Under review as a conference paper at ICLR 2024

LEGONET: PIECING TOGETHER AND BREAKING APART
SUB-NETWORKS FOR SCALABLE MULTI-TASK LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite considerable progress in general-purpose vision models, most efforts
focus on designing a new unified structure that can handle different types of input
and supervision. In contrast, we believe each vision task requires its specific
designed module to use different forms of perception. For example, a feature
pyramid network is commonly used in segmentation but not in classification.
We present LegoNet, a general Multi-Task Learning (MTL) framework that is
assembled with many small sub-networks from different vision tasks, similar to
how Lego pieces can be pieced together into larger structures. By leveraging
this property, LegoNet can borrow design elements from single-task models and
combine them to create a scalable multi-task model. We demonstrate its efficiency
on mainstream vision datasets such as ImageNet, COCO, and ADE20K, and show
it achieves comparable results to state-of-the-art single-task models. Moreover,
like a Lego creation capable of dynamically piecing together or breaking apart
pieces, our model exhibits scalability in both its model capacity and adaptability
to a multitude of tasks. It can remove sub-networks and decompose into high-
performing components for efficient adaptation, or add sub-networks for learning
new tasks in a continuous learning scenario. On downstream tasks, it can be
fine-tuned with fewer training parameters, fewer model parameters, and even
transformed to a low computation shape. These functions can be controlled and
combined to meet various demands of downstream applications.

1 INTRODUCTION

Comprehensive visual understanding demands a general-purpose model capable of performing diverse
vision tasks. With a similar goal, multitask learning (MTL), which enables the simultaneous training
of models on multiple tasks and allows them to leverage shared information, has been explored
extensively. Recently, some efforts (Jaegle et al., 2021; Lu et al., 2023; Wang et al., 2022) have been
made on unified input and supervision of the vision tasks so a single large model can be trained to
perform multiple tasks. As such a large model has the advantage of training on a large and diverse
set of data, it often requires new designs to incorporate all the vision tasks and often fails to benefit
from the existing SoTA single-task model design. For example, Unified-1O (Lu et al., 2023) treats
detection as a language modeling task to regress the bounding box location and discard the traditional
detector design. This particular design enables to building of a general framework for various tasks
while sacrificing the performance of individual tasks.

To address this challenge, we developed LegoNet, a versatile framework that enables the seamless
integration of various sub-networks from different vision tasks without requiring any new design ele-
ments such as a unified representation. Our objective was to develop a general multi-task framework
that could be easily assembled from several single-task models and directly incorporate a variety
of tasks. LegoNet achieves this by utilizing a mixture-of-experts (MoE) vision transformer as its
backbone and incorporating task-specific sub-networks from each task. Each MoE module has several
experts (also referred to as sub-networks) that have the same shape as in a single-task backbone
model. The weight of each sub-network including backbone and task heads can be trained from
scratch or directly loaded from a pre-trained single-task model. When using pre-trained weights, it
takes only 1/2 of the training epochs compared to training from scratch. This approach enables us to

Under review as a conference paper at ICLR 2024

Single-task Efficiently Adapt Sub-Networks from Single-Task Models
Pretrained Models to Other Tasks
S -
%‘w N é \,% ﬁ i
N O/é An > Experts OO0 oee sss
Classification (Cls))i 65\ Fine-grained Cls
[ol l Adapt
o™ 'I- Transformer Block in LegoNet N
b ransformer Block in LegoNet X
’m rAss(-mhle\r\‘ (& 8 o

e| |
gl
Bl @
gl
BB
S| ¢

4,
Detection (Det) s @ Driving Scene Seg
{ o ik
S ! , &
o K ;
y SN

" MOEMLP Layer |
Segmertation (Scg) LEGONET tndoor Seg

| rO0e-- (@88
(@ (b)

Figure 1: Overview of LegoNet. (a) LegoNet is a general multi-task learning (MTL) framework that
is assembled with many small sub-networks from different vision tasks similar to how Lego pieces
can be assembled into larger structures. These sub-networks can be further selected and utilized on
downstream tasks. (b) It shows how LegoNet load weights of sub-networks from single-task models.

efficiently combine sub-networks from different tasks while maintaining a smooth learning process
with high performance.

As shown in Figure 1, we constructed our multi-task framework by assembling sub-networks from
individual tasks. Our results demonstrate that stacking sub-networks from single-task models is
a robust approach for multi-task learning and can achieve results comparable to state-of-the-art
single-task models on mainstream vision datasets. By showcasing its scalability to handle additional
tasks, we provide evidence of LegoNet’s ability to adapt and effectively tackle diverse vision tasks.
This is non-trivial as it highlights the framework’s potential to serve as a flexible and powerful
solution for addressing a broad spectrum of vision-related challenges.

There are two main advantages of our framework compared to other large-scale multi-task models.
The first advantage is its ability to easily attach or detach sub-networks, much like adding or removing
pieces in a Lego construction. This is particularly significant when incorporating more tasks into
our multi-task framework dynamically, such as in a continuous learning scenario. By attaching
sub-networks, we can efficiently adapt to new tasks and datasets. Conversely, detaching sub-networks
can be used to prune the model and meet memory limitations when deploying on downstream tasks.

Another advantage of the LegoNet is its ability to quickly and flexibly adapt to downstream tasks.
This is made possible by the mixture-of-experts module, which allows the model to select the most
semantically meaningful sub-networks for faster transfer to downstream tasks (See Sec3.4). LegoNet
can automatically select some of the sub-networks to fine-tune and freeze the rest of the framework,
reducing computation costs by activating fewer sub-networks in a forward pass. While large-scale
models benefit from their capacity, downstream tasks may not require all of this capacity, and
automatic selection can be beneficial in reducing unnecessary computation.

Overall, the LegoNet framework offers a versatile and efficient solution for multi-task learning, with
the ability to easily adapt to new tasks and efficiently utilize resources. Its fast and flexible adaptation
to downstream tasks makes it a valuable tool for the vision community. Our main contributions can
be summarized as follows:

¢ A versatile multi-task model, assembled from individual single-task models, excels at
robustly addressing various vision tasks. LegoNet achieves performance on par with state-
of-the-art single-task models across all tasks. Extending our framework to additional tasks is
effortless: simply append sub-networks and expedite training by leveraging pre-trained weights
from a single-task model.

» Adaptive Model Size Adjustment. Our framework exhibits a dynamic scaling property, allow-
ing the addition or removal of sub-networks at any training stage. This flexibility and adaptability
hold significant value, particularly within the context of scalable Multi-Task Learning.

« Efficient adaptation on downstream tasks. LegoNet enables versatile architectural control,
offering several direct and efficient methods for tailoring the structure.

* Continual learning without forgetting. The model can effortlessly leverage existing sub-
networks to adapt to new tasks by learning new routers. Additionally, it integrates new sub-
networks without disrupting the current architecture, preventing catastrophic forgetting.

Under review as a conference paper at ICLR 2024

A. Multi-task training with dataset- B. Dynamic scaling ability in model C. Efficient adaptation on
specific routing size downstream datasets
MoE Module (MoE Module) (MoE Module)
T PITITITLLLLI
b - Xy} -
oo (ERIEINES - e (B WA ppr WESE)N W
Remove experts with Freeze most
low using frequency of the experts
Router D, Router D; fe« | Router D, New Router New Router

| J {)| 3 \! J \. J

Reduce model parameters Reduce training parameters

Classification Detection Segmentation
(MoE Module A (MoE Module A
‘llllll- Clll-
Experta @ <-4 0: .0 @ Expert (W '8 @ ---8
l"resz.e.-...’ CaE Y

Add new experts . Set TOp._,Kzz

New Router) \ New Router | instead of IOP'K’;
Dataset 1 Dataset 2 Dataset n - - -
Simple model expansion Reduce computation cost

Figure 2: Efficient adaptation with dataset-specific routing. Left: Dataset-specific routers select
distinct experts for individual datasets. Middle up: Reduce model parameters by learning new routers
and eliminating infrequently selected experts. Middle down: Simple model expansion via adding and
training a handful of fresh experts per MoE module while keeping existing experts freezing. Right
up: Reduce training parameters by exclusively learning new routers and a few optional experts while
preserving other parameters. Right down: Minimize computational costs by training new routers with
a smaller Top-K, resulting in fewer experts being selected in a single forward pass. These adaptation
techniques can be combined to meet specific requirements.

2 RELATED WORK

Multi-task Learning. Multi-task learning (Kendall et al., 2018) jointly learns multiple related tasks
with a single model. Recently, transformer-based MTL architectures (Xu et al., 2022) have gained
popularity. Some works (Jaegle et al., 2021; Lu et al., 2023; Cai et al., 2022) attempt to unify the input
and output space for different tasks. Others (Chen et al., 2023; Xu et al., 2022; Maninis et al., 2019;
Kokkinos, 2017) remove complicated task-specific modules for simplicity and conduct multi-task
learning on a multi-label dataset. In contrast, LegoNet is a versatile multi-task framework that can
seamlessly integrate additional tasks by assembling sub-networks derived from single-task models.
While it maintains architectural similarities to common multi-task models with a shared backbone and
distinct task heads, its key distinction lies in the remarkable flexibility to affix or remove sub-networks
and its proficiency in efficient adaptation.

Mixture of Experts (MoE). Jacobs et al. (1991) introduced the MoE to merge sub-networks and
perform conditional computation. Recently, this technique has been used to reduce computation while
maintaining model capacity (Shazeer et al., 2017). Some studies (Lepikhin et al., 2021; Fedus et al.,
2022; Riquelme et al., 2021; Mustafa et al., 2022) have leveraged MoE to train models with trillions
of parameters with relatively low computation. Mod-Squad (Chen et al., 2023) and M3ViT (Xu et al.,
2022) also use MoE in their MTL model to enhance optimization and performance. In contrast, our
main use of MoE is for sub-network management, including adding, removing, and selecting experts
for downstream tasks.

Parameter-efficient transfer learning. The Adapter technique was proposed as a standalone
layer that can be integrated into an existing neural network for efficient transfer. LoRA (Hu et al.,
2021) utilizes a bottleneck structure to enforce a low-rank constraint on the weight updates. Other
approaches integrate CLIP-based adapters (Gao et al., 2021; Yi-Lin Sung, 2022; Zhang et al., 2021),
upsampling and downsampling modules (Li et al., 2022), and additional bias parameters (Zaken et al.,
2022) to reduce training parameters during fine-tuning. Our research, on the other hand, centers on
the precise selection of the most semantically relevant model components and efficient adaptation to
downstream tasks, all without necessitating the creation of additional, bespoke modules.

Dynamic network. Dynamic neural networks, which can adapt their structures during inference,
have shown notable improvements in computational efficiency compared to static models (Han et al.,
2022). Previous works have focused on adjusting the network depth (Bolukbasi et al., 2017; Veit
& Belongie, 2018; Wang et al., 2018; Huang et al., 2018) or width (Yuan et al., 2020; Li et al.,
20215 Yu et al., 2019), or conducting dynamic routing within a fixed supernet including multiple

Under review as a conference paper at ICLR 2024

possible paths (Li et al., 2020; Liu & Deng, 2018). However, dynamic networks require training for
architectural adjustments, mainly targeting pre-trained datasets. Post-training architecture changes
and downstream task adaptation are challenging. In contrast, LegoNet enables straightforward
expansion to new tasks and streamlined adaptation to downstream tasks, offering a versatile approach
in comparison to traditional dynamic networks.

Continual learning. Continual learning involves handling a diverse set of tasks and accumulating
knowledge through a series of training. Recent efforts have been made to address catastrophic
forgetting, including imposing regularization (Kirkpatrick et al., 2017; Zenke et al., 2017; Ritter et al.,
2018) and retaining a small buffer of data for replay (LLopez-Paz & Ranzato, 2017; Nguyen et al.,
2018). Some approaches (Yoon et al., 2018; Hung et al., 2019) dynamically expand the network
by adding neurons to each MLP or convolution layer. In contrast, LegoNet offers a straightforward,
well-structured expansion approach by attaching new sub-networks and learning new routers. Notably,
as each dataset has its own router, the previously added sub-networks are unaffected by the new
dataset. Unlike alternative expansion techniques, our approach avoids catastrophic forgetting.

3 METHOD

3.1 DEFINITION AND PREREQUISITE

Problem definition. Unlike common MTL on a single image set with multiple task labels, our
framework is trained on combinations of single-task datasets, which is similar to previous work (He
et al., 2022; Ghiasi et al., 2021). We say heterogeneous to refer to the combination of single-task
datasets. We start with the definition of multi-task heterogeneous training. Suppose we have M
datasets D1, D, ..., Dyr. Each dataset contains a set of training pair {I;T;(I)} and T; is the task
on dataset D; that map images I to T;(I). Here, we assume each dataset only has one task to do for
simplicity. Multi-task heterogeneous training is to learn a joint model on the M datasets at once.

Mixture-of-Experts (MoE). A MoE layer contains a group of expert networks Fy, Es, ..., Eny and
a routing network G The routing network G calculates the weight G*(z) for each expert E}, given
input z and the output of an MoE layer is the weighted sum of the output of every expert Ey(z).
Formally, the output of an MoE layer is
N
= G"(z)Ex(x). (M

k=1
The routing network G is a Top-K Routing network (Shazeer et al., 2017) that only K experts with
the highest weight contribute to the final output:
G(z) = TopK(Softmax(xWy), k) (2)
where TopK(-, k) zeroes all vector elements except the elements with the largest K values.

Mutual information (MI) loss. Mod-Squad (Chen et al., 2023) proposes an MI loss as an auxiliary
loss to better assign experts to tasks so that each expert is more likely to be used for a fixed set of
tasks. In contrast, the key motivation in LegoNet is to encourage experts to specialize on datasets and
then when adapting to downstream tasks, the downstream datasets are more likely to activate a small
subset of experts. So we have M dataset-specific routing networks and modify the loss so that the
experts are assigned to datasets instead of tasks:

K
Lyr = ZZP D, E;)log P(D;, E;) +ZP)log P(D;) + Y P(Ej)log P(E;). (3)
=1 j=1 j=1

Asin (Chen etal., 2023), we assume that P (i) = M as we want all datasets to be considered equally
important. We have P(E;|D;) = > cp. GI () where GY is the weight of expert E; for dataset D;.
With P(E;|D;), we can get P(D;, E;) = P(E;|D;)P(D;) and P(E;) = ZZ L P(D;, Ej).

3.2 LEGONET

LegoNet is a framework orthogonal to any transformer-based single-task architecture. We use a
mixture-of-experts (MoE) vision transformer as backbone (Fig. 1). We replace the attention and MLP

Under review as a conference paper at ICLR 2024

layers in a transformer block with MoE Attention and MoE MLP layers. On top of the backbone, we
directly incorporate all task-specific designed modules (e.g., feature pyramid network).

Load weight from pre-trained single-task models. We assume that LegoNet and single-task models
use the same network architecture (e.g., MoE Swin Transformer). The only difference is that LegoNet
could have more experts in an MoE module. Inside an MoE module, each expert can load weight
from an expert in a pre-trained single-task model as they are exactly the same shape. We explore
two situations of loading weight from multiple single-task models: 1) Full Loading: LegoNet has
enough experts in an MoE module to load from all single-task models. In this scenario, LegoNet has
M « E experts in each MoE module and the single-task model has E experts. LegoNet can directly
load from M single-tasks model. 2) Partial Loading: LegoNet does not have enough experts to load
from all single-task models’ experts. In this scenario, both LegoNet and single-task models have E/
experts in an MoE module and LegoNet can still load weights from a subset of single-task models.
For each expert in LegoNet, we randomly load weight from M * E experts. For both methods, they
will directly load task-specific modules from single-task models and the rest of the model (e.g., linear
projection of flattened patch) can be initialized randomly.

Sampling strategy. Multi-task models that update the network after forwarding for all tasks are
impractical as GPU memory is heavily consumed when activating all dense vision modules (e.g.,
segmentation heads). To address this issue, LegoNet adopts a two-step sampling approach. First, we
apply weighted sampling to select one out of the M datasets. Then, we randomly sample a batch
of data from the chosen dataset. The weight assigned to each dataset D; for sampling is denoted as
Wsample; » Which can be pre-defined based on the total number of required iterations for convergence
in single dataset training, with some empirical tuning.

New mutual information (MI) loss for heterogeneous training. In Mod-Squad (Chen et al., 2023),
the MI loss in Eq. 3 can be calculated in each batch as all tasks are contained in one batch. However,
calculating P(D, F) and P(E) within a sampled batch from one random dataset in heterogeneous
training leads to heavy bias. To address this, we use an approximation inspired by :

9 0
%[:clogx] =1+logz = 8—;6[(1 + log ¢)z]|c=z- 4)

This suggests that if we replace x log x with (1 + log ¢)z, and c is a good approximation of x, then
we will still have a similar gradient. In our case, we will approximate a running estimate of the joint
distribution of P(D, E') with a buffer B(D, E). The running estimate B(D, E) avoids the heavy
bias caused by estimating P(D, E) from a single task data set. In each forward pass when we sample
dataset D;, we momentum update B(D;, E) with a momentum of 0.98. This keeps the estimate of B
close to that of the desired joint distribution. Using this idea, we rewrite Eq. 3 and use the resulting
equation as the loss function to calculate the gradient. The equation is given by:

Lur ==Y [1+1log B(D;, E;)|P(Di, B;) + Y _[1+10g(Y_ B(Ds, E)))|P(E;). ®)

i=1 j=1 j=1 i=1

Here, P(D;, E;), P(E;) is calculated in each forward pass backpropping gradients. If D; is not
sampled in the current forward pass, P(D;, E;) is set to 0. Note that P(D;) log P(D;) is ignored as
a constant. When adapting to new downstream datasets, the buffer still memorizes P(D, E) for old
datasets. Therefore, the MI loss can still be computed to balance experts on new datasets, which is
not applicable in (Chen et al., 2023).

3.3 DYNAMIC SCALING PROPERTY IN MODEL SIZE

Scale down on downstream tasks. As shown in Fig. 2, LegoNet has dynamic scaling property in
model size. When adapting to an existing/new task, LegoNet can learn a new router for the task while
freezing the rest of the parameters to remove experts that are rarely selected by this task-specific
router. This property is particularly useful for scaling down a large pre-trained model to better fit a
new task with improved efficiency.

Scale up for continuous learning. LegoNet is capable of simple model expansion that can help
conduct continual learning. Specifically, we directly add C' experts in each MoE module along with
new task-specific routers every time we learn a new task. All parameters except for the newly added
part are frozen during training. There are three main advantages of this approach: 1) No catastrophic

Under review as a conference paper at ICLR 2024

forgetting. As all the experts are unchanged after learning and the newly added experts will not
be chosen by the router of previous tasks, there is no catastrophic forgetting. 2) Well-organized
architecture and knowledge reuse. The model maintains an elegant architectural design. The routers
select experts to reuse knowledge related to the new task and ignore experts with unrelated expertise.
3) The computation cost is constant. Other expanding methods Yoon et al. (2018); Hung et al. (2019)
add both computation cost and capacity to the existing model, while our approach only adds capacity.
This makes our approach expandable with a large number of tasks.

3.4 EFFICIENT ADAPTATION ON DOWNSTREAM TASKS

LegoNet offers two appealing advantages: 1) Downstream applications can select the best-
matching experts for the task at hand, similar to how a transformer transfers to different cars in
Fig. 1. This can be done by learning a new router in each MoE module to find good experts for the
downstream task. We consider an expert as a good expert if it is chosen with a high frequency by
the router on the downstream dataset. The routers are very lightweight (0.4M in parameters) and
can quickly converge to the optimum while freezing all other parameters. 2) We can easily control
the architecture within each MoE module. The model can be expanded or pruned by adding or
removing experts, and the number of activated experts can be controlled by learning new routers with
different Top-K. This flexibility enables efficient customization of the model based on the specific
requirements of the task at hand.

With these two advantages, we achieve 3 types of efficient fine-tuning (see Fig. 2). 1) fewer training
parameters. The model only needs to learn a new router for the downstream dataset and optionally
fine-tune a few experts in each MoE module. 2) fewer model parameters. Same as the scale-down
property we introduced before. 3) Less computation. The new router for the downstream dataset
can be learned with a smaller Top-K. So that fewer experts are chosen during one forward pass and
can greatly reduce the computation cost and inference latency. Note that all these ways of efficient
adaptation can be combined together to meet the demands of downstream datasets.

4 EXPERIMENTS

4.1 MULTI-TASK PRE-TRAINING

We conduct three fundamental vision tasks (classification, detection, and segmentation) on ImageNet-
1K (Deng et al., 2009), COCO (Lin et al., 2014), and ADE20K (Zhou et al., 2017b). For downstream
performance, we evaluate classification on the scene dataset Places-365 (Zhou et al., 2017a) (P365),
the popular fine-grained dataset iNaturalist-2018 (Van Horn et al., 2018) (iNat18), the pet dataset
Pets (Parkhi et al., 2012), the fine-grained bird dataset CUB (Wah et al., 2011), and the car dataset
Cars (Krause et al., 2013). We evaluate downstream detection on PASCAL VOC (Everingham et al.,
2010) and segmentation on Cityscapes (Cordts et al., 2016) and NYU (Silberman et al., 2012).

Models and baselines. We utilize Swin Transformer (Liu et al., 2021) and DaViT (Ding et al., 2022

as our backbone transformers, with different sizes: tiny (T), small (S), and base (B). Each task has
its own task-specific head. For classification, we use a single linear layer. For detection, we use the
retina head (Lin et al., 2017). For segmentation, we use the UperNet (Xiao et al., 2018). Each task
follows its own input and output format based on single-task methods. We implement our methods
and baselines as the following: 1) Train from scratch (Scratch): a vanilla single-task learning baseline
that trains from scratch. 2) Pre-train then fine-tune (Pre. & FT.): pre-training on ImageNet followed
by fine-tuning on the target dataset. 3) Hard sharing: Multi-task learning with multiple task-specific
heads and a shared backbone (w/o MoE module) between all tasks, which is a common method in
the literature. 4) LegoNet.

Configs. We employ 12 experts with Top-K as 4 for all MoE modules, following Chen et al. (2023).
All models are trained for 240k iterations on 96 Tesla V100 GPUs with Lamb optimizer (You et al.,
2019). Data augmentations for each task follow the common practice in SwinT and DaviT. For a fair
comparison, all results are obtained from our implementations with the same settings. More details
of the training can be found in the supplementary.

Multi-task pre-training. We compare different training schemes as shown in Tab. 1. Across all three
datasets with varying backbones, we observe that: 1) LegoNet performs on par with the state-of-the-art

Under review as a conference paper at ICLR 2024

Table 1: Multi-task pre-training. We compare it with training from scratch (scratch), pre-training
then fine-tuning (pre. & ft.), and Hard-Sharing. On COCO and ADE20K, pre. & ft. would initialize
the backbone with an IN-1K pre-trained model. The numbers of parameters and FLOPs of the
backbone are measured. Classification has input resolution as 224 x 224.

Params FLOPs Iters | IN-1K COoCoO ADE20K
M) (G) (K) | top-1 |mAP mAPsg mAP;s |mIloU mAcc aAcc

Scratch | 27.5x3 44 165| 80.6 | 349 54.3 36.6 320 414 758
Swin-T |Pre. & FT.| 27.5x3 44 - - 42.0 64.7 459 443 558 81.0
LegoNet 50.9 5.1 240| 803 | 45.0 66.5 48.2 44.6 550 81.0

Scratch | 489x3 85 165| 82.6 | 363 55.6 384 345 439 771
Swin-S |Pre. & FT.| 489x3 8.5 - - 46.0 68.0 49.9 47.0 569 81.7
LegoNet 89.1 92 240 | 82.0 | 457 66.8 49.1 46.7 57.1 81.8

Scratch | 86.7x3 151 165| 83.1 | 355 54.7 374 354 448 776
Swin-B |Pre. & FT.| 86.7x3 15.1 - - 473 69.0 51.2 477 587 823
LegoNet | 158.3 162 240 | 823 | 47.6 69.1 50.9 482 590 825

Backbone | Model

Scratch | 27.6x3 44 165| 82.5 | 37.7 57.1 40.0 364 464 778
DaViT-T |Pre. & FT.| 27.6x3 44 - - 454 66.9 48.4 458 56.0 818
LegoNet 51.2 5.1 240 | 82.0 | 45.1 67.5 48.1 474 571 821

Scratch |49.0 x3 8.6 165| 83.8 | 378 56.7 40.5 382 484 788
DaViT-S |Pre. & FT.|49.0 x3 8.6 - - 47.2 68.9 50.7 483 602 823
LegoNet 88.9 92 240| 833 | 464 67.7 49.5 48.6 598 83.0

Scratch | 86.9x3 152 165| 84.2 | 38.0 572 40.5 385 487 789
DaViT-B |Pre. & FT.| 86.9x3 15.2 - - 48.1 69.7 513 493 602 830
LegoNet | 158.7 163 240 | 83.6 | 47.8 69.5 51.5 49.6 60.1 83.1

Table 2: Compare of different ways of loading weight. We report the number of iterations to show
partial and full loading (Partial L. and Full L.) can speed up convergence.

Params FLOPs Iters | IN-1K CoCco ADE20K
M) (G) (K) | top-1 |mAP mAPsy mAPzs | mloU mAcc aAcc

Hard-Sharing | 27.5 44 260| 79.7 | 438 65.7 46.8 444 548 805
Avg. L. 27.5 44 260 79.8 | 43.6 65.5 47..0 442 539 80.1

Backbone Model

Swin-T | partial L. 509 51 190| 80.0 | 446 66.1 478 | 444 548 8l.1
Full L. 509 5.1 120| 802 | 450 667 48.1 | 448 554 807
LegoNet | 509 5.1 240| 803 | 450 665 482 | 446 550 81.0

pre-train then fine-tune learning scheme. 2) Notably, for the segmentation task, LegoNet consistently
outperforms the previous state-of-the-art across all backbone choices, suggesting that joint training
with classification and detection tasks improves segmentation. 3) LegoNet also works pretty well on
image detection and is superior to previous arts in most cases. 4) The LegoNet and Hard-Sharing
generally exhibit similar performance on tiny and base models and LegoNet consistently outperforms
Hard-Sharing on tiny models, likely influenced by the relationship between model capacity and
dataset scale. Finally, we want to emphasize that our framework prioritizes flexibility and adaptability
over multi-task learning performance.

Load weight from pre-trained single-task models. We explore Full and Partial Loading in Tab. 2.
Our experiments were conducted using 12 experts in each MoE module. Full loading involved loading
weights from single-task models with 4 experts, while partial loading involved loading weights from
single-task models with 12 experts. Full loading can save 50% of training iterations, while partial
loading can save approximately 15% without compromising performance. Additionally, we compared
our results with average loading (Avg. L.) based on hard-sharing, where the weights from three
single-task models are averaged. This method did not speed convergence.

Downstream performance. As shown in Tab. 3, we compare with several methods on the downstream
datasets. LegoNet outperforms the single-task pre-trained model IN-1K Pre and the multi-task model
Mod-Squad, with a significant improvement in detection and segmentation. Additionally, LegoNet
consistently outperforms Hard-Sharing, which suggests that adding more experts for selection could
be advantageous for downstream tasks.

Under review as a conference paper at ICLR 2024

Table 3: Comparisons of different MTL methods on downstream performance. We compare with
IN-1K pre-trained model (IN-1K Pre.), multi-task model Mod-Squad trained on Taskonomy (Zamir
et al., 2018), and Hard-Sharing learned on our training datasets. To calculate the mean, we first
average the performance on classification, detection, and segmentation separately. Afterward, we
average the results across all tasks.

P365 iNatl8 Pets CUB Cars | PASC. | City. NYU

Backbone Method top-1 top-1 top-1 top-1 top-1 | mAP | mIoU mlIoU ‘ Mean
IN-1K Pre. 587 729 940 839 940 | 76.9 80.6 76.2 78.7

Swin-B Mod-Squad (Chen et al., 2023) | 56.4 69.4 923 798 937 | 77.2 81.1 715 78.1
Hard-Sharing 59.1 733 942 843 942 | 78.7 82.1 78.0 79.9

LegoNet 594 73.6 946 847 949 | 79.1 82.5 78.7 80.4

IN-1K pre. 592 734 944 884 949 | 774 81.5 76.7 79.5

Davit-B Hard-Sharing 59.6 735 948 89.0 950 | 788 82.7 78.6 80.6
LegoNet 60.1 739 949 894 950 | 795 83.4 79.3 81.2

Table 4: Efficient adaptation. All experiments use LegoNet as the pre-trained model with Davit-S as
the backbone. The ratio calculates the percentage of efficiency metric compared to the fully fine-tuned
baseline. Notations: ‘Ro.” for Router, ‘Ex.” for expert(s), 6 is a threshold on the frequency used for
an expert. We have two hybrid models: 1) ‘Hybrid-A’ directly combines ‘Ro. w/ 1 Ex.’, ‘Prune 2/3
Ex., and ‘Top-K=2". 2) ‘Hybrid-B’ combines ‘Ro. w/ 2 Ex.’, ‘Prune 2/3 Ex.’, and “Top-K=3".

Method Train. Model FLOPs Ratio P365 iNat18 Pets CUB Cars |PASC.| City. NYU Mean
Par.(M) Par.(M) (G) top-1 top-1 top-1 top-1 top-1|mAP |mloU mloU
FT-Full \ 88.9 88.9 9.2 - \59.0 72.9 94.0 88.2 95.0\ 78.6 \ 814 774 \79.9
Adapter (Houlsby et al., 2019)| 14.8 - - 16.6%|50.7 62.4 81.1 75.8 80.8| 67.7 | 69.9 66.8 | 68.7
Ro. Only 0.4 - - 04% |52.1 642 833 779 782| 69.6 | 71.8 68.7 | 70.3
Ro. w/ 1 Ex. 54 - - 6.1% |57.4 70.7 913 85.8 94.7| 76.5 | 78.8 752 | 77.8
Ro. w/ 2 Ex. 10.4 - - 11.7%|58.8 7277 94.0 87.8 95.0| 77.9 | 80.7 76.7 | 719.4
Prune 6 = 1% - 60.2 - 677%|589 72.8 939 88.1 95.0| 78.6 | 81.4 77.3 | 79.9
Prune 0 = 5% - 54.4 - 61.2%|58.8 7277 93.8 88.0 94. | 784 | 81.4 772 | 79.7
Prune 1/2 Ex. - 59.9 - 673%|588 72.8 939 88.0 93.9| 78.6 | 81.4 77.3 | 79.8
Prune 2/3 Ex. - 49.9 - 56.1%|58.8 72.6 93.6 87.8 93.8| 78.6 | 81.3 77.2 | 79.7
Top-K=3 - - 7.7 83.7%|58.8 72.5 93.3 873 949| 77.3 | 80.1 76.3 | 79.0
Top-K=2 - - 6.2 67.4%|58.1 70.7 919 862 92.0| 749 | 77.6 73.7 | 76.8
Top-K=1 - - 4.7 51.0%(48.5 599 773 724 774| 643 | 66.6 633 | 654
Hybrid-A 54 49.9 6.2 - |58.0 70.6 91.1 85.8 94.7| 76.3 | 785 732 | 774
Hybrid-B 104 499 7.7 - |588 724 933 872 949\ 77.1 | 7199 76.2 | 78.8

4.2 LEGONET IS AN EFFICIENT ADAPTER

Efficient in training parameters. LegoNet can adapt quickly to a new task or dataset by tuning
the router with a few optional experts and learning a new task head. During this process, all other
parameters are frozen. The optional experts to be fine-tuned are randomly selected. Randomly
selected experts perform similarly to selecting the expert with the highest or lowest use frequency on
the downstream dataset (see Supp. Mat.).

In Tab. 4, our method is referred to as ’Ro. Only’, 'Ro. w/ 1 Ex.’, and 'Ro. w/ 2 Ex.’, referring to
tuning routers only, and routers with 1 or 2 experts per MoE module. We compare our efficiency in
training parameters with the commonly used adapter (Houlsby et al., 2019), which adds an adapter
module after each MoE MLP block. In contrast, we only need new lightweight routers (0.4M) and 1
or 2 additional experts per MoE module. Even updating only new routers outperforms the adapter
baseline, and Ro. w/2 Ex. has performance close to the fully fine-tuned baseline. See Fig. 3.

Dynamic scaling down. Regarding model capacity, LegoNet can remove experts after learning a
new router on a new task by removing least-used experts, followed by fine-tuning the entire model.
We explore two methods of pruning: 1) Removing a few experts from each MoE layer. In Tab. 4,
we attempt to remove 1/2 experts and 2/3 experts. 2) Removing all experts whose use frequency is
lower than a threshold 8 on the downstream dataset. This approach may result in a different number
of experts in each MoE layer, but it has comparable efficiency to the first pruning method. See
Tab. 4 and Fig. 3 for results and a comparison. This way of dynamic scaling model size can stabilize
performance compared to the original model.

Under review as a conference paper at ICLR 2024

80 4 Ro. w/3 Ex. o i Top-K=3
&'?QR(). w/2 Ex. F ? 80.0 7 !’rune 1 AI‘ x4 80.0 (T."‘. 8
S x4 ﬁn“-t} . Prune 1/2 Ex. Fully 775 : NFulll\
I % Ro. w/l Ex. ctunef 79 5 4 Prune 5% finetune, . finetune
8 Prune 2/3 Ex.
= 76 0
5 76 79.0 750
4 72.5 1
L‘g 74 78.5 1
A, 70.0
g 78.0
§ 70 1% Ro. Only 67.5 7
77.5 A
£3Adapter 65.0 1
0 25 50 75 50 60 70 80 90 5 6 7 8 9
Training Parameters (M) Model Parameters (M) FLOPs (G)

Figure 3: Trade-off between efficiency and performance. We visualize the trade-off between
performance and training parameters, model parameters, and computation cost respectively.

Table 5: Continual learning. We conduct continual learning on these datasets one by one after
pre-training and report final performance. All experiments are based on LegoNet with a DaviT-S
backbone. The number of training and newly added parameters in the backbone per task are measured.
’Mean’ is the mean performance on all datasets.

Method New params Train. params | P365 iNatl8 Pets CUB Cars PASC. City. NYU Mean
per task (M) per task (M) |top-1 top-1 top-1 top-1 top-1 mAP mloU mloU
LWF (Kirkpatrick et al., 2017) 0 88.9 462 57.0 735 706 755 627 71.1 689 | 65.7
Rou. only 0.4 0.4 52.1 642 833 779 782 69.6 71.8 68.7 | 70.7
Rou. w/ 1EX. 5.4 5.4 576 708 913 859 947 76.8 790 756 | 79.0
Rou. w/ 2Ex. 10.4 10.4 58.8 728 945 88.0 950 781 80.7 769 | 80.6
FT-Full | - - [59.0 729 940 882 950 786 814 774 | 808

Computational efficiency. Much pre-training uses a relatively large backbone, but downstream
tasks/datasets may not require such large model capacity. LegoNet can regulate the computation
cost by learning new routers with a reduced Top-K. This gives a trade-off between performance and
computation (see Fig. 3). For some datasets (e.g., P365), it can achieve a relatively low computation
cost (e.g., 67.4%) while maintaining the same level of performance (e.g., <1% drop).

Combine all efficient adapting. To further improve efficiency, the efficient adapting techniques can
be combined. In Tab. 4, for Hybrid-B, we first learn a new router and remove 2/3 experts. Then, we
fine-tune the router with Top-K as 3 along with two experts per module. This approach achieves a
mean performance of 78.8, which is only 1 point lower than fine-tuning the entire model. Moreover,
this method reduces training parameters, model parameters, and computation costs simultaneously.

4.3 CONTINUAL LEARNING.

Continual learning without any forgetting is achievable with LegoNet by learning new routers (0.4M)
and a few optional experts on the new dataset. We compared it with the common regularization-based
continual learning baseline LWF(Kirkpatrick et al., 2017). As demonstrated in Tab. 5, LegoNet has
three significant advantages: 1) No forgetting on the learned datasets. 2) Only a smart part of the
model needs to be trained on new datasets, requiring only 10.4M training parameters, while LWF
needs to tune the whole model (88.9M). 3) Comparable performance to fully fine-tuning the whole
model on every dataset. These results further prove the effectiveness of LegoNet as a general MTL
framework to handle an ever-increasing number of tasks.

5 CONCLUSION

Our study focused on a scalable multi-task model that can piece together sub-networks from single-
task models and its ability to adapt to downstream datasets. Experiments are conducted to demonstrate
its effectiveness, dynamic scaling property, and adaptability. The broader impact of our work could be
significant in terms of advancing scalable MTL and effective adaptation of large-scale models. One
limitation of LegoNet is it may be biased toward certain datasets and require more training iterations
for convergence compared to single-task models.

Under review as a conference paper at ICLR 2024

REFERENCES

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks
for efficient inference. In International Conference on Machine Learning (ICML), pp. 527-536.
PMLR, 2017.

Zhaowei Cai, Gukyeong Kwon, Avinash Ravichandran, Erhan Bas, Zhuowen Tu, Rahul Bhotika,
and Stefano Soatto. X-detr: A versatile architecture for instance-wise vision-language tasks. In
European Conference on Computer Vision, pp. 290-308. Springer, 2022.

Zitian Chen, Yikang Shen, Mingyu Ding, Zhenfang Chen, Hengshuang Zhao, Erik Learned-Miller,
and Chuang Gan. Mod-squad: Designing mixtures of experts as modular multi-task learners.
Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2023.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR), pp. 3213-3223, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
FPattern Recognition (CVPR), 2009.

Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jingdong Wang, and Lu Yuan. Davit: Dual attention
vision transformers. In ECCV, pp. 74-92, 2022.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303-338, 2010.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022. URL http://jmlr.org/papers/v23/21-0998.html.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv preprint
arXiv:2110.04544, 2021.

Golnaz Ghiasi, Barret Zoph, Ekin D Cubuk, Quoc V Le, and Tsung-Yi Lin. Multi-task self-training
for learning general representations. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 8856-8865, 2021.

Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang. Dynamic neural networks: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7436-7456, nov 2022.
ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3117837.

Yinan He, Gengshi Huang, Siyu Chen, Jianing Teng, Kun Wang, Zhenfei Yin, Lu Sheng, Ziwei
Liu, Yu Qiao, and Jing Shao. X-learner: Learning cross sources and tasks for universal visual
representation. In European Conference on Computer Vision (ECCV), pp. 509-528. Springer,
2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning (ICML), pp. 2790-2799. PMLR, 2019.

Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models, 2021.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Weinberger.
Multi-scale dense networks for resource efficient image classification. In International Conference
on Learning Representations (ICLR), 2018.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song
Chen. Compacting, picking and growing for unforgetting continual learning. Advances in Neural
Information Processing Systems (Nerurips), 32, 2019.

10

http://jmlr.org/papers/v23/21-0998.html

Under review as a conference paper at ICLR 2024

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87, 1991.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning (ICML), pp. 4651-4664. PMLR, 2021.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pp. 7482-7491, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521-3526, 2017.

Tasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR), pp. 6129-6138, 2017.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops,
pp. 554-561, 2013.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with condi-
tional computation and automatic sharding. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=grwe7XHTmYb.

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang. Dynamic
slimmable network. In Proceedings of the IEEE/CVF Conference on computer vision and pattern
recognition, pp. 8607-8617, 2021.

Yanghao Li, Hanzi Mao, Ross B. Girshick, and Kaiming He. Exploring plain vision transformer
backbones for object detection. ArXiv, abs/2203.16527, 2022.

Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xiangyu Zhang, Xingang Wang, and Jian Sun.
Learning dynamic routing for semantic segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 8553-8562, 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740-755. Springer, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object
detection. In ICCV, pp. 2980-2988, 2017.

Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-efficiency trade-offs
by selective execution. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
volume 32, 2018.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In /CCV, 2021.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi.
UNIFIED-IO: A unified model for vision, language, and multi-modal tasks. In The Eleventh Inter-
national Conference on Learning Representations (ICLR), 2023. URL https://openreview.
net/forum?id=E01k9048s07.

11

https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=E01k9048soZ
https://openreview.net/forum?id=E01k9048soZ

Under review as a conference paper at ICLR 2024

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multiple

tasks. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR),
pp- 1851-1860, 2019.

Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multi-
modal contrastive learning with limoe: the language-image mixture of experts. arXiv preprint
arXiv:2206.02770, 2022.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual
learning. In International Conference on Learning Representations (ICLR), 2018. URL https:
//openreview.net/forum?id=BkQggOgRb.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition (CVPR), pp. 3498-3505. IEEE, 2012.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems (NeurIPS), 34:8583—-8595, 2021.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations
for overcoming catastrophic forgetting. Advances in Neural Information Processing Systems, 31,
2018.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=BlckMDqglg.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
inference from rgbd images. ECCV (5), 7576:746-760, 2012.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset.

In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp.
8769-8778, 2018.

Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference graphs. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 3—18, 2018.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou,
Jingren Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks, and modalities through
a simple sequence-to-sequence learning framework. In International Conference on Machine
Learning (ICML), pp. 23318-23340. PMLR, 2022.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dynamic
routing in convolutional networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 409-424, 2018.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In Proceedings of the European conference on computer vision (ECCV), pp.
418-434,2018.

Xiaogang Xu, Hengshuang Zhao, Vibhav Vineet, Ser-Nam Lim, and Antonio Torralba. Mtformer:
Multi-task learning via transformer and cross-task reasoning. In Proceedings of the European
Conference on Computer Vision (ECCV), 2022.

Mohit Bansal Yi-Lin Sung, Jaemin Cho. Vl-adapter: Parameter-efficient transfer learning for vision-
and-language tasks. In CVPR, 2022.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. 2018.

12

https://openreview.net/forum?id=BkQqq0gRb
https://openreview.net/forum?id=BkQqq0gRb
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg

Under review as a conference paper at ICLR 2024

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural net-
works. In International Conference on Learning Representations (ICLR), 2019. URL https:
//openreview.net/forum?id=H1gMCsAgY7.

Zhihang Yuan, Bingzhe Wu, Guangyu Sun, Zheng Liang, Shiwan Zhao, and Weichen Bi. S2dnas:
Transforming static cnn model for dynamic inference via neural architecture search. In Proceedings
of the European Conference on Computer Vision (ECCV), pp. 175-192. Springer, 2020.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (ACL), 2022.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pp. 3712-3722, 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987-3995. PMLR, 2017.

Renrui Zhang, Rongyao Fang, Peng Gao, Wei Zhang, Kunchang Li, Jifeng Dai, Yu Qiao, and
Hongsheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv
preprint arXiv:2111.03930, 2021.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 40(6):1452—-1464, 2017a.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017b.

13

https://openreview.net/forum?id=H1gMCsAqY7
https://openreview.net/forum?id=H1gMCsAqY7

Under review as a conference paper at ICLR 2024

A APPENDIX

Table 6: We compare three ways of selecting a subset of experts to fine-tune, while freezing the
remaining experts. We first learn new routers on the new downstream to determine each expert’s
frequency of being chosen. Random represents randomly choosing experts. Best represents choosing
the experts with the highest frequency. Worse represents choosing the experts with the lowest
frequency. We report mean top-1 accuracy on CUB, Cars, and Pets. Other settings are the same as in
Table.3 in the paper.
| Random | Best | Worse
Ro. w/1 Ex. 90.6 90.5 | 90.6
Ro. w/2 Ex. ‘ 923 ‘ 92.3 ‘ 92.2

A.1 DIFFERENT WAYS TO SELECT EXPERTS TO BE FINE-TUNED.

Tab. 6 compares various methods of selecting experts to fine-tune while freezing the rest. We compare
random selecting experts and selecting experts that are more or less likely to be chosen by routers. We
find out that the selection method does not significantly affect the fine-tuning performance. Therefore,
we use random selection for simplicity.

A.2 ABLATION ON ToOP-K.

As shown in Tab. 7, we explore the effect on Top-K in MoE module. The experiment setting is the
same as in Tab.1 in the paper with 12 experts per MoE module. We report the mean performance
on pre-train and downstream datasets of our MHTL with Davit-T as the backbone. To control the
FLOPs to be the same for different Top- K, the hidden dimension of MLP experts is divided by K.
All experiments have the same parameter size and the same FLOPs. We find that Top-K = 4 has the
best performance.

A.3 ABLATION ON THE NUMBER OF EXPERTS.

As shown in Tab. 8, we explore the effect on number of experts £ for MoE MLP layer. The settings
are the same as in A.2 with a Top-K as 4.

Table 7: Ablation study of Top-KX on MoE MLP layer.

| FLOPs(G) | Params(M) | Hidden Dim | Pre-train mean | Downstream mean

K=2 5.1 51.2 768 58.1 80.3
K=4 5.1 51.2 384 582 80.4
K=6 5.1 51.2 256 579 80.0

Table 8: Ablation study of expert number ~ on MoE MLP layer.

| FLOPs(G) | Params(M) | Pre-train mean | Downstream mean |

E=6 5.1 33.4 57.2 78.5
E=9 5.1 423 579 80.0
E=12 5.1 51.2 58.2 80.4
E=15 5.1 60.1 58.2 80.5

A.4 TRAINING DETAILS

Optimization and convergence. Each task in our framework has a dedicated module and its own
loss. The losses on datasets D; are weighted and alternately optimized with predetermined weights
wy,. Gradient conflicts between tasks pose a challenge, slowing convergence. Well-defined loss and
sampling weights contribute to training stability, and the large batch optimizer Lamb (You et al., 2019)
is effective in heterogeneous training. Convergence in this setting typically requires approximately
50% more iterations than single-task training due to the complexity of joint optimization. Loading
pre-trained single-task models can significantly accelerate training, as discussed in the next section.

14

Under review as a conference paper at ICLR 2024

Training details. During pre-training, data sampling weight is set to {3, 2, 1}, loss weight is set
to {1.0, 0.6, 0.2}, and batch size is set to {64, 2, 2} for classification, detection, and segmentation,
respectively. Weight decay is set to 0.05 and the maximal gradient norm is clipped to 0.1. We use a
simple triangular learning rate schedule with a maximum learning rate of 0.004, as in DaviT.

15

	Introduction
	Related Work
	Method
	Definition and Prerequisite
	 LegoNet
	Dynamic scaling property in model size
	Efficient Adaptation on Downstream Tasks

	Experiments
	Multi-task pre-training
	LegoNet is an Efficient Adapter
	Continual learning.

	Conclusion
	Appendix
	Different ways to select experts to be fine-tuned.
	Ablation on Top-K.
	Ablation on the number of experts.
	Training details

