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ABSTRACT

We introduce CEDAR, a Counter-Example Driven Agent with Regular Restriction
in Minecraft, which learns and encodes informal specifications and skills as reg-
ular languages. Large language models (LLMs) interpret intent and help select a
compact, task-specific sub-alphabet; deterministic finite automata (DFAs) provide
a canonical, composable temporal scaffold for execution and checking. CEDAR
learns skill DFAs via active grammatical inference, reuses them by template adap-
tation (verb-fixed, noun-substituted alphabets), and enforces human constraints
by DFA composition (e.g., intersection with “sleep at night”). A counterexam-
ple loop ties together environment logs, specifications, and learned DFAs under
a probabilistic membership oracle. Across Minecraft and iTHOR, CEDAR im-
proves controllability and amortized efficiency over program-generating agents
under matched wall-clock and LLM-query budgets, while enabling symbolic skill
retrieval and verification.

1 INTRODUCTION

LLM-based agents have achieved significant success in control and planning within complex open-
world environments Wang et al. (2023a); Liu et al. (2024b); Zhu et al. (2023); Liu et al. (2023);
Yan et al. (2023); Yao et al. (2023b); Tsai et al. (2023); Wang et al. (2024b). Early research ex-
plored using LLM-generated structured programming techniques to enhance robotic manipulation
and gameplay Liang et al. (2023); Sun et al. (2020); Zhao et al. (2021); Singh et al. (2022); Wang
et al. (2024a). To improve the quality of the generated code, researchers are incorporating environ-
ment feedback Huang et al. (2022); Shinn et al. (2023), advanced prompts Wei et al. (2023); Yao
et al. (2023b), and external knowledge retrieval Wang et al. (2024c); Zhu et al. (2023).

Despite these advancements in control, planning remains a significant challenge in open-world en-
vironments Kolve et al. (2017a); Fan et al. (2022); Puig et al. (2023). Various planning approaches
have been developed, such as task decomposition Wang et al. (2023a); Zhu et al. (2023), elaborate
prompts Wang et al. (2024b); Zhang et al. (2023), multi-modal information Qin et al. (2024); Zheng
et al. (2023); Wang et al. (2023b); Zhao et al. (2024), and skill management Wang et al. (2023a);
Yuan et al. (2023); Zhu et al. (2023). Goal completion is a common way to evaluate the effectiveness
of these planning methods in open-world environments Wang et al. (2023a); Zhu et al. (2023); Wang
et al. (2023b), as it requires understanding natural language and mapping high-level commands to
precise, executable actions in specific contexts. However, there is currently no way to logically
verify if the LLM-generated executable policy fully understands and obeys human specifications,
potentially leading to unexpected or harmful results Yao et al. (2024); Gu et al. (2024); Moos et al.
(2022).

To ensure that LLM-generated executable policies adhere to human instructions and bridge the gap
between natural and regular language, we implement a logic verifier. This is complemented by
methods like autoformalization Wu et al. (2022); Giannakopoulou et al. (2021) and LLM-based
automata learning Vazquez-Chanlatte et al. (2024); Alsadat et al. (2024); Chen et al. (2024). In this
paper, we utilize LLM-based automata learning to formalize informal specifications and address the
challenge of planning in open-world environments while adhering to human specifications.

To achieve this, we introduce CEDAR, a Counter-Example Driven Agent in Minecraft that learns
skills through DFA learning to align with informal specifications. CEDAR consists of three main
components: 1. DFA Learner, which learns skills in the form of DFAs based on formalized human
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Figure 1: CEDAR Workflow. CEDAR is built around three essential components: 1. DFA Learner
which leverages active learning algorithms for continuous, lifelong learning and goal-directed skill
acquisition, to construct DFAs representing various skills. 2. Skill Manager which manages the
repository of learned skills and adapts them to new tasks by adjusting the DFA’s alphabet as needed.
3. Verifier which ensures that the DFAs learned by the system conform to human specifications.
It converts these natural language specifications into DFAs and then cross-checks them against the
skill DFAs to detect any discrepancies.

specifications utilizing DFA learning algorithms. The LLM oracle answers membership queries
for active DFA learners. 2. Skill Manager that is responsible for storing the learned skills and
extending them to new tasks by modifying the alphabet of the corresponding DFA. 3. Verifier, which
takes human specifications as input and formalizes them into DFAs using a human-in-the-loop DFA
learning paradigm where the human provides counterexamples to the hypothesis learned by an LLM.
The output formal specifications are given to the DFA learner. Once the DFA learner has learned
a skill, the verifier checks if this hypothesis DFA violates any formalized human specifications and
provides a counterexample.

We encode both skills and human specifications as DFAs over a compact, LLM-assisted
sub-alphabet; the environment supplies counterexamples while the LLM answers (noisy) member-
ship queries, and we refine policies until execution and specifications agree. DFAs give CEDAR
three concrete advantages over program-generation baselines such as VOYAGER Wang et al.
(2023a): (i) a minimal canonical structure with closure under intersection for constraint enforce-
ment; (ii) an explicit failure interface (counterexamples) that repairs skills; and (iii) template adapta-
tion—reusing verb-specific automata by substituting object/event symbols—enabling data-efficient
transfer.

Our main contributions are: (i) A practical regular-language scaffold for embodied skills:
LLMs ground intent; DFAs supply verifiable temporal structure. (ii) RAG-based sub-alphabet con-
struction that makes learning tractable in large action/object/event spaces. (iii) Template-DFA adap-
tation and a bidirectional counterexample loop that keep specifications, skills, and environment
behavior consistent under noisy oracles.

2 RELATED WORK

Active DFA learning. Classical active automata learning (e.g., L* Angluin (1987)) identifies a
target DFA using membership queries (MQs) and equivalence queries (EQs) posed to a (minimally
adequate) teacher. Numerous refinements study counterexample processing, efficiency, and prac-
tical robustness; passive state-merging methods such as RPNI/EDSM Lang et al. (1998); Oncina
& Garcı́a remain influential but require labeled corpora rather than interaction. Recent work treats
noisy oracles and probabilistic teachers, introducing consistency mechanisms and query budgets;
our instantiation follows the probabilistic MAT (pMAT) view with LAPR for cache consistency
under stochastic MQs Chen et al. (2024). In CEDAR (Sec. 3.2), the environment implements
the EQ oracle and the LLM implements the MQ oracle, enabling on-policy data collection and
counterexample-driven refinement.
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A growing line of work uses LLMs to induce or interact with formal structure. Closest to us are
approaches that use LLMs as (noisy) teachers for regular languages—answering MQs, proposing
candidate DFA structure, or summarizing traces into symbolic events Chen et al. (2024). Or-
thogonal but complementary are methods translating natural language into temporal logics, e.g.,
NL2LTL Fuggitti & Chakraborti (2023), data-efficient NL→LTL for robot tasking Pan et al. (2023),
and Lang2LTL-2 for grounded spatiotemporal commands Liu et al. (2024a). These typically per-
form one-shot translation and do not execute or refine policies online; they also fixed to one certain
area (e.g. where the pre-train dataset from); CEDAR instead executes and repairs DFAs via coun-
terexamples, while remaining compatible with LTL front-ends (e.g., compiling LTL monitors to
regular abstractions when possible).

ReAct Yao et al. (2023a) synergizes reasoning traces with tool-use to interleave “thought” and “act.”
It improves sample-efficiency and transparency in web and question-answering settings, but does
not endow agents with canonical temporal controllers or formal operations over behaviors. Voy-
ager Wang et al. (2023a) pioneered open-ended skill discovery in Minecraft by prompting an LLM
to synthesize executable JavaScript skills, storing them in a growing library with automatic curricu-
lum and retrieval. While powerful, code-based skills lack canonical structure, making formal veri-
fication and composition (e.g., intersection for constraint enforcement) difficult. CEDAR replaces
free-form programs with minimal DFAs over a task-specific alphabet obtained via RAG (Fig. 2), en-
abling symbolic retrieval, exact composition (intersection/concatenation), and online repair through
counterexamples (Sec. 3.4).

ADAM Yu & Lu (2025) advocates causal graphs as intermediate structure for embodied agents in
open worlds. Such structure is complementary to our RAG-based alphabet construction: causal re-
lations can guide symbol discovery (e.g., prerequisite events) and suggest safer exploration policies
before DFA synthesis. SELP Wu et al. (2025) demonstrates majority-group voting schemes to vali-
date LLM-generated plans. In our setting, similar aggregation can be used to denoise MQ answers
before caching (cf. LAPR), or to vet counterexample explanations prior to updating the hypothesis
DFA.

Compared to code-generating agents (e.g., Voyager), CEDAR trades some expressivity for canoni-
cality, verifiability, and compositionality. Compared to NL→LTL translators, CEDAR targets online
policy learning and repair with environment-supplied counterexamples, while remaining compati-
ble with temporal-logic front-ends. Relative to ReAct-style planners, CEDAR supplies an explicit,
minimal controller with closure properties and a clear failure semantics (rejecting states and prod-
uct constructions). Finally, while classic passive learners (RPNI/EDSM) inform our background,
CEDAR’s operational loop is fully active, leveraging a probabilistic teacher and an environment EQ
oracle to support both goal completion and continual (lifelong) acquisition.

3 METHOD

3.1 LLM–ASSISTED DFA LEARNING

Notation. Let APact,APobj,APevt be the global sets of action, object, and event–monitor sym-
bols. The global alphabet is Σglobal := APact ⊎ APobj ⊎ APevt (disjoint union). For a task,
Retrieval–Augmented Generation (RAG) returns a finite sub-alphabet Σ ⊆ Σglobal. A word is a
sequence w ∈ Σ∗ extracted from logs; a language is L ⊆ Σ∗. We denote the stochastic membership
oracle byOMQ : Σ∗→{0, 1} and maintain caches CMQ, CEQ ⊆ Σ∗×{0, 1} for answered MQs and
EQ labels/counterexamples.

LLMs map informal instructions to semantic neighborhoods (verbs, objects, conditions) but do not
provide canonical temporal structure or guarantees. DFAs provide minimal, canonical automata
with closure properties and efficient checking. CEDAR fuses the two: LLMs select a compact
sub-alphabet and answer noisy membership queries; DFAs scaffold execution and verification; coun-
terexamples circulate between the environment and specifications to repair both.

Sub-alphabet construction (RAG). Because the Minecraft interface exposes many APIs, skills,
and > 1000 objects, selecting Σ is a specification-decomposition step. Each symbol in Σglobal has
a textual description. Given a human specification, we embed it and retrieve symbol candidates by
cosine similarity; top candidates from APact,APobj,APevt are injected into prompts so the LLM
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Global Alphabet

Actions

Control Primitives
Craft[]
exploreUntil[]
getPlaced[]back
Kill[]
Mine[]
Place[]
Shoot[]
Smelt[]
Get[]FromChest
Deposit[]IntoChest

Events
Inventory Changes
Time of Day
On Ground
Life Status
In Water
In Lava
Movements
Collisions

Objects

"andesite"
"andesite_wall"
"attached_pumpkin_stem"
"barrel"
"basalt"
"beacon"
"bedrock"
…
"zombified_piglin_spawn_egg"

Specification

Text Embedding

Prompter

Symbols

LLM

Please use the symbols provided in `{}` to construct an alphabet for a DFA 
representing the specification `{}` in Minecraft. Follow these rules:
1. Combine verbs with appropriate nouns: some verbs (e.g., "mine", 
"exploreUntilFind") should only be paired with blocks, others (e.g., "smelt", "place") 
with items, and some (e.g., "kill") with entities.
2. Events should be stand-alone symbols and not combined with other symbols.
3. If certain symbols are irrelevant to the specification, omit them.

Figure 2: Global alphabet and RAG. From Σglobal (control primitives, objects, events), RAG
retrieves task-relevant symbols to form a sub-alphabet Σ.

proposes Σ (details in Appx. A.4). If Σ is incomplete, the target DFA cannot be learned (often yield-
ing no accepting state in practice). We analyze the erroneous DFA and reuse EQ counterexamples
to refine retrieval and expand Σ (Fig. 2).

Finite abstractions. Although DFAs cannot count unboundedly, many tasks admit milestone mon-
itors (e.g., has ≥3 cobblestone) that render a finite Σ. We encode bounded accumulation via
such monitors.

3.2 DFA LEARNER

We learn DFAs actively via queries in a probabilistic MAT (pMAT) setting Angluin (1987); Chen
et al. (2024). An active learner maintains a DFA hypothesis and interacts with two oracles: (i)
an LLM that answers membership queries (MQs) stochastically, and (ii) an environment-backed
equivalence oracle (EQ) that returns counterexamples when the hypothesis is wrong. We use LAPR
Chen et al. (2024) to ensure cache consistency under noisy MQs.

We distinguish DFAs for specifications and for skills; the former are used by the verifier (Sec. 3.4),
while this section focuses on skill learning with a single unified active loop.

Active learning loop. Given Σ, the learner repeatedly:

1. issues MQs on words w∈Σ∗; the LLM returns labels recorded in CMQ,

2. synthesizes/updates a DFA hypothesis consistent with CMQ under LAPR,

3. queries the EQ oracle by executing the hypothesis in a wrapper environment that logs events
and a word extractor that maps logs to words; any mismatch yields a labeled counterexam-
ple added to CEQ,

4. if counterexamples indicate missing symbols, re-query RAG to refine Σ and restart the loop
on the expanded alphabet.

Goal completion. The loop terminates when the environment confirms the goal has been achieved
and no counterexamples are found within the time/interaction budget. The resulting DFA is stored
in the Skill Manager.
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Figure 3: DFA Intersection Operation: The intersection creates a new DFA that accepts only the
words accepted by both original DFAs. The top DFA represents the specification “Please sleep at
night,” while the bottom DFA corresponds to the skill “Mine diamond ore.” Edges to rejecting
states are omitted for clarity.

Lifelong learning. CEDAR continues beyond a single goal: after completion, it discovers the
next goal, constructs a new sub-alphabet via RAG, and re-runs the same active loop to produce a
new DFA. We initialize action symbols with control primitives aligned with VOYAGER Wang et al.
(2023a) (lightly renamed to improve prompting). Actions outside the current Σ default to rejection
until RAG expands Σ in response to counterexamples. This continual process accumulates a library
of DFAs that grow in scope and robustness.

3.3 SKILL MANAGER

A skill is stored as a tuple ⟨A, v, n, E,D⟩, where v ∈ APact is a verb, n ∈ APobj is an object,
E ⊆ APevt is the set of success events, and D ⊆ Σ∗×{0, 1} collects labeled evidence used to
construct A. For learned DFAs,

D = {(w, y) | (w, y) ∈ CMQ} ∪ {(w, y) | (w, y) ∈ CEQ}.
We write the induced positive and negative sets as D+ = {w | (w, 1) ∈ D } and D− = {w |
(w, 0) ∈ D }. To use DFAs as policies, we execute actions along the shortest path from the cur-
rent state to an accepting state. If an invoked action is absent from logs, we treat it as a failure,
temporarily remove the corresponding edge, and recompute a shortest accepting path.

Retrieval and templating. Given a query (v′, n′), the manager matches stored (v, n) skills. If
both match, we return the skill. If v′ ̸= v, no skill is returned. If v′ = v but n′ ̸= n, we retrieve all
skills with verb v and pass them as context to the LLM to select a template DFA; the noun-specific
sub-alphabet is substituted and all transition symbols δA (and examples in D) are updated accord-
ingly. The modified DFA is then refined by the active learner rather than trained from scratch.

3.4 VERIFIER

The verifier ensures that learned skills align with human specifications (goals and constraints given
in natural language). It translates each specification into a regular language via active DFA learning:
the LLM answers MQs, while humans serve as the EQ oracle to validate counterexamples and
maintain intent; LAPR keeps MQ/EQ caches consistent. Alphabet selection for each specification
uses the same RAG pipeline as skills (see Fig. 1 and Appx. A.4).

There are two main advantages to representing human specifications and skills as DFAs. First,
DFAs derived from specifications can check compliance by matching words extracted from new
logs. When a violation is detected, we merge alphabets and take the intersection of the skill and
specification DFAs to obtain a compliant policy (Fig. 3). Formally, for skills

s1 = ⟨A1, v1, n1, E1, D1⟩, s2 = ⟨A2, v2, n2, E2, D2⟩,
their conjunctive merge is

sconj = ⟨A∩, v, n, E1 ∪ E2, D1 ∪D2⟩,
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Figure 4: Comparison of action counts and average health across time for VOYAGER and CEDAR.
The human instruction here is to ”craft a diamond pickaxe and keep collecting diamonds. Please
sleep at night. You are given a bed.” (a) and (b) depict the number of actions per 1000 ticks for the
VOYAGER and CEDAR agents; (c) and (d) show the average health of the agent per 1000 ticks for
VOYAGER and CEDAR. The results were averaged over five trials that last three days each time on
the same map.

with acceptance w ∈ L(A∩) ⇐⇒ w ∈ L(A1) ∧ w ∈ L(A2) and A∩ = A1 ∩ A2 (product
construction, accepting states F1 ∩ F2).

Second, DFAs support skill chaining via concatenation, even without specifications. Let A1 (e.g.,
craft and equip a pickaxe) and A2 (mine a diamond). Concatenate by merging each accepting state
of A1 with the initial state of A2 (state relabeling) to obtain

scon = ⟨A◦, v, n, E1 ∪ E2, D1 ◦D2⟩,

with w ∈ L(A◦) ⇐⇒ ∃x, y ∈ Σ∗ : w = x · y, x ∈ L(A1), y ∈ L(A2), and D1 ◦D2 = {w1·w2 |
w1 ∈ L(A1), w2 ∈ L(A2) }.

4 EMPIRICAL RESULT

In this section, we evaluate our method within the Minecraft game environment and the iTHOR
simulator (Kolve et al., 2017b), demonstrating its advantages over the popular VOYAGER Wang
et al. (2023a). We begin by assessing the CEDAR agent’s ability to follow human instructions across
various settings. Following this, we measure our method’s performance in terms of the success rate
in completing specific tasks. We then compare the lifelong learning efficiency of our method against
VOYAGER. Finally, we test the generality of our approach by extending the learned skills to unseen
tasks. The LLMs we used in the evaluation are gpt-4o for task decomposition and answering
membership queries, gpt-4o-mini for JSON translation, and text-embedding-3-large
for computing text embeddings. To ensure a fair comparison with VOYAGER, human-provided
counterexamples (CEs) are not used in any task-completion experiment, including those reported in
Tables 2 and 1. All CEs during evaluation are collected automatically from environment interaction
via the EQ-oracle. Human-provided CEs are used only to refine high-level constraint DFAs in our
specification-following demonstrations and are not required for learning task-specific skills.

4.1 HUMAN SPECIFICATION FOLLOWING STUDY

In the experiments focused on following human specifications, both the VOYAGER and CEDAR
agents were given a goal with a specification to constrain the agent’s policy. In real-world scenar-
ios, agents often face potential dangers, represented here by randomly generated zombies at night
in Minecraft. Using sleep to bypass the night is an effective strategy in such situations. For this
experiment, the goal was to collect diamonds with the specification to sleep at night. The difficulty
of the game is set to normal for monster generation. Both VOYAGER and CEDAR were spawned
in the same location and world, and each was provided with a bed to eliminate the variable of bed
crafting, allowing us to focus on how well each agent understands and follows the human specifi-
cation. The results in Figure 4 demonstrate that CEDAR, which enforces strict adherence to human
instructions using DFAs, successfully prevents the agent from working during midnight. Notably,
the CEDAR agent maintains higher health levels during the night, reflecting its compliance with the
sleep instruction, while VOYAGER chooses to contend with monsters spawned at night.
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Table 1: Statistics on the action count and objects gained for our approach and popular MineCraft
agent VOYAGER. The results are presented as mean ± standard deviation (successful trials / total
trials).

Method Action Counts Underground Overground Items Gained Objects
VOYAGER 106± 5 152± 47 50± 10 27± 7 229± 44
CEDAR (Ours) 138± 10 195± 31 136± 18 58± 6 388± 36

In Minecraft, having a well-crafted plan that guides the agent on what to do and when to do it
is crucial for efficient exploration, as some activities are highly time-sensitive like villager trading
and honey collection. In this experiment, we assigned the agents the goal of exploring the world
with the specific instruction to mine minerals only at night. Since mining can be done at any time
and typically involves minimal monster encounters if not digging in natural caves or mines, the
safer daytime hours can be better utilized for other tasks. Figure 5 illustrates that CEDAR adheres
to this instruction, optimizing the use of daytime for item collection and reserving nighttime for
mineral extraction. In contrast, VOYAGER fails to follow the instruction, leading to inefficient use of
daytime. VOYAGER frequently moves between underground and overground places, wasting time
and resulting in fewer actions and items collected. The objects obtained by VOYAGER are irregular,
whereas CEDAR predominantly collects underground blocks at night. Moreover, Table 1 shows the
total amount of objects collected by CEDAR exceeds that of VOYAGER. These results demonstrate
the effectiveness of CEDAR in better utilizing daytime opportunities by strictly following human
instructions.

The spatial distribution of objects in Minecraft is highly dependent on biomes; staying within a
specific biome can significantly enhance the collection speed of resources native to that biome. In
this experiment, we instructed the agents to explore within a biome called windswept forest.
By integrating biome symbols into the sub-alphabet for learning human specifications and skills,
CEDAR is able to comprehend biome information within game events and use it to constrain its
activity area.

As shown in the agent activity area heatmap in Figure 6, the VOYAGER agent ignored the human
specification of staying within the windswept forest biome (the area in green) and traversed
across different biomes. In contrast, the CEDAR agent effectively restricted its activities to the
designated biome, adhering to the given instruction.

Both the VOYAGER and CEDAR agents had sufficient information observed from the Minecraft
environment, yet VOYAGER failed to follow four types of human specifications. There are two
main reasons for this failure. First, VOYAGER decomposes human specifications into sub-tasks
rather than a set of constraints. This approach means that once the corresponding sub-task is com-
pleted, VOYAGER disregards it. In the first experiment shown in Figure 4, the VOYAGER agent did
indeed sleep on the first night, but subsequently forgot this constraint and continued collecting dia-

Figure 5: Comparison of action counts and collected objects across time for VOYAGER and
CEDAR. Subplots (a) and (b) depict the total number of actions per 1000 ticks for VOYAGER
and CEDAR, respectively. Subplots (c) and (d) present the distribution of underground blocks, over-
ground blocks, and items collected per 1000 ticks. The given instruction was ”explore the world and
collect as many different items as possible, but you can only dig for minerals like iron and diamond
at night.” The experiment was repeated on the same map and spawn location 5 times, with each trial
lasting 3 days.
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Table 2: Performance comparison between VOYAGER and CEDAR across different crafting tasks.
The results are presented as mean ± standard deviation (successful trials / total trials). The values
represent the mean and standard error of the prompting iterations, and the fractions indicate the
number of goal completions out of total trials. The tasks to the left of the second vertical line are
included in the skill library (S.L.) for both agents. w/o S.L means it starts without skill library.

Method Wooden Pickaxe Iron Pickaxe Diamond Pickaxe Lava Bucket Compass
VOYAGER w/o S.L. 7± 2 (5/5) 29± 6 (5/5) 35± 12 (2/5) 29± 9.6 (4/5) 26± 2.9 (3/5)
VOYAGER 4.4± 2.5 (5/5) 17± 3.5 (5/5) 26± 11 (3/5) 23± 5.4 (5/5) 18± 1.5 (5/5)
CEDAR w/o S.L. 6± 3 (5/5) 31± 3 (5/5) 41± 11 (3/5) 28± 4.5 (5/5) 29± 2.5 (2/5)
CEDAR (Ours) 6± 3 (5/5) 11± 5.5 (5/5) 20± 6.5 (5/5) 10± 7.7 (5/5) 10± 2.1 (5/5)

Figure 6: The background
colors denote various
biomes, and the heatmap
overlay represents the bot’s
activity. CEDAR follows
the human instruction to
“explore the world but stay
in the windswept forest.”
The heatmap intensity
indicates the frequency of
the bot’s activities, with
deeper colors representing
areas of higher activity.

monds both day and night. In contrast, CEDAR learns the specification as a regular language, which
continuously reinforces the instruction for the agent to sleep at night. Second, VOYAGER lacks a
mechanism to ensure that the generated program fully adheres to human specifications. In contrast,
CEDAR enforces that the DFAs of learned skills are free from counterexamples when tested against
the DFAs of human specifications. This approach provides validation that the learned skills align
with the given human specifications.

4.2 GOAL COMPLETION PERFORMANCE

(a) Make a toast

(c) Cook a potato

(b) Make coffee

Figure 7: iTHOR rollouts guided by DFAs. Time-lapse frames (left→ right) of three representative
tasks executed in iTHOR using CEDAR: top—MAKE 1 TOAST (locate bread, place in toaster, toast);
middle—MAKE COFFEE (place mug, operate machine); bottom—COOK POTATO (open microwave,
place potato, heat). Rows are separated by black bars. Policies are induced from DFAs learned with
an LLM MQ-oracle and an environment-backed EQ-oracle that supplies counterexamples.

Minecraft Tasks. We evaluated the goal-completion performance of our method by comparing
success rates across different tasks with VOYAGER. The results presented in Table 2 underscore

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

two principal advantages of CEDAR: (1) the skills acquired by CEDAR exhibit greater robustness,
and (2) CEDAR is capable of efficiently extending these learned skills to previously unseen tasks.
CEDAR demonstrates efficiency in task resolution when the relevant skills are already included in
the skill library, necessitating only a single LLM query to translate the goal into a regular language.
For unseen tasks, CEDAR surpasses VOYAGER by extending the learned skills through straightfor-
ward modifications to the alphabet of the DFAs corresponding to those skills. However, a drawback
of CEDAR is that it requires a greater number of LLM prompting iterations to accurately learn a
DFA for a given skill. This is due to its iterative process of testing the DFA in the environment
until no counterexamples remain, thereby requiring continuous querying of the LLM for additional
examples.

iTHOR Tasks To evaluate beyond Minecraft, we ran five iTHOR tasks—MAKE 1 TOAST,
MAKE COFFEE, COOK POTATO, MAKE SALAD, STORE PLATE IN FRIDGE—using the standard
CEDAR pipeline with RAG-based alphabet construction (no skill library, as tasks are simple). Fig-
ure 7 visualizes three representative rollouts: toast, coffee, and potato. Most tasks succeeded in
one shot; the exception was COOK POTATO, where unstable camera perspective caused a miss. The
EQ-oracle surfaced a counterexample, after which inserting a LOOKUP action into the DFA enabled
the agent to adjust its view and complete the task (bottom row of Fig. 7). LLM query costs for these
experiments are reported in Appendix A.7.

5 CONCLUSION

This paper presents CEDAR, a Counter-Example Driven Agent with Regular Restrictions, developed
for the Minecraft environment. CEDAR incorporates human specifications formalized as DFAs, en-
abling the agent to learn and refine skills in alignment with these specifications. By active DFA
learning algorithms, the agent adapts to new tasks and improves existing skills through interaction
with the environment. Empirical evaluations suggest that CEDAR offers improvements over prior
methods such as VOYAGER, particularly in terms of controllability, robustness, and extensibility.
The use of DFAs helps maintain adherence to human instructions, reducing the likelihood of unin-
tended behaviors. Additionally, CEDAR’s ability to extend learned skills to new tasks by modifying
the DFA alphabet contributes to its adaptability in open-world settings. By integrating formal verifi-
cation techniques with learning algorithms, this work explores how autonomous agents can be made
more reliable and responsive to human-specified constraints in complex environments.

Reproducibility Statement. We release an anonymous archive in the supplementary materials
containing all code, configuration files, and scripts needed to reproduce our results, including the
DFA learner (LAPR/pMAT instantiation), the word–extraction logger, the verifier, and the full
Retrieval-Augmented Generation (RAG) implementation with exact prompts and embedding set-
tings. We also provide cached MQ/EQ logs, precomputed DFAs used in figures/tables, and seed-
s/world identifiers for all runs to enable exact regeneration of reported numbers. Experimental
protocols and evaluation metrics are specified in the main text (Sec. 3.2 and Empirical Result), with
additional implementation details and RAG settings in Appendix A.4. All hyperparameters, random
seeds, and query budgets are listed in the appendix and config files; scripts are included to regenerate
every table and figure from raw logs. No human counterexamples are used in task-completion results
(only environment-collected CEs), ensuring they can be reproduced end-to-end from the provided
materials.
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A APPENDIX

A.1 RUNTIME COMPARISON
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Figure 8: Runtime budget comparison (cumulative LLM queries) for the Find a Diamond task.
Lower is better.

Figure 8 tracks cumulative LLM queries required to reach successive milestones on Find a Diamond
(crafting table→ cobblestone→ furnace→ iron ingot→ diamond). Across the trajectory, CEDAR
reaches each milestone with fewer accumulated queries than VOYAGER, and the gap widens at later
stages. This reflects two design advantages of CEDAR: (i) the RAG–restricted sub-alphabet reduces
query fan-out when proposing actions or verifying preconditions, and (ii) the counterexample-driven
refinement prevents repeated prompt chains on already-disproved behaviors. Practically, this yields
lower amortized query cost for long-horizon tasks while preserving reliability—CEDAR spends
fewer queries “figuring out” what to do and instead reuses validated automata structure to progress
efficiently.

Alphabet construction efficiency. To reduce runtime overhead during DFA construction, we
adopt a modular retrieval strategy that independently selects verbs and nouns. Minecraft exposes
roughly ten core control primitives (verbs), enabling lightweight LLM querying for verb choice.
For nouns (game objects), we perform embedding-based retrieval and keep the top-20 candidates
given the task description. These sets are combined to form a compact sub-alphabet, substantially
shrinking the search space and minimizing LLM usage during DFA synthesis.

Wall-clock comparison. Table 3 reports mean ± standard deviation of stage-wise execution time
(in seconds) for VOYAGER and CEDAR on our benchmark protocol. Although VOYAGER is
slightly faster in several micro-stages, it typically requires multiple LLM refinement iterations, in-
creasing its true interaction cost. In contrast, CEDAR constructs and verifies DFA-based skills once
and then reuses them symbolically, avoiding repeated LLM calls. Skill retrieval is also faster and
more robust due to symbolic verb–noun matching; the larger variance stems from occasional fall-
back prompts when noun mismatches occur (see Section 3.2).
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Stage VOYAGER CEDAR
Task Decomposition 2.749 s ± 1.238 3.943 s ± 2.134
Code/Sample Generation 6.381 s ± 1.990 5.548 s ± 1.876
Program Description 2.384 s ± 1.208 N/A
Skill Addition 2.653 s ± 1.228 0.021 s ± 0.008
DFA Construction N/A 18.548 s ± 14.289
Skill Retrieval 0.323 s ± 0.235 0.089 s ± 0.586
Total Execution Time 62.427 s ± 55.834 33.101 s ± 24.391

Table 3: Stage-wise wall-clock time (s; mean± std). N/A indicates that the stage does not apply to
the method. While VOYAGER is faster in several individual stages, it often incurs additional LLM
refinement loops; CEDAR performs one-shot DFA construction and verification and then reuses
skills symbolically.

A.2 WHEN DO REGULAR LANGUAGES SUFFICE FOR SKILLS?

Let Σ be the task-specific sub-alphabet extracted from logs by fixed monitors (e.g., has k(item),
time=night, in biome(x)). A skill is a policy that induces a set of feasible event sequences
L ⊆ Σ∗.

Assumption 1 (Observable milestones). Numeric conditions are exposed via thresholded moni-
tors (e.g., has ≥ 3 cobblestone) and resource predicates change finitely often during a skill.

Assumption 2 (Bounded subtask horizon). Each subtask either completes or fails within H <∞
event steps, after which control switches to a new subtask (possibly via a new alphabet).

Proposition 1 (Regularity under milestone abstraction). Under Assumptions 1–2, the set of
successful traces for a single skill is regular, i.e., there exists a DFA A over Σ such that L(A) = L.
Sketch. With thresholded monitors, the event alphabet is finite; bounded horizon prevents unbounded
counting. The induced control graph over milestone states is finite; accepted traces correspond to
paths to accepting nodes.

Proposition 2 (Composition closure). If L1 and L2 are regular languages over compatible al-
phabets, then conjunction (intersection) and sequential composition (concatenation with ε-merging)
yield regular languages. Hence specification enforcement by intersection and skill chaining by con-
catenation preserve regularity.

A.3 LIMITATIONS

Our approach introduces several assumptions and limitations that warrant discussion:

Ambiguity in natural language. While our method does not assume human specifications are
perfectly accurate, it relies on the ability of humans to provide correct counterexamples when the
learned DFA misaligns with their intent. This assumes that humans can consistently judge whether a
sequence matches their intended specification, which may not hold in cases of subtle or ambiguous
semantics.

Residual LLM hallucinations. Although the LAPR algorithm can handle noisy membership
queries and both the environment and verifier can provide counterexamples, our method cannot
fully eliminate LLM hallucinations. If both the human and LLM share a similar misunderstanding
of a task, the resulting specification DFA may be incorrect. Thus, while hallucination effects are
mitigated, they are not completely resolved.

Limited evaluation iterations. Our experimental results are based on five runs per baseline to
evaluate performance in Minecraft. While this is generally sufficient in the Minecraft setting—where
each generated world presents substantial complexity for tasks like diamond mining—it introduces
some variability in results. Due to the high cost of querying OpenAI APIs, we were unable to run
more extensive trials.
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A.4 RAG

A.4.1 RAG IMPLEMENTATION

Our RAG system is designed to enhance the reasoning and generation capabilities of language
models by integrating structured knowledge retrieval. It leverages a database of pre-processed text
chunks or symbol descriptions, embedding them into a vector space for efficient retrieval. The sys-
tem supports multiple retrieval methods, including k-Nearest Neighbors (kNN) and Elasticsearch-
based indexing, allowing for flexibility based on the deployment environment and use case.

The pipeline begins by chunking input data into manageable pieces, ensuring compatibility with the
model’s token limits. Each chunk is embedded using a state-of-the-art embedding model, capturing
semantic relationships for downstream retrieval. These embeddings are stored in a database along-
side their corresponding chunks. For retrieval, the system compares the embeddings of the user
query against the stored embeddings, either through kNN for cosine similarity or via Elasticsearch’s
text search capabilities. This ensures highly relevant results tailored to the query context.

The system also ensures robustness by incorporating mechanisms to rebuild and maintain consis-
tency between embeddings and the database. For instance, when new data is added or existing data
is modified, the embeddings and retrieval models are updated to reflect the changes accurately. Ad-
ditionally, the system includes mechanisms to index data into Elasticsearch for faster retrieval in
scenarios involving large datasets.

To handle symbol-specific tasks, a specialized module allows for the addition and retrieval of sym-
bols, including their semantic descriptions. Symbols can be retrieved based on their similarity to a
query or used in downstream tasks to generate context-aware responses.

Finally, the system integrates with language models for generating augmented responses. By ap-
pending relevant retrieved chunks or symbols as context to the input query, it ensures that the lan-
guage model produces more accurate and knowledge-grounded outputs. This approach makes the
system suitable for tasks that require precise reasoning, such as answering domain-specific questions
or solving complex problems. The use of both structured and unstructured data ensures flexibility
and adaptability across a wide range of applications.

A.4.2 RAG PROMPTS

This is a prompting example we used in our RAG system.

{"role": "user", "content": "For this sub-goal (specification): \"Mine[
Log]: Mine a wood log from a nearby tree in the jungle biome.\", what
is the most appropriate object? You are currently located at

position (x: 4.50, y: 90.00, z: 25.50) in a jungle biome. It is
facing yaw: -3.14 and pitch: -1.57. You have health: 20, food: 20,
and saturation: 5. The current time of day is day. Your velocity is (
x: 0.00, y: -0.08, z: 0.00). Nearby entities include: a parrot at
19.77 blocks away, a chicken at 23.00 blocks away. You are surrounded
by blocks such as stone, dirt, grass_block, coal_ore. Since the last
observation, you have lost 1 of dirt."}

A.4.3 RAG PERFORMANCE ANALYSIS

To evaluate the effectiveness of our RAG system in constructing a correct alphabet, we conducted
a series of tests. The RAG system is provided with a task description (specification) and tasked
with retrieving relevant symbols from the global alphabet. For the ground truth alphabet, we use the
alphabet derived from skill DFAs that have been validated in the Minecraft environment, ensuring
the correctness of the labels.

To compare the retrieved alphabet with the target alphabet, we use two metrics. The first metric
is Absolute Accuracy, which measures the proportion of symbols in the target alphabet At that are
correctly predicted in the retrieved alphabet Â. It is defined as:

|At ∩ Â|
|At|

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The second metric is the Overlap Coefficient, which calculates the size of the intersection divided
by the size of the smaller set:

|At ∩ Â|
min(|At|, |Â|)

We evaluated our RAG system on a subset of 44 skill DFAs. The system achieved an Absolute
Accuracy of 0.9372 and an Overlap Coefficient of 0.9208, both with a standard error of 0.10. These
results indicate that the retrieved symbols are highly similar to the target alphabet, providing a strong
guarantee for the RAG system to construct a correct alphabet for task specifications.

To further assess the effectiveness of the text embeddings used in the RAG system, we compared
the calculated text embedding similarities D with the predicted results Xi ← Âi ∈ At using cosine
similarity:

X ·D
||X||||D||

The RAG system achieved a cosine similarity score of 0.45 (range [−1, 1]) with a standard error of
0.14, demonstrating that the retrieved results are highly relevant to the query task.

Metric Absolute Accuracy Overlap Coefficient Cosine Similarity
RAG System 0.9372± 0.10 0.9208± 0.10 0.4500± 0.14

Table 4: RAG Alphabet Construction Performance: The results are presented as average ±
standard error.

A.5 HUMAN GIVEN COUNTER-EXAMPLES

Figure 9: Three Ways for Human to Give Counter-Examples

Humans can provide counterexamples (CEs) in 3 ways:

1. Annotations: Humans can review videos or trajectories of the skills practiced by the
CEDAR agent in the real environment and mark incorrect trajectories. These marked tra-
jectories are then used as CEs.

2. Demonstrations: Humans can provide demonstrations by playing Minecraft. The human
actions are recorded in the program logs, which can be converted into formal CEs.

3. Formal Counterexamples: For simpler DFAs that can be visualized as graphs, humans
can directly provide formal CEs by inspecting these graphs.

A.6 SIMULATION COUNTER-EXAMPLES

To further evaluate the correctness of the learned skills and their alignment with human specifica-
tions, we simulate these skill DFAs in the real environment and refine them using counter-examples
collected during the process. However, due to the complexity of the environment, some corner cases
may not be encountered by the agent within a limited number of iterations. To address this, we
conducted experiments to measure the success rate of collecting counter-examples.

For the experimental setup, we first generated incorrect DFAs by randomly adding or removing
transitions from correct skill DFAs. The skill DFAs selected for this experiment are designed to
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Item Accuracy Standard Error
Dirt 0.9727 0.1629
Birch Log 0.8636 0.3432
Grass Block 1.0000 0.0000
Birch Leaves 0.9909 0.0949
Stone 0.9727 0.1629
Coal Ore 1.0000 0.0000
Iron Ore 1.0000 0.0000
Copper Ore 0.9909 0.0949
Gold Ore 0.9636 0.1872
Redstone Ore 0.9636 0.1872
Emerald Ore 0.4909 0.4999
Diamond Ore 0.9818 0.1336
Lapis Ore 0.9636 0.1872
Andesite 0.9818 0.1336
Granite 0.9636 0.1872
Sand 0.8727 0.3333
Average 0.9358 0.1692

Table 5: Success Rate and Standard Errors of Counterexample Discovery in Minecraft Simu-
lations. The table shows the accuracy and standard errors for different items.

locate specific objects and collect them, providing a practical context for evaluating the success
rate of counter-example discovery. Since these modified DFAs do not match the dynamics of the
real environment, counter-examples must exist. We then simulated these DFAs in the environment
to identify whether any counter-examples could be collected. For each DFA, we simulate it 110
times. A counter-example occurs when the DFA’s behavior diverges from the expected outcome in
the real environment. For instance, consider the mine stone DFA, which is expected to collect a
cobblestone upon reaching its accepting state. If, during simulation, the accepting state is reached
but no cobblestone is present in the bot’s inventory, this trajectory constitutes a counter-example.
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Figure 10: Mean, Std of CE Collection Probability with Lengths of CEs

The results in Table 5 demonstrate that the RAG system effectively identifies counterexamples dur-
ing DFA simulations in Minecraft, with most items achieving an accuracy higher that 0.96 and a
standard error less than 0.2, indicating consistent detection. Notable exceptions include Birch Log
and Sand, which achieved an accuracy higher than 0.86 with a standard error around 0.3, and Emer-
ald Ore, which had the lowest accuracy at 0.49 with a standard error of 0.4999. These variations
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highlight the challenges of certain items in aligning with the DFA dynamics. On average, the system
achieved an accuracy of 0.9358 with a standard error of 0.1692, underscoring its overall reliability
and precision in identifying counterexamples across diverse scenarios.

We observed in Figure 10 that the probability of collecting CEs decreases as the length of the CEs in-
creases. This is because shorter CEs indicate that the skill DFA fails early in its execution, requiring
fewer interactions with the environment. In contrast, longer CEs suggest that the skill DFA is mostly
correct, with errors occurring only after extended interactions with the environment. However, this
is not a significant concern, as the majority of CEs are short, with lengths less than 7. Within this
range, the probability of collecting a CE is consistently above 0.6, ensuring that CEs can reliably be
collected within multiple simulation attempts.

A.7 ITHOR LLM QUERY COST

Each iTHOR skill required exactly two LLM calls: (i) one to construct the task-specific sub-alphabet
(via RAG) and (ii) one to synthesize the code-based oracle program that binds monitors and action
stubs. No human-provided counterexamples were used. All tasks succeeded in a single pass except
COOK POTATO, which initially failed due to an unfavorable camera perspective; the EQ-oracle sur-
faced a counterexample and we resolved it by inserting a single LOOKUP action into the DFA—this
fix did not require additional LLM queries.

We do not report VOYAGER on iTHOR because the released VOYAGER implementation is tightly
coupled to Minecraft/Mineflayer APIs and does not provide an iTHOR-compatible action interface,
making a direct, controlled comparison infeasible.

Task LLM Queries Initial Outcome After CE Fix
MAKE 1 TOAST 2 success —
MAKE COFFEE 2 success —
COOK POTATO 2 fail success (no extra LLM)
MAKE SALAD 2 success —
STORE PLATE IN FRIDGE 2 success —

Table 6: iTHOR LLM query budget. Two calls per skill: one for sub-alphabet construction and
one for code-based oracle program generation.
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