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Abstract

We introduce DisProtEdit, a controllable pro-
tein editing framework that learns disentangled
structural and functional representations via dual-
channel natural language supervision. Unlike
prior models with joint holistic embeddings, Dis-
ProtEdit separates semantics for modular and in-
terpretable control. We construct SwissProtDis, a
large multimodal dataset with protein sequences
paired with LLM-decomposed structural and func-
tional descriptions. DisProtEdit aligns protein and
text embeddings via alignment and uniformity ob-
jectives, with a disentanglement loss promoting
semantic independence. Editing is performed by
modifying one or both text inputs and decoding
the updated latent representation. Experiments
show that DisProtEdit matches prior methods in
accuracy while offering greater interpretability
and control. On a new multi-attribute editing
benchmark, it achieves up to 61.7% both-hit suc-
cess, validating its effectiveness in simultaneous
structure-function editing.

1. Introduction
Protein editing is crucial for bioengineering, enabling fine-
grained modification of properties such as function or struc-
ture. While foundation models (Jumper et al., 2021; Rives
et al., 2019) have advanced structure prediction (Abram-
son et al., 2024) and generation (Watson et al., 2023), con-
trollable and interpretable editing remains underexplored.
Existing models lack mechanisms for modular control and
often treat sequences holistically, limiting their ability to
edit one property while preserving others.
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To explore this challenge, we introduce DisProtEdit, a
novel framework for controllable protein editing that learns
disentangled representations of structural and functional
properties through dual-channel natural language supervi-
sion. The core idea is to associate each protein sequence
with two independently derived textual descriptions: one
capturing structural characteristics and the other describing
biological function. Our framework employs alignment and
uniformity objectives to align text and protein modalities,
and incorporates a disentanglement loss based on maxi-
mum mean discrepancy (MMD) to ensure that structural
and functional semantics remain distinct. To support this
paradigm, we construct a new dataset, SwissProtDis, com-
prising approximately 540,000 protein sequences annotated
with these dual-channel descriptions. These descriptions are
extracted from an existing protein–text pair dataset Swis-
sProt (Consortium, 2024) and automatically decomposed
into structural and functional components using a large lan-
guage model (OpenAI, 2023). During training, the model
learns to align each protein sequence with both types of
textual embeddings. At inference time, editing is performed
through the text interface by modifying either the structural
or functional description, or both in a compositional man-
ner. This enables semantically grounded modifications to
protein representations and yields a representation space
well-suited for downstream tasks such as property predic-
tion. Unlike contrastive frameworks like ProteinDT (Liu
et al., 2023), DisProtEdit explicitly disentangles semantics
via alignment–uniformity and MMD losses, improving con-
trollability.

Contributions: (1) We propose DisProtEdit, a modular edit-
ing framework with disentangled structure-function repre-
sentations. (2) We release SwissProtDis, a large dataset with
dual-channel textual supervision. (3) We demonstrate both
single and multi-attribute editing with strong controllability
and competitive performance.

2. Method
Our method adopts a disentangled approach to protein edit-
ing by aligning protein sequences with dual-channel tex-
tual descriptions. Given a protein sequence xp, the cor-
responding textual structure descriptions xts and textual
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Figure 1. Overview of the DisProtEdit framework. (a) During joint training, proteins and their corresponding structural and functional
text descriptions are encoded into a modality-aligned embedding space using alignment, uniformity, and disentanglement objectives. (b)
A decoder is trained to reconstruct sequences from latent representations. (c) Protein editing is performed via interpolation between the
original embedding and a text-guided embedding. (d) SwissProtDis dataset construction process. Raw annotations are decomposed into
structural and functional text descriptions using a large language model.

functional descriptions xtf , we train two encoders to map
each input into a shared latent space such that zp = Ep(xp),
zts = Ets(xts), and ztf = Etf (xtf ). Where Ep(·), Ets(·),
and Etf (·) denote the protein, structural text, and functional
text encoders, respectively. Once the encoders are trained,
we introduce a protein decoder that reconstructs, enabling
us to modify the latent space during the editing phase and
decode it back into an edited protein sequence. The entire
framework is illustrated in Figure 1.

Multimodal Alignment and Uniformity. To bridge pro-
tein and language modalities, we adopt cross-modal align-
ment and uniformity objectives (Wang & Isola, 2020),
which encourage paired embeddings to be close in a shared
space while maintaining separation between unrelated sam-
ples. Compared to traditional contrastive learning meth-
ods (van den Oord et al., 2019; Chen et al., 2020), this
approach improves interpretability and training stability.
Alignment and uniformity reformulate contrastive learning
into two modular objectives: one promoting local similarity
and the other encouraging global dispersion, approximately
equivariant to contrastive learning in the limit of infinitely
many negative samples. This formulation avoids the re-
liance on large batch sizes and negative sampling, which is
particularly beneficial in multimodal settings where nega-
tive sampling can introduce false negatives (Robinson et al.,
2021; Huynh et al., 2022).

The alignment objective in our context is defined in Equa-
tion 1, where we minimize the distance between the protein
embedding and the concatenated structural and functional
text embeddings. This encourages consistency across modal-
ities while preserving semantic modularity. Then to prevent
representational collapse and improve generalization, we
apply uniformity loss that regularizes the geometry of the

embedding space as denoted in Equation 2 where text em-
bedding z

(i)
t is obtained by concatenating z

(i)
ts and z

(i)
tf . This

objective penalizes highly concentrated representations by
encouraging the embeddings to be uniformly distributed on
the hypersphere. In ideal scenario, the concatenated text
embedding closely approximates the protein embedding (i.e.
zt ≈ zp), reflecting strong cross-modal alignment, while
the overall embedding distribution remains well-dispersed,
ensuring robustness and mitigating collapse.

LA =
1

N

N∑
i=1

∥∥∥concat(z(i)ts , z
(i)
tf )− z(i)p

∥∥∥2 (1)

LU = log

 1

N(N − 1)

∑
i̸=j

e−t∥z(i)
t −z

(j)
t ∥2


+ log

 1

N(N − 1)

∑
i ̸=j

e−t∥z(i)
p −z(j)

p ∥2

 (2)

Independent Prior Decomposition via Angular Repa-
rameterization. Although our input supervision separates
structural and functional descriptions using LLM-based de-
composition, this alone does not guarantee that the corre-
sponding embeddings remain disentangled. Neural encoders
may still learn overlapping or correlated representations, es-
pecially when both descriptions are paired with the same
protein sequence. To enforce semantic separation in the
latent space, we introduce a modified MMD-based objec-
tive that explicitly encourages independence between the
structural and functional embeddings.

We model the latent representation X ∈ RN as a com-
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position of two disjoint subspaces: one corresponding to
function (X1) and the other to structure (X2). To regularize
the geometry of the representation space, we assume that X
lies on the unit hypersphere, i.e., ∥X∥2 = 1, consistent with
the uniformity objective used elsewhere in our framework.
This constraint enforces a fixed total norm, allowing us to
explicitly control how representational capacity is allocated
between semantic components. To achieve a smooth and
interpretable trade-off, we introduce an angular parameter
ϕ ∈ [0, π/2], and define r1 = cosϕ and r2 = sinϕ, such
that ∥X1∥ = r1 and ∥X2∥ = r2. This angular reparameteri-
zation ensures that the functional and structural subspaces
lie on disjoint hyperspheres of radii r1 and r2, respectively,
and provides a principled way to control their relative con-
tributions to the overall representation.

To sample these priors, we generate i.i.d. Gaussian noise
for each subspace and normalize them to the specified radii.
This yields two independent latent distributions: one for
structure and one for function. Unlike traditional autoen-
coder frameworks that apply a single isotropic prior to the
entire latent space, we introduce Angular MMD, a variant
tailored to our reparameterized latent space. Specifically,
we apply separate MMD terms to match the learned embed-
dings for function and structure (Zf , Zs) to their respective
angular priors X1 and X2 as denoted in Equation 3. This
angular formulation introduces independent priors for struc-
ture and function, ensuring that their embeddings not only
occupy distinct subspaces but are also distributed across dis-
joint normed regions of the hypersphere. This encourages
semantic disentanglement in both direction and magnitude.

LD = MMD(Zf, X1) + MMD(Zs, X2) (3)

Finally, Our full training loss function can be formulated
as Equation 4, where λU , and λD balance the contributions
of uniformity and disentanglement. Together, these compo-
nents enable controllable and interpretable protein editing by
selectively modifying either structural or functional inputs
at inference time.

LE = LA + λULU + λDLD (4)

Protein Editing. As illustrated in Figure 1(c), we perform
protein editing by modifying the structural text input, the
functional text input, or both. The updated protein embed-
ding is computed via spherical linear interpolation (slerp)
between the original protein embedding and the new text-
derived embedding that reflects the intended edit. Since we
have trained the model to partition the latent space such that
the first half encodes structural semantics and the second
half encodes functional semantics, we can selectively apply
edits to only the relevant subspace during inference. If a

single attribute is modified, we retain the unedited portion of
the original embedding and interpolate only the correspond-
ing half. For example, if only the functional description
is updated, we preserve the structural half of the original
protein embedding and apply interpolation only to the func-
tional subspace. When both attributes are edited, we inter-
polate across the full embedding. This editing process is
formalized in Equation 5, where α ∈ [0, 1] is the interpola-
tion factor (we used 0.9), m ∈ {0, 1}d is a binary mask that
controls which subspace (structure or function) is edited,
and ⊙ represents element-wise multiplication. The result-
ing edited embedding blends the properties of the original
and modified inputs and is then passed to the decoder to
reconstruct the edited protein sequence.

zedit = Slerp (zp, zt, α)⊙m+ zp ⊙ (1−m) (5)

3. Protein Editing Evaluations
We evaluate DisProtEdit’s ability to perform controllable
protein editing through latent interpolation guided by textual
modifications. We consider two editing scenarios: (1) single-
attribute editing, where either the structural or functional
input is modified while the other remains unchanged, and
(2) multi-attribute editing, where both structural and func-
tional descriptions are edited simultaneously. Editing tasks
are further categorized into structural edits, which modify
secondary structure features such as alpha-helices or beta-
sheets, and functional edits, which target protein-specific
stability, including Villin and Pin1. For single-attribute edit-
ing, we follow the benchmark protocol from prior work (Liu
et al., 2023). For multi-attribute editing, since no prior
work has explored this setting, we construct a new evalu-
ation set by bootstrapping 196 protein sequences and ap-
plying paired structure–function edit instructions to them.
To quantify editing performance, we use pretrained oracle
predictors to assess whether the edited sequence satisfies the
intended attribute change(s). Let Qorig

i,k and Qedit
i,k denote the

predicted property scores for attribute k of sample i, and let
δi,k ∈ {−1,+1} indicate the intended direction of change
(decrease or increase, respectively). We define editing ac-
curacy in Equation 6, where I[·] is the indicator function. A
sample is counted as correct only if all its targeted attributes
are successfully edited in the intended directions.

Acc =
1

N

N∑
i=1

I

[
K∧

k=1

(
δi,k ·

(
Qedit

i,k −Qorig
i,k

)
> 0

)]
(6)

In Table 1, we evaluate DisProtEdit on isolated structural
and functional protein editing tasks. For structure editing,
DisProtEdit achieves a success rate of 56.14% in the +α-
helice condition and 31.58% in +β-sheet under λD = 0.1
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Table 1. Performance on protein editing for structure and function editing tasks. Metrics reflect successful edit rate (%) for each category.
The signs (+ or -) indicate whether the attribute is instructed to increase or decrease.

Method Structure Functional
+ α-helices - α-helices + β-sheets - β-sheets + Villin - Villin + Pin1 - Pin1

ProteinDT (Liu et al., 2023) 28.27 69.40 9.16 82.85 1.41 98.59 6.25 93.75
DisProtEdit (λU = 0.2, λD = 0) 35.87 61.01 27.10 67.64 0.00 100.00 1.56 98.44
DisProtEdit (λU = 0.2, λD = 0.1) 56.14 43.86 12.87 81.48 0.00 100.00 14.06 87.50
DisProtEdit (λU = 0.2, λD = 0.5) 38.60 57.89 28.27 71.54 0.00 100.00 4.69 96.88
DisProtEdit (λU = 0.2, λD = 0.8) 43.66 54.78 16.96 76.61 2.82 97.18 1.56 96.88
DisProtEdit (λU = 0.2, λD = 1.0) 48.93 48.34 31.58 68.23 0.00 100.00 3.12 96.88
DisProtEdit (λU = 0.2, λD = 5.0) 51.66 49.12 31.38 67.06 10.94 89.06 2.82 97.18

Table 2. Both-hit ratios (%) for all structure-function editing combinations. Metrics reflect successful edit rate (%) for each category. The
signs (+ or -) indicate whether the attribute is instructed to increase or decrease. All DisProtEdit models are trained with λU = 0.2.

Combination
Editing

DisProtEdit
λD = 0

DisProtEdit
λD = 0.1

DisProtEdit
λD = 0.5

DisProtEdit
λD = 0.8

DisProtEdit
λD = 1.0

DisProtEdit
λD = 5.0

+ α-helices, + Pin1 5.10 4.08 5.61 2.04 5.10 9.69
+ α-helices, - Pin1 46.94 61.73 45.92 47.96 43.88 50.51
- α-helices, + Pin1 8.67 3.06 4.59 3.06 5.61 8.67
- α-helices, - Pin1 28.57 25.00 38.27 43.88 42.35 32.14
+ α-helices, + Villin 4.08 3.57 2.04 2.55 3.57 7.65
+ α-helices, - Villin 44.90 53.57 46.43 48.47 47.96 50.00
- α-helices, + Villin 7.65 3.57 6.12 6.63 5.61 6.63
- α-helices, - Villin 30.10 28.57 41.33 41.84 43.37 33.16
+ β-sheets, + Pin1 3.57 0.51 2.55 1.53 3.06 5.10
+ β-sheets, - Pin1 12.24 3.57 34.69 34.69 22.45 28.06
- β-sheets, + Pin1 7.65 2.04 6.12 6.63 4.08 10.71
- β-sheets, - Pin1 43.88 59.18 39.80 39.29 52.04 39.29
+ β-sheets, + Villin 3.57 1.53 1.53 0.51 3.57 2.04
+ β-sheets, - Villin 13.27 5.61 29.59 26.53 21.94 26.02
- β-sheets, + Villin 7.65 4.08 7.65 6.63 8.16 7.14
- β-sheets, - Villin 43.88 59.18 42.35 47.96 52.04 47.45

and λD = 1.0 respectively, both substantially outperform-
ing ProteinDT (28.27% and 9.16%). In contrast, ProteinDT
performs best on reduction tasks, but these numbers likely
reflect generic destabilization rather than controllable edit-
ing. DisProtEdit, on the other hand, provides more control-
lable behavior. For example, although its −α-helice and
−β-sheets success rates vary depending on λD, the model
maintains over 65% accuracy on −β-sheets across most
settings. These results suggest DisProtEdit achieves more
targeted structure modulation rather than generic degrada-
tion. For function editing, functional improvement tasks
remain challenging. +Villin reaches only 10.94% at best
(λD = 5.0), and +Pin1 tops at 14.06% (λD = 0.1). This
asymmetry suggests that reducing protein stability is easier
than enhancing it. likely due to the ruggedness of the pro-
tein fitness landscape and the higher tolerance for disruptive
mutations.

In Table 2, we analyze how varying the disentanglement
weight λD affects DisProtEdit’s performance on multi-
attribute editing, where both structure and function are mod-
ified simultaneously. We observe that moderate λD values
(0.1 to 1.0) generally achieve the best balance between edit-
ing success and disentangled control. Specifically, λD = 0.1

achieves the highest both-hit success in several compatible
directions, such as +α-helice, −Pin1 (61.73%) and −β-
sheets, −Villin (59.18%). These results suggest that with
moderate disentanglement, the model can effectively co-
ordinate structure and function edits when the objectives
are synergistic. Moreover, excessively high λD (e.g., 5.0)
sometimes boosts rare cases like +Villin but often harms the
successful edit rate in harder tasks, suggesting a trade-off
between disentanglement strength and editability.

4. Ablation Study
Visualizing the Representations under Different Train-
ing Strategies. In Figure 4, we visualize UMAP projec-
tions (McInnes et al., 2018) of protein and text embeddings
learned under different training strategies: (a) random pro-
jection, (b) contrastive learning, (c) contrastive learning fol-
lowed by fine-tuning with alignment loss, and (d) DisProtE-
dit (ours). While contrastive learning improves cross-modal
alignment over random projection, it still leaves a noticeable
modality gap. This gap can be reduced with an additional
fine-tuning stage using alignment loss, as shown in (c). In
contrast, DisProtEdit achieves comparable cross-modal in-
tegration and semantic disentanglement in a single-stage
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Figure 2. Effect of the uniformity loss weight λU on cross-modal
alignment. The plots compare embedding distributions of func-
tional text and structural text representations under varying values.

training setup. This demonstrates the effectiveness of our
alignment and uniformity objectives for learning meaning-
ful, multimodal representations without requiring separate
post-hoc alignment.

Visualizing the Representations with Different Loss
Weights. We conduct an ablation study on the loss weights
λU (uniformity) and λD (disentanglement) to examine their
effects on representation geometry and training dynamics.
As shown in Figure 2, which presents SVD projections of
the learned embeddings, we observe that small values of λU

(e.g., 0.1) result in a curved, “banana-shaped” embedding
distribution, indicating insufficient dispersion. In contrast,
setting λU = 0.2 produces a well-formed spherical embed-
ding structure that promotes diversity while maintaining
alignment. However, increasing λU beyond 0.2 leads to un-
stable training, often causing gradient explosion and severe
modality misalignment. Figure 3 illustrates the effect of
varying the disentanglement loss weight λD on the geom-
etry of structural and functional text embeddings. When
λD = 0, the two modalities are highly entangled, with over-
lapping distributions that suggest poor semantic separation.
As λD increases, we observe a gradual divergence between
the two subspaces. Notably, at λD = 1.0, the separation is
most effective. structural text and functional text embedding
form two symmetric and coherent clusters. This suggests
that the MMD loss at this setting strikes an ideal balance:
it encourages semantic independence between structural
and functional embeddings without disrupting alignment
with the shared protein space. These results confirm that
strong but not excessive disentanglement promotes modular
representation learning in our context.

5. Limitations
Quality and Reliability of LLM-Derived Descriptions.
SwissProtDis relies on a large language model (LLM) to
decompose UniProt annotations (Consortium, 2024) into
separate structural and functional descriptions. While the
original annotation serves as a reference, the LLM may gen-
erate hallucinated or biologically inaccurate content during
decomposition. Such noise can affect the quality of training

𝜆U=0.2, 𝜆𝐷=0 𝜆U=0.2, 𝜆𝐷=0.1 𝜆U=0.2, 𝜆𝐷=0.5 𝜆U=0.2, 𝜆𝐷=0.8 𝜆U=0.2, 𝜆𝐷=1.0

Figure 3. Effect of the disentanglement loss weight λD on cross-
modal alignment, comparing embedding distributions of functional
text and structural text representations under varying values.

and potentially introduce biases into learned representations.

Decoder Bias and Reconstruction Inaccuracy. Although
the T5 decoder enables reconstruction from latent embed-
dings, we observe a tendency to overfit to certain protein
fragments that frequently appear in the training data. This
leads to reduced diversity and occasional inaccuracies dur-
ing sequence generation, especially when editing underrep-
resented motifs. This issue likely stems from the limited
sequence variability in SwissProtDis, which can cause the
decoder to memorize common subsequences rather than
generalize to novel edits.

Evaluation and Baseline Limitations. Evaluating protein
editing remains challenging due to the lack of ground-truth
labels for most attribute modifications. We rely on pre-
trained oracle predictors to assess whether edits achieve
the intended effect, but these may be noisy or biased, espe-
cially for out-of-distribution sequences. Moreover, while we
compare DisProtEdit to ProteinDT as a contrastive learning
baseline, editing-specific methods such as ProtTex (Ma et al.,
2025) offer complementary approaches but lack publicly
available code or models. This limits direct comparison. We
leave a more comprehensive baseline study to future work
for protein editing continue to emerge.

6. Conclusion
We presented DisProtEdit, a framework for protein editing
that learns disentangled structural and functional representa-
tions from dual-channel natural language descriptions. By
aligning protein sequences with modular text supervision,
our method enables interpretable and controllable editing
with minimal attribute interference. DisProtEdit achieves
competitive performance on both editing and representation
learning benchmarks, offering fine-grained control through
partial textual modifications. The accompanying SwissProt-
Dis dataset, generated using large language models, pro-
vides scalable and high-quality supervision for semantic
protein understanding. This work lays the foundation for
biologically grounded protein design, with future directions
including region-specific editing, full-length protein genera-
tion, and structure-aware decoding.
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Impact Statement
We are releasing the SwissProtDis dataset and the multiple
attributes editing benchmar on Huggingface dataset with
MIT licence. The SwissProtDis dataset contains 540,000
pairs of protein sequence, structural and functional text
descriptions. The multiple attributes editing benchmark
features 196 samples of protein sequences for multiple at-
tributes editing.

DisProtEdit enables controllable protein editing via text-
guided latent manipulation, which may raise dual-use con-
cerns in synthetic biology if applied without proper safe-
guards. The model relies on oracle predictors and LLM-
derived annotations, which can introduce biases or inac-
curacies, potentially leading to non-functional or mislead-
ing outputs. Additionally, the lack of structural constraints
may result in sequences that do not fold correctly. We rec-
ommend responsible use alongside expert validation and
alignment with biosafety guidelines.
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A. Preliminaries in Representation Learning
Our framework builds upon several foundational objectives in representation learning, particularly those designed for feature
alignment and disentangled representation learning. In this section, we review the key mathematical formulations that serve
as building blocks for modern representation learning methods, especially in multi-modal contexts.

Let {x(i)
a }Ni=1 and {x(j)

b }Mj=1 be two sets of samples drawn from distributions Xa and Xb, respectively. These samples can

be organized into a paired dataset D = {(x(i)
a , x

(i)
b )}Ni=1, where each pair (x(i)

a , x
(i)
b ) consists of semantically aligned inputs

from either the same or different modalities. Corresponding encoders fa(·) and fb(·) map the raw inputs to their latent
representations, such that za = fa(xa) and zb = fb(xb) denote the embeddings for xa and xb, respectively.

Contrastive Learning. When learning from multiple modalities, it is crucial to ensure that the embeddings of paired inputs
are close in a shared latent space, while maintaining sufficient diversity across the entire embedding space to avoid collapse.
These objectives have been formalized in contrastive learning frameworks (van den Oord et al., 2019; Park et al., 2020;
Liu et al., 2022; Liang et al., 2022). A typical contrastive loss for a positive pair (x(i)

a , x
(i)
b ) is defined in Equation 7 where

sim(·, ·) denotes cosine similarity and τ > 0 is a temperature hyperparameter.

Lcon = − log
exp

(
sim(z

(i)
a , z

(i)
b )/τ

)
N∑
j=1

exp
(
sim(z

(i)
a , z

(j)
b )/τ

) (7)

Contrastive learning encourages semantically similar pairs to be close in the latent space while pushing dissimilar pairs
apart, thereby improving the discriminability of learned representations (Chen et al., 2020).

Alignment and Uniformity. While contrastive learning is effective, it typically requires a large number of negative samples
and careful batch design to prevent false negatives, especially in multi-modal settings (Robinson et al., 2021). Here we
discuss the alignment and uniformity objectives as a more interpretable version of contrastive learning, and have been
shown to achieve comparable or better downstream task performances (Wang & Isola, 2020). Together, these two objectives
approximate contrastive learning in the limit of infinitely many negative samples.

Lalign = E(xa,xb)∼D

∥∥∥fa(x(i)
a )− fb(x

(i)
b )

∥∥∥2
2

(8)

Luniform = logEx ̸=x′

[
e−2∥f(x)−f(x′)∥2

2

]
(9)

The alignment loss encourages matching representations to be close, as defined in Equation 8. To complement alignment,
the uniformity loss promotes dispersion by penalizing embeddings that cluster too tightly. It is defined in Equation 9,
where f(x) denotes any embedding in the batch, from either modality. This loss encourages embeddings to be uniformly
distributed on the hypersphere, helping improving generalization.

Maximum Mean Discrepancy (MMD). While alignment and uniformity focus on pairwise relationships and overall
feature dispersion, MMD offers a complementary perspective by comparing entire feature distributions, making it a useful
tool for encouraging statistical independence or distributional consistency between modalities. MMD is a kernel-based
statistical distance used to compare two probability distributions. Unlike Kullback-Leibler divergence or Jensen-Shannon
divergence, MMD makes no parametric assumptions and is computed directly from samples (Gretton et al., 2012). The
empirical MMD is defined as Equation 10, where k(·, ·) is a positive-definite kernel, commonly the RBF kernel as
k(x, y) = exp(−∥x−y∥2

2σ2 ) (Broomhead & Lowe, 1988). MMD is zero if and only if Xa = Xb when using a characteristic
kernel.
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MMD(Xa, Xb) =
1

N2

∑
i,i′

k(x(i)
a , x(i′)

a )

+
1

M2

∑
j,j′

k(x
(j)
b , x

(j′)
b )

− 2

NM

∑
i,j

k(x(i)
a , x

(j)
b ) (10)

Generally, MMD is widely used in domain adaptation (Yan et al., 2017), generative modeling (Louizos et al., 2017), and
disentangled representation learning to encourage separation between independent factors (Mathieu et al., 2019).

B. Supplementary
B.1. Related Works

Protein Representation Learning. Recent work has increasingly explored the intersection of protein representation learning
and natural language understanding. Early models such as ProGen (Madani et al., 2020) and ProGen2 (Nijkamp et al.,
2023) treat protein sequences as a form of language, using autoregressive modeling to generate biologically plausible
sequences with controllable functions. Similarly, models like ESM (Rives et al., 2019) and ProtBERT (Brandes et al., 2022)
apply masked language modeling to capture sequence semantics and generalize across downstream tasks. ProteinDT (Liu
et al., 2023) uses contrastive learning to align protein and text embeddings, enabling text-guided editing. Pinal (Dai et al.,
2025) introduces a two-stage pipeline that predicts structures from text and then sequences from structures, allowing for
controllable generation via language. ProLLaMA (Lv et al., 2024) adapts instruction-tuned LLMs for unified protein
understanding and generation through multi-task training. Other approaches such as Chroma (Ingraham et al., 2023) and
AlphaFold (Jumper et al., 2021) jointly model sequence and structure, with Chroma leveraging diffusion models and
AlphaFold using attention-based structural inference. Despite these advances, none of the above works explore alignment
and uniformity objectives in biological representation learning. In this work, we demonstrate that applying these objectives
to protein–language embeddings yields better representations and competitive downstream performance.

Protein Editing and Disentanglement. Protein editing in our context refers to the modification of biological sequences
with natural language. While recent approaches have enabled conditional generation, disentangled and controllable editing
remains underexplored. TCR-dWAE (Li et al., 2023) leveraged a disentangled Wasserstein autoencoder, but the application
is only limited to T-cell receptors and the generalization to protein domain remain unexplored. ProtET (Yin et al., 2024)
introduces a multimodal transformer with structure-in-context reasoning, allowing interactive protein editing guided
by natural language. ProtTex (Ma et al., 2025) combine CLIP-style contrastive alignment with instruction-conditioned
generation for text-driven editing. To the best of our knowledge, we are the first to investigate protein editing in a disentangled
context to support both functional and structural editing.

B.2. Training Framework

Each text is independently encoded using SciBERT (Beltagy et al., 2019), followed by a modality-specific multilayer
perceptron (MLP) that projects the output into a shared latent space. Together, the SciBERT encoder and the corresponding
MLP form the dual-channel text encoders. For protein sequences, we use ProtBERT (Elnaggar et al., 2020) to encode amino
acid sequences, followed by an MLP projection layer to align the protein embedding with the dimensionality of the text
embeddings. This enables cross-modal comparison and latent interpolation. For the disentanglement loss LD, we set the
angular decomposition parameters to r21 = 0.5 and r22 = 0.5, ensuring an equal split between structural and functional
components. We find that setting λU = 0.2 and λD = 1.0 yields the most stable and effective training, as increasing λU

beyond 0.2 often leads to unstable optimization and λD = 1.0 achieves better disentanglement. To reconstruct protein
sequences from edited embeddings, we train a T5 decoder (Raffel et al., 2023) conditioned on the learned representations.
All models are fine-tuned from pretrained checkpoints. More implementation details can be found in Appendix C, D, and E.
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(a) (b)

(c) (d)

Figure 4. UMAP visualizations of text and protein embeddings under different training strategies. Each visualization sampled 500 pairs
of data. Each point represents a text (yellow) or protein (blue) embedding. Lines connect paired structural/functional text embeddings and
their corresponding protein embedding, illustrating the degree of cross-modal alignment. (a) Random projection baseline. (b) Contrastive
learning shows a modality gap. (c) Contrastive learning followed by fine-tuning with alignment loss, as common practices in prior works
for downstream tasks. (d) Our DisProtEdit framework with alignment, uniformity, and disentanglement objectives. Notably, DisProtEdit
achieves alignment quality comparable to (c) without requiring multi-stage training.

B.3. SwissProtDis Dataset

We construct a dataset comprising approximately 540,000 protein–text pairs, where each protein sequence is associated
with a descriptive annotation. The dataset preparation pipeline is illustrated in Figure 1(d). Starting from an existing
protein–text pair dataset SwissProt (Consortium, 2024), we employ a large language model (GPT-4o) (OpenAI, 2023) to
automatically decompose each raw annotation into two distinct components: (1) a structural description, capturing physical
or biochemical properties (e.g., secondary structure, localization), and (2) a functional description, reflecting the protein’s
biological role or activity (e.g., catalytic function, signaling behavior). This augmentation process transforms each protein
entry into a triplet consisting of the amino acid sequence, a structural text, and a functional text, enabling the support on
disentangled representation learning. The resulting dataset, which we refer to as SwissProtDis, serves as the foundation for
our disentanglement-based training and enables targeted editing via text modification. We found GPT-4o yield the most
reasonable outputs compared to Gemini-1.5-Pro (Gemini-Team, 2024) and GPT3.5 (OpenAI, 2023). The sample entries and
the instruction prompt can be found in Appendix F.

B.4. Protein Property Prediction

To assess the quality and generalizability of our learned protein representations, we evaluate DisProtEdit on four tasks
from the TAPE benchmark (Rao et al., 2019): secondary structure prediction (SS-3 and SS-8), remote homology detection,
fluorescence prediction, and stability prediction. The first two are classification tasks, where we fine-tune a linear classifier
on pooled embeddings and report per-residue accuracy (SS) or fold-level accuracy (homology). The latter two are regression
tasks, for which we apply a single-layer MLP and report Spearman’s rank correlation. We omit the contact prediction
task from TAPE, as it is not directly aligned with our objective of learning global, semantically disentangled protein
representations. All evaluations follow standard TAPE protocols (Rao et al., 2019; Liu et al., 2023; Zhang et al., 2022).

In Table 3, we evaluate the quality of learned protein embeddings and found that DisProtEdit achieves strong performance
across both classification and regression tasks. Our best model (λU = 0.2, λD = 1.0) attains 82.9% accuracy on secondary
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(c) Input Protein II

(a) Input Protein I

(d) Edited Protein II (+beta-sheets, +Villin)

(b) Edited Protein I (+alpha-helices, +Pin1)

Figure 5. Qualitative visualization of structure–function protein edit samples. (a, c) Original protein sequences with their correspond-
ing structural and functional attributes. (b, d) Edited proteins generated by DisProtEdit in response to compositional prompts: (b) increase
alpha-helices and increase Pin1 stability; (d) increase beta-sheets and increase Villin stability. We showcase these examples because they
represent some of the most challenging edit combinations in our benchmark, where the model exhibited the lowest success rates. Despite
the difficulty, DisProtEdit demonstrates the ability to generate meaningful multi-attribute modifications in both structure and function.

structure prediction (SS-Q3), 67.5% on SS-Q8, and 0.3133 accuracy on remote homology classification, which is comparable
to strong baselines such as ProteinDT. On the regression tasks, DisProtEdit achieves a fluorescence correlation of 0.5373 and a
stability correlation of 0.8258, outperforming all baselines in both metrics. We also observe that the reproduced fluorescence
scores for baselines such as ProteinDT are substantially lower than originally reported, suggesting inconsistencies in
evaluation setups. These results demonstrate that the representations learned by DisProtEdit are not only controllable for
editing but also competitive for downstream tasks.

C. Implementation Details of Training
Encoders Training Setup. The encoders training setup is illustrated in Figure 1(a). Both the protein and text encoders were
optimized with Adam (Kingma & Ba, 2017) using a learning rate of 1× 10−5 and no learning rate scaling. The model was
trained for 10 epochs with a batch size of 24. We applied both alignment and uniformity, and angular MMD objectives
during training, using the SwissProtDis dataset with dual-channel supervision.

Protein Decoder Training Setup. The protein decoder training setup is illustrated in Figure 1(b). We trained the protein
sequence decoder to reconstruct amino acid sequences from the edited latent representations. The decoder architecture was
based on a T5 decoder (Raffel et al., 2023) model, initialized from pretrained weights. Training was performed using a batch
size of 8, a learning rate of 1× 10−4, and 10 epochs. We used the Adam optimizer for optimization, follow the practice of
ProteinDT (Liu et al., 2023) in training their decoder for protein reconstruction.

D. Implementation Details of Protein Editing Evaluation
Table 4 lists the textual prompts used for structural and functional editing in DisProtEdit. Each prompt modifies a single
attribute, either secondary structure (e.g., alpha-helix or beta-sheet content) or functional stability (e.g., Villin or Pin1).
These prompts are paired with corresponding protein sequences and used during to test the model’s ability to apply edits.
Table 5 listed the prompts used in multi-attribute editing benchmark.
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Table 3. Performance on the TAPE benchmark (Rao et al., 2019) across structure prediction, homology classification, and regression tasks.
Results for classification tasks (SS-Q3, SS-Q8, Homology) are reported as accuracy, while regression tasks (Fluorescence, Stability) are
reported as Spearman’s correlation.

Method SS-Q3 SS-Q8 Homology Fluorescence Stability
ProtBert-BFD (Elnaggar et al., 2020) 0.8290 0.6818 0.2381 0.3453 0.8021
OntoProtein (Zhang et al., 2022) 0.8181 0.6758 0.2716 -0.0832 0.7110
ProteinDT-InfoNCE (Liu et al., 2023) 0.8329 0.6925 0.3147 -0.0762 0.7356
ProteinDT-EBM-NCE (Liu et al., 2023) 0.8326 0.6913 0.2855 0.0167 0.7952
DisProtEdit (λU = 0.2, λD = 0) 0.8272 0.6577 0.2924 0.2576 0.7731
DisProtEdit (λU = 0.2, λD = 0.1) 0.8287 0.6765 0.3064 0.2760 0.8089
DisProtEdit (λU = 0.2, λD = 0.5) 0.8278 0.6757 0.3022 0.1614 0.7886
DisProtEdit (λU = 0.2, λD = 0.8) 0.8287 0.6763 0.3050 0.5123 0.7897
DisProtEdit (λU = 0.2, λD = 1.0) 0.8285 0.6754 0.3133 0.5373 0.8258
DisProtEdit (λU = 0.2, λD = 5.0) 0.8276 0.6745 0.3092 0.2503 0.8149

Table 4. Prompts for structure editing (S) and functional editing (F) in single-attribute benchmark

Task Prompt

+ Alpha Helices (S) The amino acid sequence have more alpha helices in the secondary structure.
- Alpha Helices (S) The amino acid sequence have fewer alpha helices in the secondary structure.
+ Beta Sheets (S) The amino acid sequence have more beta sheets in the secondary structure.
- Beta Sheets (S) The amino acid sequence have fewer beta sheets in the secondary structure.
+ Villin (F) The amino acid sequence have higher Villin stability.
- Villin (F) The amino acid sequence have lower Villin stability.
+ Pin1 (F) The amino acid sequence have higher Pin1 stability.
- Pin1 (F) The amino acid sequence have lower Pin1 stability.

E. Implementation Details of Protein Property Prediction Evaluation
To evaluate the quality and generalizability of our learned protein representations, we conduct experiments on selected
tasks from the TAPE benchmark. Specifically, we focus on four tasks that span both classification and regression objectives.
When finetuned for downstreaming task, we used batch size of 8 and learning rate of 3× 10−5, with 5 epochs, following the
standard practice (Rao et al., 2019).

Secondary Structure Prediction. A sequence tagging task where each amino acid in the sequence is assigned a secondary
structure label. SS-3 uses a coarse-grained label set (helix, strand, or other), while SS-8 provides finer-grained distinctions.
We evaluate accuracy on a per-residue basis, using the standard CB513 test set for consistency with prior works (Rao et al.,
2019; Liu et al., 2023; Zhang et al., 2022).

Remote Homology Detection. A sequence classification task where models predict the protein fold family, even under low
sequence similarity. Performance is measured using classification accuracy on a held-out set of fold-level labels, assessing
the model’s ability to generalize across evolutionary gaps.

Fluorescence Prediction. A regression task that models the log-fluorescence intensity of protein variants derived from green
fluorescent protein (GFP). Since fluorescence varies continuously, we adopt Spearman’s rank correlation as the evaluation
metric, which captures monotonic relationships while being robust to scaling.

Stability Prediction. This task involves predicting the thermostability of mutated protein variants. Like fluorescence,
stability is evaluated as a continuous property, and we use Spearman’s correlation to quantify prediction quality.
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Table 5. Prompts for combined structure (S) and function (F) editing tasks in multi-attribute editing benchmark

Task Combination Prompt

+ Alpha Helices, + Villin (S) The amino acid sequence has more alpha helices in the secondary structure.
(F) The amino acid sequence has higher Villin stability.

- Alpha Helices, - Villin (S) The amino acid sequence has fewer alpha helices in the secondary structure.
(F) The amino acid sequence has lower Villin stability.

+ Beta Sheets, + Pin1 (S) The amino acid sequence has more beta sheets in the secondary structure.
(F) The amino acid sequence has higher Pin1 stability.

- Beta Sheets, - Pin1 (S) The amino acid sequence has fewer beta sheets in the secondary structure.
(F) The amino acid sequence has lower Pin1 stability.

+ Alpha Helices, - Pin1 (S) The amino acid sequence has more alpha helices in the secondary structure.
(F) The amino acid sequence has lower Pin1 stability.

- Alpha Helices, + Villin (S) The amino acid sequence has fewer alpha helices in the secondary structure.
(F) The amino acid sequence has higher Villin stability.

F. Implementation Detail of Dataset Generation
To construct SwissProtDis, we used a large language model (GPT-4o) to decompose existing UniProt annotations into
separate structural and functional descriptions. The LLM was prompted with a task-specific instruction (shown in Box)
to ensure non-overlapping, interpretable supervision across semantic channels. Table 6 shows the example entries in
SwissProtDis.

Instruction to create SwissProtDis from SwissProt

You are a biology expert. Given a FASTA protein sequence and corresponding text description, analyze and provide
separate detailed descriptions of the structural and functional properties of the protein. Ensure that:
(1) The structural and functional descriptions do not overlap in information.
(2) Together, they fully represent the protein’s characteristics.

In the structural description, include:
- The secondary structure composition (e.g., alpha-helical, beta-sheet, loop regions) with an assessment of whether
the alpha-helical content is high or low.
- Hydrophobic core formation and stability factors.
- Structural motifs and conserved domains contributing to its stability.
- Predicted electrostatic interactions and flexibility regions.

In the functional description, include:
- The biochemical role of the protein (e.g., enzyme, receptor, structural protein).
- Its active sites, ligand/cofactor binding regions, and potential catalytic function.
- Its interactions with other biomolecules, including potential signaling roles.
- Predicted cellular localization and its role in physiological processes.

protein sequence: [input protein sequence]
text description: [input text description]

Only return the two strings for the structure information and the functional information in json format {structure:
information, functional: information}
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Table 6. Examples of text-protein pairs from SwissProtDis Dataset
Protein Sequence Structure Description Functional Description
MVRLFYNPIKYLFYRRSCKKRLRKALKKLNFY
HPPKECCQIYRLLENAPGGTYFITENMTNELI
MIAKDPVDKKIKSVKLYLTGNYIKINQHYYIN
IYMYLMRYNQIYKYPLICFSKYSKIL

This protein belongs to the asfivirus
MGF 100 family.

The protein plays a role in virus cell
tropism and may be required for
efficient virus replication in
macrophages.

MVRLFHNPIKCLFYRGSRKTREKKLRKSLKKLN
FYHPPGDCCQIYRLLENVPGGTYFITENMTNE
LIMIVKDSVDKKIKSVKLNFYGSYIKIHQHYYI
NIYMYLMRYTQIYKYPLICFNKYSYCNS

The protein sequence consists of
107 amino acids, characterized by
motifs that are indicative of the
asfivirus MGF 100 family.

Plays a role in virus cell tropism,
and may be required for efficient
virus replication in macrophages.

MVRLFRNPIKCIFYRRSRKIQEKKLRKSLKKLN
FYHPPEDCCQIYRLLENVPGGTYFITENMTND
LIMVVKDSVDKKIKSIKLYLHGSYIKIHQHYYI
NIYMYLMRYTQIYKYPLICFNKYYNI

This protein belongs to the asfivirus
MGF 100 family, suggesting it
shares structural characteristics
common to this family.

The protein plays a role in virus cell
tropism and may be required for
efficient virus replication in
macrophages.

MGNKESKYLEMCSEEAWLNIPNIFKCIFIRKL
FYNKWLKYQEKKLKKSLKLLSFYHPKKDFVGI
RDMLHMAPGGSYFITDNITEEFLMLVVKHPE
DGSAEFTKLCLKGSCIVIDGYYYDTLHIFLSE
TPDIYKYPLIRYDR

The protein is composed of a
sequence of 137 amino acids. It
belongs to the asfivirus MGF 100
family, which suggests a potential
commonality in tertiary or
quaternary structural features
characteristic of this family.

This protein plays a role in virus
cell tropism and is potentially
crucial for efficient virus replication
in macrophages. It is expressed
during the early phase of the viral
replicative cycle, indicating its
importance in the initial stages of
viral infection.

MGNKESKYLEMCSEEAWLNIPNIFKCIFIRKL
FYNKWLKYQEKNLEKRLKLLSFYHPKKDFMGI
RDMLDMAPGGSYFITDNVTEEFLMLVVKHPE
DGSAEFTKLCLKGGCIVIDGFYYDDLHIFITE
NPNLYKYPLIHYDR

The protein sequence consists of
137 amino acids, with an abundance
of lysine (K), leucine (L), and
phenylalanine (F) residues,
indicating potential structural
motifs suitable for protein
interactions and stability. It belongs
to the asfivirus MGF 100 family,
suggesting it may share common
structural features with other
members of this family. The
sequence includes multiple
potential phosphorylation sites, and
disulfide bonds could form between
cysteine (C) residues, possibly
contributing to the protein’s
conformation and stability.

This protein plays a role in virus
cell tropism and may be necessary
for efficient virus replication in
macrophages, indicating its
importance in viral infection
processes. It is expressed during the
early phase of the viral replicative
cycle, suggesting it has a critical
role in the initial stages of viral
replication.
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