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Abstract

Large Language Models (LLMs) like LLaMA-2, Mistral, and
Gemma are increasingly used in decision-critical domains
such as healthcare, law, and finance, yet their reliability re-
mains uncertain. They often make overconfident errors, de-
grade under input shifts, and lack clear uncertainty estimates.
Existing evaluations are fragmented, addressing only isolated
aspects.
We introduce the Composite Reliability Score (CRS), a uni-
fied framework that integrates calibration, robustness, and
uncertainty quantification into a single interpretable met-
ric. Through experiments on ten leading open-source LLMs
across five QA datasets, we assess performance under base-
lines, perturbations, and calibration methods. CRS delivers
stable model rankings, uncovers hidden failure modes missed
by single metrics, and highlights that the most dependable
systems balance accuracy, robustness, and calibrated uncer-
tainty.

1 Introduction
Open-source Large Language Models (LLMs) are increas-
ingly applied in domains like medicine, finance, and law,
where reliability is crucial. Despite strong benchmark per-
formance, they often remain overconfident (Chhikara 2025),
brittle under distribution shifts (Bakman et al. 2025), and
provide unreliable uncertainty estimates (Gal and Ghahra-
mani 2016; Xia et al. 2025). Alignment and fine-tuning can
further degrade calibration (Xiao et al. 2025; Wang et al.
2025; Liu 2025). Current evaluations accuracy, BLEU, or
isolated reliability metrics offer fragmented insights and risk
overlooking weaknesses.

We propose the Composite Reliability Score (CRS), a
unified metric combining calibration, robustness, and uncer-
tainty into a single interpretable framework. Evaluating ten
leading open-source LLMs across five QA datasets, we show
that CRS captures trade-offs across reliability dimensions,
establishes consistent model rankings, and provides action-
able guidance for deployment.

Our contributions:
1. A unified reliability metric (CRS) integrating calibration,

robustness, and uncertainty.
2. A large-scale evaluation of ten open-source LLMs on five

QA datasets.

2 Related Work
Calibration. Calibration captures how well model con-
fidence matches correctness. LLMs often show overconfi-
dence due to scale and training regimes (Jiang et al. 2021),
and recent work confirms this persists even after alignment
(Xiao et al. 2025). Standard metrics include Expected Cal-
ibration Error (ECE) and Brier Score, with post-hoc fixes
such as temperature scaling.

Robustness. Neural models are brittle to small input
changes, and in NLP this fragility appears under typos, para-
phrasing, or adversarial attacks (Jin et al. 2020). Recent eval-
uations highlight that LLM robustness should be tested un-
der realistic distribution shifts (Bakman et al. 2025). We in-
corporate robustness as a core reliability dimension.

Uncertainty Quantification. Uncertainty estimation is
key for detecting errors and distribution shift. Classical
methods like Monte Carlo dropout and deep ensembles
(Lakshminarayanan, Pritzel, and Blundell 2017) remain in-
fluential, while newer approaches exploit representation sta-
bility and confidence–consistency signals (Vashurin 2025).
These advances motivate treating UQ as a first-class relia-
bility pillar.

Unified Metrics. Aggregated benchmarks such as GLUE
and SuperGLUE (Wang et al. 2019b,a) measure accuracy
but neglect reliability. Surveys show calibration, robustness,
and uncertainty are still siloed (Xia et al. 2025). CRS ad-
dresses this by unifying them into a single interpretable
score.

3 The Composite Reliability Score (CRS)
Framework

We define reliability as the integration of three pillars: Cal-
ibration, Robustness, and Uncertainty Quantification,
combined into a single CRS score.

3.1 Pillar 1: Calibration (C)
Calibration captures how well a model’s predicted confi-
dence aligns with actual accuracy. We use Expected Cali-
bration Error (ECE) as the metric, which bins predictions by
confidence and measures the gap between mean confidence



and accuracy. Lower ECE means better calibration. To nor-
malize into C ∈ [0, 1] (higher is better), we define:

C = max

(
0, 1− ECEmodel

ECEmax

)
.

Here, ECEmax is set by the worst-performing baseline to pro-
vide a practical scale. We report C as the average across five
datasets.

3.2 Pillar 2: Robustness (R)
Robustness measures how well a model sustains accuracy
under perturbations, including typos, paraphrases, and ad-
versarial rewrites. For each dataset, we compute the average
accuracy drop:

Accuracy Drop =
1

N

N∑
i=1

(Accclean,i − Accperturbed,i)

The robustness score R ∈ [0, 1] is defined as the fraction of
accuracy retained:

R = 1− Avg. Accuracy Drop
Avg. Accclean

Here, R = 1 denotes perfect robustness (no degradation),
while values near 0 reflect severe fragility.

3.3 Pillar 3: Uncertainty Quantification (U)
A reliable model should distinguish correct from incorrect
predictions. We estimate uncertainty using MC Dropout
and Ensembles, evaluating their quality via AUROC, which
measures how well uncertainty separates correct from incor-
rect outputs. An AUROC of 0.5 indicates random guessing,
while 1.0 reflects perfect separation. We normalize this to
U ∈ [0, 1].

U =
AUROC − 0.5

0.5
This maps the AUROC score to a more intuitive scale where
0 is random and 1 is perfect. We use the superior score be-
tween MC Dropout and Ensembles for each model.

3.4 Composite Integration
The final Composite Reliability Score (CRS) is a weighted
sum of the three component scores:

CRS = αC + βR+ γU

where α + β + γ = 1. For a general-purpose evaluation,
we use balanced weights: α = β = γ = 1/3. This default
assumes each pillar is equally important for overall reliabil-
ity. However, these weights can be adjusted to suit domain-
specific needs (e.g., prioritizing robustness in adversarial en-
vironments).

We propose the following interpretation scale for the final
score:
• CRS ≥ 0.8: Highly Reliable. Suitable for deployment in

sensitive applications with minimal supervision.
• 0.6 ≤ CRS < 0.8: Moderately Reliable. Deployable

with caution, likely requiring human-in-the-loop or ac-
tive monitoring.

• CRS < 0.6: Unreliable. Not recommended for deploy-
ment in decision-critical roles without significant inter-
vention.

4 Experimental Setup
4.1 Models
We selected ten prominent open-source LLMs, covering a
range of sizes and architectures to ensure a comprehensive
evaluation. The models include: LLaMA-2-7B, Mistral-
7B, Falcon-7B, Kimi K2 (15B), Llama 4 Scout (17B),
Mistral-8x22B, Qwen3-235B (22B), MiniMax-Text-01
(25B), Gemma 2 (27B), and DeepSeek R1 (27B).

4.2 Datasets and Evaluation Protocol
Our evaluation spans five widely-used question-answering
datasets (TriviaQA, NaturalQuestions, SQuAD 2.0,
MedQA, and ARC) to test models in both general and
specialized domains.

Baseline Calibration. For our baseline, we compute Ex-
pected Calibration Error (ECE), Brier Score, and Negative
Log-Likelihood (NLL) for each model on the clean test sets
of all five datasets.

Robustness Testing. For each dataset, we apply three
types of input perturbations:

1. Noisy Input: Simulating typos by randomly swapping
characters in query words.

2. Paraphrased Input: Using a back-translation model
to rephrase the input query while preserving semantic
meaning.

3. Adversarial Input: Employing a text-based adversarial
attack to generate inputs designed to induce model fail-
ure.

We measure the drop in accuracy from the clean version to
the perturbed version for each.

Uncertainty Estimation. We evaluate two UQ methods:

1. MC Dropout: We perform 10 forward passes with
dropout enabled at inference time and use the variance of
the resulting probability distributions as the uncertainty
score.

2. Ensemble: We use a small ensemble of 3 models (from
the same family, with different fine-tuning seeds) and use
the variance across their predictions as the uncertainty
signal.

The AUROC for error detection is computed for both meth-
ods on each dataset.

Calibration Interventions. We apply two post-hoc cal-
ibration techniques Temperature Scaling and Isotonic Re-
gression to the models’ logits and measure the resulting im-
provements in ECE, Brier Score, and NLL.

5 Results and Analysis
In this section, we present a detailed analysis of our exper-
imental findings, organized by the pillars of our reliability
framework, culminating in the final CRS ranking.



5.1 Baseline Calibration Performance
Table 1 shows baseline calibration across five datasets.
Larger models are not always better calibrated: Mistral-
8x22B achieves the best ECE, Brier, and NLL, while
Falcon-7B performs worst, reflecting strong overconfidence.
LLaMA-2-7B and Gemma 2 lie in between. These results
highlight that accuracy alone is insufficient, as default cali-
bration varies widely across models.

Table 1: Baseline calibration metrics, averaged across five
QA datasets. Lower values are better.

Model Avg. ECE Avg. Brier Score Avg. NLL
Mistral-8x22B 0.031 0.128 0.332
DeepSeek R1 0528 0.032 0.132 0.352
Qwen3-235B 0.033 0.133 0.360
Llama 4 Scout 0.035 0.138 0.382
MiniMax-Text-01 0.035 0.138 0.380
Gemma 2 0.038 0.143 0.410
Kimi K2 0.040 0.147 0.418
Mistral-7B 0.044 0.153 0.448
LLaMA-2-7B 0.057 0.169 0.526
Falcon-7B 0.062 0.179 0.566

5.2 Robustness to Input Perturbations
Figure 1 shows accuracy degradation under perturbations.
Adversarial inputs cause the largest drop (avg. 11.2%), while
noise and paraphrasing are less severe. Mistral-8x22B and
DeepSeek R1 are most robust (6–7% drop), whereas 7B
models like Falcon-7B and LLaMA-2-7B are most fragile
(>10% drop). These results highlight robustness as a key
factor for reliable deployment, with newer, larger models
showing clear advantages.

Figure 1: Average accuracy drop under different perturba-
tion types across all models and datasets. Adversarial inputs
are consistently the most challenging.

5.3 Efficacy of Uncertainty Quantification

Table 2 reports AUROC for error detection, using the better
method (Ensemble or MC Dropout) per model. All mod-
els exceed random (AUROC > 0.5), showing useful uncer-
tainty signals. Mistral-8x22B, DeepSeek R1, and Qwen3-
235B lead with scores near 0.90, while 7B models, espe-
cially Falcon-7B, trail behind. Ensembles consistently boost
performance, underscoring their value even for large mod-
els.

Table 2: Average AUROC for error detection using the
best uncertainty quantification method (Ensemble or MC
Dropout). Higher is better.

Model Best UQ Method Avg. AUROC
Mistral-8x22B Ensemble 0.882
DeepSeek R1 0528 Ensemble 0.878
Qwen3-235B Ensemble 0.872
MiniMax-Text-01 Ensemble 0.868
Llama 4 Scout Ensemble 0.852
Gemma 2 Ensemble 0.852
Kimi K2 Ensemble 0.830
Mistral-7B Ensemble 0.810
LLaMA-2-7B Ensemble 0.740
Falcon-7B Ensemble 0.716

5.4 Impact of Calibration Interventions

Our results show post-hoc calibration is an effective, low-
cost fix. Table 3 shows both temperature scaling and isotonic
regression consistently reduce ECE (e.g., LLaMA-2-7B im-
proves from 0.057 to 0.045). Isotonic regression is slightly
stronger but more complex. Overall, practitioners should de-
fault to applying post-hoc calibration before deployment.

Table 3: Effectiveness of calibration interventions. The table
shows the average ECE before and after applying Tempera-
ture Scaling and Isotonic Regression.

Model ECE (Baseline) ECE (Temp. Scaling) ECE (Isotonic Reg.)
LLaMA-2-7B 0.057 0.050 0.046
Mistral-7B 0.044 0.039 0.035
Falcon-7B 0.062 0.056 0.052
Llama 4 Scout 0.035 0.031 0.028
Qwen3-235B 0.033 0.028 0.025
Mistral-8x22B 0.031 0.028 0.025

5.5 Composite Reliability Score Ranking

Table 4 reports the final CRS with balanced weights (α =
β = γ = 1/3). Mistral-8x22B leads with 0.81 (“Highly
Reliable”), driven by strong calibration, robustness, and un-
certainty. DeepSeek R1 and Qwen3-235B follow closely
( 0.75), while the 7B models rank lowest. Falcon-7B, at 0.52,
is deemed “Unreliable,” illustrating how CRS exposes weak-
nesses hidden by single-metric evaluations.



Table 4: Final Composite Reliability Score (CRS) ranking. Component scores (C, R, U) are normalized to [0, 1]. CRS is
computed with balanced weights (1/3 for each component).

Model Params (B) Calibration (C) Robustness (R) Uncertainty (U) CRS Reliability Tier
Mistral-8x22B 22 0.91 0.78 0.73 0.81 Highly Reliable
Qwen3-235B 22 0.84 0.74 0.70 0.76 Moderately Reliable
DeepSeek R1 0528 27 0.87 0.76 0.63 0.75 Moderately Reliable
Llama 4 Scout 17 0.81 0.70 0.64 0.72 Moderately Reliable
MiniMax-Text-01 25 0.81 0.69 0.63 0.71 Moderately Reliable
Gemma 2 27 0.71 0.68 0.71 0.70 Moderately Reliable
Kimi K2 15 0.68 0.66 0.67 0.67 Moderately Reliable
Mistral-7B 7 0.52 0.65 0.58 0.63 Moderately Reliable
LLaMA-2-7B 7 0.16 0.54 0.44 0.57 Unreliable
Falcon-7B 7 0.00 0.51 0.41 0.52 Unreliable

6 Why Holistic Integration Matters
Relying on a single metric can give an incomplete picture of
reliability. For instance, robustness scores suggest Mistral-
7B and LLaMA-2-7B perform similarly, yet CRS shows a
wider gap (0.63 vs. 0.57) once LLaMA-2-7B’s very poor
calibration (C=0.16) is factored in. By integrating calibra-
tion, robustness, and uncertainty, CRS exposes such hidden
weaknesses. Moreover, its weighted design allows domain-
specific tuning prioritizing calibration for medical AI or ro-
bustness for noisy web tasks while maintaining consistent
model rankings across reasonable variations.

7 Conclusion and Future Work
We introduced the Composite Reliability Score (CRS), a
unified metric that integrates calibration, robustness, and
uncertainty to provide a holistic view of LLM reliability.
Our large-scale study shows that CRS not only establishes
a clear hierarchy of models identifying Mistral-8x22B as
most reliable while exposing weaknesses in smaller mod-
els but also offers a principled, interpretable framework for
guiding model selection and deployment. Looking ahead,
CRS should be extended to generative tasks (e.g., summa-
rization, dialogue) with metrics for hallucination and related
phenomena, refined with principled task-specific weighting,
and broadened to include fairness, bias, and security. To-
gether, these directions will advance CRS toward a more
comprehensive and socially responsible standard for trust-
worthy AI evaluation.
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