Task Prompt Vectors: Effective Initialization through Multi-Task
Soft-Prompt Transfer

Anonymous ACL submission

Abstract

Prompt tuning is an efficient solution for train-
ing large language models (LLMs). However,
current soft-prompt-based methods often sacri-
fice multi-task modularity, requiring the train-
ing process to be fully or partially repeated
for each newly added task. While recent work
on task vectors applied arithmetic operations
on full model weights to achieve the desired
multi-task performance, a similar approach for
soft-prompts is still missing. To this end, we
introduce Task Prompt Vectors, created by
element-wise difference between weights of
tuned soft-prompts and their random initializa-
tion. Experimental results on 12 NLU and 2
NLG datasets show that task prompt vectors
can be used in low-resource settings to effec-
tively initialize prompt tuning on similar tasks.
In addition, we show that task prompt vectors
are independent of the random initialization of
prompt tuning on 2 different language model
architectures. This allows prompt arithmetics
with the pre-trained vectors from different tasks.
In this way, we provide a competitive alterna-
tive to state-of-the-art baselines by arithmetic
addition of task prompt vectors from multiple
tasks.

1 Introduction

Standard fine-tuning methods change the weights
of a pre-trained language model (PLM) to increase
its performance on a downstream task. As there is a
trend of improving the overall results by increasing
the number of parameters, the models require a
vast amount of computational resources for training
(e.g., GPT-3 (Brown et al., 2020) having 175 billion
parameters). Besides their parameter hunger, large
language models also require significant amounts
of training data, which especially benefits well-
resourced languages.

To address the problem of the increasing num-
ber of parameters, Parameter-Efficient Fine-Tuning
(PEFT) methods (Lester et al., 2021; Houlsby et al.,

Figure 1: An illustration of task prompt vector and the
combination via addition that we include in our work.
(a) A task prompt vector is created by subtracting the

soft-prompt initialization weights fp . from the soft-

prompt weights after prompt tuning 9}” (Section 3,
eqg. 2). (b) A combination via the addition of two task
prompt 7p, and 7p, resulting in 7p,_, (Section 3, eq.

4). (c) Different task prompt vectors point into the same
sub-space in the embedding space of PLM (Section 4.2).
The circles represent different random initializations.

2019; Hu et al., 2022) were introduced, capable of
solving multiple problems even with small amounts
of labeled data while training only a fraction of the
model parameters (e.g., for ROBERTa base (Liu
et al., 2019), prompt tuning (Lester et al., 2021)
is training only 0.5% parameters, and LoRA (Hu
et al., 2022) is training only 0.7% of parameters
(Xu et al., 2023)). The key concept that makes such
methods effective is their rask modularity.

Some of the recent PEFT (Xu et al., 2023; Lester
et al., 2021; Asai et al., 2022) methods focus on
fine-tuning soft-prompts. Soft-prompts are train-
able (parametrized) weights that are prepended to
the input embeddings while training the model.
Prompt tuning is one such efficient solution for
soft-prompt-based tuning of large language models
(LLMs).

The most of the soft-prompt-based methods lack
sufficient multi-task modularity, requiring the train-
ing process to be fully or partially repeated for
each newly added task (Vu et al., 2022; Wang et al.,
2023). Other methods, while keeping their rela-

tively high modularity, usually lack robustness, and
their performance depends on the quality and the
number of pre-trained soft-prompts (Asai et al.,
2022). Moreover, creating a soft-prompt for mul-
tiple tasks may often reduce the overall multi-task
performance and require further fine-tuning. Build-
ing upon the findings from task vector arithmetics
(Ilharco et al., 2022) (which only apply to the full
weights of older models like T5 (Raffel et al., 2020)
and GPT-2 (Radford et al., 2019) trained from the
same initialization), we utilize the efficiency and
modularity of prompt tuning (Lester et al., 2021)
to create Task Prompt Vectors. We thoroughly
investigate the properties of task prompt vectors
and demonstrate their functionality in combining
pairs of task prompt vectors while evaluating their
in-distribution performance and out-of-distribution
performance in full and limited data scenarios.
Our main contributions and findings are !:

* We introduce the novel concept of task
prompt vectors created from fine-tuned soft-
prompts, as a method of weight interpolation
that leverages findings from task vectors. In
addition, we investigate vector arithmetics on
such task prompt vectors, based on simple
arithmetic operations as a method to reinforce
PLMs to solve multi-task problems.

* We provide a comprehensive investigation of
task prompt vector properties on 12 NLU and
2 NLG datasets separated into 5 task types
and demonstrate important properties of task
prompt vectors. We show that their random
initialization independence makes them ro-
bust and universally applicable, while their
similarity across related problems provides a
necessary base for efficient cross-task transfer.

* We show that task prompt vectors allow effi-
cient prompt tuning initializations, by lever-
aging multi-task combinations of the pre-
trained task prompt vectors using the task
prompt vector arithmetics. Experimental re-
sults show that especially in zero- or few-shot
settings, task-prompt-vector-based initializa-
tion can outperform or match SPoT (Soft-
Prompt Transfer learning, Vu et al. (2022)) for
specific tasks while maintaining high multi-
task modularity.

'To support the replicability of our work, we provide a
repository where we store all of our implementation and re-
sults: https://anonymous.4open.science/r/task-prompt-vectors-
58CB

2 Related Work

Soft-prompt-based fine-tuning. After the intro-
duction of prompt tuning (Lester et al., 2021)
and prefix tuning (Li and Liang, 2021) many new
soft-prompt-based methods (Gu et al., 2022; Liu
et al., 2023; Shi and Lipani, 2024) were introduced.
Some of these methods focus on task knowledge
transfer (e.g., SPoT (Vu et al., 2022) or cross-model
transfer (Su et al., 2022)) and task combinations
(e.g., ATTEMPT (Asai et al., 2022), MPT (Wang
et al., 2023), or BMTPT (Lee et al., 2023)). These
can be classified as works on PEFT weight inter-
polations to increase the performance of prompt
tuning in single or multi-task settings. However,
they do not represent the tasks as vectors in the em-
bedding space and usually require further training
of the added parameters.

Model weights interpolation. Model weight in-
terpolation (Frankle et al., 2020; Wortsman et al.,
2022) is a widely discussed topic in the literature
since it enables combining knowledge of different
fine-tuned models without or with a small amount
of training. Authors of tasks vectors (Ilharco et al.,
2022) show, that it is possible to combine multiple
task vectors created from fine-tuned models and
still maintain the overall multi-task performance.
Ortiz-Jimenez et al. (2024) focuses mostly on im-
proving the work on task vectors, by showing that
training models in their tangent space contributes
to the weight disentanglement and increases the
performance of full model task arithmetic. Another
subcategory for weight interpolation can be model
merging (Stoica et al., 2024; Matena and Raffel,
2022; Li et al., 2022; Davari and Belilovsky, 2023;
Zou et al., 2023). In the work Ramé et al. (2023),
the authors propose a strategy of merging multiple
model weights pre-trained sets of auxiliary tasks as
an initialization to multiple parallel fine-tunings to
enhance out-of-distribution generalization. Most of
these works on model weights interpolations usu-
ally focus only on the weights of the whole model
or particular weights (e.g., classification heads, ac-
tivation layers) of the pre-trained model.

There are also works on weight interpolation
of PEFT methods in general (Zhang et al., 2023;
Chronopoulou et al., 2023; Pfeiffer et al., 2021;
Qin et al., 2024), but not many of them focus on
interpolation using task vectors. In the work Kli-
maszewski et al. (2024) authors present a way of
combining pre-trained adapters using task vector

https://anonymous.4open.science/r/task-prompt-vectors-58CB
https://anonymous.4open.science/r/task-prompt-vectors-58CB

arithmetics, but the method lacks the investigation
of the dependency of their method on the random
initialization of adapters. Therefore it may require
training of specific adapters from the same random
initialization, which we provide in our work in the
context of prompt tuning.

To the best of our knowledge, there is no re-
search on task vectors in the context of soft-prompt-
based fine-tuning. In this work, we address this
drawback by building on the existing knowledge
on prompt tuning and task vectors.

3 Task Prompt Vectors

Background. Prompt tuning, as introduced in
Lester et al. (2021), casts tasks as text generation,
modeling a probability Pr(Y|X), where X is a
sequence of input tokens and Y is a sequence of
output tokens representing the class label. The clas-
sification Prg(Y'|X) is then parametrized by the
model weights 6. Prompting adds extra informa-
tion to the classification process by prepending a
series of tokens (prompt) P to the input X, such
that the model maximizes the probability of getting
current Y in Pry(Y'|[P; X]), while keeping the pa-
rameters 6 frozen. Prompt tuning adds another pa-
rameter p to the equation, which parametrizes the
prompt. During the training, only 6p is updated as
the Lppr = — Zz logPTgvgp (}/Z| [P; Xz]) (1) func-
tion is optimized.

As a method of adapting model weights without
training, task vectors (Ilharco et al., 2022) compute
the difference between pre-trained weights and fine-
tuned weights on a specific task. The task vector is
simply defined by the element-wise difference be-
tween the pre-trained weights of the whole model
and the weights after fine-tuning. Task vectors can
be then applied to any model weights 6 of the same
dimensionality (architecture) by element-wise ad-
dition. The representation of task vectors in the
weight space of the model has the same properties
as standard vectors, therefore it is possible to in-
clude them in arithmetic expressions like addition,
negation, or combinations via the addition of two
or more vectors together. We further build on the
findings from Ilharco et al. (2022) and Lester et al.
(2021) in the following parts of this section.

Task prompt vector definition. Let77,...,7; be
a set of source tasks and 0p,, ..., 0p,be a set of ran-
dom soft-prompt weights initializations. Intuitively,
the random soft-prompt weights initializations are
random points in the embedding space of the PLM.

We then move each of these points (via prompt
tuning) into a task sub-space where the optimiza-
tion function from the equation 1 returns the (suffi-
ciently) minimal value and we repeat this for each
task ¢ € T'. These points are further denoted as
task prompts — soft-prompts fine-tuned by prompt
tuning to a set of downstream tasks. The straight
trajectory from the initial point to the task prompt
is our task prompt vector (see Figure 1 part a)).

Let 0p,. € R be the weights of the soft-
prompt randomly initialized from the embedding
vocabulary of a PLM, and 9}” € R? be the
weights of the soft-prompt P fine-tuned on a spe-
cific task ¢, using the standard prompt tuning for-
mula. We formulate the task prompt vector 7p, for
soft-prompt P and task as an element-wise differ-
ence:Tp, = O}ﬁ —0p,,. ().

Applying a task prompt vector to the soft-
prompt weights of the same size would follow:
0p,.., = 0p + Ap,, (3). Where the rescaling term
A 1s a number from the same interval 0 < \ < 1
and when A = 1, then 0p, . = Q}ﬂ = 0p.

Vector arithmetics with task prompt vectors.
The task prompt vectors for different tasks can be
combined by simple vector addition, combining
knowledge from different tasks. When we experi-
ment with combinations, we refer to the arithmetic
addition of two task prompt vectors (see Figure 1
partb)): 7p,.., = TP, + 7P, (4).

This makes for efficient task adaptation as we
perform no further training but only use vector
addition in the next sections. Task prompt vector
combinations can be also used for initializing a new
task that is sufficiently similar to an already trained
task. We investigate and discuss these possible use
cases for task prompt vectors in upcoming sections.

4 Experiments

4.1 Experimental Setup and Implementation
Details

We investigate the properties of task prompt vectors
using the representative foundation TS-base (Raf-
fel et al., 2020) model for all of our experiments
and representative open autoregressive LLaMa-
3.1-8B-Instruct (Dubey et al., 2024) model for
origin dependency experiments in Section 4.2.
Our investigation covers 3 types of classification
problems, 2 types of natural language generation
problems covered by 14 corresponding datasets,
namely natural language inference (NLI) - MNLI

(Williams et al., 2018), ONLI (Wang et al., 2018),
SciTail (Khot et al., 2018), SNLI (Bowman et al.,
2015); topic classification — DBPedia (Auer et al.,
2007), TREC (Li and Roth, 2002; Hovy et al.,
2001), AG News, Yahoo Answers (Zhang et al.,
2015); sentiment classification — SS72 (Socher
et al., 2013), Yelp Polarity, SST5, IMDB (Maas
etal., 2011); question answering — SQuADv2 (Ra-
jpurkar et al., 2018) and math problems solving —
MATH (Fourrier et al., 2023).

For all experimental results, we report F1 macro,
if not specified otherwise. The cosine similarity
between vectors (task prompts or task prompt vec-
tors) is measured using the flattened weights of
each vector (which has a size of 100 x 768 parame-
ters, resulting in a 76800-dimensional vector). We
average our zero- and few-shot results across 3 dif-
ferent runs (i.e., different random initializations of
soft-prompts) for ATTEMPT and multi-task SPoT
baselines (mostly to save more computational re-
sources) and across 10 different runs for all other
experiments. To determine the statistical signif-
icance of our results we perform a two-sample
Student’s t-test (Student, 1908) with Bonferroni
correction (Dunn, 1959) between the best result
and the second best result. If the population sizes
differ (e.g. 10 and 3 runs) we use Welch’s t-test
(Welch, 1947). We denote the statistical signifi-
cance by marking the corresponding result with *.
The subscript in our tables represents the standard
deviation from the average.

For the few-shot experiments (simulating limited
labeled data scenarios), we randomly sub-sample
from the data for the respective number of shots
while keeping the class distribution. We consider
shot and sample to be equivalent (i.e., for a 5-shot
setting, we choose 5 samples overall, not 5 samples
per class). A detailed description of our experimen-
tal setup can be found in Appendix A.

4.2 Investigating Task Prompt Vectors
Properties

In this section, we aim to address the following
research question (RQ):

RQ1: How universally can we apply task
prompt vectors to a) different prompt initial-
izations and b) different tasks?

There are two fundamental properties that are
crucial for the effectiveness of task prompt vectors:
1) If such vectors should be applied universally,
their dependence on the random initialization of

prompt tuning should be low, since soft-prompts
are usually initialized randomly, unlike PLM for
task prompts in Ilharco et al. (2022). 2) The simi-
larity of task prompt vectors between similar tasks
should be large, in order to be able to combine task
prompt vectors of similar tasks.

To evaluate these properties, we train a set of
soft-prompts on specified source tasks for inference
classification (MNLI, ONLI), topic classification
(DBPedia, TREC), sentiment classification (SS72,
Yelp Polarity), question answering (SQuADv2) and
math problems solving (MATH) resulting in a set
of 8 soft-prompts that were trained from a single
random initialization. We sample /0 random ini-
tializations for the T5-base model from which we
create the task prompt vectors as described in equa-
tion 2. For LLaMa-3.1-8B-instruct we sample only
3 random initialization to preserve computational
resources. Since SQuADvV2 and MATH are more
complex tasks of NLG, and may be hard for T5 to
learn, we have decided to provide only results for
the LLaMa-3.1-8B-instruct model. We aggregate
by averaging our results across random initializa-
tions in Table 1 and Figures 2, 3. We start with the
evaluation of whether the task prompt vectors are
independent of the random initialization and con-
tinue with the experiments to confirm whether the
trained task prompts from prompt tuning end up
in the same task sub-space of the PLM embedding
space. This helps us determine whether the task
prompt vectors point in the same space, similar to
Figure 1 part c).

The performance of task prompt vectors is in-
dependent of the random initialization for the
majority of observed tasks. We conduct experi-
ments to evaluate the performance of applying task
prompt vectors to different (mixed) random initial-
izations. For each task and each random initializa-
tion, we apply the task prompt vector (according
to the equation 3) to all of the other random ini-
tializations and evaluate performance for each task
prompt vector-initialization pair on the test set of
the particular dataset. The aggregated results in
"Mixed init" rows in Table 1 differ only slightly
in most observed tasks for both of the observed
models, compared to the results of prompt tuning
in the "Original init" rows. This indicates that task
prompt vectors perform well irrespective of their
initialization. The only exception is in the TREC
task, where the performance decreases drastically
only for the T5-base model. We suspect that this

model | dataset | QNLI MNLI TREC DBpedia SST2 Yelp SQuADv2 MATH avg
rs | Originalinit | 93.3p 8540y 95517 991g 9385 972 N/A N/A 93.804
Mixed init | 93.201* 85302 26.51s2% 99.1* 93.206 97.10.% N/A N/A 82435
LLaMa | Originalinit | 9200~ 89.7g» 95805 9920 95904 98601 00630y 36.80> 84303
Mixed init | 92.001 89.702 96.005 99.20 96.005 98.601 66409 36901 84.493

Table 1: Comparison of test results across 10 random soft-prompt initializations for TS5-base model and 3 initializa-
tions for LLaMa-3.1-8B model. The first row (Original init) represents the results of prompt tuning. The second row
(Mixed init) represents the results of moving a specific initialization in the direction of a task prompt vector created
from different (mixed) initializations. We report F1 for SQuADv2 and RougeL score for MATH and the exact match
for the rest. N/A means that the task was too complex for the T5 model and the results were underperforming.

0.10
o
g
o 0.08
1]
(V2]
O
w
= 0.06
©
£
[
o
o
e 0.04
]
=
o

-0.02

MNLI

1 1 1 1
DBPedia TREC SST2 Yelp

1
MNLI QNLI

Figure 2: Comparison of average cosine similarities of
task prompts fine-tuned on different tasks for T5-base
model. The average is calculated across all combina-
tions of 10 random initializations (i.e., row QNLI col-
umn MNLI was calculated as the average of all cosine
similarities between MNLI and QNLI task prompts for
all random initialization combinations omitting the com-
binations where cosine similarity is equal to 1).

may be caused by the task being harder for the
T5-base model to learn, which also confirms the
higher standard deviation from the mean of prompt
tuning performance. We can also see that in the
case of the LLaMa-3.1-8B-Instruct model, there is
no statistically significant difference between using
the original initialization or different task prompt
vector initialization and for the TREC and SST2
the average results slightly increased.

Task prompts and task prompt vectors main-
tain good performance even if they do not point
to the exact same location in the task subspace.
To see whether the trained task prompts end up in
the same task sub-space, we evaluate cosine sim-
ilarity across multiple random initializations. We
train multiple task prompts for 10 different ran-
dom initializations and each source task (60 task
prompts in total) and compute the cosine similarity
from trained task prompts for each combination of

0.10
o
kg
o 0.08
192
w
(6]
w
= 0.06
©
e
j7)
o
o
e 0.04
o]
=
o
-0.02

MNLI

' ' ' ' '
QNLI DBPedia TREC SST2 Yelp

Figure 3: Comparison of average cosine similarities
of task prompt vectors. The averages are calculated
equivalently to Figure 2 but with task prompt vectors
created from different task prompts.

random initializations and for each combination of
tasks. We then average this cosine similarity for
each task combination across all random initializa-
tion combinations. If task prompts initialized from
different random initializations are pointing to dif-
ferent points in the task sub-space, we should also
witness this phenomenon with their correspond-
ing task prompt vectors. Therefore, we repeat this
process for task prompt vectors.

Figures 2 and 3 show the comparison of cosine
similarities between task prompts and task prompt
vectors from different tasks averaged over all ran-
dom initialization combinations. We can see from
the low cosine similarities in both tables, that the
task prompts and task prompt vectors do not end up
in the same direction when initialized from differ-
ent points in the embedding space. The highest co-
sine similarities on the diagonal represent the high-
est cosine similarity, which serves as a baseline for
comparison with the cross-task cosine similarities.
We can see in Table 1 row 1, that the downstream
performance of prompt tuning on the source tasks
across 10 different random initializations has a low

standard deviation from the average. This means
that the task prompts after prompt tunings end up in
a subspace with sufficient task performance, with-
out necessarily pointing to the same spot in the
task subspace. Cosine similarities that we have
used to create the aggregated figures can be seen in
the Appendix B in Figures 6 and 7. We have also
evaluated cosine similarities of task prompt vectors
created from 3 different random initializations for
LLaMa-3.1-8B-Instruct in Appendix B in Figures
9 and 10.

Task prompt vectors from similar problems are
more similar. Additionally, we evaluate the sim-
ilarity of different task prompt vectors across dif-
ferent tasks. Figure 3 shows the cosine similarity
between task prompt vectors for different tasks. We
can see that certain pairs of tasks are more similar
than others, what can be shared properties of these
tasks, such as the same number of classes, same
labels, or solving the same problem. Problem simi-
larity can be seen in DBPedia—TREC and MNLI-
QNLI task prompt vectors, and the similarity in the
number of classes can be seen in the MNLI task
prompt vector which tends to have higher cosine
similarity with task prompt vectors for tasks with
more classes (e.g., DBPedia, TREC).

4.3 Combination of Task Prompt Vectors via
Addition for Multi-Task Transfer

This section addresses the following research ques-
tion: RQ2: Can we combine multiple task
prompt vectors and maintain multi-task perfor-
mance on the source tasks?

To answer this research question, we investigate
the method of combination via addition on 15 task
pair combinations from the set of NLU datasets
(MNLI, ONLI, DBPedia, TREC, SST2, Yelp Polar-
ity). We also evaluate combinations of task prompt
vectors in a simulated limited data environment
by providing O to 100 training examples before
evaluation on the test set.

Combinations of task prompt vector pairs main-
tain single-task performance on specific ob-
served tasks. To evaluate how the combinations
of task prompt vectors maintain their single-task
performance, we conduct experiments of creating
pair combinations from all of the source tasks (ac-
cording to equation 4). We aggregate the best-
performing combinations in Figure 4. The full
results from the experiment can be found in Ap-
pendix C in Figure 8. We can see from the results

0.85

0.80

0.75 i
0.65

0.60"pBpedia DBPedia MNLI

MNLI QNLI QNLI

Task Type
B First Task
B Second Task

MNLI QNLI QNLI SST2
Yelp SST2 Yelp Yelp

—
EERER
lh--l
EEEEEEE

Figure 4: Comparison of relative exact match perfor-
mance of combinations of task prompt vectors across
averaged across 10 different random initializations. The
results are relative to the single-task performance (1 is
the performance of single-task prompt tuning).

that most of the binary classification tasks retain
their single-task performance on both of the tasks,
which implies that task prompt vectors can be used
for solving multi-task problems. In some cases, the
single-task performance was kept only for a single
source task, which leads us to the conclusion that
certain combinations of task prompt vectors may
be more suitable than others.

Additionally, we chose two target tasks for in-
ference classification (SciTail, SNLI), topic classifi-
cation (AG News, Yahoo Answers), and sentiment
classification (SST5, IMDB) and we keep the same
set of source tasks. Results for SciTail, AG News
and IMDB are in Table 2; the full table with ex-
tended experiments is in Appendix D in Table 4.

Task prompt vector combinations can initialize
zero-shot and few-shot learning. We compare
initialization with randomly initialized soft-prompt,
soft-prompt trained on single and multiple source
tasks (this is an equivalent of soft-prompt trans-
fer presented in Vu et al. (2022)), the multi-task
ATTEMPT (Asai et al., 2022) method, and a combi-
nation of task prompt vectors of both of the source
tasks. From the 0-shot and 100-shot results (Ta-
ble 2), we can see that our combination of task
prompt vectors can outperform the initialization
with a single-task source soft-prompt on SciTail
and IMDB datasets and the multi-task source soft-
prompt only in the case of SciTail task. The com-
bination of task prompt vectors matched the SPoT
baseline in cases like AG News, possibly because
DBPedia and TREC together retain little TREC-
specific information that could improve results.
We can also see that the ATTEMPT method is

SciTail (NLI) |

AG News (Topic) ‘

IMDB (Sentiment)

Source tasks Fl Source tasks Fl Source tasks Fl
0shots 100 shots 0 shots 100 shots 0 shots 100 shots
Random 54-96.6 75,60_5 Random 00 50,411_2 Random 77.29_(3 89440_4
MNLI (SPOT) 70.4[)_4 87.80_9 DBPedia (SPOT) [)[] 83.40_6* SST2 (SPOT) 880_5 904203
QNLI (SPoT) 57.7T131 77.71.3 | TREC (SPoT) 0o 65.75.6 | Yelp (SPoT) 900.3 90.3¢.2
QNLI + MNLI (SPoT) 70.41 2 87.706 | DBPedia + TREC (SPoT) 0o 82.1p.9 | SST2 + Yelp (SPoT) 90.802 90.8¢2
QNLI + MNLI (ATTEMPT) 63.84.2 83.63 DBPedia + TREC (ATTEMPT) 11.517 20.728 | SST2 + Yelp (ATTEMPT) 79.2¢ 89.4¢.8
QNLI + MNLI (ours) 71.508" 88.1p9 | DBPedia+ TREC (ours) (1) 830.9 SST2 + Yelp (ours) 90.1p5 90.49.2

Table 2: Test results of training T5-base model with random, single- and multi-task soft-prompt transfer (SPoT),
multi-task ATTEMPT, and our task prompt vectors on 0-shot and 100-shots of data. We show the initialization with
different combinations for NLI classification, topic classification, and sentiment classification. The best results are

bold, while the second-best results are underlined.

SciTail

90

AG News

IMDB

Macro F1

©
g
=)

©
©
%

Macro F1
©o
o
o
X

©
©
wn

@
©
=)

L40
80
30
78 »
20
76 -
- 10 .
74
5 10 25 50 100 250 10 25 50
N shots
--+=- random --+- MNLI + QNLI (SPoT) -- random R
MNLI (SPoT) = MNLI + QNLI (ATTEMPT) DBPedia (SPoT)
<= QNLI (SPoT) —— MNLI + QNLI (Ours) | = == TREC Coarse (SPoT)

N shots

DBPedia + TREC Coarse (SPoT)
- DBPedia + TREC Coarse (ATTEMPT)
—— DBPedia + TREC Coarse (Ours) | -+~

100 250 500 5 10 25 50 100 250
N shots

- random --- SST2 + Yelp (SPoT)
SST2 (SPoT) - SST2 + Yelp (ATTEMPT)
Yelp (SPoT) —— SST2 + Yelp (Ours)

Figure 5: Test results of training T5-base model with random, single, and multi-task soft-prompt transfer (SPoT),
multi-task ATTEMPT, and our task prompt vectors combination on increasing numbers of shots of data. We can see
that for SciTail and IMDB tasks, a combination of task prompt vectors outperforms single task transfer.

Method Modularity Multi-task Spurce prompt
performance independence
SPoT X
ATTEMPT X

Task Prompt Vectors

Table 3: Comparison of multi-task properties. Task
prompt vectors maintain high task modularity and multi-
task performance, and are independent of the number of
pre-trained source soft-prompts.

significantly underperforming when using a smaller
set of pre-trained source soft-prompts. Another
observation is that ATTEMPT performs better on
the AG News task. This may be caused by using
the original implementation of ATTEMPT, where
authors, instead of using textual labels (i.e., "en-
tailment", "not entailment"), used textual numbers
as labels (i.e., "0", "1"), which made the model

predict numbers instead of specific words.

While matching the results of full multi-task soft-
prompt transfer (SPoT) training initialization of
prompt tuning using task prompt vector combi-
nations also retains high task modularity, which
means that we can add new tasks without the neces-

sity of training. Only in the case of the IMDB task
does the SPoT baseline fine-tuned on both datasets
perform better. However, it requires retraining for
each task, increasing computational costs. Table 3
compares attributes beneficial for multi-task train-
ing for SPoT, ATTEMPT, and task prompt vector
methods. We can see that the SPoT method has
low multi-task modularity, needing to re-train the
source soft-prompt every time we change the set of
source tasks. ATTEMPT, while having sufficient
task modularity, depends heavily on the quality and
number of source soft-prompts. Task prompt vec-
tors have both of these attributes and also retain
sufficient multi-task performance.

4.4 Additional Results: Few-Shot Comparison

In this section, we study how increasing the num-
ber of demonstration data affects the performance
of prompt tuning on a target task initialized by
a combination of task prompt vectors of similar
source tasks. We keep the same experiment setup
as in the previous section and further evaluate the
soft-prompt initialization on 5, 10, 25, 100, 250,
500 shots. We also assessed the topic classification

tasks for 500 shots since we started with 10 shots
due to our sampling method.

From the results in Figure 5, we can see that
the performance of the combination of task prompt
vectors for SciTail and IMDB target tasks outper-
forms using a single-task initialization for multiple
shots. We can also see that our method outperforms
the multi-task initialization for the SciTail dataset
across all shots of data.

Comparing the results from Figure 4 and Fig-
ure 5, if we choose a combination of tasks that
maintains a significant amount of the source task
performance (MNLI + QNLI and SST2 + Yelp),
the few-shot performance of the task prompt vec-
tor combination tend to be higher than single-task
transfer. The full results across more shots and
more target tasks can be found in Appendix D in
Figure 11.

5 Discussion

In Section 4.2, we showed that task prompts and
their corresponding task prompt vectors are close to
orthogonal by comparing their cosine similarities
across multiple initializations in Figures 2 and 3.
Despite their near-orthogonality, task prompt vec-
tors created from one initialization and applied
to a different one maintain their performance
for the majority of the observed tasks.

In Section 4.3, we showed that combinations of
certain task prompts maintain their source single-
task performance (in Figure 4) and that the com-
binations of task prompt vectors can be used for
initialization of prompt tuning (in Table 2) in simu-
lated low resource setting on the set of target tasks.
From the results in Figure 5, we can see that, for the
SciTail and IMDB datasets, our task prompt vec-
tor initialization maintains its higher performance
compared to the single-task soft-prompt transfer
even with the higher number of samples.

Theoretical implications and analysis. It lies
beyond the scope of our work to further deliver the-
oretical proofs for diverse properties of task prompt
vectors, which we will leave for future work. How-
ever, we still discuss the implications that arise
from the contributions of task prompt vectors.
Based on the observations from Section 4.2, we
can re-use pre-trained task prompt vectors for dif-
ferent tasks and use them in downstream scenarios.
Since task prompt vectors are independent of their
initialization, we can also re-use pre-trained task
prompt vectors shared on the internet (e.g., on a

designated vector hub). Another implication that
we can derive from these findings is that the sub-
space with optimal values in the soft-prompt
space has probably a convex shape. This may
be indicated by the fact that task prompts trained
from different random initializations for the same
task do not point to the same direction (based on
Figures 2 and 3), but still achieve identical results.

Section 4.3 implied that we can use different
combinations of task prompt vectors to gain even
zero-shot multi-task behavior (in Figure 4). We can
combine multiple task prompt vectors and main-
tain multi-task performance on the source tasks,
but the right task combinations need to be found
(e.g., by evaluating on held-out validation sets). We
can see that it is possible to use linear combinations
even though the soft-prompts space is non-linear.
The rationale behind this could be that task prompt
vectors are linear approximations of how the
soft-prompts change during the training. Another
possibility may be that the task prompt vectors are
sparse, and a combination of 2 sparse task prompt
vectors creates a vector that contains more informa-
tion about both tasks. These findings can be further
useful for machine unlearning tasks, where one
could also include subtraction.

6 Conclusion

In our work, we introduce and investigate task
prompt vectors as a method of multi-task transfer
from prompt tuning. We show that the task prompt
vectors are not dependent on random initialization
and that the performance across different random
initializations does not change significantly in the
majority of observed source tasks. We show that
in some tasks, the combination via arithmetic addi-
tion maintains the single-task performance. Finally,
we show that certain combinations of task prompt
vectors can be a better option for initialization for
certain tasks while maintaining higher multi-task
modularity than other methods.

In the future, we would like to evaluate the cross-
model performance of task prompt vectors. We
think that further experiments with generation tasks
may be another interesting extension. Moreover,
task prompt vector arithmetic has the highest po-
tential for improving the unlearning in PLMs by
negating the task prompt vectors for the tasks we
want to unlearn. Such an option is enabled by in-
troducing task prompt vectors, which would not be
possible with the existing state-of-the-art methods.

Limitations

To direct our focus primarily on the evaluation of
task prompt vectors, we utilize only monolingual
models in the scope of our work and utilize 12
NLU and 2 NLG datasets. We find that our set of 3
common NLU problems, each covering 4 different
tasks and 2 common NLG problems covering 2
different tasks, is enough to evaluate the properties
of task prompt vectors. Adding more tasks would
result in more computational costs, which may not
be necessary to prove our findings empathetically.

Even though there are many other PLMs capa-
ble of conditional generation that beat TS mod-
els in performance on various benchmarks, we fo-
cus our experiments on the T5-base model as it
is commonly used as a representative model in
many PEFT methods. We also utilize the LLaMa-
3.1-8B-Instruct model only for the initialization
dependency experiments.

Ethical Considerations and Impact
Statement

The experiments in this paper were conducted with
publicly available datasets MNLI, QNLI, SciTail,
SNLI, DBPedia, TREC, AG News, Yahoo An-
swers, SST2, Yelp Polarity, SSTS5, and IMDB, cit-
ing the original authors. MNLI, QNLI, and SST2
are part of the GLUE benchmark. As we were not
able to determine the license for all used datasets,
we have opted to use them as in a limited form as
possible, adhering to the terms of use of the GLUE
benchmark for all of the mentioned datasets. As
the datasets are commonly used in other related
works and were published in scientific works that
went through an established review process, we do
not check for the presence of any offensive con-
tent as it was already removed by the authors of
these publicly available datasets. In addition, we
do not utilize any personally identifiable informa-
tion or offensive content and we do not perform
crowdsourcing in any form for data annotation. To
our knowledge, we are not aware of any potential
ethical harms or negative societal impacts of our
work, apart from the ones related to the field of
Machine Learning (i.e., the use of computational
resources that are consuming energy and producing
heat with indirect CO2 emission production). We
follow the license terms for the T5-base model we
use — all models and datasets allow their use as part
of the research. As we perform conditional gen-
eration transform into the classification problem

(generating only labels), we minimize the problem
of generating offensive or biased content.

Impact Statement: CO2 Emissions Related to
Experiments The experiments in this paper re-
quire a significant amount of GPU computing re-
sources as we train and evaluate 1 model over mul-
tiple random initializations (10) for different meth-
ods (4) and datasets (12). Overall the experiments
including evaluations (which did not require train-
ing, but still used GPU resources for inference) and
preliminary experiments (which are not reported in
the scope of our work) were conducted using a pri-
vate infrastructure, which has a carbon efficiency of
0.432 kgCO2eq/kWh. Approximately 1200 hours
of computation were performed on hardware of
type A100 PCle 40GB (TDP of 250W). Total emis-
sions are estimated to be 120.24 kgCOzeq of which
0 percent were directly offset. These estimations
were conducted using the CodeCarbon (Courty
et al., 2024) python module. Whenever possible,
we tried to reduce the computational costs. Be-
cause our method is built upon the prompt tuning
PEFT method, we always trained only a small part
of the model parameters (76800 parameters, which
is around 0.2% of the T5-base model parameters),
and training the model fully will probably require
more GPU hours and create more CO2 emissions.

References

Akari Asai, Mohammadreza Salehi, Matthew Pe-
ters, and Hannaneh Hajishirzi. 2022. ATTEMPT:
Parameter-efficient multi-task tuning via attentional
mixtures of soft prompts. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6655-6672, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. In The
Semantic Web, pages 722-735, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot

https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.emnlp-main.446
https://doi.org/10.18653/v1/2022.emnlp-main.446

learners. Advances in neural information processing
systems, 33:1877-1901.

Alexandra Chronopoulou, Jonas Pfeiffer, Joshua
Maynez, Xinyi Wang, Sebastian Ruder, and Priyanka
Agrawal. 2023. Language and task arithmetic with
parameter-efficient layers for zero-shot summariza-
tion. arXiv preprint arXiv:2311.09344.

Benoit Courty, Victor Schmidt, Sasha Luccioni, Goyal-
Kamal, MarionCoutarel, Boris Feld, Jérémy Lecourt,
LiamConnell, Amine Saboni, Inimaz, supatomic,
Mathilde Léval, Luis Blanche, Alexis Cruveiller,
ouminasara, Franklin Zhao, Aditya Joshi, Alexis
Bogroff, Hugues de Lavoreille, Niko Laskaris,
Edoardo Abati, Douglas Blank, Ziyao Wang, Armin
Catovic, Marc Alencon, Michatl Stechty, Christian
Bauer, Lucas-Otavio, JPW, and MinervaBooks. 2024.
mlco2/codecarbon: v2.4.1.

MohammadReza Davari and Eugene Belilovsky. 2023.
Model Breadcrumbs: Scaling Multi-Task Model
Merging with Sparse Masks. ArXiv:2312.06795 [cs].

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Olive Jean Dunn. 1959. Confidence intervals for
the means of dependent, normally distributed vari-
ables. Journal of the American Statistical Associa-
tion, 54(287):613-621.

Clémentine Fourrier, Nathan Habib, Thomas Wolf, and
Lewis Tunstall. 2023. Lighteval: A lightweight
framework for 1lm evaluation.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel
Roy, and Michael Carbin. 2020. Linear mode con-
nectivity and the lottery ticket hypothesis. In Inter-
national Conference on Machine Learning, pages
3259-3269. PMLR.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2022. PPT: Pre-trained prompt tuning for few-shot
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8410-8423, Dublin,
Ireland. Association for Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790-2799. PMLR.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
semantics-based answer pinpointing. In Proceedings
of the First International Conference on Human Lan-
guage Technology Research.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Gabriel IlTharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2022. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In AAAI Conference on Artificial
Intelligence.

Mateusz Klimaszewski, Piotr Andruszkiewicz, and
Alexandra Birch. 2024. No train but gain: Lan-
guage arithmetic for training-free language adapters
enhancement. arXiv preprint arXiv:2404.15737.

Haeju Lee, Minchan Jeong, Se-Young Yun, and Kee-
Eung Kim. 2023. Bayesian multi-task transfer learn-
ing for soft prompt tuning. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 4942-4958, Singapore. Association for
Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Sagko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
siere, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, Francois
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175—184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A. Smith, and Luke
Zettlemoyer. 2022. Branch-Train-Merge: Embarrass-
ingly Parallel Training of Expert Language Models.
ArXiv:2208.03306 [cs].

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th

https://doi.org/10.5281/zenodo.11171501
http://arxiv.org/abs/2312.06795
http://arxiv.org/abs/2312.06795
http://arxiv.org/abs/2312.06795
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2022.acl-long.576
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://api.semanticscholar.org/CorpusID:24462950
https://api.semanticscholar.org/CorpusID:24462950
https://api.semanticscholar.org/CorpusID:24462950
https://doi.org/10.18653/v1/2023.findings-emnlp.329
https://doi.org/10.18653/v1/2023.findings-emnlp.329
https://doi.org/10.18653/v1/2023.findings-emnlp.329
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2208.03306
http://arxiv.org/abs/2208.03306
http://arxiv.org/abs/2208.03306
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt
understands, too. Al Open.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142-150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Michael Matena and Colin Raffel. 2022. Merg-
ing Models with Fisher-Weighted Averaging.
ArXiv:2111.09832 [cs].

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pas-
cal Frossard. 2024. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Ad-

vances in Neural Information Processing Systems,
36.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503, Online. Association for Computational Lin-
guistics.

11

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin,

Ning Ding, Jing Yi, Weize Chen, Zhiyuan Liu,
Juanzi Li, Lei Hou, Peng Li, Maosong Sun, and
Jie Zhou. 2024. Exploring universal intrinsic task
subspace for few-shot learning via prompt tuning.
IEEE/ACM Trans. Audio, Speech and Lang. Proc.,
32:3631-3643.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,

Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.

Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784—789,
Melbourne, Australia. Association for Computational
Linguistics.

Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu

Cord, Léon Bottou, and David Lopez-Paz. 2023.
Model ratatouille: Recycling diverse models for out-
of-distribution generalization. In International Con-
ference on Machine Learning, pages 28656-28679.
PMLR.

Zhengxiang Shi and Aldo Lipani. 2024. DePT: De-

composed prompt tuning for parameter-efficient fine-
tuning. In The Twelfth International Conference on
Learning Representations.

Richard Socher, Alex Perelygin, Jean Wu, Jason

Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-

cal methods in natural language processing, pages
1631-1642.

George Stoica, Daniel Bolya, Jakob Bjorner, Pratik

Ramesh, Taylor Hearn, and Judy Hoffman. 2024.
Ziplt! Merging Models from Different Tasks without
Training. ArXiv:2305.03053 [cs].

Student. 1908. The probable error of a mean.

Biometrika, pages 1-25.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,

Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and
Jie Zhou. 2022. On transferability of prompt tuning
for natural language processing. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3949-3969,
Seattle, United States. Association for Computational
Linguistics.

https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/P11-1015
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://arxiv.org/abs/2111.09832
http://arxiv.org/abs/2111.09832
http://arxiv.org/abs/2111.09832
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.1109/TASLP.2024.3430545
https://doi.org/10.1109/TASLP.2024.3430545
https://doi.org/10.1109/TASLP.2024.3430545
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://openreview.net/forum?id=KjegfPGRde
https://openreview.net/forum?id=KjegfPGRde
https://openreview.net/forum?id=KjegfPGRde
https://openreview.net/forum?id=KjegfPGRde
https://openreview.net/forum?id=KjegfPGRde
http://arxiv.org/abs/2305.03053
http://arxiv.org/abs/2305.03053
http://arxiv.org/abs/2305.03053
https://doi.org/10.18653/v1/2022.naacl-main.290
https://doi.org/10.18653/v1/2022.naacl-main.290
https://doi.org/10.18653/v1/2022.naacl-main.290

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5039-5059, Dublin, Ireland. Association
for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Roge-
rio Feris, Huan Sun, and Yoon Kim. 2023. Multitask
prompt tuning enables parameter-efficient transfer
learning. In The Eleventh International Conference
on Learning Representations.

Bernard L Welch. 1947. The generalization of ‘stu-
dent’s’problem when several different population var-
lances are involved. Biometrika, 34(1-2):28-35.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook
Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali
Farhadi, Hongseok Namkoong, et al. 2022. Robust
fine-tuning of zero-shot models. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 7959-7971.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient

12

fine-tuning methods for pretrained language models:
A critical review and assessment. arXiv preprint
arXiv:2312.12148.

Jinghan Zhang, Junteng Liu, Junxian He, et al. 2023.
Composing parameter-efficient modules with arith-
metic operation. Advances in Neural Information
Processing Systems, 36:12589-12610.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
et al. 2023. Representation engineering: A top-
down approach to ai transparency. arXiv preprint
arXiv:2310.01405.

A Experimental setup: Further Details

Implementation details. For implementing all
of our experiments, we utilize Python 3.11.8 with
the PyTorch (Paszke et al., 2019) framework and
Huggingface modules (transformers (Wolf et al.,
2020) for model loading and training, peft (Man-
grulkar et al., 2022) for PEFT methods initializa-
tion, datasets (Lhoest et al., 2021) for data loading,
and evaluate for evaluation). We create a single
data structure for task prompt vectors, that is capa-
ble of the arithmetic operations with soft-prompts.

Data splits. We take 1000 samples from the train
set and use it as a validation set and make the test
set from the original validation set for datasets that
contain over 10000 samples. For datasets with less
or equal to 10000 samples we do not modify the
training set, and split the validation set in 2 halves
for validation and test sets. We keep the same
random seed for subsampling and splitting for all
of our experiments.

Hyperparamters setings. We provide all of our
configurations in the config directory of our reposi-
tory. We set soft-prompt length to 100 tokens, learn-
ing rate to 0.3, and lower the weight decay of the
AdamW optimizer (Loshchilov and Hutter, 2019)
to 1 x 107° for T5-base model. We also utilize the
Seq2SeqTrainer class from the Huggingface trans-
formers Python module. We train all models on all
data sets for 10 epochs, except for TREC, where we
train for 50 epochs due to the tendency of models to
underfit here. We set different hyperparameters for
prompt tuning and the hyperparameters for zero-
or few-shot evaluation do not differ much from the

https://github.com/huggingface/trl
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=Nk2pDtuhTq
https://openreview.net/forum?id=Nk2pDtuhTq
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

hyperparameters for prompt tuning. We train for
1000 update steps while keeping a batch size of 2
for 5, 10, 25 shots, 8 for 50, 100, 250 shots, and
16 for 500, 750, 1000 shots. In general, we chose
the maximum token length for labels by searching
the dataset for the maximum token length (in our
configs, we set default max_target_lenght to 128 if
the dataset requires to generate sentences), for the
inputs we pad the token sequences to 256 tokens
with the max_target_lenght parameter. We use a
learning rate of 0.3 for the AdamW optimizer, with
weight decay of 1 x 10~ and 500 warmup steps for
10 epochs (with an exception for the TREC dataset)
with the batch size of 32. We evaluate, log and
save after each 100 training steps and keep only the
best model at the end of the training. In our con-
figs, we set a number of tokens to 50, but in reality,
Hugging Face peft library doubles the number for
encoder-decoder models like TS. When combining
task prompt vectors, we evaluate their performance
on the individual source tasks that formed the task
combination and found the best rescaling factor A
via held-out validation sets.

For training the soft-prompts with the LL.aMa-
3.1-8B-Instruct model we utilized similar hyperpa-
rameter settings as for the T5-base model with the
exception of using the cosine function for the learn-
ing rate scheduler and the usage of the SFT Trainer
class from the Huggingface trl Python module (von
Werra et al., 2020) for training.

Since we are utilizing the T5-base for condi-
tional generation, we are computing exact match
instead of accuracy for classification. Because we
are generating labels also for classification tasks,
the exact match is equivalent to accuracy in the
sequence classification task. In the scope of our
work, we refer to a single dataset as a task.

For the training of multi-task ATTEMPT, we
have used hyperparameters and a training environ-
ment based on the original implementation. Full
hyperparameter settings can be found in the reposi-
tory 2 of our replication study of ATTEMPT in the
configs directory (files attempt_tvp*.toml).

B Additional results: Task Prompt
Vectors and Task Prompt Cosine
Similarities

In this section, we provide more detailed and de-

aggregated results from Section 4.2. Figure 6
shows the comparison of cosine similarities across

Zhttps://anonymous.4open.science/t/ ATTEMPT-C5C6

13

different random initializations of task prompts
from prompt tuning. We can see that for all task
combinations, the highest cosine similarity is for
the equal random initializations. Additionally,
when comparing different tasks and different ran-
dom initializations the cosine similarities are the
lowest, which only confirms our finding from Sec-
tion 4.2.

We repeat the same process of comparing cosine
similarities across different random initializations
for task prompt vectors in Figure 7. Similarly to
task prompts, the highest cosine similarity is for
the equal random initializations. We can see that
for task prompt vectors the cosine similarities be-
tween different random initializations are higher
than compared to task prompts in Figure 6. Simi-
larly to our findings in 4.2, we can that certain task
combinations have higher cosine similarities than
others. For both of these figures, we can see that
task prompts and task prompt vectors from differ-
ent initializations usually end up at different points
in the task sub-space.

https://anonymous.4open.science/r/ATTEMPT-C5C6

0.080

0.075

0.070

0.065

0.060

a
anu

Figure 6: Comparisons of cosine similarities of task prompts fine-tuned on different tasks for T5-base model. Each
heatmap represents a different task combination. We calculate the cosine similarities for all combinations of 10
random initializations omitting the combinations of random initializations where cosine similarity is equal to 1
(single-task comparisons). Each heatmap is represented as a single field in Figure 2 by averaging all values. The x
and y axes represent the number of random initializations.

14

1125
1126

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

1138
1139

1140
1141
1142
1143
1144
1145
1146
1147

0175

0150

0125

0.100

0075

0.050

0.025

0225

0.200

0175

0150

0125

0.100

0.075

0.050

0.025

0.200

0175 011

0150

010

0125
0.09
0.100

0.075 008

0.050
0.07

0.025

Figure 6 (cont.): Continuation of Figure 6 for additional tasks.

C Additional results: Combinations of
Task Prompt Vectors

This section provides extended experiments to the
results in Figure 4 in Section 4.3. Figure 8 shows
the relative performance of all task combinations
of task prompt vectors. Usually, tasks that solve
the same NLU problem retain the most source task
performance on both tasks except for the combina-
tion of DBPedia and TREC task prompt vectors,
where the TREC performance is lower. In general,
the performance of combinations with the TREC
usually ends up in favor of the other task from the
task pair.

D Additional results: Few-Shot
Experiments

Here we provide extended results of zero- and few-
shot experiments on additional target tasks that
extend the results from Section 4.3. Table 4 extends
the comparison of 0- and 100-shot results with
SNLI, Yahoo Answers, and SST5 tasks. We can see
that combinations of source task prompt vectors do
not outperform the SPoT baseline in these specific
tasks, but rather almost match the results.

15

Figure 11 extends the comparison in Figure 5
in Section 4.4 and shows how the performance on
different initializations differs across all observed
shots of data and on additional SNLI, Yahoo An-
swers, and SST5 target tasks. We can see that in
the case of the SSTS task, the SST2 initialization
performs the best. We think that the reason for this
may also be the similarity of SST5 and SST2 and
that the combination of source tasks does not retain
enough information to match the SST5 baseline.

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

0.07 001 o005

013
0.02

012 0.06

001

011 005

0.08

0.03
010

009 0.04

DBPedia

001

009 0.02

003 o4 1001 003

001 | 001

D ‘ l
5
- 006
003 | 003 o0
3 008 | 004 00
008 o0s
o 004
0.06. - : -
o - 00
0.04 3 0. 06 03 - 3
003 5 003
002 i 004 | 004 03
y 003 | 003 o0
00t | 0 o o o
u I

0035

0030

0025

0015

0010

0.005

0.000

H
Yelp
003 | 003
0.03
0.08 03 | o 0.03
0.04

008 0.06

MNL

0.08
005
007 0 004 | 005

0.03
0.04

0.04 | 003

0.03
006 003
003 003 003 | 003
002
0.02

005

010 0.050 011
0.045
008 010
0.040
0,035
006 0.09
0.030
0.08
004
0.025
0.020 007
002
0.015
002 | 003
0.06

Figure 7: Comparisons of average cosine similarities of task prompt vectors for T5-base model. The averages are
calculated similarly to Figure 6 but with task prompt vectors created from different task prompts. Each heatmap
represents a different task combination. We calculate the cosine similarities for all combinations of 10 random
initializations omitting the combinations of random initializations where cosine similarity is equal to 1 (single-task
comparisons). Each heatmap is represented as a single field in Figure 3 by averaging all values. The x and y axes
represent the number of random initializations.

16

0.030

0.025

0.020

0.015

0.010

0.005

0.000

0.06

0.05

0.08

ss12

0.03

0.02

o1

010

0.09

TREC

0.08

0.07

00 0.06

Figure 7 (cont.): Continuation of Figure 7 for additional tasks.

1.0§
0.8
0.6
0.4

0.2
Task Type
B First Task
I Second Task
0.0

"~ DBPediaDBPedia DBPedia DBPedia DBPedia MNLI MNLI MNLI MNLI QNLI QNLI QNLI SST2 TREC
MNLI QNLI SST2 TREC Yelp QNLI SST2 TREC Yelp SST2 TREC Yelp TREC Yelp Yelp

Figure 8: Comparison of relative exact match performance of combinations of task prompt vectors across averaged
across 10 different random initializations and all task combinations. The results are relative to the original single-task
performance (1 is the performance of single-task prompt tuning). The task combinations in bold are the combinations
that achieved over 50% of single-task performance on both of the tasks.

17

SciTail (NLI) |

AG News (Classification)

| IMDB (Sentiment)

Source tasks Fl Source tasks Fl Source tasks Fl
0shots 100 shots 0 shots 100 shots 0shots 100 shots
Random 54-96.6 75.60_5 Random OU 50.411_2 Random 77-29.6 89.40_4
MNLI (SPoT) 70.40.4 87.8p.9 | DBPedia (SPoT) () 83.406" | SST2 (SPoT) 880.6 90.20.3
QNLI (SPoT) 57.7T131 77.71.3 | TREC (SPoT) 0o 65.75.6 | Yelp (SPoT) 900.3 90.3¢.2
QNLI + MNLI (SPoT) 70.41.2 87.70.6 | DBPedia + TREC (SPoT) 0o 82.1p9 | SST2 + Yelp (SPoT) 90.802 90.8¢2
QNLI + MNLI (ATTEMPT) 63.84.2 83.63 DBPedia + TREC (ATTEMPT) 11.517 20.728 | SST2 + Yelp (ATTEMPT) 79.2¢ 89.40.8
QNLI + MNLI (ours) 71.508* 88.1p9 | DBPedia+ TREC (ours) 0o 830.9 SST2 + Yelp (ours) 90.1p.5 90.40.2
SNLI (NLI) ‘ Yahoo Answers (Classification) ‘ SSTS5 (Sentiment)
F1 F1 F1
Source tasks 0shots 100 shots Source tasks 0 shots 100 shots Source tasks 0shots 100 shots
Random 46.51.5 47.619 | Random 0o 27.610.6 | Random () 83.258
MNLI (SPoT) 79.50.3 80.8p.4 | DBPedia (SPoT) 0o 61.31.1" | SST2 (SPoT) 9403* 93.903"
QNLI (SPoT) 47103 49.10.9 | TREC (SPoT) 0o 36.58.7 | Yelp (SPoT) 88.60.8 90.60.5
QNLI + MNLI (SPoT) 79.602" 814" | DBPedia+ TREC (SPoT) 0o 60.72 SST2 + Yelp (SPoT) 93.70.5 93.80.5
QNLI + MNLI (ATTEMPT) 78.5¢5 79.616 | DBPedia + TREC (ATTEMPT) 0.1¢ 8.156 SST2 + Yelp (ATTEMPT) 16.445 37.87
QNLI + MNLI (ours) 79.21.4 80.30.3 | DBPedia + TREC (ours) 0o 61.1p9 | SST2 + Yelp (ours) 89.90.8 91.50.5

Table 4: Test results of training T5-base model with random, single- and multi-task soft-prompt transfer (SPoT),
multi-task ATTEMPT, and our task prompt vectors on 0-shot and 100-shots of data for all of our observed source
and target tasks. We show the initialization with different combinations for NLI classification, topic classification,
and sentiment classification. The subscript represents the standard deviation from the average. The best results are
bold, while the second-best results are underlined. The * in the superscript represents that the results are statistically
significant from the second-best result, by two-sample Student’s t-test (Student, 1908) or Welch’s t-test (Welch,

1947).
0.050

SQUADV2 - 0.02 0.02 0.03 | 0.04
MATH 0.045
Yelp - 0.040
SST2- 0.02 0.02 0.02 0.02

0.035
TREC -

DBPedia 0.030
QNLI 0.025
MNLI

-0.020

MNLI
QNLI -
DBPedia -
TREC -
SST2 -
Yelp -
MATH -
SQUADV2 -

Figure 9: Comparison of average cosine similarities of
task prompts fine-tuned on different tasks for LLaMa-
3.1-8B-Instruct model. The average is calculated across
all combinations of 3 random initializations (i.e., row
QNLI column MNLI was calculated as the average of
all cosine similarities between MNLI and QNLI task
prompts for all random initialization combinations omit-
ting the combinations where cosine similarity is equal
to 1). The diagonal represents the cosine similarities of
the same tasks and it represents the maximum value of
cosine similarity across different random initializations.

18

0.050
SQUADV2 - 0.03 0.04
MATH 0.045
velp - 0.040
SST2- 0.02 0.02 0.02 0.02
0.035
TREC -

DBPedia 0.030
QN 0.025
MNLI

-0.020

MNLI
QNLI -
TREC -
SST2 -

Yelp -
MATH -

DBPedia -
SQUADV2 -

Figure 10: Comparison of average cosine similarities
of task prompt vectors. The averages are calculated
equivalently to Figure 9 but with task prompt vectors
created from different task prompts.

SciTail SNLI
- g==0
90 801 === m——temmm s P =
—————— o e ———— -——"
70
inks o
g €60
] ®
=80 =
-~ -
R — ———
75 :__:.*.--;/2 ————— - em———= e e-===" < h 40
5 10 25 50 100 250 500 7501000 5 10 25 50 100 250 500 7501000
N shots N shots
—e- random —e- MNLI + QNLI (SPoT)
—e- MNLI (SPoT) —e- MNLI + QNLI (ATTEMPT)
== QNLI(SPoT) ~ —=— MNLI + QNLI (Ours)
AG News Yahoo
8o W—— o 60
o -
e e " - 50
’ ————
o 60 L L - o 40
e 4 am—=" T e——— - ’ e
§40 S ————— « ,,/ I/I §30
e o e 20
R - ~J
20] == - 10
———— -
T T T T Tl - o
10 25 50 100 250 500 750 1000 10 25 50 100 250 500 750 1000
N shots N shots
—e- random =+ - DBPedia + TREC Coarse (SPoT)
—+ - DBPedia (SPoT) —«- DBPedia + TREC Coarse (ATTEMPT)
—e- TREC Coarse (SPoT) —e— DBPedia + TREC Coarse (Ours)
IMDB SST5
A — e
80 e
~o -
_______ -
- ~————
o
°
5 60
®
=
w0 PR oo —— et
S~
5 10 25 50 100 250 500 7501000 5 10 25 50 100 250 500 7501000
N shots N shots
—e- random —e- SST2 + Yelp (SPoT)
—e- SST2 (SPoT) —e- SST2 + Yelp (ATTEMPT)
—s- Yelp (SPoT) —e— SST2 + Yelp (Ours)

Figure 11: Test results of training T5-base model with random, single- and multi-task soft-prompt transfer (SPoT),
multi-task ATTEMPT, and our task prompt vectors combination on increasing numbers of shots of data averaged
over 10 different random initializations for all source and target tasks.

19

