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Abstract

How do the latent spaces used by independently-trained LLMs relate to one
another? We study the nearest neighbor relationships induced by activa-
tions at different layers of 24 open-weight LLMs, and find that they 1) tend
to vary from layer to layer within a model, and 2) are approximately shared
between corresponding layers of different models. Claim 2 shows that these
nearest neighbor relationships are not arbitrary, as they are shared across
models, but Claim 1 shows that they are not “obvious” either, as there is
no single set of nearest neighbor relationships that is universally shared.
Together, these suggest that LLMs generate a progression of activation ge-
ometries from layer to layer, but that this entire progression is largely shared
between models, stretched and squeezed to fit into different architectures.1

1 Introduction

Instead of trying to understand the internal mechanisms of specific language models, we
study structural similarities in the activations generated by models of different architectures.
In particular, how do the latent spaces used by different models relate to one another, and
do they have any universal properties?

Consider the following experiment. Let D be a set of prompts. We pass each prompt in D to
a language model M and collect the activations generated at a particular layer2 ℓ. For any
prompt t ∈ D, we can then ask: which are the k = 10 other prompts that yielded activations
most similar to this one? This gives a set of the k nearest neighbors of t among the other
elements of D. Repeating this for all prompts in D gives a collection of nearest neighbor
relationships that encode which prompts are nearest to which others according to layer ℓ in
the model M.

By comparing nearest neighbor relationships across a wide range of models, we make two
findings that seem unremarkable on their own, but together are quite surprising:

Claim 1. Activations collected at different depths within the same model tend to have
different nearest neighbor relationships.

Claim 2. Activations collected at corresponding depths of different models tend to have
similar nearest neighbor relationships.

Claim 2 shows that nearest neighbor relationships are not arbitrary, as they are shared across
independently-trained models. Claim 1, however, shows that they are not “obvious” either,
as nearest neighbor relationships vary with depth. Put another way, Claim 1 shows that near-
est neighbor relationships are sensitive to differences between layers within a single model,
while Claim 2 shows that activations at corresponding depths of different models are similar.

1Code available at https://github.com/chriswolfram/unireps
2We use the term “layer” to refer to an entire decoder module. See Section 3.2 for details on how

we extract activations from transformer models.
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Figure 1: Layers at different depths generate activations with different nearest neighbor
relationships (Claim 1), but layers at corresponding depths of different models generate
activations with similar nearest neighbor relationships (Claim 2). The particular example
used in Sections 1 and 2 is shown here.

Such nearest neighbor relationships reflect the local geometry of the embeddings generated
at a particular layer, and are closely related to operations used in transformer models. To-
gether, Claims 1 and 2 suggest that transformer-based language models use a progression
of distinct local geometries from layer to layer, and that this entire progression of local
geometries is (largely) shared across models regardless of architecture. In other words,
independently-trained language models tend to go through a similar sequence of intermedi-
ate representations when given the same prompt.

To give a concrete example, let t be this text from OpenWebText (Gokaslan et al., 2019), a
dataset mostly containing internet news articles:

Training For Ice and Mixed Climbing Series brought to you by Furnace Industries continues...

According to layer 10 of Llama-3.1-8B, these are the 3 nearest neighbors to that text t among
a sample of 2047 other texts from OpenWebText:

• There have been a lot of crazy reactions from the democrats now that Donald Trum...
• Prosecutor Christina Weilander filed the charges with Södertörn district court o...
• 7 questions on the Great British Bake Off Great British Bake Off Quiz Then there...

At first glance, these nearest neighbors look arbitrary, and it is not clear what relationship
they have with the original input or with one another. That makes it all the more surprising
that layer 20 of Gemma-2-9B gives exactly the same 3 nearest neighbors (in line with Claim 2).
Moreover, layer 30 of Llama-3.1-8B gives another completely different set of nearest neigh-
bors (in line with Claim 1), but many of them are the same as the nearest neighbors given
by layer 40 of Gemma-2-9B (Figure 1).

Llama-3.1-8B and Gemma-2-9B are architecturally different models independently trained
by different companies, so it is surprising that we not only find similarities in their latent
representations, but that these similarities only appear at corresponding depths. (See
Section 2 for more investigation of this specific example.)

We study this phenomenon systematically by generating the n1 × n2 affinity matrix, which
stores the similarity of nearest neighbor relationships implied by each pair of layers (i, j)
with layer i ∈ [n1] from model M1 and layer j ∈ [n2] from model M2. The resulting affinity
matrices exhibit diagonal structure, with higher similarity among layers at corresponding
depths (implying Claim 2), and lower similarity among pairs of layers from different depths
(implying Claim 1).

This paper studies the emergence of diagonal structure in affinity matrices across 24 open-
weight language models, with sizes spanning from 1B to 70B parameters. We find that diago-
nal structure is present when comparing a wide range of models (Section 4), and that this di-
agonal structure is statistically significant for every pair of models we consider (Section 4.1).
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1.1 Related work

There is an extensive literature on representational similarity in neural networks (Kornblith
et al., 2019; Klabunde et al., 2024), and with rising interest in universality in LLMs (Olah
et al., 2020; Rai et al., 2025) more recent work has begun to apply representational similarity
methods to large transformer models (Huh et al., 2024; Klabunde et al., 2023). However,
none have systematically studied affinity matrices comparing layers of architecturally differ-
ent LLMs or the resulting diagonal structure. Most either 1) compared layers within a single
model (Vulić et al., 2020), 2) compared layers between two copies of a model trained with
different random seeds (Nguyen et al., 2022; Gurnee et al., 2024), 3) focused on CNNs or very
small language models (Raghu et al., 2017), 4) used a representational similarity measure
that did not reveal diagonal structure (Lan et al., 2024; Baek et al., 2024; Brown et al., 2023), or
some combination thereof (Kornblith et al., 2019; Nguyen et al., 2021). Of particular note is
the work of Wang et al. (2025), who used sparse autoencoders to study representational sim-
ilarity of Pythia-160M and Mamba-130M and noted that layers at similar depths tended to be
more similar to one another. Also notable is the work of Wu et al. (2020), who measured the
representational similarity of layers from a range of early LLMs. They found that early layers
tended to be more similar between models than later layers, and observed diagonal structure
in some model comparisons (notably in a comparison of BERT-base and BERT-large).

2 Motivating experiment

Let D be a random sample of 2048 texts from OpenWebText (Gokaslan et al., 2019), a dataset
of internet text dominated by news articles. As before, let t be the following text from
OpenWebText (which has been truncated for space):

Training For Ice and Mixed Climbing Series brought to you by Furnace Industries continues...

We feed all of the texts in D to Llama-3.1-8B and collect the activations generated at layer
10. We then compute the 10 elements of D that generated activations most similar (by cosine
distance) to those generated when t was inputted. In other words, we compute the 10
nearest neighbors of t according to layer 10 of Llama-3.1-8B.

We then repeat this process for layer 20 of Gemma-2-9B, and make a Venn diagram showing
which elements of D were considered to be nearest neighbors to t according to the two
layers (Figure 2).

� A New Jersey man is in critical condition following a struggle with Fayettevi...
� Image copyright Thinkstock UK teenagers might have a reputation for binge dri...
� Viz Media Celebrates 'My Neighbor Totoro' 25th Anniversary With Novel, Pictur...
� 7 questions on the Great British Bake Off Great British Bake Off Quiz Then th...
� DENVER -- Nearly 30 Air Force Academy cadets required medical care, with six ...
� In a move sure to inflame the left, a Republican congressional candidate in L...
� Prosecutor Christina Weilander filed the charges with Södertörn district cour...
� There have been a lot of crazy reactions from the democrats now that Donald T...
� The richest person in Venezuela isn't a billionaire industrialist, but the da...
� window._taboola = window._taboola || []; _taboola.push({ mode: 'thumbnails-c'...
� I'm trying to find out more about the Census night disaster. Remember the Cen...
� On Monday, November 25, UrtheCast will present live the launch of its two cam...
� 'A Wrinkle In Time' Director Ava DuVernay Says DC's Big Barda Is Her... A Wri...

Llama-3.1-8B (layer 10)

Gemma-2-9B (layer 20)

Figure 2: Venn diagram showing the 10 nearest neighbors to the text t among the 2048
elements of D according to layer 10 of Llama-3.1-8B (in the blue box) and layer 20 of
Gemma-2-9B (in the green box). Entries that both layers agreed were nearest neighbors are
marked with �, while others are marked with �.
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In this example, these two layers from completely different models agreed on 7 out of the 10
nearest neighbors. This is all the more surprising because, at first glance, these texts seem to
have little to do with the text t to which they are all nearest neighbors, nor do they share
much with one another. They appear arbitrary, but are evidently not arbitrary because they
are independently identified by different layers of different models. On closer inspection,
these texts do share a common feature in that many end with a variant of “Follow on
Twitter.” It could be that the activations generated at layer 10 of Llama-3.1-8B and layer 20
of Gemma-2-9B are both dominated by mentions of Twitter.

The previous example could give the impression that nearest neighbor relations in activa-
tions are dominated by superficial but obvious features, and that agreement between models
is a trivial consequence of both models identifying the same obvious features. However,
this idea is dispelled by looking at different layers.

We now compute the nearest neighbors to t according to layer 30 of Llama-3.1-8B and layer
40 of Gemma-2-9B (Figure 3).

� Long Forgotten London Old House on Tower Hill There is the London we know and...
� Looking for news you can trust? Subscribe to our free newsletters. Texas alre...
� Sure, I love tea. And I admire those who go caffeine-free. But I have become ...
� Wrightwood. Cal. 21 October, 1949 Dear Mr. Orwell, It was very kind of you to...
� About DONALD TRUMP and HILLARY CLINTON, Skewered by Their Own Words with Funn...
� In a sign of the Queen's determination to master new technology, Buckingham P...
� In case you were living under a rock, today Manchester City announced the sig...
� Low-Riders at the Museum El Paso Museum of Art Saturday, May 10, 2014 from 10...
� Mitt Romney's hurdle in winning the love/respect/admiration/fear of his party...
� We all love a selfie, regardless of the occasion. But where are the most popu...
� On Monday, November 25, UrtheCast will present live the launch of its two cam...
� Review: "Sight Unseen" @ NJT The art world is full of beautifully complex, cr...
� Since launching The Athletic NHL and The Athletic Toronto more than a year ag...
� window._taboola = window._taboola || []; _taboola.push({ mode: 'thumbnails-c'...

Llama-3.1-8B (layer 30)

Gemma-2-9B (layer 40)

Figure 3: Venn diagram showing the 10 nearest neighbors to the text t according to layer 30
of Llama-3.1-8B (in the blue box) and layer 40 of Gemma-2-9B (in the green box). The two
layers agree on 6 out of the top 10 nearest neighbors.

Notably, the set of nearest neighbors according to layer 30 of Llama-3.1-8B is completely
disjoint from the set of nearest neighbors identified by layer 10 of the same model. If there
was some obvious feature of t that was identified by the earlier layer (such as mentions of
Twitter), it is not being identified by this later layer of the same model. In addition, this
new list of nearest neighbors is not arbitrary either, as it shares most of its elements with the
nearest neighbors identified by later layers of Gemma-2-9B.

That the nearest neighbors according to layer 10 of Llama-3.1-8B and layer 20 of Gemma-2-9B
are so similar (as well as layer 30 of Llama-3.1-8B and layer 40 of Gemma-2-9B) is in line
with Claim 2 (that activations from corresponding layers of different models induce similar
nearest neighbor relationships). In contrast, that the nearest neighbors according to layer 10
and layer 30 of Llama-3.1-8B are so different is in line with Claim 1 (Figure 1).

For layer 10 of Llama-3.1-8B and layer 20 of Gemma-2-9B, we identified a superficial property
of the inputs that could be dominating the geometry of the latent spaces (i.e., that they
mention Twitter). We found no such superficial feature relating nearest neighbors according
to layer 30 of Llama-3.1-8B and layer 40 of Gemma-2-9B, but it is possible that there is one.
However, neither of these findings would explain away the main observation: Why should
independently-trained models identify the same (perhaps superficial) properties to focus
on, especially if different layers in the same models focus on different properties?
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We do not purport to know why the activations at these layers of these models induced
these particular nearest neighbors, only that some of these sets are remarkably similar and
others are disjoint. These patterns of similarity and dissimilarity are the object of our study.

3 Representational similarity

In order to study this systematically, we first define some notation for embeddings, nearest
neighbors, and representational similarity.

Definition 1 (Embedding functions) An embedding function is a map from an input space X
to Rd for some embedding dimension d.

The embedding functions we use extract activations from transformer models.

Definition 2 (Representational similarity measures) Let f : X → Rd1 and g : X → Rd2 be
embedding functions. A representational similarity measure is a function

s : (X → Rd1)× (X → Rd2) → R

that maps a pair of embedding functions to R.

Note that we do not restrict ourselves to cases where d1 and d2 are equal, as models of
different architectures often have different embedding dimensions.

We focus primarily on measuring similarity between nearest neighbor relationships among
activations, but our framework could be applied to any measure of representational sim-
ilarity satisfying Definition 2, such as CKA (Kornblith et al., 2019) or one of many others
(Klabunde et al., 2024).

The central problem of measuring representational similarity is that neural networks can
generate activations that differ in trivial ways. For example, one neural network might
generate activations identical to another, except that the axes are permuted, or the signs
are flipped, etc. The challenge of measuring representational similarity is in choosing what
properties of representations are arbitrary (e.g., the sign or order of dimensions), and what
properties are fundamental (e.g., the nearest neighbor relationships).

In this work, we study patterns of similarity: that layers at corresponding depths in different
models tend to generate activations that share properties that layers at non-corresponding
depths do not. As such, the particular choice of representational similarity measure is not
our focus. We do not claim that the nearest neighbor-based measure we use is the “correct”
way to measure representational similarity (whatever that would mean), but that it shows
that there exist properties of activations that are shared according to these patterns.

3.1 Nearest neighbor relationships

We measure the extent to which nearest neighbor sets agree using the mutual k-nearest
neighbors (mutual k-NN) representational similarity measure described by Huh et al. (2024).

Definition 3 (k-nearest neighbors) Let U (D)

k be the k-nearest neighbor function

U (D)

k (x, f ) ≜ argmin
U :U⊆D\{x}, ∥U∥=k

∑
x′∈U

d
(

f (x), f (x′)
)

(1)

for a distance function d. Unless otherwise stated, we use the cosine distance.

Intuitively, U (D)

k (x, f ) gives the k elements of a dataset D that are closest to x, after they have
been mapped to vectors by f .
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Definition 4 (Mutual k-nearest neighbors) The mutual k-nearest neighbors representational
similarity measure M(D)

k is defined by

M(D)

k ( f , g) ≜
1

k∥D∥ ∑
x∈D

∥∥∥U (D)

k (x, f ) ∩ U (D)

k (x, g)
∥∥∥

for an input dataset D.

Mutual k-NN measures the similarity of the nearest neighbor relationships induced by f
to those induced by g. For a set of inputs, it gives the expected fraction of the k-nearest
neighbors that both embedding functions agree on. (Note that M(D)

k takes two embedding
functions and returns a scalar, and therefore satisfies Definition 2.)

In general, when we refer to layers being “similar” to one another, we mean that they
achieve a high mutual k-NN similarity score.

3.2 Activations in transformer models

Transformer models generate many activations during their operation, and can be probed
at several different points. We restrict ourselves to the activations generated at the end of
each decoder module (which are sometimes referred to as “layers”).

Thus, we can think of a transformer model M with n layers as providing the embedding
functions f (1)M , f (2)M , . . . , f (n)M : T → Rd which map from texts T to vectors. Each embedding
function gives the activations at the end of a layer in M on the last token of the input.

3.3 Affinity matrices

Definition 5 An affinity matrix for models M1 and M2 is a matrix A such that

Ai,j = s( f (i)M1
, f (j)

M2
) (2)

given some representational similarity measure s. Unless otherwise noted, we use M(D)

10 for s, which
measures similarity with mutual k-NN with k = 10. The dataset D must also be specified.

If M1 and M2 have n1 and n2 layers respectively, the resulting matrix A has dimensions
n1 × n2, with each entry Ai,j storing the representational similarity of the layer i of M1 and
layer j of M2. Because we use mutual k-NN as our representational similarity measure,
this means that Ai,j stores the similarity of the nearest neighbor relationships generated
by those two layers.

It is worth noting that mutual k-NN is always measured with respect to a dataset of inputs
D. This extends to affinity matrices generated with mutual k-NN as well.

We are not the first to generate such matrices (Kornblith et al., 2019; Nguyen et al., 2021; 2022;
Gurnee et al., 2024; Raghu et al., 2017; Wang et al., 2025; Abnar et al., 2019; Brown et al., 2023;
Wu et al., 2020; Vulić et al., 2020), though they have most often been used to compare layers
either from the same model or from multiple instances of the same architecture trained with
different random seeds.

4 Affinity matrices reveal diagonal structure

In Section 2, we saw a single example where activations collected at different depths within
the same model had different nearest neighbor relationships (Claim 1), and activations
collected at corresponding depths of different models had similar nearest neighbor relation-
ships (Claim 2). Do these results generalize to other inputs, layers, models, etc.?

The mutual k-NN representational similarity measure captures the extent to which two
layers generate activations with similar nearest neighbor relationships. By generating
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Figure 4: Layers at corresponding depths tend to generate similar activations on internet text,
as represented by diagonal structure in affinity matrices. 4a The affinity matrix of Gemma-2-9B
and Llama-3.1-8B on a sample of texts from OpenWebText. Each cell corresponds to a pair
of layers, with one from Gemma-2-9B and the other from Llama-3.1-8B. The value at that
cell corresponds to the similarity of nearest neighbor relations induced by the activations
at those layers. 4b The same as 4a, but for Llama-3.1-70B and Mistral-7B. 4c An array of
affinity matrices comparing activations on web text across a wide range of models, all of
which show diagonal structure. (See Figure 17 for an extended version and Figure 25 for a
version that resizes all affinity matrices to squares for comparability.)

affinity matrices that show the mutual k-NN similarity of every pair of layers across a range
of models, we can see whether and how the observations of Section 2 generalize.

We consider 24 open-weight models developed by Google (Gemma Team et al., 2024), Meta
(Grattafiori et al., 2024), Mistral (Jiang et al., 2023), Microsoft (Abdin et al., 2024), and TII
(Almazrouei et al., 2023). (See Appendix F for the full list of models.) For every pair of
models, we generate an affinity matrix (Definition 5) which shows how similar the nearest
neighbor relationships are between every pair of layers in those models. We measure
similarity using mutual k-NN (Definition 4) with k = 10, and using a dataset of 2048 texts
randomly sampled from OpenWebText (Gokaslan et al., 2019).

We visualize a selection of the resulting affinity matrices in Figure 4. The most striking
feature of these affinity matrices is their diagonal structure, which is present across a wide
range of model comparisons (Figure 4c). This diagonal structure implies that layers at
proportionally similar depths generate more similar activations to one another than other pairs
of layers, just as seen in Section 2. This indicates that models generate distinct geometries of
activations at different depths, but that activations at a given depth are similar across diverse
models. Put another way, language models generate a progression of distinct activation
geometries (Claim 1), and this entire progression is largely shared between models (Claim 2).

Models generate similar progressions of embeddings, but stretched or squeezed The
most similar layers between models cannot align one-to-one because the models being
compared have different numbers of layers. In the case of Llama-3.1-8B and Gemma-2-9B
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Figure 5: 5a Maximally similar layers appear at proportional depths. Each line represents a
pair of models M1 and M2, and for each layer in M1 it shows the depth of the most similar
layer in M2. 5b Layers at all depths have similar counterparts in other models. Each line
represents a pair of models M1 and M2, and shows how similar the most similar layer of
M2 is to each layer of M1. 5c The mean affinity matrix when all affinity matrices have been
resized to fit into a square.

(Figure 4a), the most similar layers are not at the same absolute depths (e.g., layer 10 of each
model), but instead at similar depths relative to the total number of layers in the model
(e.g., 30% of the way through). This pattern persists across a range of model pairs, and the
correspondence between maximally similar layers does not deviate far from proportionality
in any of the model pairs we consider (Figures 5a and 5c).

Layer compression When comparing models of vastly different sizes, there is yet more
flexibility in the correspondence between layers. For example, consider the affinity matrix
comparing Llama-3.1-70B and Mistral-7B, which have 80 and 32 layers respectively (Fig-
ure 4b). The early layers appear to correspond almost one-to-one, but the middle layers of
Llama-3.1-70B appear highly compressed in Mistral-7B. The later layers are all relatively
similar to one another, and so show less diagonal structure. This general pattern is typical,
though often stretched and squeezed to fit into models with different numbers of layers
(Figures 4c and 17).

Existing work has argued that layers at different depths in transformer language models
perform different functions, for example, with early layers dedicated to parsing the input and
resolving basic grammar, and later layers dedicated to finding the next token of the response
etc. (Lad et al., 2024; Tenney et al., 2019; Durrani et al., 2020; Kaplan et al., 2025; Cheng
et al., 2025). It is possible that these functions are reflected in the correspondence between
layers of large and small models. Language models need to be able to parse their input,
regardless of size, and so the first 15 to 20 layers generally correspond one-to-one with little
compression. Middle layers, however, could be responsible for more abstract and optional
work that can be highly compressed in smaller models, as is reflected in the affinity matrices.

There is similarity at every depth Intuitively, one might expect there to be higher similarity
between models when comparing the earliest and latest layers, as these are the most closely
tied to model behavior and the training process. Indeed, in their experiments, Wu et al.
(2020) found that earlier layers were more similar across models than later layers. However,
we find that the absolute similarity between layers does not vary much with depth, with
middle layers being just as similar to one another as early and late layers (Figure 5b). Even
in architecturally identical models trained with identical data (but with different random
initialization), there is no intrinsic guarantee that their latent activations be similar, but here
we find that similar latent activations are generated at every depth.

Sensitivity to the experimental setup The experiments above all look at activations
generated on inputs sampled from OpenWebText. In Appendix G, we generate affinity
matrices for a range of input datasets, including IMDB movie reviews (Maas et al., 2011), text
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Figure 6: 6a An affinity matrix (from Figure 4a) overlaid with the generalized diagonal
region (red). 6b Layers pairs that lie on the generalized diagonal have higher mean similarity
than those that do not. Each point represents a pair of models, with its position determined
by the mean similarity of its layer pairs that lie on and off the generalized diagonal.

from books in English and German (Tiedemann, 2012), and various LLM evaluations (Zhou
et al., 2023; Hendrycks et al., 2021). The diagonal structure observed with OpenWebText is
generally present for other distributions of web text (e.g., IMDB movie reviews). Behavior
on other input distributions is investigated in Appendix A.

We also perform experiments with other values of k and find that the choice of k shifts the
measured mutual k-NN similarity, but does not affect diagonal structure, even in extreme
cases like k = 1 (Appendix D).

4.1 Statistical test of diagonal structure

For each model pair, we perform a test of diagonal structure based on comparing the mean
similarity of layer pairs near the diagonal to the mean similarity of those away from the
diagonal. We first have to define what we mean by “near” the diagonal.

Generalized diagonal For a square matrix A, the main diagonal contains those elements
Ai,j where i = j. However, many of the affinity matrices we generate are not square. For a
rectangular matrix A with dimensions n × m, we define the generalized diagonal to be those
elements Ai,j satisfying j ≤ i ≤ j + n − m (where n ≥ m without loss of generality). In the
case where A is square (i.e., n = m), the generalized diagonal is exactly the usual diagonal.
An example of the generalized diagonal is shown in Figure 6a.

For each affinity matrix (generated with inputs on OpenWebText), we compute the mean
similarity of those pairs of layers that are included in the generalized diagonal, and compare
them to the mean similarity of all other pairs (Figure 6b). For every pair of models, we find
that the on-diagonal mean similarity is higher than the off-diagonal mean similarity.

Naive t-test For each model pair (Mu, Mv) we then have the null hypothesis Hu,v
0 : µu,v ≤

µ′
u,v where µu,v denotes the mean similarity of on-diagonal cells in the affinity matrix

comparing Mu and Mv, and µ′
u,v denotes the mean similarity of off-diagonal cells. A naive

approach to generate a p-value for Hu,v
0 , which assumes that the affinity matrix’s entries are

independent, is to perform a one-sided t-test comparing on- and off-diagonal cells in the
affinity matrix for Mu and Mv. Performing such a t-test for each model pair, we find that
the resulting p-values are astronomically small, with a maximum of 8 × 10−7. Moreover,
the p-value for the union null hypothesis

H0 =
⋃
u,v

Hu,v
0 : ∃u,v µu,v ≤ µ′

u,v

9



Published as a conference paper at COLM 2025

is given by the maximum of all of the constituent p-values (Berger, 1982; Kim & Allison,
2006). Therefore, according to the naive t-tests, the p-value for H0 is 8 × 10−7, indicating
that every pair of models exhibit statistically higher similarity on the diagonal than off of it.

Block bootstrap The t-test approach assumes independence of the cells in each affinity
matrix. However, this assumption is clearly violated, as any pair of cells in a row i—e.g.,
Au,v

i,j and Au,v
i,j′ —for the affinity matrix comparing models Mu and Mv are both functions of

the same embedding function f (i)Mu
. The same is true for pairs of cells in any column j, both

of which are functions of f (j)
Mv

. In addition, the embedding functions at nearby layers within
a model—e.g., f (i)Mu

and f (i+1)
Mu

—may be dependent due to residual connections and other
aspects of the transformer architecture.

To account for these local dependencies, we use the moving block bootstrap (Lahiri, 1999;
Davison & Hinkley, 1999) with a block size of 5× 5 to sample from a null distribution which
preserves local dependencies but scrambles diagonal structure (see Appendix B for more
details). By comparing samples from this null distribution to the actual affinity matrix, we
can estimate the probability that the difference of on- and off-diagonal means would be as
great under the null model as those of the observed affinity matrix. Repeating this process
for every affinity matrix, we find a maximum p-value of 4.84 × 10−3, again indicating that
the on-diagonal mean is greater than the off-diagonal mean for every pair of models.

5 Conclusion

We compare the activations of a wide range of modern LLMs and find that they generate
different activation geometries at different depths (Claim 1), but that layers at corresponding
depths from different models tend to generate similar activation geometries (Claim 2). We
find that early layers from different models are just as similar to one another as middle and
late layers, and validate our findings by developing a statistical test of diagonal structure.
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A Diagonal structure is sensitive to the input distribution

The experiments above all focused on the similarity of nearest neighbor relationships on a
dataset of inputs from OpenWebText. In Appendix G, we generate affinity matrices for a
range of input datasets, including IMDB movie reviews (Maas et al., 2011), text from books
in English and German (Tiedemann, 2012), and various LLM evaluations (Zhou et al., 2023;
Hendrycks et al., 2021). The diagonal structure observed in Section 4 is generally present for
other distributions of web text (e.g., IMDB movie reviews), but different patterns emerge
when looking at other input distributions, which we investigate here.

A.1 Nearest neighbor relationships are (weakly) preserved between languages

Many of the models we use in our experiments have been trained on multilingual data, and
can write and understand multiple languages. In the experiments above, we feed the same
dataset D to two models M1 and M2 and collect the resulting activations. Here, using a
parallel corpus of English and German book translations (Tiedemann, 2012), we instead
feed a corpus of English texts to M1 and a parallel corpus of translated German texts to
M2. The resulting nearest neighbor sets exhibit lower similarity than when using only a
single language, but we still observe weak diagonal structure, with middle layers being
more similar to one another than to early or late layers (Figure 7).
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Figure 7: Weak diagonal structure is present when comparing embeddings of different
models on parallel texts in different languages. Note that the color scale is zoomed to show
lower similarity cells better.

A.2 Instruction tuning changes activation structure in late layers

Instruction tuning is a process in which a base model (which has generally been pretrained
on natural language) is fine-tuned to be better at following instructions (Zhang et al., 2024).
We investigate how instruction tuning affects the activations generated by language models.

We compare the base version of Gemma-2-9B to its instruction-tuned counterpart. When
given inputs from OpenWebText, we observe strong diagonal structure across all depths
(Figure 8a). However, when given prompts from a dataset of inputs designed to test a
model’s ability to follow instructions (Zhou et al., 2023) there is much lower similarity at
later layers (Figure 8b). This finding is in line with previous work that observed later layers
being more strongly affected by fine-tuning (Wu et al., 2020).

We hypothesize that later layers could be dedicated to functions that are strongly targeted
by instruction tuning, while early layers could be dedicated to functions like input parsing
and basic grammar that are needed with or without instruction tuning. Alternatively, the
instruction tuning process used could have been designed to only train later layers.

Regardless of the mechanism, this shows that 1) the distribution from which input texts are
drawn can affect diagonal structure, and 2) that we can study which parts of a model have
been affected by fine-tuning with affinity matrices.
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Figure 8: Instruction tuning changes the activations generated by models in later layers, but
only when given inputs that are targeted by instruction tuning. 8a The affinity matrix of the
base version of Gemma-2-9B and its instruction tuned counterparts, given a dataset of inputs
from OpenWebText. 8b The same as 8a, but using a dataset of inputs from IFEval.

A.3 Random alphanumeric strings

We additionally test sensitivity to the input distribution by repeating the experiments above
using a dataset of random alphanumeric strings. Specifically, we generate 2048 strings
of length 100, each consisting of letters, numbers, and punctuation sampled uniformly at
random.
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Figure 9: Affinity matrices generated with a dataset of random strings reveal similarity in
nearest neighbor relationships, but not diagonal structure.

Figure 9 reveals that there is similarity between the nearest neighbor relationships of
random strings, but without diagonal structure. Just like with web text in Section 4, layers
from different models often agree on the nearest neighbor relationships among the random
strings. However, unlike with web text, the most similar layers do not necessarily come
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from corresponding depths. Instead, all early and late layers show similarity with one
another, while middle layers are dissimilar between models.

Further investigation of the nearest neighbor sets among random strings reveals that early
and late layers tend to assign nearest neighbors based on agreement in the last few characters.
For example, if a string ends with “Uc”, then early and late layers will generally consider any
other strings ending with “Uc” to be a nearest neighbor. This leads to high agreement, as all
of these layers are focused on the superficial feature of the inputs. That middle layers do not
follow this pattern could suggest that they are not as susceptible to focusing on superficial
features of the input, and so generate less structured activations when given random strings.

This experiment shows that, at least in extreme cases, the diagonal structure observed above
is contingent on the input distribution. It also shows that the mere presence of similarity
between two models does not tell the full story, and that we learn more from looking at the
pattern of similarity between different pairs of layers.

B Block bootstrap test of diagonal structure

Given an affinity matrix, we want to test whether the on-diagonal cells show higher sim-
ilarity scores than the off-diagonal cells. Naively, we could perform a one-sided t-test
comparing the scores in on- and off-diagonal cells, but this would assume that each cell is
independent, which need not be true because of residual connections in transformer models
(Vaswani et al., 2017).

10 20 30 40
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30

(a) An affinity matrix A (b) Bootstrap samples where
A has been scrambled with a
block size of 10 × 10.

Figure 10

We use the block bootstrap to generate samples from a null distribution that preserves
local dependence structure, but scrambles large-scale structure (Lahiri, 1999; Davison &
Hinkley, 1999). The block bootstrap works by breaking an affinity matrix into blocks of
a given size and then resampling those blocks (with replacement) to create a new matrix
that inherits the local dependence of the original, but does not inherit its global structure
(Figure 10). We use overlapping blocks with a cyclic boundary condition so that every cell
has an equal probability of appearing in the resampled matrix. By comparing the difference
of on- and off-diagonal means in the observed affinity matrices with their corresponding
resampled matrices, we test whether the observed diagonal structure is stronger than would
be expected as a consequence of the local dependence structure and chance.

For each affinity matrix, we generate 105 scrambled bootstrap samples and compute the
difference of the on- and off-diagonal means. The fraction of bootstrap samples that yields
a difference at least as large as that observed from the original affinity matrix gives us a
p-value (Figure 11).
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Figure 11: Distribution of differences between on- and off-diagonal means for bootstrap
samples for a particular affinity matrix. The red line shows the difference between on- and
off-diagonal means observed with the unscrambled affinity matrix. In Figure 11b, the blue
line shows 0.95.

We used this process to compute a p-value for every affinity matrix (generated on Open-
WebText data), using block sizes of 5 × 5 and 10 × 10. For most model pairs, there was not a
single bootstrap sample with an on- and off-diagonal difference as large as the observed
affinity matrix (Figure 12). No model pair yielded a p-value greater than 0.05 with either
block size. The maximum p-value with block size 5× 5 is 0.00484, and the maximum p-value
with block size 10 × 10 is 0.0154.
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Figure 12: Every test yields a p-value below 0.05. 12a Manhattan plot generated with a block
size of 5 × 5. Tests where no bootstrap sample had a difference as great as the observed dif-
ference are clipped to one over the number of bootstrap samples for visualization purposes.
12b Manhattan plot generated with a block size of 10 × 10.

We can combine these tests into a single intersection-union test of whether the on-diagonal
similarity is higher than the off-diagonal similarity for every pair of models simultaneously.
Because we can reject the null-hypothesis for each of the individual tests (as the maximum
p-value is below 0.05), we can reject it for the intersection-union test, giving us the strong
result that every pair of models shows significant diagonal structure (Berger, 1982; Kim &
Allison, 2006).
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C Null model for mutual k-nearest neighbors

How can we interpret the absolute values of mutual k-NN similarity scores, and how much
similarity would be expected by random chance?

Deriving the null model Suppose that the nearest neighbor function U (D)

k returned every
size k subset of D with equal probability, i.e.

U (D)

k (x, f ) ∼ Uniform({X | X ⊂ D, ∥X∥ = k}) (3)

for any x and f . We then have that∥∥∥U (D)

k (x, f ) ∩ U (D)

k (x, g)
∥∥∥ ∼ Hypergeometric(k, k, ∥D∥ − 1) (4)

where Hypergeometric(k, k, ∥D∥ − 1) is the distribution of successes in k draws from a
population of size ∥D∥ − 1 that contains k successes. By the central limit theorem, we then
have that

M(D)

k ( f , g) =
1

k∥D∥ ∑
x∈D

∥∥∥U (D)

k (x, f ) ∩ U (D)

k (x, g)
∥∥∥ (5)

∼ Normal

(
k

∥D∥ − 1
,

√
(k − ∥D∥+ 1)2

∥D∥(∥D∥ − 2)(∥D∥ − 1)2

)
(6)

which gives the distribution of M(D)

k ( f , g) under the null assumption made above.
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Figure 13: Null distribution of M(D)

k ( f , g) with k = 10 and ∥D∥ = 2048. The log pdf is
astronomically small for values larger than approximately 0.02.

Applying the null model The null distribution derived above is extremely concentrated,
with the null probability of M(D)

k ( f , g) ≥ 0.4 being on the order of 10−143,449 (when k = 10
and ∥D∥ = 2048). Thus, the mutual k-NN similarity scores appearing in the affinity matrices
above are far higher than would be expected under this (very strong) null model.

At the same time, we emphasize the pattern of similarity more so than its absolute value.
Even if the level of similarity were much lower, it would still be remarkable that there is
more similarity among layers of similar depths when compared with pairs of layers with
different depths.
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D Other values of k

In the experiments above, we measure similarity with mutual k-NN with k = 10. Here, we
generate versions of Figure 4a using various other values of k (Figure 14). The results show
similar diagonal structure, even with k = 1 (which corresponds to the probability that the
layers being compared agree on the single nearest neighbor).
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Figure 14: Affinity matrices comparing activations of OpenWebText from layers of
Llama-3.1-8B and Gemma-2-9B with different values of k. Diagonal structure is present
throughout.
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E Decay curves

The following plots visualize how the relative depth of layers relates to their similarity. In
particular, they show how similarity decays as distance increases.

(a) (b) (c)

Figure 15: Nearby layers within a model tend to be more similar than distant ones. For a
given model, each plot shows the similarity between layers as a function of their distance.
Each line corresponds to a layer with the color indicating its depth. The x-axis shows the
relative depth of another layer in the same model, and the y-axis shows their similarity.
Each curve can be thought of as showing a slice of the affinity matrices above. All plots use
mutual k-nearest neighbors with OpenWebText as the dataset.

(a) (b) (c)

Figure 16: Corresponding layers from different models tend to be more similar than non-
corresponding ones. For a given pair of models, each plot shows the similarity between
layers in one model to layers in another model as those layers get further away from the
path of maximum similarity. Each line corresponds to a layer in one model with the color
indicating its depth. The x-axis shows the depth of the layer in the other model, shifted so
that the highest-similarity layer is at 0. The y-axis shows the similarity of the two layers.
Each curve can be thought of as showing a slice of the affinity matrices above. All plots use
mutual k-nearest neighbors with OpenWebText as the dataset.
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F Model list

We use the following models in our experiments:

Name Layers IT HuggingFace ID

Gemma (2B) 18 No google/gemma-2b
Gemma (7B) 28 No google/gemma-7b
Gemma 2 (2B) 26 No google/gemma-2-2b
Gemma 2 (9B) 42 No google/gemma-2-9b
Gemma 2 IT (9B) 42 Yes google/gemma-2-9b-it
Gemma 2 (27B) 46 No google/gemma-2-27b
Llama 3.1 (8B) 32 No meta-llama/Meta-Llama-3.1-8B
Llama 3.1 IT (8B) 32 Yes meta-llama/Meta-Llama-3.1-8B-Instruct
Llama 3.2 (1B) 16 No meta-llama/Llama-3.2-1B
Llama 3.2 (3B) 28 No meta-llama/Llama-3.2-3B
Llama 3.2 IT (3B) 28 Yes meta-llama/Llama-3.2-3B-Instruct
Llama 3.2 Vision (11B) 40 No meta-llama/Llama-3.2-11B-Vision
Llama 3.1 (70B) 80 No meta-llama/Llama-3.1-70B
Llama 3.1 IT (70B) 80 Yes meta-llama/Llama-3.1-70B-Instruct
Llama 3.3 IT (70B) 80 Yes meta-llama/Llama-3.3-70B-Instruct
Mistral v0.3 (7B) 32 No mistralai/Mistral-7B-v0.3
Mistral Nemo 40 No mistralai/Mistral-Nemo-Base-2407
Mixtral v0.1 (8x7B) 32 No mistralai/Mixtral-8x7B-v0.1
Phi 3 Mini IT 32 Yes microsoft/Phi-3-mini-4k-instruct
Phi 3 Medium IT 40 Yes microsoft/Phi-3-medium-4k-instruct
Phi 3.5 Mini IT 32 Yes microsoft/Phi-3.5-mini-instruct
Falcon (40B) 60 No tiiuae/falcon-40b
Falcon (11B) 60 No tiiuae/falcon-11B
Falcon Mamba (7B) 64 No tiiuae/falcon-mamba-7b

Table 1: Models used in experiments, their layer counts, and whether they were instruction
tuned (IT).
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G Extended affinity matrix arrays

We computed affinity matrices comparing all pairs of all layers in 24 open-weight LLMs. For
the sake of brevity, we only included a subset in Figure 4c. This appendix contains affinity
matrices for all models on all datasets that we tested.

G.1 Rectangular affinity matrices

These affinity matrices have not been resized to fit into squares, and preserve the original
dimensions of the affinity matrices, with deeper models occupying more space.
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Figure 17: Affinity matrices for embeddings of OpenWebText (Gokaslan et al., 2019).
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Figure 18: Affinity matrices for embeddings of random alphanumeric strings.
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Figure 19: Affinity matrices for embeddings of IMDB movie reviews (Maas et al., 2011).
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Figure 20: Affinity matrices for embeddings of lead paragraphs from featured articles on
Wikipedia.
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Figure 21: Affinity matrices for embeddings of IFEval (Zhou et al., 2023).
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Figure 22: Affinity matrices for embeddings of MMLU (Hendrycks et al., 2021).
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Figure 23: Affinity matrices for embeddings of OPUS Books (English) (Tiedemann, 2012).
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Figure 24: Affinity matrices for embeddings of OPUS Books (German) (Tiedemann, 2012).
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G.2 Square affinity matrices

These affinity matrices have been stretched and squished to fit into squares to make them
more comparable, as in Figure 4c.
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Figure 25: Affinity matrices for embeddings of OpenWebText (Gokaslan et al., 2019).
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Figure 26: Affinity matrices for embeddings of random alphanumeric strings.
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Figure 27: Affinity matrices for embeddings of IMDB movie reviews (Maas et al., 2011).

32



Published as a conference paper at COLM 2025

Gemma (2B)

Gemma (7B)

Gemma 2 (2B)

Gemma 2 (9B)

Gemma 2 IT (9B)

Gemma 2 (27B)

Llama 3.1 (8B)

Llama 3.1 IT (8B)

Llama 3.2 (1B)

Llama 3.2 (3B)

Llama 3.2 IT (3B)

Llama 3.2 Vision (11B)

Llama 3.1 (70B)

Llama 3.1 IT (70B)

Llama 3.3 IT (70B)

Mistral v0.3 (7B)

Mistral Nemo

Mixtral v0.1 (8x7B)

Phi 3 Mini IT

Phi 3 Medium IT

Phi 3.5 Mini IT

Falcon (40B)

Falcon (11B)

Falcon Mamba (7B)

G
em
m
a
(2
B
)

G
em
m
a
(7
B
)

G
em
m
a
2
(2
B
)

G
em
m
a
2
(9
B
)

G
em
m
a
2
IT

(9
B
)

G
em
m
a
2
(2
7B

)

Ll
am
a
3.
1
(8
B
)

Ll
am
a
3.
1
IT

(8
B
)

Ll
am
a
3.
2
(1
B
)

Ll
am
a
3.
2
(3
B
)

Ll
am
a
3.
2
IT

(3
B
)

Ll
am
a
3.
2
V
is
io
n
(1
1B

)

Ll
am
a
3.
1
(7
0B

)

Ll
am
a
3.
1
IT

(7
0B

)

Ll
am
a
3.
3
IT

(7
0B

)

M
is
tr
al
v0
.3

(7
B
)

M
is
tr
al
N
em
o

M
ix
tr
al
v0
.1

(8
x7
B
)

P
hi
3
M
in
iI
T

P
hi
3
M
ed
iu
m
IT

P
hi
3.
5
M
in
iI
T

F
al
co
n
(4
0B

)

F
al
co
n
(1
1B

)

F
al
co
n
M
am
ba

(7
B
)

0. 0.2 0.4 0.6 0.8

Figure 28: Affinity matrices for embeddings of lead paragraphs from featured articles on
Wikipedia.
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Figure 29: Affinity matrices for embeddings of IFEval (Zhou et al., 2023).
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Figure 30: Affinity matrices for embeddings of MMLU (Hendrycks et al., 2021).
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Figure 31: Affinity matrices for embeddings of OPUS Books (English) (Tiedemann, 2012).
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Figure 32: Affinity matrices for embeddings of OPUS Books (German) (Tiedemann, 2012).
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