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Abstract

Multi-view clustering aims to enhance clustering performance by leveraging infor-
mation from diverse sources. However, its practical application is often hindered
by a barrier: the lack of correspondences across views. This paper focuses on
the understudied problem of fully incomplete multi-view clustering (FIMC), a
scenario where existing methods fail due to their reliance on partial alignment.
To address this problem, we introduce the Contrastive Prototype Matching Net-
work (CPMN), a novel framework that establishes a new paradigm for cross-view
alignment based on matching high-level categorical structures. Instead of aligning
individual instances, CPMN performs a more robust cluster prototype alignment.
CPMN first employs a correspondence-free graph contrastive learning approach,
leveraging mutual k-nearest neighbors (MNN) to uncover intrinsic data structures
and establish initial prototypes from entirely unpaired views. Building on the
prototypes, we introduce a cross-view prototype graph matching stage to resolve
category misalignment and forge a unified clustering structure. Finally, guided by
this alignment, we devise a prototype-aware contrastive learning mechanism to
promote semantic consistency, replacing the reliance on the initial MNN-based
structural similarity. Extensive experiments on benchmark datasets demonstrate
that our method significantly outperforms various baselines and ablation variants,
validating its effectiveness.

1 Introduction

Over the recent years, the rapid increase in multi-view data has made effective analysis an urgent
necessity[17, 15]. Multi-view clustering, which seeks to uncover underlying data relationships
by partitioning instances into distinct categories without supervision, has emerged as a prominent
solution. While these algorithms have advanced significantly and are widely applied in applications
like recommendation systems and multimedia analysis [26, 38, 37, 29], most existing algorithms
heavily rely on the assumption of complete multi-view information [3, 33]. However, in practice, it is
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(a) Partially Incomplete
Multi-view Data

(b) Fully Incomplete
Multi-view Data (c) Our Key Idea

Figure 1: Various incomplete multi-view data and our key idea. Without loss of generality, data
from two views are presented as an example. In the figure, different colors represent different views,
and different shapes indicate distinct categories. The gray lines denote the availability of cross-view
correspondences. The blank shapes and the dashed lines with question marks represent the missing
instances and the missing correspondences between views, respectively. To achieve unified clustering
for multi-view data without correspondence, our model first learns the initial cluster prototypes of
each view and perform graph matching on the prototypes. Subsequently, the instances are assigned to
the aligned prototypes to obtain the final clustering results.

common for only partial data to be collected or transmitted due to sensor failure, varying acquisition
costs, or privacy concerns, making the assumption of data completeness difficult to satisfy.

To address the issue of incomplete data, many efforts have been made to explore ways of understanding
multi-view data from partially incomplete information (Figure 1a), which is referred to as partially
incomplete multi-view clustering (PIMC). The core mechanism of PIMC lies in leveraging available
partial cross-view correspondences to establish informative priors for learning. Two principal
approaches have arisen based on the differing conditions of data incompleteness. For multi-view data
with partially missing views, existing methods attempt to exploit known cross-view correspondences
to learn shared structures and recover missing information in the latent space [15, 1]. Alternatively,
for partially aligned multi-view data, existing approaches aim to learn optimal transformations
or permutation matrices that align the different view-specific spaces, establishing links between
matching views [35, 28].

While these methods successfully mitigate the impact of partially incomplete information, their
effectiveness fundamentally relies on the availability of at least partial cross-view information or
alignment, which is often difficult to guarantee [41]. In many challenging real-world scenarios, data
from different views is collected, processed, and stored entirely separately. Due to data heterogeneity,
privacy regulations, or the nature of data acquisition, establishing correspondences even for a
small subset of instances can be infeasible. This leads to the critical problem of fully incomplete
multi-view data, where instances are characterized by data from only one view, and no cross-view
correspondences are known a priori (Figure 1b). An example is in clinical diagnostics, where patients
may undergo only one type of pathological examination, resulting in single-view information with
no link between patients across different test types. Tackling this scenario requires learning shared
cluster structures without any correspondences between views.

The Fully Incomplete Multi-view Clustering (FIMC) presents significant algorithmic challenges
compared to PIMC. Unlike PIMC, where known correspondences provide direct guidance for
imputation or alignment, the fully incomplete scenario lacks cross-view anchors that could guide
representation alignment. Consequently, imputation approaches based on cross-view correspondences
are inapplicable, and alignment methods relying on paired instances cannot be initialized or directly
learned. Recently, a limited number of pioneering studies have started to tackle the FIMC challenge.
Notably, SMILE [41] focuses on learning semantic invariant representations for FIMC. This approach
effectively mitigates the absence of correspondences by ensuring that instances belonging to the
same underlying cluster have similar representations regardless of their view. However, this approach
assumes that semantic distributions are strictly invariant across views, which may fail under noisy
views or class imbalance, leading to biased alignment. This motivates the exploration of methods
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that explicitly handle the alignment of cluster prototypes and utilize category-level information for
representation refinement once initial cluster structures emerge.

This paper proposes the novel Contrastive Prototype Matching Network (CPMN) to introduce
a new paradigm of structure-level alignment to address FIMC. Instead of aligning instances or
enforcing rigid distributional invariance, CPMN operates at a higher level of abstraction by aligning
robust categorical prototypes ( (Figure 1c). Our approach first employs a correspondence-free
cross-view graph contrastive learning strategy, utilizing mutual k-nearest neighbors (MNN) to
learn initial representations and generate view-specific prototypes via K-means. Crucially, we then
explicitly bridge the view-specific cluster structures by introducing a similarity-based prototype graph
matching to find the optimal mapping between these initial prototypes. Finally, CPMN refines the
representations and prototypes through a prototype contrastive learning mechanism, which leverages
the established prototype correspondences and category information to contrast instances against
their matched prototypes. The key contributions of our work include:

• We propose a novel framework, Contrastive Prototype Matching Network (CPMN), designed
to address the challenging fully incomplete multi-view clustering problem where no cross-
view correspondences exist.

• We introduce a two-stage contrastive learning approach: an initial correspondence-free graph
contrastive learning phase based on cross-view MNN for structural alignment, followed by
a prototype contrastive learning phase that utilizes category-level information derived from
matched prototypes for semantic refinement.

• We incorporate an explicit prototype graph matching strategy to construct a bipartite graph
between view-specific prototypes and find the optimal mapping between prototypes based
on their feature similarity.

2 Related Works

Before introducing the proposed CPMN, we briefly review the related partially missing multi-view
clustering and partially aligned multi-view clustering.

Partially Missing Multi-view Clustering (PMMC) aims to learn unified cluster assignments from
multi-source data where some views are partially missing for certain instances. Among the methods
that broadly employ either conventional shallow models [27, 18] or deep neural networks (DNN)
[30, 1], our attention here is restricted to the DNN-based approaches. Owing to the capability of
the autoencoder (AE) to handle missing data through feature reconstruction, prevailing methods
generally adopt AE as their backbone. Some approaches combine AE with graph information to
mitigate the shortcomings of structural information mining in AE. For example, SDIMC-net [31]
combines graph embedding strategies to capture the high-level features and local structure of each
view. Likewise, CASEN [34] performs adaptive graph convolution on the reconstructed multi-view
data to effectively extract the data structure. Some approaches introduce contrastive learning [8, 2] to
learn a shared representation that is robust to view missingness. DCP [15] performs data recovery
and consistency learning simultaneously through dual contrastive prediction. Introducing deep
subspace learning, PVC-SSN [4] employs contrastive learning to obtain more discriminative and
consistent subspace representations. DCMVSC [40] combines contrastive learning and Cauchy-
Schwarz divergence to propose a new multi-view deep subspace clustering approach. While existing
approaches demonstrate improved robustness to incomplete data, their dependence on at least partial
cross-view correspondences persists as a limitation, particularly in scenarios without alignment.

Partially Aligned Multi-view Clustering (PAMC) addresses the critical challenges of view misalign-
ment and unknown correspondences caused by asynchronous data acquisition in multi-view clustering.
Existing methods can be broadly classified into two categories. The first category focuses on explicit
alignment learning, while the second category focuses on robust representation learning without
explicit alignment. As a pioneering study, PVC [10] addresses the partial alignment problem by
proposing a differentiable Hungarian network to find correspondences between two views. Distinctly,
EGPVC [42] employs Dykstra’s cyclic constraint projection algorithm for the same purpose. How-
ever, explicit instance-level alignment in such methods is sometimes difficult to achieve and is overly
restrictive for clustering tasks. To learn robust representation without explicit alignment, MvCLN
[36] devises a noise-robust contrastive loss to reduce the impact of false negative pairs on aligning
data and representation learning. SiMVC [25] completely avoids explicit representation alignment
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Figure 2: The framework of the proposed CPMN.

and instead uses learned linear combinations for view prioritization. The above methods achieve
expected performance, but their alignment processes, which are often applicable only to two views or
necessitate partial alignment information, consequently limit their broader applicability.

3 Method

In this section, we elaborate on the proposed Contrastive Prototype Matching network (CPMN) for
learning a unified clustering partition from fully incomplete multi-view data. As illustrated in Fig. 2,
CPMN consists of three novel modules, namely correspondence-free graph contrastive learning,
prototype graph matching, and prototype contrastive learning, which will be detailed in Sec. 3.1-3.3

In fully incomplete multi-view clustering, paired information across views is absent. That is, all
instances have features from only one view, or the correspondences between views are completely
unknown. Formally, given a fully incomplete multi-view dataset X = {X(v)}Vv=1 with N instances
in V views. X(v) = {x(v)1 , ..., x

(v)
N } ∈ RN×dv denotes the feature matrix in the v-th view, where

dv is the feature dimension. For instances with only one view, we introduce an indicator matrix
W ∈ {0, 1}N×V to indicate the completeness of views, where Wi,v = 1 if instance xi exists in
the v-th view, and Wi,v = 0 otherwise. Thus, for any instance xi of a fully incomplete dataset,∑V

v=1Wi,v = 1. For datasets without known correspondences, an indicator vector U ∈ {0, 1}N is
used to record the aligned instances, where Ui = 1 means the i-th instance is aligned in all views,
otherwise Ui = 0. Thus, for a fully incomplete dataset, Ui = 0 for all i ∈ [1, N ]. Our goal is to
partition these N instances into C clusters.

3.1 Correspondence-Free Graph Contrastive Learning

To effectively address the challenges of FIMC, the initial crucial step in our CPMN is to learn
latent representations for each view independently, while simultaneously encouraging cross-view
consistency without relying on paired data. This stage, termed correspondence-free graph contrastive
learning, is designed to uncover underlying structural similarities across views. It achieves this by first
reconstructing individual view data to preserve view-specific information, and then employing a novel
graph-based contrastive learning strategy to promote coherence between the learned view-specific
representations, thereby laying a foundation for subsequent prototype generation and matching.

A key component for learning these initial view-specific representations is the foundational backbone
network: view-specific autoencoders. For each view v, the architecture comprises an encoder
Ev : Rdv → Rdz and a corresponding decoder Dv : Rdz → Rdv . The encoder maps the input
data x(v)i to a low-dimensional latent representation z(v)i = Ev(x

(v)
i ), and the decoder attempts to

reconstruct the original input x̂(v)i = Dv(z
(v)
i ). The model is trained by minimizing the weighted
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reconstruction error for observed instances in each view, formulated as:

LREC =
∑
v

∑
i

Wi,v||x̂(v)i − x
(v)
i ||22 (1)

While view-specific autoencoders can capture latent features within individual views, they do not
inherently model cross-view relationships, resulting in divergent latent spaces that impede view
alignment. Prevailing cross-view contrastive learning in multi-view clustering typically addresses
this using cross-view instance pairs [16, 6, 22]. However, the absence of view correspondences
in FIMC renders such pairwise instance selection infeasible. To overcome this limitation, we pro-
pose a correspondence-free graph contrastive learning strategy based on mutual k-nearest neighbors
(MNN), which establishes pseudo-alignment through feature affinity without relying on prior cor-
respondences. To learn discriminative representations while simultaneously mitigating cross-view
discrepancies, CPMN involves the separate construction of intra-view and cross-view MNN graphs,
which subsequently guide the establishment of positive pairs.

For intra-view consistency, positive pairs are identified based on the MNN criterion applied to the
latent representations. Specifically, a pair of representations (z

(v)
i , z

(v)
j ) from the same view v is

designated as positive if z(v)j is found among the k-nearest neighbors of z(v)i , and conversely, z(v)i is

also present among the k-nearest neighbors of z(v)j . All other pairs within this view are treated as
negative pairs. To quantify the affinity between these pairs, cosine similarity is utilized:

S
(v)
ij = sim(z

(v)
i , z

(v)
j ) =

(z
(v)
i )T z

(v)
j

∥z(v)i ∥∥z(v)j ∥
(2)

The objective is to pull together the representations of connected samples in the graph while pushing
apart unconnected ones. Thus, the loss function can be formulated as:

L
(v)
SGL = −

∑
i

1

|P(v)
i |

∑
j∈P(v)

i

log
exp(S

(v)
ij /τ)∑

k ̸=i exp(S
(v)
ik /τ)

(3)

where P(v)
i is the set of indices of instances forming positive pairs with z(v)i within view v, and τ is

the temperature parameter.

Complementing the intra-view learning, cross-view positive pairs are established between different
views, enabling alignment without correspondences. Considering a two-view example, positive
pairs (z

(va)
i , z

(vb)
j ) are similarly established if they are MNNs of each other across views va and

vb. All other pairings between these views are treated as negative pairs. Cosine similarity is
again employed to measure the similarity, denoted as S(va,vb)

ij = sim(z
(va)
i , z

(vb)
j ). Cross-view

graph contrastive learning aims to uncover and align latent structures, thereby achieving partial
representation consistency despite the absence of correspondence.The loss function takes a similar
form to the single-view contrastive loss:

L
(va,vb)
CGL = −

∑
i

1

|P(va,vb)
i |

∑
j∈P(va,vb)

i

log
exp(S

(va,vb)
ij /τ)∑

k exp(S
(va,vb)
ik /τ)

(4)

where P(va,vb)
i is the set of indices of instances from view vb forming positive pairs with z(va)

i .

The overall objective for this initial stage of correspondence-free graph contrastive learning, denoted
as LCFGC, integrates the aforementioned losses:

LCFGC = LREC + λLGL, LGL =
∑
v

L
(v)
SGL +

∑
va

∑
vb ̸=va

L
(va,vb)
CGL (5)

where λ is a trade-off parameter between the two losses.

Following the representation learning guided by LCFGC, initial view-specific cluster structures are
derived. Specifically, K-Means is applied to the latent representations Z(v) to obtain preliminary
clustering assignments and a set of prototypes C(v) ∈ RC×dz . These prototypes are crucial for the
subsequent graph matching.
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3.2 Prototype Graph Matching

Following the correspondence-free contrastive learning, we successfully obtain view-specific repre-
sentations and initial cluster prototypes for each view. However, these prototypes are independently
derived and thus lack explicit cross-view correspondences. To bridge this gap, we devise a prototype
graph matching strategy to establish correspondence to enable cross-view learning and fusion.

To establish an alignment between the independently derived sets of prototypes from different views
(e.g., view va and view vb), we formulate this challenge as a principled optimization problem,
specifically the classic Linear Assignment Problem (LAP), which can be modeled via bipartite graph
matching. In our model, one set of nodes in the bipartite graph consists of the C prototypes from
view va, denoted C(va) = {c(va)1 , . . . , c

(va)
C }, and the other set comprises the C prototypes from view

vb, C(vb) = {c(vb)1 , . . . , c
(vb)
C }. An edge between a prototype c(va)i and a prototype c(vb)j represents a

potential correspondence, and the core task is to find the most plausible one-to-one mapping between
these two sets.

To quantify the suitability of each potential match, we construct a cost matrix M (va,vb) ∈ RC×C ,
where M (va,vb)

ij represents the cost of matching the i-th prototype from view va, with the j-th
prototype from view vb. This cost is based on the dissimilarity between prototypes, which is
formulated as:

M
(va,vb)
ij =

1

exp(sim(c
(va)
i , c

(vb)
j ))

, sim(c
(va)
i , c

(vb)
j ) =

(cvai )
⊤
cvbj

∥cvai ∥∥cvbj ∥
(6)

where cvai denotes the i-th prototype from view va.

The goal is to find an optimal permutation of indices, π : C(va) → C(vb), that establishes a one-to-one
mapping. This mapping assigns each prototype c(va)

i in view va to a unique prototype c(vb)π(i) in view
vb, such that the cumulative cost of all matches is minimized. This objective can be expressed as:

min
π

C∑
i=1

Mi,π(i) (7)

This formulation guarantees that the problem is solvable in polynomial time. We find the globally
optimal solution using the efficient Hungarian algorithm [13]. The output of the algorithm is the
optimal matching, providing a mapping from the prototype indices of view va to those of view vb.

The established correspondence between prototypes creates a vital bridge for transferring clustering
information across views. This enables us to incorporate cross-view category information into
contrastive learning, using the category information in one view to guide the clustering in another.

3.3 Prototype Contrastive Learning

Leveraging the globally optimal prototype alignment, this stage transitions the learning objective from
structure discovery to semantic refinement. It utilizes the matched prototypes as robust categorical
anchors to refine both representations and prototypes. By contrasting instances with these anchors,
this module elevates the alignment objective from the initial MNN-based structural similarity to a
higher-order, globally consistent semantic alignment in the latent space. Additionally, for dynamic
updates to cluster assignments and prototypes, a learnable clustering layer is used to replace the
previous K-means methodology.

This prototype contrastive learning leverages the prototype mapping π : C(va) → C(vb) established
previously to guide representation refinement. For a given representation z(va)i , let j be the index of
the prototype c(va)

j to which it is assigned within view va. The core idea is to encourage z(va)i to be

simultaneously similar to its assigned prototype c(va)j and to the corresponding prototype in view vb,
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c
(vb)
π(j). This objective is realized through two complementary loss components, defined as:

L
(v)
SPL = −

∑
i

log
exp(Sc

(v)
ij /τ)∑C

c=1 exp(Sc
(v)
ic /τ)

, (8)

L
(va,vb)
CPL = −

∑
i

log
exp(Sc

(va,vb)
ij /τ)∑C

c=1 exp(Sc
(va,vb)
ic /τ)

(9)

Here, for instance z(v)i , the index j in the numerators Sc(v)ij and Sc(va,vb)ij refers to its assigned

prototype index for the positive term. Thus, L(v)
SPL promotes the proximity of each representation z(v)i

to its assigned prototype c(v)j within view v. Concurrently, L(va,vb)
CPL fosters alignment by encouraging

z
(va)
i from view va to be closer to the cross-view corresponding prototype c(vb)π(j) in view vb. The terms

Sc
(v)
ij = sim(z

(v)
i , c

(v)
j ) and Sc(va,vb)ij = sim(z

(va)
i , c

(vb)
π(j)) represent the cosine similarity between

representations and prototypes, within or across views respectively.

To further enhance cluster coherence and embedding discriminability, a self-supervision strategy
inspired by [7] is integrated within the learnable clustering layers. For each instance z(v)i , q(v)ik denotes
its soft assignment to prototypes c(v)k , which is computed using the Student’s t-distribution [20] as:

q
(v)
ik =

(1 + ||z(v)i − c
(v)
k ||22)−1∑C

j=1(1 + ||z(v)i − c
(v)
j ||22)−1

(10)

Subsequently, an auxiliary target distribution p(v)ik is formulated by sharpening q(v)ik as:

p
(v)
ik =

(q
(v)
ik )2/

∑
j q

(v)
jk∑

k′

(
(q

(v)
ik′ )2/

∑
j q

(v)
jk′

) (11)

The clustering refinement is then driven by minimizing the Kullback-Leibler (KL) divergence between
the current soft assignment distribution Q(v) and the target distribution P (v) for each view:

LCLU =
∑
v

∑
i

DKL(P
(v)
i ||Q(v)

i ) (12)

where P (v)
i and Q(v)

i are the target distribution and current soft assignment vectors for instance z(v)i ,
respectively, and DKL denotes the KL divergence.

The overall optimization objective for the prototype contrastive learning stage is a weighted sum of
the clustering loss and the prototype contrastive losses:

LPCL = LCLU + γLPL, LPL =
∑
v

L
(v)
SPL +

∑
va

∑
vb ̸=va

L
(va,vb)
CPL (13)

where γ is a trade-off parameter between the two losses. Joint optimization of these terms produces
discriminative representations and refined prototypes, culminating in a robust clustering solution for
fully incomplete multi-view data.

4 Experiments

In this section, we conduct experiments on five popular multi-view datasets to evaluate the effective-
ness of the proposed CPMN.

4.1 Experimental Settings

Datasets Five widely-used datasets are used to evaluate the proposed CPMN. (1) Caltech-101 is an
image dataset containing 8677 instances from 101 categories. Following [41], deep features extracted
by DECAF [12] and VGG19 [21] are used as two views. (2) Cub includes several categories of
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Table 1: Fully incomplete multi-view clustering performance comparison on five widely-used multi-
view datasets. "-" denotes that the baselines are not scalable to large datasets, The best and second
best results are shown in bold and underlined, respectively.

Data Type Method Caltech-101 Cub NoisyMNIST MNIST-USPS YouTubeFaces

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

100%
Unaligned

(ζ = 100%)

MVC-UM 43.3 67.3 31.9 44.3 40.7 23.0 19.3 9.9 4.7 53.5 48.4 35.0 – – –
GWMAC 4.9 16.0 0.3 28.3 21.0 9.1 11.4 0.3 0.1 15.6 3.7 1.5 3.2 2.3 0.2
UPMGC-SM 51.0 73.4 33.7 74.0 69.8 59.7 52.6 48.8 36.8 59.8 58.5 45.5 – – –
SMILE 47.6 74.0 33.0 63.4 61.9 48.2 82.7 79.5 74.2 85.2 80.8 76.1 52.5 73.6 42.6
CPMN 57.0 77.0 68.4 72.5 72.1 55.2 84.8 80.2 79.8 88.0 82.1 80.8 70.0 82.5 57.5

100%
Missing

(ψ = 100%)

DM2C 28.2 59.3 18.3 35.6 36.4 6.4 23.2 15.4 8.0 35.1 34.2 18.3 16.2 32.1 5.8
SMILE 30.5 60.1 20.4 40.2 37.5 20.8 69.0 63.8 54.1 74.3 69.6 61.8 26.5 49.9 18.5
CPMN 38.7 68.2 40.7 47.0 49.8 29.6 71.1 68.2 58.8 75.5 69.2 66.0 27.4 51.3 16.2

Table 2: Partially incomplete multi-view clustering performance comparison on five widely-used
multi-view datasets. "-" denotes that the baselines are not scalable to large datasets, The best and
second best results are shown in bold and underlined, respectively.

Data Type Method Caltech-101 Cub NoisyMNIST MNIST-USPS YouTubeFaces

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

50%
Unaligned
(ζ = 50%)

PVC 18.6 48.9 14.6 50.2 56.3 38.6 81.8 82.3 82.0 86.5 78.1 74.6 – – –
MvCLN 35.6 61.0 40.9 58.2 55.2 40.8 91.1 84.2 83.6 90.0 81.4 80.4 54.0 69.2 44.2
SURE 46.2 70.7 33.0 64.5 62.0 47.9 95.2 88.2 89.7 92.1 82.8 83.5 54.7 68.8 43.4
GWMAC 4.4 15.4 0.4 30.6 27.2 12.2 11.4 0.2 0.1 16.1 4.0 1.8 3.2 2.2 0.2
UPMGC-SM 53.9 76.3 36.6 76.1 71.3 61.9 61.9 55.4 44.5 64.8 59.7 46.3 – – –
SMILE 50.9 79.4 35.2 71.1 70.4 58.2 97.9 94.2 95.4 98.6 96.3 97.0 57.8 77.1 48.8
CPMN 59.2 76.9 69.3 68.5 71.1 58.4 95.8 90.2 91.5 96.6 92.0 93.1 67.2 80.9 53.5

50%
Missing

(ψ = 50%)

DAIMC 56.2 78.0 41.8 62.7 58.5 47.7 33.8 26.4 16.0 55.2 49.6 38.6 – – –
EERIMVC 43.6 69.0 26.4 68.7 63.9 53.8 55.6 45.9 36.8 65.2 55.7 48.9 – – –
SURE 34.6 57.8 19.9 58.3 50.4 37.4 93.0 85.4 85.9 92.3 85.0 84.3 45.2 46.9 29.6
DCP 44.3 71.0 45.3 53.7 65.5 47.3 80.0 75.2 70.7 94.0 89.7 88.3 26.3 47.2 14.4
DSIMVC 16.4 24.8 9.2 54.4 52.4 35.2 55.8 55.1 43.0 97.0 92.4 93.5 29.4 48.5 19.0
SMILE 51.2 79.0 35.6 69.5 66.7 54.9 96.8 91.7 93.0 98.5 95.7 96.6 54.6 76.3 45.2
CPMN 52.9 79.7 51.7 67.8 60.4 54.5 96.0 93.3 91.2 97.5 95.8 97.0 58.1 75.0 50.3

birds. Following [41], visual features extracted by GoogLeNet [23] and text features extracted by
doc2vec [14] are used as two views. (3) NoisyMNIST includes 70,000 instances, each providing
two views: the raw MNIST image and a rotated, Gaussian-noised variant. Following [41], 30, 000
instances are randomly selected for evaluation. (4) MNIST-USPS contains 67,291 digit images from
the MNIST and USPS datasets. As in a prior study [41], we randomly sample 5,000 items from each
dataset, covering all 10 digits. (5) YouTubeFaces features 152,549 faces across 66 identities, with
each identity having over 1,500 images. For comparisons, we follow prior work [41] to describe each
image using multi-view features, specifically a 512-dimensional GIST feature, a 1984-dimensional
HOG feature, and a 1024-dimensional HIST feature.

Baselines We compared CPMN with 12 multi-view clustering baselines. These baselines can
be divided into the following categories based on the type of data they handle. Four baselines are
designed to handle partially missing multi-view data, including DAIMC [9], EERIMVC [19], DCP
[15], and DSIMVC [24]. PVC [10] and MvCLN [36] are designed for partially unaligned data. SURE
[35] can address both of the aforementioned partial incompleteness problems. Distinctly, MVC-UM
[39], GWMAC [5], and UPMGC-SM [32] are designed to handle fully unaligned multi-view data.
DM2C [11] is designed to handle fully missing multi-view data. SMILE [41] can address both of the
aforementioned problems. For fairness, we only show the clustering results of various methods on
the incomplete data they can process.

Implementation Details We implement the proposed CPMN via the PyTorch public toolboxes,
and we conduct the experiment on a server running Ubuntu Linux 20.04 that is equipped with an
Intel(R) Xeon(TM) W5-3425 CPU @ 3.20 GHz, NVIDIA RTX 4090 Graphics Processing Units
(GPUs), and 128 GB of memory. Following previous studies [35, 41], we define the missing rate as
ψ = m/N , where m is the number of instances with missing views. To generate incomplete data, we
randomly select m instances and drop one view for each instance. Similarly, we define the unaligned
rate as ζ = c/N , where c is the number of instances without correspondences. We randomly sample
c instances and remove the correspondence between their views.
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Table 3: ACC comparison with SMILE on Caltech-101 across a spectrum of missing view rates.
Missing Rates 20% 40% 60% 80% 100%

SMILE 60.1 55.0 47.2 39.9 30.5
CPMN 59.4 54.8 48.4 42.3 38.7

Table 4: Ablation study on Caltech-101. Each configuration uses the loss terms identified by "!".

LREC LGL LPL LCLU
100% Missing 100% Unaligned

ACC ARI NMI ACC ARI NMI

! 31.3 52.0 24.2 47.3 59.4 45.9
! ! 32.8 54.1 26.3 49.2 67.6 49.3
! ! ! 33.7 61.4 39.1 53.8 75.3 59.1
! ! ! 34.8 65.5 36.3 53.2 76.6 55.9
! ! ! ! 38.7 68.2 40.7 57.0 77.0 68.4

4.2 Comparison with Baselines

Table 1 provides a comprehensive quantitative comparison of CPMN against several multi-view
clustering methods under two challenging fully incomplete scenarios: 100% unaligned instances
and 100% missing views. The experimental results lead to several key observations. Firstly, our
CPMN outperforms baselines across nearly all datasets, a success attributed to its novel prototype
matching-based view alignment strategy. Secondly, with the unaligned rate of 100%, both CPMN and
SMILE generally exhibit superior performance over other unaligned multi-view clustering methods,
benefiting from the latent feature extraction capabilities of DNN. Conventional methods like UPMGC-
SM achieve competitive performance, suggesting potential limitations of DNN-based approaches in
capturing essential data distributions within smaller-scale datasets.

Furthermore, to comprehensively evaluate the robustness of CPMN, its clustering performance is
also tested under partially incomplete scenarios. Table 2 presents the clustering results for CPMN
alongside several baseline methods under scenarios of 50% unaligned instances and 50% missing
views. The results indicate that even though CPMN utilizes no view correspondence information and
employs view-specific autoencoders without weight sharing, it still achieves top-two performance
across most datasets. Notably, it attains the best overall results on Caltech-101 and YouTubeFaces,
leading in at least two metrics per dataset. These results further demonstrate the effectiveness of
CPMN and its capability to generalize to partially incomplete settings.

To further evaluate the robustness of CPMN against the strongest baseline, SMILE, we conducted a
detailed analysis on the Caltech-101 dataset with different missing view rates. Table 3 presents the
clustering results under missing view rates from 20% to 100%. From the results, we can observe
that: (1) At lower missing rates (20%-40%), where substantial paired information is still available,
SMILE shows a slight advantage. Notably, our CPMN achieves highly competitive performance
even in this scenario, for which it was not specialized, underscoring the general effectiveness of
its correspondence-free framework. (2) Crucially, as the missing rate reaches 60% and paired
information becomes scarce, SMILE’s performance begins to degrade sharply. In contrast, CPMN’s
performance remains remarkably stable, surpassing SMILE. This trend intensifies as the problem
difficulty increases (80%-100%), clearly demonstrating the superior robustness of CPMN’s matching
paradigm precisely in the challenging scenarios.

4.3 Ablation Studies and Parameter Analysis

To verify the significance of each component in CPMN, we perform ablation studies to isolate the
effect of the reconstruction loss LREC , graph contrastive loss LGL, prototype contrastive loss LPL,
and clustering loss LCLU . The clustering results on the Caltech-101 dataset with 100% unalignment
and 100% missing views are shown in Table 4. From the results, one could observe that: (1) With the
addition of components, the clustering performance improves significantly, and the best clustering
performance can be achieved when using all loss terms. (2) LREC plays an essential role in the AEs
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(a) ACC vs. γ and λ with fully
missing multi-view data

(b) ACC vs. γ and λ with fully
unaligned multi-view data

(c) ACC vs. dz with fully incomplete
multi-view data

Figure 3: Sensitivity studies of CPMN on the hyper-parameter λ, γ, and dz

and is therefore retained. Augmenting this with LGL led to a notable enhancement. (3) Building
upon the LREC + LGL baseline, the introduction of either LPL and LCLU can further improve
performance. This underscores the complementary benefits of these terms in the overall model.

There are two tunable hyper-parameters, namely, λ and γ, which impact the weights of various
loss terms. To better illustrate the stability of CPMN, we conducted experiments to investigate the
sensitivity of the proposed method to these two hyper-parameters. Figure 3a-3b shows the ACC
values versus the hyper-parameters λ and γ on the Caltech-101 dataset with 100% unalignment and
100% missing views. The results show that the CPMN maintains relatively stable performance across
a considerable range of these hyper-parameter settings within both incomplete scenarios. When λ and
γ are selected from the ranges of [1e-3, 1] and [1e-2, 1], CPMN can achieve desirable performance.

The dimensionality of the latent space dz is a critical hyper-parameter in deep clustering models,
exerting a considerable influence on clustering performance. To examine the effect of dz , a sensitivity
analysis is conducted on the Caltech-101 dataset with dz ∈ [8, 128]. Figure 3c shows the ACC
values versus dz with 100% unalignment and 100% missing views. It can be observed that ACC
increases significantly as dz is raised from 8 to 16. Subsequently, clustering performance gradually
declines with further increases in dz . This phenomenon occurs because higher dimensionalities may
introduce noise that adversely affects clustering, whereas lower dimensionalities might fail to capture
the underlying structure.

5 Conclusion

In this paper, we propose the Contrastive Prototype Matching Network (CPMN), a novel framework
that establishes a new structure-level alignment paradigm for fully incomplete multi-view clustering
(FIMC). CPMN pioneers learning consistent global clustering by explicitly aligning prototypes across
views. Initially, a correspondence-free graph contrastive learning stage with MNN establishes view-
specific prototypes from entirely unpaired views. Subsequently, a crucial similarity-based prototype
graph matching step explicitly aligns these prototypes, resolving category discrepancies and forging
a unified clustering structure across views. Building on this alignment, CPMN employs a prototype-
aware contrastive learning mechanism that leverages matched prototypes and emerging category
information to refine representations for enhanced semantic consistency. Extensive experiments
demonstrate that CPMN achieves superior performance compared to various baselines.

Despite its success, we acknowledge avenues for future work. The performance of CPMN is
theoretically linked to the quality of the initial prototypes, suggesting further research into the
convergence properties of the joint optimization. Furthermore, our method assumes a predefined
cluster count C . Extending this structural alignment paradigm to a non-parametric setting, where C
is dynamically inferred from the data, remains a significant and open research direction.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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and software configurations for the reproducibility of the proposed method.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
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of a large language model), releasing of a model checkpoint, or other means that are
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to reproduce that algorithm.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This study uses public datasets. The code is provided in the supplementary
material.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper provides the details of data preprocessing steps, hyperparameters,
and optimization in the Experiments section.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Almost all compared baselines do not include the statistical significance in
experiments; thus, we do not report it.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources are stated in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The proposed algorithm has no societal impact. All datasets used in this paper
are publicly available and the algorithm only performs clustering on the datasets.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The proposed algorithm has no misuse risk. All datasets used in this paper are
publicly available and the algorithm only performs clustering on the datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All relevant papers and datasets are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The proposed method does not involve LLMs as any important, original, or
non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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