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ABSTRACT

DNA methylation (DNAm) is a key epigenetic modification that regulates gene
expression and is pivotal in development and disease. However, profiling DNAm
at genome scale is challenging: of ~28 million CpG sites in the human genome,
only about 1–3% are typically assayed in common datasets due to technological
limitations and cost. Recent deep learning approaches, including masking-based
generative Transformer models, have shown promise in capturing DNAm–gene
expression relationships, but they rely on partially observed DNAm values for
unmeasured CpGs and cannot be applied to completely unmeasured samples. To
overcome this barrier, we introduce MethylProphet, a gene-guided, context-aware
Transformer model for whole-genome DNAm inference without any measured
DNAm input. MethylProphet compresses comprehensive gene expression profiles
(~25K genes) through an efficient bottleneck multilayer perceptron, and encodes lo-
cal CpG sequence context with a specialized DNA tokenizer. These representations
are integrated by a Transformer encoder to predict site-specific methylation levels.
Trained on large-scale pan-tissue whole-genome bisulfite sequencing data from
ENCODE (1.6 billion CpG–sample pairs, ~322 billion tokens), MethylProphet
demonstrates strong performance in hold-out evaluations, accurately inferring
DNAm at unmeasured CpGs and generalizing to unseen samples. Furthermore,
application to TCGA pan-cancer data (chromosome 1, 9,194 samples; ~450 million
training pairs, 91 billion tokens) highlights its potential for pan-cancer whole-
genome methylome imputation. MethylProphet offers a powerful and scalable
foundation model for epigenetics, providing high-resolution methylation landscape
reconstruction and advancing both biological research and precision medicine.

1 INTRODUCTION

Imputation-based paradigm (e.g., CpGPT, MethylGPT) Ours

CpG-wise ID prediction ✓ ✓
CpG-wise OOD prediction w/o fine-tuning ✗ ✓

Unseen samples generalization w/o measured DNAm ✗ ✓
Multi-omics prediction ✗ ✓

Table 1: Paradiagm comparison.

DNA methylation (DNAm) is a key epigenetic modification that regulates gene expression, cell
differentiation, and disease development (Feinberg, 2018; Loyfer et al., 2023). DNAm predominantly
occurs at CpG (cytosine-phosphate-guanine) sites on the DNA sequence, whose tissue-specific
and dynamic nature makes them valuable Biomarkers (Hitz et al., 2023; The ENCODE Project
Consortium, 2012; Luo et al., 2020; The Cancer Genome Atlas Research Network, 2008). Despite
its importance, comprehensive DNAm profiling remains prohibitive. Array-based platforms (e.g.,
Illumina 450K/EPIC) measure only a small fraction (~1–3%) of the ~28 million CpGs in the human
genome, while whole-genome bisulfite sequencing (WGBS) offers complete coverage but at high
cost (Shu et al., 2020). As a result, the majority of CpG sites remain unmeasured in typical datasets
(Figure 1 (a), Table 1), limiting the insights one can draw from DNAm data.

These limitations raise an important question: Is it feasible to infer DNAm profiles via deep learning
models without performing additional sequencing or array experiments? Gene expression offers a
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Figure 1: (a) Illustration of the scale of DNAm data. Parts A, B, and C: existing DNAm samples.
Part D: unmeasured CpG sites and new samples with gene expression measurements that users can
apply MethylProphet to reliably predict their DNAm profiles. (b) Given gene context of a sample,
MethylProphet aims to infer whole-genome DNAm at individual CpG resolution. (c) Compared with
previous imputation-based methods (e.g., CpGPT (De Lima Camillo et al., 2024)), MethylProphet
does not rely on experimentally measured DNAm obtained via wet-lab sequencing, and it directly
predicts the target methylation for each CpG site, even those unknown CpG sites.

Table 2: The scale of DNAm data included in this study.

Data Source Sequencing # CpG Sites # Tissues / Cancers # Samples Total #CpG-Sample #CpG-Sample Pairs
Technique Pairs w/ DNAm

ENCODE WGBS 27,078,450 57 95 2,572,452,750 2,572,452,750

TCGA
Array 408,399 33 9,194 3,754,820,406 3,684,770,086
EPIC 740,296 4 1,706 1,262,944,976 1,188,102,524
WGBS 23,047,052 17 32 737,505,664 737,505,664

promising source of complementary information, as numerous studies have revealed strong correla-
tions between gene expression levels and DNA methylation patterns (Phillips et al., 2008; Jjingo et al.,
2012). Importantly, gene expression data is more readily available across tissues and conditions, and
recent advances in large-scale foundation models for genomics suggest that rich biological signals
can be learned from such high-dimensional data (Theodoris et al., 2023; Cui et al., 2024a; Yang et al.,
2022; Hao et al., 2024a). Motivated by this, we hypothesize that leveraging gene expression can
dramatically reduce the reliance on extensive DNAm sequencing, alleviate data scarcity, and enable
scalable inference of methylation landscapes.

We propose a novel paradigm for DNAm analysis: using a gene-contextual foundation model to pre-
dict a sample’s methylome from its gene expression and DNA sequence context alone. This paradigm
bypasses the need for any experimentally measured DNAm in the target sample, offering substantial
practical advantages. It can lower costs and accelerate analyses by obviating wet-lab experiments,
enable studies in resource-limited settings, and potentially reveal DNAm patterns that are otherwise
undetectable due to sparse measurements or technical constraints. In line with recent successes in
foundation models in genomics (e.g. Geneformer (Theodoris et al., 2023), scGPT (Cui et al., 2024a),
scBERT (Yang et al., 2022), and scFoundation (Hao et al., 2024a)), we introduce MethylProphet
to realize this vision. MethylProphet predicts DNAm by leveraging two key ingredients: (a) a
Bottleneck MLP to compress high-dimensional gene expression profiles (∼25,000 genes) into a
compact latent representation, enabling the model to capture global expression patterns and generalize
to unseen samples; and (b) a DNA sequence tokenizer to encode local sequence context around each
CpG site (e.g., 1 kb window), capturing sequence motifs and epigenetic context that drive methyla-
tion at unseen CpGs. These gene-derived and sequence-derived embeddings, along with additional
genomic annotations (CpG island context, regional genomic features, chromosomal location), are
fused by a Transformer encoder (Vaswani, 2017) to output the predicted methylation level for each
CpG (Figure 1 (b-c)). By fully leveraging gene expression as context, MethylProphet can infer a
sample’s methylome without requiring any partial DNAm measurements. This capability stands
in contrast to prior methods like DeepCpG (Angermueller et al., 2017), CpGPT (De Lima Camillo
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et al., 2024), and MethylGPT (Ying et al., 2024), which all depend on some observed DNAm values
during inference (imputation paradigm) and thus cannot handle entirely unlabeled samples. Moreover,
unlike methods that focus on limited CpG subsets (e.g., uLan-Methyl (Zeng et al., 2022), StableD-
NAm (Zhuo et al., 2023), and MethylNet (Levy et al., 2020)), MethylProphet provides genome-wide
coverage, overcoming previous coverage limitations.

To rigorously evaluate MethylProphet, we compiled and processed two billion-scale DNAm datasets
from ENCODE and TCGA (Table 2). The ENCODE dataset consists of whole-genome bisulfite
sequencing profiles (∼27 million CpGs) across 95 normal samples (57 tissue types), yielding 1.6
billion CpG–sample training pairs (322 billion input tokens). The TCGA dataset includes 9,194
cancer samples (33 tumor types) with Illumina 450K array data (∼400K CpGs), supplemented by
EPIC (∼740K CpGs) and WGBS (∼23 million CpGs in 32 samples) to increase coverage; focusing
on chromosome 1, this provides ∼450 million training pairs (91 billion tokens). We benchmark
MethylProphet in multiple prediction scenarios (with different combinations of unmeasured CpG
sites and unseen samples) and observe strong performance — particularly a median across-sample
Pearson correlation (MAS-PCC) for individual CpGs of 0.72 on ENCODE—along with robust
accuracy across diverse conditions in TCGA.

Our contributions include:

• Novel Paradigm: We develop a flexible and scalable encoding scheme that uniquely integrates gene
expression profiles with local DNA sequence context to predict DNAm, without requiring partially
measured DNAm as in prior works, overcoming the major limitations of prior imputation-based
methods.

• Scalable Model Design and Benchmarking: We introduce a modular encoding framework
combining an efficient Bottleneck MLP for gene compression with a specialized DNA sequence
tokenizer. This design enables scalable training on billions of data points (e.g. 322B tokens from
ENCODE, 91B from TCGA) while maintaining tractability and efficiency.

• Generalization and Practical Impact: We demonstrate that MethylProphet achieves strong
generalization performance across unmeasured CpGs and unseen samples. It attains high accuracy
(median PCC ∼ 0.7) on ENCODE and maintains robust performance across various prediction
scenarios in TCGA. This foundation model paradigm for methylation inference opens the door to
reconstructing complete methylomes from limited experimental data, with broad implications for
epigenetic research and precision medicine1.

2 BACKGROUND AND RELATED WORKS

DNAm Data Scale and Coverage. DNA methylation (DNAm) can be represented as a CpG-by-
sample matrix M ∈ RNCpG×Ns , where NCpG ≈ 2.8× 107 sites genome-wide and the entries are
methylation levels (β values ∈ [0, 1]).. Existing assays trade off coverage and cost: array-based
platforms capture only 1–3% of CpGs (≈ 105 sites)(Shu et al., 2020), while WGBS provides nearly
complete coverage but remains costly for large cohorts. This disparity means that most CpGs are
typically unmeasured in any given dataset, creating a high-dimensional and massive missing data
problem. A naive approach of assigning each CpG site a unique learnable parameter (embedding)
in a model would be infeasible: it require ∼86GB for all 2.8 × 107 CpGs with 768-dimentional
embeddings, and it fails to generalize to unseen CpGs (Figure 1(a), Table 2 ).

Gene Expression as Context. Gene expression can be represented as a Gene-by-sample matrix
G ∈ RNg×Ns , where Ng ≈ 20000 makes direct Transformer encoding intractable due to quadratic
complexity of self-attention. However, capturing the full gene expression landscape is crucial, as it
provides global biological state that can inform local methylation states.

These characteristics demand novel architectural solutions that can effectively (1) represent and
generalize across millions of CpG sites, and (2) efficiently process comprehensive gene expression
profiles while maintaining computational tractability.

Prior computational methods for DNAm imputation or prediction have been limited in scope. Tra-
ditional approaches and early deep learning models (Zeng et al., 2022; Angermueller et al., 2017;

1Detailed insights on the biological implications are provided in the Appendix.
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Figure 2: Overview of our proposed pipeline. (a) Model architecture of MethylProphet; (b) The
learnable Global, chromosome, and CPG island-related embeddings; (c) Model architecture of
efficient gene profile compression MLP; (d) DNA Tokenizer for CpG-specific DNA sequence; (e)
Model architecture of the Transformer encoder that aggregates all the embeddings.

Zhuo et al., 2023; Levy et al., 2020; Wang et al., 2024; Levy-Jurgenson et al., 2019a) targeted DNAm
prediction at a limited subset of CpG sites (e.g. those on arrays or select regions) and/or specific
sample sets. More recent Transformer-based models (e.g. CpGPT (De Lima Camillo et al., 2024),
MethylGPT(Ying et al., 2024)) leveraged the power of attention mechanisms, but they employed
masked modeling pre-training on the order of 104 CpGs (∼0.03% of the genome) to learn a latent
representation of the methylome. Because their objective is to learn holistic representations for
downstream tasks rather than directly predict missing values, these models still require some observed
methylation input and do not generalize to completely unseen CpG sites or new samples. Furthermore,
many existing methods do not integrate critical biological context such as gene expression, or they
face scaling bottlenecks when attempting to handle genome-wide patterns. Notably, Levy-Jurgenson
et al.(Levy-Jurgenson et al., 2019a) proposed a deep model with attention to predict methylation from
gene expression and sequence, but it was only demonstrated on thousands of CpGs, a limited sample
size, and cancer cohorts.

In contrast, our work offers a comprehensive gene-contextual solution that addresses these gaps.
MethylProphet distinguishes itself by operating at full methylome scale and by leveraging a
foundation-model approach: it is trained on billions of CpG–sample pairs to directly infer complete
methylation profiles, enabling generalization to unmeasured CpGs and unseen samples in a way that
prior methods could not achieve.

3 METHYLPROPHET MODEL

MethylProphet is a gene-contextual Transfomer capable of learning the whole-genome DNAm land-
scape by integrating genome-wide gene expression with CpG-specific DNA sequence context. The
model architecture (Figure 2) consists of distinct modules for encoding the sample’s gene expression
profile and the target CpG site’s context, which are combined within a Transformer to produce a
methylation prediction. We adopt a Transformer encoder (Vaswani, 2017) because its self-attention
natively captures the long-range dependencies that link distant CpG sites within kilobase-scale DNA
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Table 3: The data statistics among all the data source and splits in our experiments. The number
of tokens is estimated by the average sequence length (i.e., 200) of the input embeddings of the
Transformer encoder.

Dataset Chr. Sequen. Split # CpG Sites # Tissues # Samples # Pairs w/ Me. # Tokens

ENCODE 1 - 22 WGBS

Train: Train CpG - Train Sample 24, 363, 170 57 66 1, 607, 969, 220 321, 593, 844, 000
Val: Train CpG - Val Sample 24, 363, 170 22 29 706, 531, 930 141, 306, 386, 000
Val: Val CpG - Train Sample 2, 707, 033 57 66 178, 664, 178 35, 732, 835, 600
Val: Val CpG - Val Sample 2, 707, 033 22 29 78, 503, 957 15, 700, 791, 400

TCGA 1

Array
Train: Train CpG - Train Sample

33, 885 33 8, 258 275, 018, 849 55, 003, 769, 800
EPIC 71, 748 4 1, 706 115, 856, 100 23, 171, 220, 000

WGBS 1, 999, 446 17 32 63, 982, 272 12, 796, 454, 400

Array
Val: Train CpG - Val Sample 33, 885 33 920 30, 638, 464 6, 127, 692, 800
Val: Val CpG - Train Sample 6, 742 33 8, 258 55, 141, 308 11, 028, 261, 600
Val: Val CpG - Val Sample 6, 742 33 920 6, 143, 360 1, 228, 672, 000

TCGA 1 - 3

Array
Train: Train CpG - Train Sample

78, 211 33 8, 258 632, 281, 133 126, 456, 226, 600
EPIC 172, 722 4 1, 706 276, 181, 739 55, 236, 347, 800

WGBS 5, 396, 193 17 32 172, 678, 176 34, 535, 635, 200

Array
Val: Train CpG - Val Sample 78, 211 33 920 70, 443, 801 14, 088, 760, 200
Val: Val CpG - Train Sample 14, 893 33 8, 258 121, 617, 682 24, 323, 536, 400
Val: Val CpG - Val Sample 14, 893 33 920 13, 550, 097 2, 710, 019, 400

sequences (De Lima Camillo et al., 2024), seamlessly fuses heterogeneous embeddings of sequence,
gene expression, and genomic annotations without bespoke cross-modality modules (Gao et al., 2024;
Cui et al., 2024a; Yang et al., 2022). In addition, it exhibits a well-established scaling law (Kaplan
et al., 2020; Henighan et al., 2020), i.e., more data consistently translate to better performance,
making it an ideal backbone for whole-genome DNAm prediction.

Problem Formulation. Let G ∈ RNg denote the expression vector of Ng ≈ 25000 genes for a
given sample, and let Si ∈ {A, T,C,G}L be the DNA sequence of length L centered on CpG site i.
Each CpG has auxiliary annotations ai (e.g., CpG island index, genomic region, chromosome). Our
goal is to learn a function

fθ : (G, Si, ai) 7→ ŷi ∈ [0, 1], (1)

where ŷi is the predicted DNAm level of CpG i, and yi is the ground-truth DNAm from sequencing.

Gene Expression Bottleneck MLP (Figure 2 (a, c): We employ a bottleneck MLP (Bachmann et al.,
2023) that compresses high-dimensional gene expression profile G into a compact latent embedding
xgene ∈ RNembed : xgene = ϕ(W2 σ(W1G + b1) + b2) , where W1 ∈ RNh×Ng , W2 ∈ RNembed×Nh , σ
is the GeLU activation, and ϕ is layer normalization. Unlike approaches that attempted to attend
only thousands of gene tokens (Cui et al., 2024b; Bai et al., 2024; Hao et al., 2024b), this design
(i) compresses ∼ 25000 genes efficiently, (ii) introduces minimal inductive bias, (iii) preserves
long-range dependencies across the transcriptome, and (iv) generalizes to unseen samples.

CpG Sequence Tokenizer & Context Embeddings (Figure 2 (a, d): To represent each target CpG
site in a way that generalizes across millions of possible loci, we do not assign a fixed ID. Instead,
we encode a CpG by its local genomic sequence context. We utilize a DNA sequence tokenizer
inspired by DNABERT-2 (Zhou et al., 2024), which applies a variable-length byte-pair encoding
(BPE) scheme to the DNA sequence surrounding the CpG. Specifically, for each CpG site we take a
window of e.g. 1000 base pairs (bp) centered on the site. This sequence S (length 1kb, consisting
of characters A,T,C,G) is broken into a sequence of subword tokens T = tj via the DNA tokenizer
(Figure 2 (a,d)). The tokenizer compresses repetitive or common motifs, achieving roughly a 5×
reduction in length (1,000bp →∼200 tokens) while preserving biologically relevant patterns. Each
token tj is then mapped to a learnable embedding vector xDNA

j ∈ RNembed . This tokenization approach
has several benefits: it identifies and reuses recurring sequence motifs (e.g., CpG-rich patterns or
regulatory motifs), reduces redundancy, and yields a consistent embedding length for any CpG’s
context. Importantly, similar sequence patterns will produce similar token sequences, allowing the
model to generalize knowledge across different CpG sites that share motifs. In addition to raw
sequence, we incorporate genomic context features that help distinguish CpG sites:

• CpG island (CGI) context (Figure 2 (a, b): DNAm behavior differs if a CpG lies within a CpG
island, shore, shelf, or open sea (ocean). We include a CpG island index embedding to provide a
unique identifier for each CpG island (with a special index for non-island CpGs in open sea), as
well as separate embeddings for region categories (island, shore, shelf, ocean). By summing the
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Table 4: Results of training models on different data sources. Datasets: E and T denotes ENCODE and
TCGA, respectively; in brackets, A, E, and W denote Array, EPIC, and WGBS samples, respectively.

Train Data Val Data Train CpG - Val Sample Val CpG - Train Sample Val CpG - Val Sample
MAS-
PCC

MAC-
PCC MSE MAE MAS-

PCC
MAC-
PCC MSE MAE MAS-

PCC
MAC-
PCC MSE MAE

E (W) E (W) 0.3436 0.9398 0.0079 0.0608 0.7165 0.9297 0.0108 0.0679 0.3411 0.9330 0.0086 0.0634
T (A) T (A) 0.4000 0.8669 0.0363 0.1216 0.2769 0.7914 0.0555 0.1498 0.2597 0.7930 0.0557 0.1504
T (A+W) T (A) 0.4705 0.3244 0.2981 0.9112 0.8674 0.8673 0.0252 0.0365 0.0369 0.1006 0.1205 0.1212
T (A+E) T (A) 0.5226 0.9232 0.0222 0.0920 0.3727 0.8738 0.0350 0.1147 0.3451 0.8743 0.0355 0.1157
T (A+E+W) T (A) 0.5455 0.9320 0.0199 0.0882 0.4194 0.9065 0.0266 0.1000 0.3904 0.9059 0.0271 0.1011

island-specific embedding with the region-type embedding, we obtain a composite context vector
xCGI for the site. This encoding injects knowledge of local CpG density and regulatory regions,
helping the model resolve ambiguity when similar DNA sequences appear in different contexts.

• Chromosome indicator (Figure 2 (b)): We assign each chromosome a learnable embedding
xchr(k) ∈ RNembed for chromosome k (k = 1, . . . , 22). This provides positional information
that can capture chromosome-specific effects (such as varying methylation baseline or sequence
composition) and helps the model differentiate sites that may have similar sequence but belong to
different genomic compartments.

• Global and integrated representations (Figure 2 (a)): Following conventions in Transformer
models (Devlin, 2018) and prior genome foundation models(Cui et al., 2024b; Bai et al., 2024; Hao
et al., 2024b), we apply a learnable global embedding token xGLB. This vector does not correspond
to any specific gene or CpG input; instead, it serves as an aggregate representation that can attend
to all other embeddings. The Transformer can use xGLB to gather information across the gene
expression context and the target CpG context. At the output, this global token’s state will be fed
into a prediction head to produce the final methylation level for the CpG site in the given sample.

Transformer Encoder and Prediction (Figure 2 (a)): We concatenate all embedding vectors for a
given sample–CpG pair into a single sequence:

Zi =
[
xGLB, xgene, {xDNA

j }Mi
j=1, xCGI, xchr

]
, (2)

where xgene is the gene expression embedding, xDNA
j are the DNA sequence token embeddings, xCGI

encodes CpG island status, and xchr encodes the chromosome. This sequence Zi forms the input
to the Transformer encoder. It consists of stacked self-attention layers that fuse information across
modalities. The bi-directional attention mechanism allows each token to attend to every other token in
the sequence, enabling the model to combine global sample context with local site context effectively.
For example, the gene expression embedding can influence how sequence tokens are interpreted and
vice versa, allowing complex interactions (e.g. gene regulatory network effects on local methylation)
to emerge in the learned representation. The Transformer encoder outputs contextualized embeddings
of the same length. We then apply a simple DNAm projector: a linear layer followed by a sigmoid
activation, acting on the final state of the global token xout

GLB, to predict the DNAm for the target CpG
in the sample. This design, using a global token as the prediction carrier, is analogous to the “CLS”
token in BERT models and encourages the network to integrate all information into that token for the
final regression output.

Training Objective: MethylProphet is trained end-to-end to minimize mean squared error (MSE)
between predicted and true methylation values, with all components (gene MLP, tokenizer embed-
dings, Transformer, etc.) updated via back-propagation. Training is fully supervised on large gene
expression–DNAm datasets, while inference requires only gene expression and sequence data. See
Appendix for implementation and training details.

4 EXPERIMENTS

4.1 DATA SOURCE, PROTOCOLS, AND PRE-PROCESSING

We use ENCODE WGBS (Hitz et al., 2023; The ENCODE Project Consortium, 2012; Luo et al., 2020)
and TCGA methylation arrays (The Cancer Genome Atlas Research Network, 2008), supplemented
with TCGA EPIC and WGBS for broader CpG coverage. Together, they provide billion-level
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Figure 3: Cross-validation results on ENCODE data. (a) An example sample to demonstrate the
calculation of across-CpG PCC. (b) An example CpG to demonstrate the calculation of across-sample
PCC. (c) Predicted signal similarity within CGIs. (d) Across-CpG PCC in three validation splits.
(e) Across-sample PCC in three validation splits. (f) UMAP of measured (triangles) and predicted
(circles) samples.

Table 5: The ablation of increasing training data scale by adding chromosomes for TCGA data.

Train Chr. Val Chr. Train CpG - Val Sample Val CpG - Train Sample Val CpG - Val Sample
MAS-
PCC

MAC-
PCC MSE MAE MAS-

PCC
MAC-
PCC MSE MAE MAS-

PCC
MAC-
PCC MSE MAE

1 1 0.5455 0.9320 0.0199 0.0882 0.4194 0.9065 0.0266 0.1000 0.3904 0.9059 0.0271 0.1011
1+2+3 1 0.4928 0.9249 0.0219 0.0915 0.3760 0.8961 0.0294 0.1047 0.3505 0.8960 0.0298 0.1057
1 1+2+3 0.3025 0.8012 0.0535 0.1473 0.2654 0.8216 0.0492 0.1362 0.2513 0.8230 0.0495 0.1368
1+2+3 1+2+3 0.4872 0.9246 0.0224 0.0919 0.3736 0.8993 0.0290 0.1027 0.3460 0.8992 0.0295 0.1037

CpG methylation signals with matched RNA-seq profiles. To evaluate in- and out-of-distribution
generalization, we partitioned both samples and CpG sites, with train CpG–train sample for training
and the other three splits for validation (Figure 4, Table 3). See Appendix for preprocessing steps.

4.2 BASELINE COMPARISONS

We compared our method with the CNN-based attention model in Levy-Jurgenson et al. (2019b).
MethylProphet consistently outperforms this baseline across all settings (Table 7).

We evaluated in-distribution generalization against CpGPT (De Lima Camillo et al., 2024) in 1,000
TCGA chromosome 1 samples. MethylProphet achieves higher MAS-PCC and MAC-PCC (Figure 5).

4.3 ANALYSIS PROCEDURE

We evaluate the performance of MethylProphet on TCGA and ENCODE datasets using three valida-
tion splits. To quantify agreement between predicted and measured DNAm values, we employ the
following metrics (more analysis is provided in Appendix):

(a) Across-CpG Pearson correlation coefficient (PCC) assesses how well the model preserves each
sample’s overall DNAm profile. (b) Across-sample PCC evaluates the model’s ability to infer
DNAm behavior at individual CpG sites. (c) CpG island (CGI) coherence is evaluated by measuring
correlation between CpG pairs within the same CGI. As a baseline, we compute correlations after
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Table 6: The ablation of different gene encoding strategies for TCGA data.

Cases Train CpG - Val Sample Val CpG - Val Sample Val CpG - Val Sample
MAS-
PCC

MAC-
PCC MSE MAE MAS-

PCC
MAC-
PCC MSE MAE MAS-

PCC
MAC-
PCC MSE MAE

gene-pathway encoder 0.5371 0.9256 0.0212 0.0907 0.4194 0.9043 0.0271 0.1012 0.3959 0.9018 0.0280 0.1029
DNA-seq encoder only NaN 0.8539 0.0413 0.1393 NaN 0.8607 0.0400 0.1304 NaN 0.8607 0.0404 0.1311
MethylProphet 0.5455 0.9320 0.0199 0.0882 0.4194 0.9065 0.0266 0.1000 0.3904 0.9059 0.0271 0.1011

Table 7: Performance comparison on TCGA data.

Train CpG - Val Sample Val CpG - Val Sample Val CpG - Val Sample
MAS-
PCC

MAC-
PCC MSE MAE MAS-

PCC
MAC-
PCC MSE MAE MAS-

PCC
MAC-
PCC MSE MAE

Levy-Jurgenson et al. (2019b) 0.2630 0.6325 0.0874 0.2148 0.2203 0.6563 0.0848 0.2048 0.2158 0.6562 0.0854 0.2055
MethylProphet 0.5455 0.9320 0.0199 0.0882 0.4194 0.9065 0.0266 0.1000 0.3904 0.9059 0.0271 0.1011

randomly permuting CGI indicators. (d) Uniform Manifold Approximation and Projection for
Dimension Reduction (UMAP) verifies whether the inferred DNAm landscape captures tissue and
cancer differences while preserving variation.

In-distribution generalization 

Out-of distribution generalization  

Solid line: trained data

Dotted line: unseen data


Zero-shot generalization without labels


Out-of-sample generalization

In-sample generalization 

Experiment section
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Figure 4: MethylProphet can
predict for unseen CpG sites
and unseen samples without
inputting measured DNAm
levels. Each column is
the genome-wide CpG-level
DNAm profile of a sample

MethylProphet performance on ENCODE data As the EN-
CODE data contains 97 samples with paired WGBS and RNA-seq
profiles across normal tissue types and cell types, we use it for evalu-
ating MethylProphet’s performance on predicting pan-tissue whole-
genome DNAm. The across-CpG PCC (Figure 3(a, d)) reaches
highest in the Train CpG - Val Sample split, indicating that the
model effectively captures site-wise DNAm patterns while gener-
alizing well to new samples. If a sample exhibits high across-CpG
PCC, it suggests that the within-sample variability of CpGs is well
captured (Figure 3 (d)). This result is expected, as the overall DNAm
profile of a sample consists of a long vector of CpG elements, and
global trends in DNAm are typically easier to learn and predict. For
across-sample PCC (Figure 3 (b)), we observe a large variability,
particularly when generalizing to both unmeasured CpGs and unseen
samples. The CpGs with high across-sample PCC indicate that the
model can predict the CpG’s variability across samples (Figure 3
(e)) well. This is very important because the ability to predict a
CpG’s behavior across individuals is highly related to its potential
to identify a therapeutic target.

Specifically, the predictions are not only accurate when generalizing
to unmeasured CpGs which is a task that existing methods such as
CpGPT can do, but MethylProphet also achives satisfactory perfor-
mance in unmeasured samples (samples not seen at all for the model,
and samples without experimentally-measured DNAm) which exist-
ing methods cannot do (Figure 3 (d, e)). For across-CpG PCC (Figure 3 (a, d)), the performance is
similar across splits, while for across-sample PCC (Figure 3(b, e)), MethylProphet performs best
in the Val CpG - Train Sample split, possibly due to the limited testing samples in ENCODE data.
Further investigation show that the predictions are more accurately for highly variable CpGs, where
across-sample PCC increases with CpG variability. In this normal tissue cohort, MethylProphet also
effectively captures CpG co-methylation dynamics within CGIs (Figure 3 (c)). In addition, Methyl-
Prophet performs comparably across splits, likely due to the significantly large number of CpGs. In
general, MethylProphet successfully preserves tissue differences (Figure 3 (f)), with predicted and
measured samples of the same cancer types cluster together.

MethylProphet performance on TCGA data We evaluated MethylProphet on 10,932 TCGA
samples with paired DNAm and RNA-seq profiles, showing strong pan-cancer prediction performance.
See Appendix for full results.
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4.4 ABLATION STUDIES

Performance is evaluated using four metrics: (1) Median of Across-Sample Pearson Correlation
Coefficient Median (MAS-PCC); (2) Median of Across-CpG Pearson Correlation Coefficient Across
CpG Median (MAC-PCC); (3) Mean Square Error (MSE) and (4) Mean Absolute Error (MAE)
between predicted and ground truth methylation values in validation sets.

MAS MAC0.0

0.5

1.0

P
C

C

0.25 0.28

0.81 0.87

CpGPT MethylProphet

Figure 5: In-distribution
generalization performance
comparison between Methyl-
Prophet and CpGPT.

Data mixing strategies and scaling effects In the data mixing
ablation (Table 4), MethylProphet demonstrates strong CpG encod-
ing capability on ENCODE WGBS data, achieving high MAS-PCC
scores of 0.72 on the Val CpG - Train Sample split. However, perfor-
mance on Val Sample is moderate, likely due to the limited sample
size (Table 3) constraining the model’s ability to learn generalized
gene encodings for sample-specific features. Training solely on Ar-
ray data yields suboptimal performance, with MAS-PCC scores of
0.40, 0.28, and 0.26 on Train CpG - Val Sample, Val CpG - Train
Sample, and Val CpG - Val Sample splits, respectively. This limi-
tation stems from the restricted number of CpG sites in Array data
(Table 3). Performance improves consistently when incorporating
additional data sources, with optimal results achieved by combining
Array, EPIC, and WGBS data, yielding MAS-PCC scores of 0.54,
0.42, and 0.39 for the respective splits.

The scaling ablation (Table 5) reveals that models trained exclusively on chromosome 1 show limited
generalization to additional chromosomes (2 and 3). While training on all three chromosomes slightly
decreases validation performance on chromosome 1, it significantly improves the model’s ability to
generalize across chromosomes.

Contribution of gene encoding Table 6 compares MethylProphet with alternative gene encoding
strategies, as well as a variant without gene encoding, on TCGA data. In the gene-pathway encoder,
the Bottleneck MLP is replaced with a sparse MLP (Jaume et al., 2024). Across all evaluation metrics,
MethylProphet consistently achieves the best performance. See Appendix for implementation details.

4.5 COMPUTATIONAL EFFICIENCY AND PRACTICAL DEPLOYMENT

MethylProphet is designed for practical deployment, requiring modest GPU memory and runtime.
Table 8 shows benchmarks on an NVIDIA L40s (48GB), confirming that real-world applications are
feasible without heavy hardware demands.

Table 8: Inference benchmarks of MethylProphet on L40s GPU (48GB). Each benchmark uses
2.7× 107 CpG sites across 10 samples.

Number of Samples Number of CpGs Time GPUs Batch size Memory

10 2.7× 107 ∼9 min 32 256 12.3 GB
10 2.7× 107 ∼17 min 16 256 12.3 GB
10 2.7× 107 ∼34 min 8 256 12.3 GB
10 2.7× 107 ∼68 min 4 256 12.3 GB

5 CONCLUSION

We present MethylProphet, a novel Transformer-based approach that enables whole-genome DNA
methylation inference by integrating gene profile with genomic context. Trained on extensive datasets,
our model demonstrates robust performance in inferring genome-wide methylation patterns across
diverse tissues and cancer types. We hope this capability to reconstruct complete methylomes from
limited experimental data could advance both epigenetic research and precision medicine applications.
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A POTENTIAL BIOLOGICAL INSIGHTS

METHYLPROPHET enables genome-wide DNA methylation (DNAm) reconstruction from gene
expression and sequence data alone, providing unique opportunities for advancing biological inter-
pretation, methodological development, and genomic applications. This cross-modality prediction
framework offers several important insights and use cases in real-world biomedical research.

First, METHYLPROPHET facilitates low-cost methylome reconstruction in settings where whole-
genome bisulfite sequencing (WGBS) or array-based profiling is infeasible. Many large-scale
transcriptomic datasets lack matching methylome profiles, and thus cannot be directly leveraged
for epigenetic discovery. For example, the ENCODE consortium has generated 1,699 RNA-seq
samples but only 211 WGBS samples; the TCGA program includes more than 10,426 RNA-seq
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samples but only 32 WGBS samples; and GEO hosts 241,014 RNA-seq samples but just 6,318
WGBS samples. By computationally inferring DNAm in these cohorts, METHYLPROPHET enables
downstream epigenetic analyses without the need for additional profiling.

Second, METHYLPROPHET enhances public and disease biobank resources such as GTEx, ENCODE,
TCGA, and PCAWG by providing whole-genome methylome predictions. This allows for deeper
epigenetic insights, cancer subtype stratification, and biomarker discovery. Prior work, such as (Yang
et al., 2024), predicted DNAm from GTEx and multi-omics TCGA data, but their scope was limited
to Illumina EPIC array CpGs, covering only ∼3% of the genome. By contrast, METHYLPROPHET
enables whole-genome prediction at more than 100× the sample scale, thereby extending coverage
from 3% to 100% of the genome and broadening the landscape of epigenetic discovery.

Third, METHYLPROPHET supports sample-level methylation estimation in multi-omic and single-
cell studies, where DNAm data are often sparse or missing. This ability to reconstruct complete
sample-level methylomes from transcriptomic profiles enables downstream tasks such as DNAm
regulation inference, cell-fate trajectory analysis, and multi-omic clustering, all without requiring
methylation-specific assays.

In addition, METHYLPROPHET contributes to predictive biomarker development. For instance, 850K
array-based methylation profiles have been used to predict brain metastases (Zuccato et al., 2025). By
extending methylation reconstruction to the full genome, METHYLPROPHET opens new possibilities
for noninvasive biomarker discovery and risk stratification in cohorts that lack direct methylation
assays.

Another important application is in the development of DNA methylation clocks for aging and disease
phenotyping. Epigenetic clocks such as Horvath and GrimAge estimate biological age based on
a small number of CpGs, but their accuracy is limited by array coverage (1–3% of the genome).
METHYLPROPHET provides genome-wide methylation inference, improving both the resolution
and accuracy of aging models. Furthermore, it enables biological age estimation in transcriptome-
only cohorts, thereby expanding the reach of age-related biomarkers in large-scale population and
longitudinal studies.

Beyond these applications, METHYLPROPHET establishes cross-modality prediction as a powerful
paradigm in multi-omics. Cross-modal inference is increasingly central to computational biology:
studies have predicted DNAm from expression (Yang et al., 2024; Liu et al., 2024), chromatin acces-
sibility from expression and DNA (Zhou et al., 2017), and gene expression from sequence (Avsec
et al., 2021). More recently, ALPHAGENOME leveraged such predictions for virtual perturbation
analyses (Avsec et al., 2025). These efforts collectively reduce experimental cost, enable retro-
spective analyses on existing data, and broaden the scope of multi-omic investigations, especially
in disease contexts such as cancer, heart failure, and leukemia. Within this broader landscape,
METHYLPROPHET demonstrates that accurate genome-wide DNAm prediction from transcriptome
and sequence data is both feasible and biologically meaningful, thereby opening new directions for
integrative epigenomic discovery.

B DATA

B.1 DATA SOURCE

ENCODE data. Processed RNA-seq (TPM) and WGBS (β values) data were downloaded from The
Encyclopedia of Elements (ENCODE) portal (https://www.encodeproject.org/). We
identified wild-type samples with both RNA-seq and WGBS profiles, along with matched summary
information including species, sex, age, tissue, and bioSample information. Technical replicates were
combined by averaging their gene expression and their DNA methylation profiles. The averaged
TPM values were log2-transformed after adding a pseudocount of 1. For WGBS data aligned to the
hg19 genome, genome coordinates were converted to hg38 using liftover. Samples with WGBS data
covering more than 80% of all CpG sites on autosomes and chromosome X were retained. Finally, all
CpGs located on chromosomes X and Y were removed. A total of 95 samples covering 28,301,739
CpG sites and 55,503 genes were included in the final dataset.

TCGA data. Processed RNA-seq (TPM), 450K array and EPIC (β values) data were down-
loaded from the Cancer Genome Atlas Program (TCGA) data portal (https://portal.gdc.
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cancer.gov/). Processed whole-genome bisulfite sequencing (WGBS) data (β values) were
downloaded from a static website provided by TCGA (https://zwdzwd.s3.amazonaws.
com/directory_listing/trackHubs_TCGA_WGBS_hg38.html). For RNA-seq data,
the TPM values were averaged for samples belonging to the same case. The averaged TPM values
were log2-transformed after adding a pseudocount of 1. For 450K array and EPIC data, CpG sites
with missing values across all samples were filtered out, and the β values were averaged for samples
belonging to the same case. The WGBS data provided β values for each case. CpG sites with
missing values across all cases were filtered out, and those located on chromosomes X and Y were
removed. The final dataset included 9,194 450K array samples covering 408,399 CpG sites, 1,706
EPIC samples covering 740,296 CpG sites, and 32 WGBS samples covering 23,047,052 CpG sites.
Additionally, gene expression profiles spanning 60,660 genes were included for each sample.

B.2 DATA PARTITION AND PROTOCOLS

Our model takes CpG-related information and gene expressions as inputs and predicts the methylation
level for the given CpG site. Originally, there are three raw files to be processed, a raw methylation
beta file, a sample gene profile, and a reference human DNA sequence template (hg38. The raw
methylation beta profile consists of a matrix M ×N , where there are M CpG sites and N samples,
while the gene expression profile includes the expression of L genes for all samples N . The data
partition pipeline is shown in Figure A1.

1. Split Data 
Shards and Check 
Sanity

Check and Filter NaN entries Check and Filter 
Duplicated Entries

Split Data into Parquet Shards
• Sample Gene Context Profile
• CpG-Sample Methylation
• CpG Corresponding DNA Sequence

2. Split Samples Split Training and Validation 
Samples per Type

Split Samples By Tissue (ENCODE) / 
Cancer (TCGA) Types

3. Split CpG Sites Split and Statisticize CpG
per Chromosome

Shuffle and Split
Training and Validation
CpG per Chromosome

Check Index Sameness
• CpG-Sample Methylation
• CpG Corresponding DNA Sequence

4. Save Split CpG-
Sample Pairs

Generate Train-Validation Splits:
• Training CpG & Training Sample
• Training CpG & Validation Sample
• Validation CpG & Training Sample
• Validation CpG & Validation Sample

Figure A1: Data partition diagram.

Data sharding and sanity check. Since the raw methylation beta matrix is enormous, reaching an
order of magnitude of billion (2.8 billion for ENCODE WGBS and 3 billion for TCGA Array), we
first split the gigantic matrix into small shards. Sharding can leverage parallel computation and thus
speed up the data pre-processing. We split the methylation beta matrix by rows (i.e., by CpG sites)
where every 10k rows assemble a shard file. During methylation matrix sharding, the corresponding
DNA sequence for each CpG site in a shard is saved simultaneously using the reference human DNA
sequence template (hg38). The window size of DNA sequence is 1Kb for the given CpG site. In
addition, we filter out NaN entries and deduplicate genes and CpG sites.

Sample split. To split samples in to training and validation set, we first count the number of samples
for each tissue / cancer types (ENCODE WGBS, Figure A2; TCGA Array, Figure A3). Then we split
the samples based on the types.

There are 57 tissue types and 95 samples in total in ENCODE. For those tissues with more than one
samples, We randomly sampled half of them as the validation samples. All the rest samples are used
for the training set.

In TCGA, there are 33 cancer types with 9194 samples summed up. We randomly choose 10% of the
samples for each tissue type as validation samples, and the rest are left for training. For those do not
have cancer type assigned, we treat them as type “Unknown”.

CpG split. We first check the methylaton matrix and the corresponding DNA sequence have the
same CpG index. Then we statisticize CpG sites for each chromosome. We randomly pick 10% for
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Figure A2: Samples counts by tissue types in
ENCODE data.
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Figure A3: Samples counts by cancer types
in TCGA data.

CpG sites in each chromosome as training CpG sites. For ENCODE, we temporarly sample another
10% as training split. While for TCGA, we use the rest 90% as training. We supplement TCGA with
addition EPIC and WGBS data which have no intersected with Array data.

CpG-sample split. The CpG sample splits are based on the previous sample and CpG splits. For
ENCODE WGBS and TCGA Array, we would have four splits, where the first split is used for
training, and the rest three splits are used for validation and performance report:

1. “Training CpG and Training Sample”, for training;
2. “Training CpG and Validation Sample”, for validation;
3. “Validation CpG and Training Sample”, for validation;
4. “Validation CpG and Validation Sample”, for validation.

To further synergy the limited CpG sites in TCGA array data, we additionally incorporate TCGA
EPIC and TCGA WGBS data, which have no intersections with TCGA array data.

B.3 DATA PRE-PROCESSING

CpG-specific DNA sequence. We extract the DNA sequence around the CpG site to represent the
CpG site. The window size is 1Kb for each site. Besides, we record the CpG island index, as well as
its region types (CpG island, CpG shore, CpG shelf, and CpG ocean). For those sites in CpG ocean,
we assign −1 as their CpG island index. We embed the above information numerically.

Gene expression. The RNA counts are log2-transformed after adding a pseudocount of 1. Genes
with mean and standard deviation below the specified cutoffs (ENCODE: mean = 0.1, std = 0.1;
TCGA: mean = 0.5, std = 0.5) are filtered out. Mitochondrial, proline-rich and ribosomal protein
genes are removed. As a result, 24,337 genes are retained in the ENCODE dataset and 25,017 genes
in the TCGA dataset. Note that both protein-coding and non-protein-coding genes are included prior
to filtering. To mitigate batch effects, we apply the quantization technique(Cui et al., 2024b) where
the log2-transformed RNA counts are quantized based on their probability densities. The quantized
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values are then linearly mapped to the range [0, 1] to mitigate batch effects. The resulting gene
expression vectors are subsequently encoded in the downstream model.

C IMPLEMENTATION DETAILS

C.1 CONFIGURATIONS OF METHYLPROPHET

The implementation details is shown in Table A1. For the experiments on ENCODE WGBS and
TCGA chromosome 1, 2, and 3, we use 64 GPUs with 512 batch size per accelerator, taking about
1 GPU day for each experiment. While for those on TCGA chromosome 1, we use 32 GPUs with
batch size 256, taking about half of GPU day for each experiment. We turn on gradient checkpointing
to reduce memory usage and enable flah-attention 2 to speed up attention operator. The parameters
specification and their computational cost are shown in Table A2.

Table A1: The implementation details.

Optimization

Optimizer AdamW (0.9, 0.95)
LR 1.00E-04
LR Decay Ratio 10x
LR Decay cosine
Weight Decay 1.00E-03
LR Warmup Linear
Warmup steps 2000
Gradient Clipping 1
Data Epoch 1
Batch Size∗ 256/512
Accelerator Type NVIDIA L40s
# Accelerator 32/64
Training Precision Mixed bf16

Table A2: Model size and computation. ∗: Number of parameters includes the DNA tokenizer
embeddings. †: FLOPs are estiamted with batch size equal 1.

Transformer Size # of Hidden Layers Hidden Size # of Attention Heads # of Params ∗ FLOPs †

Base 12 768 12 110M 104G

MLP Size # of Hidden Layers Hidden Size Bottleneck Factor # of Params FLOPs

B_6-Wi_1024 6 1024 4 70M 70M

C.2 BASELINES

C.2.1 LEVY-JURGENSON ET AL. (2019B)

We implement the model described in Levy-Jurgenson et al. (2019b), which uses a multi-branch
architecture with four subnetworks: two convolutional neural network (CNN) branches that process
DNA sequences around CpG sites, and two attention-based MLP branches that incorporate gene
expression and CpG-gene distance, respectively. The outputs of all branches are concatenated and
passed through a final regression head to predict DNAm levels. We use the original model structure
as described in the paper. To ensure fairness, we apply the same input preprocessing and trained
on the same data splits as MethylProphet. Our reimplementation is based on the open-source code
available at: https://github.com/YakhiniGroup/Methylation.
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C.2.2 CPGPT (DE LIMA CAMILLO ET AL., 2024)

CpGPT is an imputation-based Transformer model trained via masked modeling on large-scale
CpG methylation data. It learns context-aware representations of CpG sites by predicting masked
methylation values based on the surrounding sequence. In our evaluation, we use the trained CpGPT-
100M model to extract sample-level embeddings for 20 randomly selected samples from the Train
Sample set. These embeddings are then used to predict DNAm levels at the corresponding Val CpG
sites for each selected sample, following the Val CpG – Train Sample evaluation split. We use the
publicly released trained model and inference code from: https://github.com/lcamillo/
CpGPT.

D ADDITIONAL EVALUATION METRICS

To complement the main performance metrics, we provide more evaluations to better understand
model behavior, particularly in capturing biologically meaningful DNA methylation (DNAm) signals.

D.1 ACROSS-SAMPLE PCC BY DNAM VARIABILITY

We stratify CpG sites into bins according to their inter-sample DNAm variability, computed as the
standard deviation of beta values across samples. For each bin, we compute the distribution of
across-sample PCCs between predicted and measured methylation levels.

D.2 PCC OF DNAM CELL-TYPE AND TISSUE DIFFERENCES

To assess the preservation of biological variation, we compare pairwise differences in average
methylation levels between tissues or cell types, calculated for predicted and measured data. For
each tissue or cell-type pair, we compute the PCC between predicted and measured methylation
differences across CpG sites. High correlations indicate that the model captures inter-tissue and
inter-cell-type epigenetic distinctions.

D.3 DMR OVERLAPPING PROPORTION BETWEEN MEASURED AND PREDICTED VALUES

We identify Differentially Methylated Regions (DMRs) from both measured and predicted methylation
matrices using the limma R package. We rank DMRs by statistical significance and compute the
overlap proportion between top-ranked regions from the predicted and measured DNAm matrices,
across varying thresholds (e.g., top 1000, 2000 DMRs).

E EVALUATION RESULTS

E.1 ROBUSTNESS TO MISSING CONTEXT DNAM

To assess the reliance on surrounding DNAm context, we conducted an ablation study by progressively
reducing the percentage of available context CpG values for CpGPT. Table A3 and Table A4 report
the performance across 200 held-out test samples.

Table A3: MAS-PCC (median across samples) under different levels of available context CpGs.

% surrounding DNAm CpGPT MethylGPT MethylProphet

100% 0.19 0.23 0.31
80% 0.21 0.18 0.31
60% 0.13 0.15 0.31
40% 0.09 0.12 0.31
20% 0.06 0.08 0.31

When no surrounding context DNAm is available, CpGPT and MethylGPT degenerate (their output
variance collapses), and the PCC metric becomes undefined. In contrast, MethylProphet remains
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Table A4: MAC-PCC (median across CpGs) under different levels of available context CpGs.

% surrounding DNAm CpGPT MethylGPT MethylProphet

100% 0.84 0.78 0.88
80% 0.88 0.69 0.88
60% 0.79 0.63 0.88
40% 0.69 0.54 0.88
20% 0.60 0.49 0.88

TCGA (A) TCGA (A+W) TCGA (A+E) TCGA (A+E+W) ENCODE (W)
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Figure A4: The distribution of PCC across Sample / CpG on validation sets for TCGA chromosome
1 data.

stable across all levels of context sparsity due to its reliance on gene expression and DNA sequence
inputs, which are independent of neighboring CpG methylation measurements.

These results highlight that MethylProphet is not only competitive in predictive accuracy but also
substantially more robust and generalizable in low-data or missing-data settings. This robustness
is especially valuable for real-world applications where measured DNAm data may be sparse or
unavailable.

E.2 METHYLPROPHET PERFORMANCE ON TCGA DATA

Figure A4 and Figure A5 illustrate the distribution of PCC for our ablation studies : 1) the effect of
mixing TCGA data with different sequencing techniques. 2) the effect of increasing data scale of
TCGA.

Both across-CpG PCC (Figure A6 (a, b)) and across-sample PCC (Figure A6 (c, d)) reach the highest
values in the Train CpG - Val Sample split, indicating that the model effectively captures site-wise
DNAm patterns while generalizing well to new samples. Specifically, the predictions are consistently
more accurate when generalizing to new samples rather than to new CpGs compared with splits
of Val CpG - Train Sample and Val CpG - Val Sample (Figure A6 (b)). If a sample exhibits high
across-CpG PCC, it suggests that the within-sample variability of CpGs is well captured (Figure A6
(a)). This result is expected, as the overall DNAm profile of a sample consists of a long vector of CpG
elements, and global trends in DNAm are typically easier to learn and predict. For across-sample
PCC (Figure A6 (d)), we observe a large variability, particularly when generalizing to both unseen
CpGs and samples. The CpGs with high across-sample PCC indicate that the model can predict the
CpG’s variability across samples (Figure A6 (c)) well. This is very important because the ability to
predict a CpG’s behavior across individuals is highly related to its potential as a therapeutic target.
We found that the across-sample PCC positively correlates with a CpG’s variability across samples
(Figure A6 (e)). Specifically, the highest median PCC values are observed for CpGs with a standard
deviation (SD) in the range (0.25, 0.36], reaching 0.70 for Train-CpG Val-Sample, 0.63 for Val-CpG
Train-Sample, and 0.60 for Val-CpG Val-Sample.

MethylProphet successfully maintains intra-CGI correlation patterns across different validation splits
(Figure A6 (f)), indicating regional epigenetic regulation.
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Figure A5: The distribution of PCC across Sample / CpG when increasing TCGA data scale by
adding more chromosomes.
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Figure A6: Cross-validation results on TCGA chromosome 1 data. (a) An example sample to
demonstrate the calculation of across-CpG PCC. (b) Across-CpG PCC in three validation splits.
(c) An example CpG to demonstrate the calculation of across-sample PCC. (d) Across-sample
PCC in validation splits. (e) Across-sample PCC by DNAm variability in different train/validation
splits, including Train CpG - Val Sample , Val CpG - Train Sample , Val CpG - Val Sample . (f)
Predicted signal similarity within CGIs, with the same color scheme as (e). (g) The PCC of DNAm
cell-type differences obtained from predicted and measured values. (h-j) DMR overlapping proportion
between measured and predicted values. (k) UMAP of measured (triangles) and predicted (circles)
samples.

In addition, MethylProphet is able to preserve cancer-specific DNAm differences (Figure A6 (g)).
The Train CpG - Val Sample split exhibits the highest median PCC difference, indicating that the
model effectively maintains cancer-specific DNAm patterns when predicting new samples using a
fixed set of CpGs. However, the Val CpG - Train Sample and Val CpG - Val Sample splits show a
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Figure A7: Cross-validation on ENCODE data. Similar to that of Figure A6, except that the results are
based on the validation on ENCODE data. The sample differences (g) were calculated by comparing
tissue/cell types rather than cancer types.

decline in PCC differences, suggesting reduced performance in capturing cancer-type variation when
generalizing to unseen CpGs.

The differential CpGs achieves the highest overlap between predicted and measured DNAm in the
Train CpG - Val Sample split, followed by Val CpG - Train Sample and Val CpG - Val Sample splits
(Figure A6 (h-j)). In addition, MethylProphet-predicted DNAm landscape successfully preserves
cancer-specific differences, as samples from the same cancer type remain well-clustered (Figure A6
(k)).

E.3 METHYLPROPHET PERFORMANCE ON ENCODE DATA

Unlike TCGA, where MethylProphet performs best in the Train CpG - Val Sample split, ENCODE
shows a different trend across validation splits. For across-CpG PCC (Figure A7 (a, b)), the per-
formance is similar across splits, while for across-sample PCC (Figure A7 (c, d)), MethylProphet
performs best in the Val CpG - Train Sample split, possibly due to the limited testing samples in EN-
CODE data. Similar to that in TCGA, MethylProphet predicts methylation patterns more accurately
for highly variable CpGs, where across-sample PCC increases with CpG variability (Figure A7 (e)).

In this normal tissue cohort, MethylProphet also effectively captures CpG co-methylation dynamics
within CGIs (Figure A7 (f)). In the assessment of MethylProphet’s ability to preserve tissue-specific
DNAm differences, the Val CpG - Train Sample split exhibits the highest median PCC-across-CpG
difference (Figure A7 (g)). This contrasts with TCGA, where the Train CpG - Val Sample split
performed best.

The top-ranked DMRs obtained using predicted and measured DNAm achieve a relatively high
overlap across all validation splits (Figure A7 (h-j)). However, unlike in TCGA, MethylProphet
performs comparably across splits. This suggests that the DMR list is more stable, likely due to the
significantly larger number of CpGs included in ENCODE data. Overall, MethylProphet successfully
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preserves tissue differences (Figure A7 (k)), with predicted and measured samples of the same cancer
types cluster together.

F DISCUSSION

F.1 LIMITATION AND FUTURE WORK

This work should be regarded as a proof-of-concept study that demonstrates the feasibility of
leveraging gene expression and genomic context for whole-genome DNA methylation inference.
While MethylProphet introduces a new paradigm and achieves promising results, we do not propose
fundamentally new model architectures nor do we systematically explore more efficient or specialized
designs. Instead, our focus is on establishing baseline feasibility and potential, rather than optimizing
for computational efficiency or architectural innovation. Future research could address these aspects
by adopting alternative architectures or scaling strategies to further improve performance and resource
efficiency.

F.2 BROAD IMPACT

While our primary objective is to enhance epigenetic research and precision medicine capabilities,
we acknowledge that advances in genomic prediction technologies may have broader societal im-
plications, including privacy considerations and ethical questions regarding genetic information
accessibility. We have focused on developing methods that maintain scientific rigor while adhering to
established ethical guidelines in computational biology and medical research. Our model, data source,
data processing pipelines, and evaluation protocols are designed with transparency and reproducibility
in mind, and we will release all code, data, protocols, and models to facilitate open scientific discourse
and validation.
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