done at any time
and typically involves minimal monster encounters if not digging in natural caves or mines, the
safer daytime hours can be better utilized for other tasks. Figure 5 illustrates that CEDAR adheres
to this instruction, optimizing the use of daytime for item collection and reserving nighttime for
mineral extraction. In contrast, VOYAGER fails to follow the instruction, leading to inefficient use of
daytime. VOYAGER frequently moves between underground and overground places, wasting time
and resulting in fewer actions and items collected. The objects obtained by VOYAGER are irregular,
whereas CEDAR predominantly collects underground blocks at night. Moreover, Table 1 shows the
total amount of objects collected by CEDAR exceeds that of VOYAGER. These results demonstrate
the effectiveness of CEDAR in better utilizing daytime opportunities by strictly following human
instructions.

The spatial distribution of objects in Minecraft is highly dependent on biomes; staying within a
specific biome can significantly enhance the collection speed of resources native to that biome. In
this experiment, we instructed the agents to explore within a biome called windswept forest.
By integrating biome symbols into the sub-alphabet for learning human specifications and skills,
CEDAR is able to comprehend biome information within game events and use it to constrain its
activity area.

As shown in the agent activity area heatmap in Figure 6, the VOYAGER agent ignored the human
specification of staying within the windswept forest biome (the area in green) and traversed
across different biomes. In contrast, the CEDAR agent effectively restricted its activities to the
designated biome, adhering to the given instruction.

Both the VOYAGER and CEDAR agents had sufficient information observed from the Minecraft
environment, yet VOYAGER failed to follow four types of human specifications. There are two
main reasons for this failure. First, VOYAGER decomposes human specifications into sub-tasks
rather than a set of constraints. This approach means that once the corresponding sub-task is com-
pleted, VOYAGER disregards it. In the first experiment shown in Figure 4, the VOYAGER agent did
indeed sleep on the first night, but subsequently forgot this constraint and continued collecting dia-

Figure 5: Comparison of action counts and collected objects across time for VOYAGER and
CEDAR. Subplots (a) and (b) depict the total number of actions per 1000 ticks for VOYAGER
and CEDAR, respectively. Subplots (c) and (d) present the distribution of underground blocks, over-
ground blocks, and items collected per 1000 ticks. The given instruction was ”explore the world and
collect as many different items as possible, but you can only dig for minerals like iron and diamond
at night.” The experiment was repeated on the same map and spawn location 5 times, with each trial
lasting 3 days.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison between VOYAGER and CEDAR across different crafting tasks.
The results are presented as mean ± standard deviation (successful trials / total trials). The values
represent the mean and standard error of the prompting iterations, and the fractions indicate the
number of goal completions out of total trials. The tasks to the left of the second vertical line are
included in the skill library (S.L.) for both agents. w/o S.L means it starts without skill library.

Method Wooden Pickaxe Iron Pickaxe Diamond Pickaxe Lava Bucket Compass
VOYAGER w/o S.L. 7± 2 (5/5) 29± 6 (5/5) 35± 12 (2/5) 29± 9.6 (4/5) 26± 2.9 (3/5)
VOYAGER 4.4± 2.5 (5/5) 17± 3.5 (5/5) 26± 11 (3/5) 23± 5.4 (5/5) 18± 1.5 (5/5)
CEDAR w/o S.L. 6± 3 (5/5) 31± 3 (5/5) 41± 11 (3/5) 28± 4.5 (5/5) 29± 2.5 (2/5)
CEDAR (Ours) 6± 3 (5/5) 11± 5.5 (5/5) 20± 6.5 (5/5) 10± 7.7 (5/5) 10± 2.1 (5/5)

Figure 6: The background
colors denote various
biomes, and the heatmap
overlay represents the bot’s
activity. CEDAR follows
the human instruction to
“explore the world but stay
in the windswept forest.”
The heatmap intensity
indicates the frequency of
the bot’s activities, with
deeper colors representing
areas of higher activity.

monds both day and night. In contrast, CEDAR learns the specification as a regular language, which
continuously reinforces the instruction for the agent to sleep at night. Second, VOYAGER lacks a
mechanism to ensure that the generated program fully adheres to human specifications. In contrast,
CEDAR enforces that the DFAs of learned skills are free from counterexamples when tested against
the DFAs of human specifications. This approach provides validation that the learned skills align
with the given human specifications.

4.2 GOAL COMPLETION PERFORMANCE

(a) Make a toast

(c) Cook a potato

(b) Make coffee

Figure 7: iTHOR rollouts guided by DFAs. Time-lapse frames (left→ right) of three representative
tasks executed in iTHOR using CEDAR: top—MAKE 1 TOAST (locate bread, place in toaster, toast);
middle—MAKE COFFEE (place mug, operate machine); bottom—COOK POTATO (open microwave,
place potato, heat). Rows are separated by black bars. Policies are induced from DFAs learned with
an LLM MQ-oracle and an environment-backed EQ-oracle that supplies counterexamples.

Minecraft Tasks. We evaluated the goal-completion performance of our method by comparing
success rates across different tasks with VOYAGER. The results presented in Table 2 underscore

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

two principal advantages of CEDAR: (1) the skills acquired by CEDAR exhibit greater robustness,
and (2) CEDAR is capable of efficiently extending these learned skills to previously unseen tasks.
CEDAR demonstrates efficiency in task resolution when the relevant skills are already included in
the skill library, necessitating only a single LLM query to translate the goal into a regular language.
For unseen tasks, CEDAR surpasses VOYAGER by extending the learned skills through straightfor-
ward modifications to the alphabet of the DFAs corresponding to those skills. However, a drawback
of CEDAR is that it requires a greater number of LLM prompting iterations to accurately learn a
DFA for a given skill. This is due to its iterative process of testing the DFA in the environment
until no counterexamples remain, thereby requiring continuous querying of the LLM for additional
examples.

iTHOR Tasks To evaluate beyond Minecraft, we ran five iTHOR tasks—MAKE 1 TOAST,
MAKE COFFEE, COOK POTATO, MAKE SALAD, STORE PLATE IN FRIDGE—using the standard
CEDAR pipeline with RAG-based alphabet construction (no skill library, as tasks are simple). Fig-
ure 7 visualizes three representative rollouts: toast, coffee, and potato. Most tasks succeeded in
one shot; the exception was COOK POTATO, where unstable camera perspective caused a miss. The
EQ-oracle surfaced a counterexample, after which inserting a LOOKUP action into the DFA enabled
the agent to adjust its view and complete the task (bottom row of Fig. 7). LLM query costs for these
experiments are reported in Appendix A.7.

5 CONCLUSION

This paper presents CEDAR, a Counter-Example Driven Agent with Regular Restrictions, developed
for the Minecraft environment. CEDAR incorporates human specifications formalized as DFAs, en-
abling the agent to learn and refine skills in alignment with these specifications. By active DFA
learning algorithms, the agent adapts to new tasks and improves existing skills through interaction
with the environment. Empirical evaluations suggest that CEDAR offers improvements over prior
methods such as VOYAGER, particularly in terms of controllability, robustness, and extensibility.
The use of DFAs helps maintain adherence to human instructions, reducing the likelihood of unin-
tended behaviors. Additionally, CEDAR’s ability to extend learned skills to new tasks by modifying
the DFA alphabet contributes to its adaptability in open-world settings. By integrating formal verifi-
cation techniques with learning algorithms, this work explores how autonomous agents can be made
more reliable and responsive to human-specified constraints in complex environments.

Reproducibility Statement. We release an anonymous archive in the supplementary materials
containing all code, configuration files, and scripts needed to reproduce our results, including the
DFA learner (LAPR/pMAT instantiation), the word–extraction logger, the verifier, and the full
Retrieval-Augmented Generation (RAG) implementation with exact prompts and embedding set-
tings. We also provide cached MQ/EQ logs, precomputed DFAs used in figures/tables, and seed-
s/world identifiers for all runs to enable exact regeneration of reported numbers. Experimental
protocols and evaluation metrics are specified in the main text (Sec. 3.2 and Empirical Result), with
additional implementation details and RAG settings in Appendix A.4. All hyperparameters, random
seeds, and query budgets are listed in the appendix and config files; scripts are included to regenerate
every table and figure from raw logs. No human counterexamples are used in task-completion results
(only environment-collected CEs), ensuring they can be reproduced end-to-end from the provided
materials.

REFERENCES

Shayan Meshkat Alsadat, Jean-Raphael Gaglione, Daniel Neider, Ufuk Topcu, and Zhe Xu. Using
large language models to automate and expedite reinforcement learning with reward machine,
2024.

Dana Angluin. Learning regular sets from queries and counterexamples. Information and computa-
tion, 75(2):87–106, 1987.

Lekai Chen, Ashutosh Trivedi, and Alvaro Velasquez. Llms as probabilistic minimally adequate
teachers for dfa learning, 2024. URL https://arxiv.org/abs/2408.02999.

9

https://arxiv.org/abs/2408.02999

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embod-
ied agents with internet-scale knowledge, 2022. URL https://arxiv.org/abs/2206.
08853.

Francesco Fuggitti and Tathagata Chakraborti. NL2LTL – a python package for converting natural
language (NL) instructions to linear temporal logic (LTL) formulas. In AAAI Conference on
Artificial Intelligence (AAAI), System Demonstrations, 2023. doi: 10.1609/aaai.v37i13.27068.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann Schumann. Au-
tomated formalization of structured natural language requirements. Information and Soft-
ware Technology, 137:106590, 2021. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.
2021.106590. URL https://www.sciencedirect.com/science/article/pii/
S0950584921000707.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theory and applications, 2024. URL https:
//arxiv.org/abs/2205.10330.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models, 2022. URL https://arxiv.org/abs/2207.
05608.

Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-
THOR: an interactive 3d environment for visual AI. CoRR, abs/1712.05474, 2017a. URL http:
//arxiv.org/abs/1712.05474.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017b.

Kevin J Lang, Barak A Pearlmutter, and Rodney A Price. Results of the abbadingo one dfa learning
competition and a new evidence-driven state merging algorithm. In International Colloquium on
Grammatical Inference, pp. 1–12. Springer, 1998.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control, 2023. URL
https://arxiv.org/abs/2209.07753.

Jason Xinyu Liu, Ankit Shah, George Konidaris, Stefanie Tellex, and David Paulius. Lang2ltl-
2: Grounding spatiotemporal navigation commands using large language and vision-language
models. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024a.
URL https://spatiotemporal-ground.github.io/.

Shunyu Liu, Yaoru Li, Kongcheng Zhang, Zhenyu Cui, Wenkai Fang, Yuxuan Zheng, Tongya
Zheng, and Mingli Song. Odyssey: Empowering agents with open-world skills, 2024b. URL
https://arxiv.org/abs/2407.15325.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents, 2023. URL https://arxiv.org/abs/
2308.03688.

Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters. Robust
reinforcement learning: A review of foundations and recent advances. Machine Learning and
Knowledge Extraction, 4(1):276–315, 2022. ISSN 2504-4990. doi: 10.3390/make4010013. URL
https://www.mdpi.com/2504-4990/4/1/13.

José Oncina and Pedro Garcı́a. IDENTIFYING REGULAR LANGUAGES IN POLYNOMIAL TIME,
pp. 99–108. doi: 10.1142/9789812797919 0007.

10

https://arxiv.org/abs/2206.08853
https://arxiv.org/abs/2206.08853
https://www.sciencedirect.com/science/article/pii/S0950584921000707
https://www.sciencedirect.com/science/article/pii/S0950584921000707
https://arxiv.org/abs/2205.10330
https://arxiv.org/abs/2205.10330
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608
http://arxiv.org/abs/1712.05474
http://arxiv.org/abs/1712.05474
https://arxiv.org/abs/2209.07753
https://spatiotemporal-ground.github.io/
https://arxiv.org/abs/2407.15325
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://www.mdpi.com/2504-4990/4/1/13

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiayi Pan, Glen Chou, and Dmitry Berenson. Data-efficient learning of natural language to lin-
ear temporal logic translators for robot task specification. In IEEE International Conference on
Robotics and Automation (ICRA), 2023. URL https://arxiv.org/abs/2303.08006.

Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Part-
sey, Ruta Desai, Alexander William Clegg, Michal Hlavac, So Yeon Min, Vladimı́r Vondruš,
Theophile Gervet, Vincent-Pierre Berges, John M. Turner, Oleksandr Maksymets, Zsolt Kira,
Mrinal Kalakrishnan, Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Ak-
shara Rai, and Roozbeh Mottaghi. Habitat 3.0: A co-habitat for humans, avatars and robots,
2023. URL https://arxiv.org/abs/2310.13724.

Yiran Qin, Enshen Zhou, Qichang Liu, Zhenfei Yin, Lu Sheng, Ruimao Zhang, Yu Qiao, and Jing
Shao. Mp5: A multi-modal open-ended embodied system in minecraft via active perception,
2024. URL https://arxiv.org/abs/2312.07472.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans
using large language models. In Workshop on Language and Robotics at CoRL 2022, 2022. URL
https://openreview.net/forum?id=3K4-U_5cRw.

Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. Program guided agent. In 8th International Confer-
ence on Learning Representations, ICLR, 2020.

Chen Feng Tsai, Xiaochen Zhou, Sierra S. Liu, Jing Li, Mo Yu, and Hongyuan Mei. Can large
language models play text games well? current state-of-the-art and open questions, 2023. URL
https://arxiv.org/abs/2304.02868.

Marcell Vazquez-Chanlatte, Karim Elmaaroufi, Stefan J. Witwicki, and Sanjit A. Seshia. l∗lm:
Learning automata from examples using natural language oracles, 2024. URL https://
arxiv.org/abs/2402.07051.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023a. URL https://arxiv.org/abs/2305.16291.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents, 2024a. URL https://arxiv.org/abs/2402.
01030.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models, 2023b. URL
https://arxiv.org/abs/2311.05997.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents, 2024b. URL https://arxiv.org/abs/2302.01560.

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu, Frank F. Xu, Yiqing Xie, Graham Neubig, and
Daniel Fried. Coderag-bench: Can retrieval augment code generation?, 2024c. URL https:
//arxiv.org/abs/2406.14497.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Yi Wu, Zikang Xiong, Yiran Hu, Shreyash S. Iyengar, Nan Jiang, Aniket Bera, Lin Tan, and Suresh
Jagannathan. SELP: Generating safe and efficient task plans for robot agents with large language
models. In IEEE International Conference on Robotics and Automation (ICRA), Atlanta, USA,
2025. URL https://arxiv.org/abs/2409.19471. Best Paper Award Finalist.

11

https://arxiv.org/abs/2303.08006
https://arxiv.org/abs/2310.13724
https://arxiv.org/abs/2312.07472
https://arxiv.org/abs/2303.11366
https://openreview.net/forum?id=3K4-U_5cRw
https://arxiv.org/abs/2304.02868
https://arxiv.org/abs/2402.07051
https://arxiv.org/abs/2402.07051
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2311.05997
https://arxiv.org/abs/2302.01560
https://arxiv.org/abs/2406.14497
https://arxiv.org/abs/2406.14497
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2409.19471

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models, 2022. URL https:
//arxiv.org/abs/2205.12615.

Ming Yan, Ruihao Li, Hao Zhang, Hao Wang, Zhilan Yang, and Ji Yan. Larp: Language-agent role
play for open-world games, 2023. URL https://arxiv.org/abs/2312.17653.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023a. URL https://openreview.net/forum?id=
WE_vluYUL-X.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv.
org/abs/2210.03629.

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence
Computing, 4(2):100211, June 2024. ISSN 2667-2952. doi: 10.1016/j.hcc.2024.100211. URL
http://dx.doi.org/10.1016/j.hcc.2024.100211.

Shu Yu and Chaochao Lu. Adam: An embodied causal agent in open-world environments. In
International Conference on Learning Representations (ICLR), Poster, 2025. URL https://
openreview.net/forum?id=Ouu3HnIVBc.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Skill reinforcement learning and planning for open-world long-horizon tasks, 2023. URL
https://arxiv.org/abs/2303.16563.

Chi Zhang, Penglin Cai, Yuhui Fu, Haoqi Yuan, and Zongqing Lu. Creative agents: Empowering
agents with imagination for creative tasks, 2023. URL https://arxiv.org/abs/2312.
02519.

Zelin Zhao, Karan Samel, Binghong Chen, and Le Song. Proto: Program-guided transformer for
program-guided tasks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=3BI2dazLpN.

Zhonghan Zhao, Wenhao Chai, Xuan Wang, Li Boyi, Shengyu Hao, Shidong Cao, Tian Ye, and
Gaoang Wang. See and think: Embodied agent in virtual environment, 2024. URL https:
//arxiv.org/abs/2311.15209.

Sipeng Zheng, Jiazheng Liu, Yicheng Feng, and Zongqing Lu. Steve-eye: Equipping llm-based
embodied agents with visual perception in open worlds, 2023. URL https://arxiv.org/
abs/2310.13255.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and Jifeng Dai. Ghost in the minecraft:
Generally capable agents for open-world environments via large language models with text-based
knowledge and memory, 2023. URL https://arxiv.org/abs/2305.17144.

12

https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2312.17653
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
http://dx.doi.org/10.1016/j.hcc.2024.100211
https://openreview.net/forum?id=Ouu3HnIVBc
https://openreview.net/forum?id=Ouu3HnIVBc
https://arxiv.org/abs/2303.16563
https://arxiv.org/abs/2312.02519
https://arxiv.org/abs/2312.02519
https://openreview.net/forum?id=3BI2dazLpN
https://openreview.net/forum?id=3BI2dazLpN
https://arxiv.org/abs/2311.15209
https://arxiv.org/abs/2311.15209
https://arxiv.org/abs/2310.13255
https://arxiv.org/abs/2310.13255
https://arxiv.org/abs/2305.17144

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 RUNTIME COMPARISON

Logs
Crafting Table

Cobblestone
Furnace

Iron Ingot
Diamond

Milestone towards 'Find a Diamond'

10

20

30

40

50

60

70

Cu
m

ul
at

iv
e

LL
M

 Q
ue

rie
s (

lo
we

r i
s b

et
te

r)

Crossover

4

13

25

34

41

75

18 20
23

28 30

37

W1: Runtime Budget Comparison
Voyager
CEDAR

Figure 8: Runtime budget comparison (cumulative LLM queries) for the Find a Diamond task.
Lower is better.

Figure 8 tracks cumulative LLM queries required to reach successive milestones on Find a Diamond
(crafting table→ cobblestone→ furnace→ iron ingot→ diamond). Across the trajectory, CEDAR
reaches each milestone with fewer accumulated queries than VOYAGER, and the gap widens at later
stages. This reflects two design advantages of CEDAR: (i) the RAG–restricted sub-alphabet reduces
query fan-out when proposing actions or verifying preconditions, and (ii) the counterexample-driven
refinement prevents repeated prompt chains on already-disproved behaviors. Practically, this yields
lower amortized query cost for long-horizon tasks while preserving reliability—CEDAR spends
fewer queries “figuring out” what to do and instead reuses validated automata structure to progress
efficiently.

Alphabet construction efficiency. To reduce runtime overhead during DFA construction, we
adopt a modular retrieval strategy that independently selects verbs and nouns. Minecraft exposes
roughly ten core control primitives (verbs), enabling lightweight LLM querying for verb choice.
For nouns (game objects), we perform embedding-based retrieval and keep the top-20 candidates
given the task description. These sets are combined to form a compact sub-alphabet, substantially
shrinking the search space and minimizing LLM usage during DFA synthesis.

Wall-clock comparison. Table 3 reports mean ± standard deviation of stage-wise execution time
(in seconds) for VOYAGER and CEDAR on our benchmark protocol. Although VOYAGER is
slightly faster in several micro-stages, it typically requires multiple LLM refinement iterations, in-
creasing its true interaction cost. In contrast, CEDAR constructs and verifies DFA-based skills once
and then reuses them symbolically, avoiding repeated LLM calls. Skill retrieval is also faster and
more robust due to symbolic verb–noun matching; the larger variance stems from occasional fall-
back prompts when noun mismatches occur (see Section 3.2).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Stage VOYAGER CEDAR
Task Decomposition 2.749 s ± 1.238 3.943 s ± 2.134
Code/Sample Generation 6.381 s ± 1.990 5.548 s ± 1.876
Program Description 2.384 s ± 1.208 N/A
Skill Addition 2.653 s ± 1.228 0.021 s ± 0.008
DFA Construction N/A 18.548 s ± 14.289
Skill Retrieval 0.323 s ± 0.235 0.089 s ± 0.586
Total Execution Time 62.427 s ± 55.834 33.101 s ± 24.391

Table 3: Stage-wise wall-clock time (s; mean± std). N/A indicates that the stage does not apply to
the method. While VOYAGER is faster in several individual stages, it often incurs additional LLM
refinement loops; CEDAR performs one-shot DFA construction and verification and then reuses
skills symbolically.

A.2 WHEN DO REGULAR LANGUAGES SUFFICE FOR SKILLS?

Let Σ be the task-specific sub-alphabet extracted from logs by fixed monitors (e.g., has k(item),
time=night, in biome(x)). A skill is a policy that induces a set of feasible event sequences
L ⊆ Σ∗.

Assumption 1 (Observable milestones). Numeric conditions are exposed via thresholded moni-
tors (e.g., has ≥ 3 cobblestone) and resource predicates change finitely often during a skill.

Assumption 2 (Bounded subtask horizon). Each subtask either completes or fails within H <∞
event steps, after which control switches to a new subtask (possibly via a new alphabet).

Proposition 1 (Regularity under milestone abstraction). Under Assumptions 1–2, the set of
successful traces for a single skill is regular, i.e., there exists a DFA A over Σ such that L(A) = L.
Sketch. With thresholded monitors, the event alphabet is finite; bounded horizon prevents unbounded
counting. The induced control graph over milestone states is finite; accepted traces correspond to
paths to accepting nodes.

Proposition 2 (Composition closure). If L1 and L2 are regular languages over compatible al-
phabets, then conjunction (intersection) and sequential composition (concatenation with ε-merging)
yield regular languages. Hence specification enforcement by intersection and skill chaining by con-
catenation preserve regularity.

A.3 LIMITATIONS

Our approach introduces several assumptions and limitations that warrant discussion:

Ambiguity in natural language. While our method does not assume human specifications are
perfectly accurate, it relies on the ability of humans to provide correct counterexamples when the
learned DFA misaligns with their intent. This assumes that humans can consistently judge whether a
sequence matches their intended specification, which may not hold in cases of subtle or ambiguous
semantics.

Residual LLM hallucinations. Although the LAPR algorithm can handle noisy membership
queries and both the environment and verifier can provide counterexamples, our method cannot
fully eliminate LLM hallucinations. If both the human and LLM share a similar misunderstanding
of a task, the resulting specification DFA may be incorrect. Thus, while hallucination effects are
mitigated, they are not completely resolved.

Limited evaluation iterations. Our experimental results are based on five runs per baseline to
evaluate performance in Minecraft. While this is generally sufficient in the Minecraft setting—where
each generated world presents substantial complexity for tasks like diamond mining—it introduces
some variability in results. Due to the high cost of querying OpenAI APIs, we were unable to run
more extensive trials.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 RAG

A.4.1 RAG IMPLEMENTATION

Our RAG system is designed to enhance the reasoning and generation capabilities of language
models by integrating structured knowledge retrieval. It leverages a database of pre-processed text
chunks or symbol descriptions, embedding them into a vector space for efficient retrieval. The sys-
tem supports multiple retrieval methods, including k-Nearest Neighbors (kNN) and Elasticsearch-
based indexing, allowing for flexibility based on the deployment environment and use case.

The pipeline begins by chunking input data into manageable pieces, ensuring compatibility with the
model’s token limits. Each chunk is embedded using a state-of-the-art embedding model, capturing
semantic relationships for downstream retrieval. These embeddings are stored in a database along-
side their corresponding chunks. For retrieval, the system compares the embeddings of the user
query against the stored embeddings, either through kNN for cosine similarity or via Elasticsearch’s
text search capabilities. This ensures highly relevant results tailored to the query context.

The system also ensures robustness by incorporating mechanisms to rebuild and maintain consis-
tency between embeddings and the database. For instance, when new data is added or existing data
is modified, the embeddings and retrieval models are updated to reflect the changes accurately. Ad-
ditionally, the system includes mechanisms to index data into Elasticsearch for faster retrieval in
scenarios involving large datasets.

To handle symbol-specific tasks, a specialized module allows for the addition and retrieval of sym-
bols, including their semantic descriptions. Symbols can be retrieved based on their similarity to a
query or used in downstream tasks to generate context-aware responses.

Finally, the system integrates with language models for generating augmented responses. By ap-
pending relevant retrieved chunks or symbols as context to the input query, it ensures that the lan-
guage model produces more accurate and knowledge-grounded outputs. This approach makes the
system suitable for tasks that require precise reasoning, such as answering domain-specific questions
or solving complex problems. The use of both structured and unstructured data ensures flexibility
and adaptability across a wide range of applications.

A.4.2 RAG PROMPTS

This is a prompting example we used in our RAG system.

{"role": "user", "content": "For this sub-goal (specification): \"Mine[
Log]: Mine a wood log from a nearby tree in the jungle biome.\", what
is the most appropriate object? You are currently located at

position (x: 4.50, y: 90.00, z: 25.50) in a jungle biome. It is
facing yaw: -3.14 and pitch: -1.57. You have health: 20, food: 20,
and saturation: 5. The current time of day is day. Your velocity is (
x: 0.00, y: -0.08, z: 0.00). Nearby entities include: a parrot at
19.77 blocks away, a chicken at 23.00 blocks away. You are surrounded
by blocks such as stone, dirt, grass_block, coal_ore. Since the last
observation, you have lost 1 of dirt."}

A.4.3 RAG PERFORMANCE ANALYSIS

To evaluate the effectiveness of our RAG system in constructing a correct alphabet, we conducted
a series of tests. The RAG system is provided with a task description (specification) and tasked
with retrieving relevant symbols from the global alphabet. For the ground truth alphabet, we use the
alphabet derived from skill DFAs that have been validated in the Minecraft environment, ensuring
the correctness of the labels.

To compare the retrieved alphabet with the target alphabet, we use two metrics. The first metric
is Absolute Accuracy, which measures the proportion of symbols in the target alphabet At that are
correctly predicted in the retrieved alphabet Â. It is defined as:

|At ∩ Â|
|At|

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The second metric is the Overlap Coefficient, which calculates the size of the intersection divided
by the size of the smaller set:

|At ∩ Â|
min(|At|, |Â|)

We evaluated our RAG system on a subset of 44 skill DFAs. The system achieved an Absolute
Accuracy of 0.9372 and an Overlap Coefficient of 0.9208, both with a standard error of 0.10. These
results indicate that the retrieved symbols are highly similar to the target alphabet, providing a strong
guarantee for the RAG system to construct a correct alphabet for task specifications.

To further assess the effectiveness of the text embeddings used in the RAG system, we compared
the calculated text embedding similarities D with the predicted results Xi ← Âi ∈ At using cosine
similarity:

X ·D
||X||||D||

The RAG system achieved a cosine similarity score of 0.45 (range [−1, 1]) with a standard error of
0.14, demonstrating that the retrieved results are highly relevant to the query task.

Metric Absolute Accuracy Overlap Coefficient Cosine Similarity
RAG System 0.9372± 0.10 0.9208± 0.10 0.4500± 0.14

Table 4: RAG Alphabet Construction Performance: The results are presented as average ±
standard error.

A.5 HUMAN GIVEN COUNTER-EXAMPLES

Figure 9: Three Ways for Human to Give Counter-Examples

Humans can provide counterexamples (CEs) in 3 ways:

1. Annotations: Humans can review videos or trajectories of the skills practiced by the
CEDAR agent in the real environment and mark incorrect trajectories. These marked tra-
jectories are then used as CEs.

2. Demonstrations: Humans can provide demonstrations by playing Minecraft. The human
actions are recorded in the program logs, which can be converted into formal CEs.

3. Formal Counterexamples: For simpler DFAs that can be visualized as graphs, humans
can directly provide formal CEs by inspecting these graphs.

A.6 SIMULATION COUNTER-EXAMPLES

To further evaluate the correctness of the learned skills and their alignment with human specifica-
tions, we simulate these skill DFAs in the real environment and refine them using counter-examples
collected during the process. However, due to the complexity of the environment, some corner cases
may not be encountered by the agent within a limited number of iterations. To address this, we
conducted experiments to measure the success rate of collecting counter-examples.

For the experimental setup, we first generated incorrect DFAs by randomly adding or removing
transitions from correct skill DFAs. The skill DFAs selected for this experiment are designed to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Item Accuracy Standard Error
Dirt 0.9727 0.1629
Birch Log 0.8636 0.3432
Grass Block 1.0000 0.0000
Birch Leaves 0.9909 0.0949
Stone 0.9727 0.1629
Coal Ore 1.0000 0.0000
Iron Ore 1.0000 0.0000
Copper Ore 0.9909 0.0949
Gold Ore 0.9636 0.1872
Redstone Ore 0.9636 0.1872
Emerald Ore 0.4909 0.4999
Diamond Ore 0.9818 0.1336
Lapis Ore 0.9636 0.1872
Andesite 0.9818 0.1336
Granite 0.9636 0.1872
Sand 0.8727 0.3333
Average 0.9358 0.1692

Table 5: Success Rate and Standard Errors of Counterexample Discovery in Minecraft Simu-
lations. The table shows the accuracy and standard errors for different items.

locate specific objects and collect them, providing a practical context for evaluating the success
rate of counter-example discovery. Since these modified DFAs do not match the dynamics of the
real environment, counter-examples must exist. We then simulated these DFAs in the environment
to identify whether any counter-examples could be collected. For each DFA, we simulate it 110
times. A counter-example occurs when the DFA’s behavior diverges from the expected outcome in
the real environment. For instance, consider the mine stone DFA, which is expected to collect a
cobblestone upon reaching its accepting state. If, during simulation, the accepting state is reached
but no cobblestone is present in the bot’s inventory, this trajectory constitutes a counter-example.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
CE Length

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
an

d
St

d

0

100

200

300

400

500
Co

un
ts

mean
std
Counts

Figure 10: Mean, Std of CE Collection Probability with Lengths of CEs

The results in Table 5 demonstrate that the RAG system effectively identifies counterexamples dur-
ing DFA simulations in Minecraft, with most items achieving an accuracy higher that 0.96 and a
standard error less than 0.2, indicating consistent detection. Notable exceptions include Birch Log
and Sand, which achieved an accuracy higher than 0.86 with a standard error around 0.3, and Emer-
ald Ore, which had the lowest accuracy at 0.49 with a standard error of 0.4999. These variations

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

highlight the challenges of certain items in aligning with the DFA dynamics. On average, the system
achieved an accuracy of 0.9358 with a standard error of 0.1692, underscoring its overall reliability
and precision in identifying counterexamples across diverse scenarios.

We observed in Figure 10 that the probability of collecting CEs decreases as the length of the CEs in-
creases. This is because shorter CEs indicate that the skill DFA fails early in its execution, requiring
fewer interactions with the environment. In contrast, longer CEs suggest that the skill DFA is mostly
correct, with errors occurring only after extended interactions with the environment. However, this
is not a significant concern, as the majority of CEs are short, with lengths less than 7. Within this
range, the probability of collecting a CE is consistently above 0.6, ensuring that CEs can reliably be
collected within multiple simulation attempts.

A.7 ITHOR LLM QUERY COST

Each iTHOR skill required exactly two LLM calls: (i) one to construct the task-specific sub-alphabet
(via RAG) and (ii) one to synthesize the code-based oracle program that binds monitors and action
stubs. No human-provided counterexamples were used. All tasks succeeded in a single pass except
COOK POTATO, which initially failed due to an unfavorable camera perspective; the EQ-oracle sur-
faced a counterexample and we resolved it by inserting a single LOOKUP action into the DFA—this
fix did not require additional LLM queries.

We do not report VOYAGER on iTHOR because the released VOYAGER implementation is tightly
coupled to Minecraft/Mineflayer APIs and does not provide an iTHOR-compatible action interface,
making a direct, controlled comparison infeasible.

Task LLM Queries Initial Outcome After CE Fix
MAKE 1 TOAST 2 success —
MAKE COFFEE 2 success —
COOK POTATO 2 fail success (no extra LLM)
MAKE SALAD 2 success —
STORE PLATE IN FRIDGE 2 success —

Table 6: iTHOR LLM query budget. Two calls per skill: one for sub-alphabet construction and
one for code-based oracle program generation.

18

	Introduction
	Related Work
	Method
	LLM–Assisted DFA Learning
	DFA Learner
	Skill Manager
	Verifier

	Empirical Result
	Human Specification Following Study
	Goal Completion Performance

	Conclusion
	Appendix
	Runtime Comparison
	When Do Regular Languages Suffice for Skills?
	Limitations
	RAG
	RAG Implementation
	RAG Prompts
	RAG Performance Analysis

	Human Given Counter-Examples
	Simulation Counter-Examples
	iTHOR LLM Query Cost

