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Abstract

The assessment of the occlusion location in acute ischemic stroke is an essential step in
treatment decisions. Occlusions in smaller vessels, like the M2, can be difficult to detect in
routine clinical care. Computed tomography perfusion (CTP) maps improve clinicians’ ac-
curacy and speed in locating occlusions compared to CT angiography alone. Deep learning
(DL) could help automate this process. We propose an attention-based convolutional neu-
ral network to classify ICA-T, M1, and M2 occlusions using CTP maps. Our method shows
an average accuracy of 79.2% and an F1 score of 86% for M2 occlusions, demonstrating
the potential of DL utilizing CTP maps for occlusion location classification.
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1. Introduction

Acute ischemic stroke (AIS) is one of the leading causes of death and acquired disability,
caused by the occlusion of an intracranial artery that interrupts cerebral blood flow. Large
vessel occlusions refer to occlusions in proximal intracranial arteries of the anterior circu-
lation, like the intracranial part of the internal carotid artery (ICA) or the M1 segment of
the middle cerebral artery (MCA). Medium vessel occlusions (MEVOs) involve smaller and
more distal vessels, like the distal M2 and more distal segments of the MCA.

Rapid occlusion detection is necessary to guide AIS treatment, with computed tomogra-
phy angiography (CTA) and non-contrast computed tomography (NCCT) being the stan-
dard imaging modalities. When only CTA is used by clinicians to detect occlusions, MEVOs
can be missed by up to 38%, with the majority of these missed cases being M2 occlusions
(Duvekot et al., 2021). CT perfusion (CTP) is a dynamic imaging method used to assess
various parameters of cerebral perfusion, which are summarized in CTP maps (Christensen
and Lansberg, 2019). Studies show that the availability of CTP maps enhances clinicians’
accuracy and speed in occlusion detection (Robbe et al., 2024). Beyond improving clini-
cians’ accuracy, CTP maps could also aid automatic vessel occlusion detection. One study
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used 4D-CTP data for vessel occlusion identification (Bathla et al., 2022), but the use of
CTP maps with DL has not been explored. Yet, CTP maps have been utilized for automatic
occlusion classification with an atlas-based method (Peerlings et al., 2023). DL has been
shown to outperform atlas-based approaches in medical image analysis tasks (Costea et al.,
2022). This work: 1) investigates the use of DL for occlusion classification using CTP maps
and 2) develops an attention-based 3D convolutional neural network (CNN) that exploits
features from various CTP maps.

2. Methods

Dataset: We include 701 patients from the CLEOPATRA study, which combined AIS
patients from one of the CONTRAST multicenter, randomized clinical trials (MR CLEAN-
(NO IV, MED, LATE, Registry)) and a local cohort (Koopman et al., 2022). The occlusion
location was identified by the CONTRAST imaging core lab and we include patients with
one occlusion in: terminus part of ICA (ICA-T), M1, or M2. Our dataset is imbalanced:
14.8% ICA-T, 58.8% M1, 26.4% M2. These proportions are maintained across training,
validation, and testing. We use three CTP maps as input channels to the CNN: cerebral
blood flow (CBF - millimeters (mL) of blood passing through 100g of brain tissue per
minute), cerebral blood volume (CBV - mL of blood in 100g of brain tissue), and time-to-
maximum (Tmax - time in seconds at which the contrast tracer reaches its maximum). CBF
and CBV reflect relative values in percentages compared to the contralateral hemisphere.

Figure 1: Illustration of our 3D CNN architecture.

Pre-processing: To bring the CTP maps to a common space, we perform affine regis-
tration to an in-house atlas with a centered and straight head using SimpleElastix (Klein
et al., 2010). After registration, all maps have an image size of 27 axial planes with 512x512
voxels. We remove artifacts outside the brain using a binary mask computed from the
largest connected component, and we clip the values between [0, 20] s for Tmax and be-
tween [0, 400] % for relative CBF and CBV. The clipped values are normalized between
[0, 1]. A rule-based method determines which hemisphere is affected using the values from
the Tmax map: it sums all voxel values on each side of the midline, normalizes the sum
by the number of nonzero voxels, and selects the side with the highest value, i.e. longest
delay, as the occlusion side. The maps are mirrored across the midline if the occlusion is on
the left side, allowing the model to focus solely on learning the discrimination of occlusion
locations, without needing to differentiate between the hemispheres.
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Model: We build a 3D CNN that makes use of the convolutional block attention module
(CBAM) (Woo et al., 2018). Its channel-wise and spatial attention features allow the
model to focus on the most relevant features across the CTP maps and ischemic locations,
respectively. To better capture long-range spatial features, the model also includes a self-
attention block, as shown in figure 1. To address class imbalance, we use weighted cross-
entropy loss with log-smoothed inverse frequency weights and resampling. For training and
validation, we use 5-fold cross-validation for 45 epochs on 85% of the dataset with the Adam
optimizer, a learning rate of 0.001, and a cosine annealing scheduler. The model with the
highest F1 score on the validation set from each fold is used in an ensemble. The ensemble’s
performance is assessed via voting on the remaining 15% of the dataset for testing.

3. Results

Table 1 presents the confusion matrix for our occlusion location classification model using
CTP maps for the 106 patients in the test dataset. Most cases are correctly classified, with
ICA-T and M2 occlusions showing the lowest and highest performance, respectively. For
M2 occlusions, 1/28 cases is misclassified as ICA-T, and 3/28 as M1. The overall accuracy
across all occlusion locations is 79.2%. Table 2 shows the precision, recall, and F1 score for
each occlusion. The model correctly classifies 69%, 79%, and 86% of ICA-T, M1, and M2
occlusions respectively.

T
ru

e

Model output
ICA-T M1 M2

ICA-T 11 5 0
M1 9 49 4
M2 1 3 24

Table 1: Confusion matrix for vessel occlusion
classification with our CNN using CTP maps.

Precision Recall F1
ICA-T 0.52 0.69 0.59
M1 0.86 0.79 0.82
M2 0.86 0.86 0.86

Table 2: Evaluation metrics for each vessel
occlusion based on our CNN’s output.

4. Discussion

This work shows value of DL utilizing CTP maps for vessel occlusion classification in acute
ischemic stroke. A previous atlas-based approach using CTP maps Peerlings et al. (2023)
achieved a precision of 57% and a recall of 47% on the M2, whereas our method achieves a
precision and recall of 86%. Automatically classifying M2 occlusions is promising since many
M2 occlusions are missed in acute settings (Duvekot et al., 2021). Our model’s underper-
formance for ICA-T occlusion classification could be partially explained by 1) the scarcity
of ICA-T occlusions in our dataset and 2) the high variability in downstream hypoperfusion
of ICA-T occlusions due to differences in collateral capacity. Commonly, clinicians use CTA
to determine the location of the occlusion and the extent of the thrombus. DL methods
on vessel occlusion identification have also shown promising results using CTA (Brugnara
et al., 2023). As such, future work could combine CTA images with CTP maps to poten-
tially improve occlusion classification accuracy. This work provides primary evidence for the
usefulness of CTP maps for vessel occlusion classification with DL, and could potentially
help clinicians by classifying the M2 occlusions, which can be difficult to detect.
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