
Published as a conference paper at ICLR 2023

TRAINABLE WEIGHT AVERAGING: EFFICIENT TRAIN-
ING BY OPTIMIZING HISTORICAL SOLUTIONS

Tao Li1, Zhehao Huang1, Qinghua Tao2, Yingwen Wu1 & Xiaolin Huang∗1
1Department of Automation, Shanghai Jiao Tong University
2ESAT-STADIUS, KU Leuven

ABSTRACT

Stochastic gradient descent (SGD) and its variants are considered as the de-facto
methods to train deep neural networks (DNNs). While recent improvements to
SGD mainly focus on the descent algorithm itself, few works pay attention to
utilizing the historical solutions—as an iterative method, SGD has gone through
substantial explorations before convergence. Recently, an interesting attempt is
stochastic weight averaging (SWA), which significantly improves the generaliza-
tion by simply averaging the solutions at the tail stage of training. In this paper,
we realize that the averaging coefficients could be determined in a trainable man-
ner and propose Trainable Weight Averaging (TWA), a novel optimization method
in the reduced subspace spanned by historical solutions. TWA has much greater
flexibility and can be applied to the head stage of training to achieve training ef-
ficiency while preserving good generalization capability. Further, we propose a
distributed training scheme to resolve the memory burden of large-scale training
with efficient parallel computation. In the extensive numerical experiments, (i)
TWA achieves consistent improvements over SWA with less sensitivity to learn-
ing rate; (ii) applying TWA in the head stage of training largely speeds up the
convergence, resulting in over 40% time saving on CIFAR and 30% on ImageNet
with improved generalization compared with regular training. The code of imple-
mentation is available https://github.com/nblt/TWA.

1 INTRODUCTION

Training deep neural networks (DNNs) usually requires a large amount of time. As the sizes of
models and datasets grow larger, more efficient optimization methods together with better perfor-
mance are increasingly demanded. In the existing works, great efforts have been made to improve
the efficiency of stochastic gradient descent (SGD) and its variants, which mainly focus on adaptive
learning rates (Duchi et al., 2011; Zeiler, 2012; Kingma & Ba, 2015; Loshchilov & Hutter, 2019; Yao
et al., 2021; Heo et al., 2021) or accelerated schemes (Polyak, 1964; Nesterov, 1983; 1988; 2003).
As an iterative descent method, SGD generates a series of solutions during optimization. These his-
torical solutions provide dynamic information about the training and have brought many interesting
perspectives, e.g., trajectory (Li et al., 2022), landscape (Garipov et al., 2018), to name a few. In fact,
they can also be utilized to improve the training performance, resulting in the so-called stochastic
weight averaging (SWA) (Izmailov et al., 2018), which shows significantly better generalization by
simply averaging the tail stage explorations of SGD. A similar idea could be found in Szegedy et al.
(2016), which designs an exponential moving average (EMA) and considers that a heuristic strategy
could be better than equivalently averaging. The success of SWA and EMA encourages more in-
depth investigations on the roles of historical solutions obtained during the training (Athiwaratkun
et al., 2018; Nikishin et al., 2018; Yang et al., 2019).

In this paper, our main purpose is to utilize historical solutions by optimizing them, rather than using
fixed averaging (e.g., SWA) or a heuristic combination (e.g., EMA). With such an optimized averag-
ing scheme, we can achieve higher accuracy using only the solutions in a relatively early state (i.e.
the head stage). In other words, we speed up the training and meanwhile improve the performance.
The idea of utilizing these early solutions in DNNs’ training is mainly inspired by two facts. On the

∗Corresponding author (xiaolinhuang@sjtu.edu.cn)

1

https://github.com/nblt/TWA


Published as a conference paper at ICLR 2023

𝐰3

𝐰2

𝐰1

𝐰swa

𝐰twa

−𝜂𝑷(𝑷⊤∇𝐿(𝐰))

Figure 1: TWA intuition.

Input: Sampled weights {wi}ni=1, Batch size b, Loss
function L : W ×X × Y → R+, Learning rate η.

Output: Model trained with TWA
Orthogonalize {wi}ni=1 to {ei}ni=1;
Initialize w

(0)
twa, t = 0, P = [e1, e2, · · · , en];

while not converged do
Sample batch data: B = {(xk,yk)}bk=1;
Compute gradient: g = ∇wLB(w

(t)
twa);

Update weights: w(t+1)
twa = w

(t)
twa − ηP (P⊤g);

t = t+ 1;
end while
Return w

(t)
twa

Algorithm 1: TWA algorithm.

one hand, high test accuracy commonly starts appearing at an early stage. For example, a PreAct
ResNet-164 model (He et al., 2016) achieves over 80% test accuracy within 10 training epochs on
CIFAR-10 (Krizhevsky & Hinton, 2009), while requiring to complete the whole 200 epochs to reach
its final 95% accuracy. This observation also coincides with the recent findings that the key connec-
tivity patterns of DNNs emerge early in training (You et al., 2020; Frankle et al., 2020), indicating a
well-explored solution space formed. On the other hand, simply averaging the solutions collected at
the SWA stage immediately provides a huge accuracy improvement, e.g. over 16% on CIFAR-100
with Wide ResNet-28-10 (Zagoruyko & Komodakis, 2016) than before averaging (Izmailov et al.,
2018). These facts point out a promising direction that sufficiently utilizing these early explorations
may be capable of quickly composing the final solution while obtaining good accuracy.

As the model parameters go through a rapid evolution at the early stage of training, a simple aver-
aging strategy with fixed weighting coefficients as in SWA and EMA can result in large estimation
errors. We introduce a Trainable Weight Averaging (TWA), which allows explicit adjustments for
the averaging coefficients in a trainable manner. Specifically, we construct a subspace that con-
tains all sampled solutions during the training and then conduct efficient optimization therein. As
optimization in such a subspace takes into account all possible averaging choices, we are able to
adaptively search for a good set of averaging coefficients regardless of the quality of sampled solu-
tions and largely reduce the estimation errors. The proposed optimization scheme is essentially the
gradient projection onto a tiny subspace. Hence, the degree of freedom for training is substantially
reduced from the original millions to dozens or hundreds (equal to the dimension of the subspace),
making TWA enjoy fast convergence and meanwhile immune to overfitting, the latter explains that
better training accuracy of TWA over SWA or EMA can lead to better test accuracy. In extensive
experiments with various network architectures on different tasks, we reach superior performance
with TWA applied to the head stage of training. For instance, we attain 1.5 ∼ 2.2% accuracy im-
provement on CIFAR-100 and 0.1% on ImageNet with over 40% and 30% training epochs reduced,
respectively, compared with the regular training.

In summary, we make the following contributions:

• We propose Trainable Weight Averaging (TWA) that allows the averaging coefficients de-
termined in a trainable manner instead of a pre-defined strategy. It brings consistent im-
provements over SWA or EMA with reduced estimation error.

• We successfully apply TWA to the head stage of training, resulting in a great time saving
(e.g. over 40% on CIFAR and 30% on ImageNet) compared to regular training along with
improved performance and reduced generalization gap.

• Our TWA is easy to implement and can be flexibly plugged into different stages of training
to bring consistent improvements. It provides a new scheme for achieving efficient DNNs’
training by sufficiently utilizing historical explorations.

2 METHOD

In this section, we first formulate the optimization target of TWA. Then a detailed training algorithm
is introduced, which consists of two phases: Schmidt orthogonalization and projected optimization.

2



Published as a conference paper at ICLR 2023

Note in this paper, the model’s weights are aligned as a vector, i.e., w ∈ RD, where D denotes the
number of parameters.

2.1 OPTIMIZATION TARGET

In SWA, weight averaging is simply given by wswa = 1
n

∑n
i=1 wi, where n solutions of the network

collected at the tail of training are equally weighted. Such an averaging strategy has been proven
quite effective with improved generalization ability. However, equally averaging could not always be
a perfect solution, which motivates some heuristic modifications on weighting strategy, e.g., EMA.
Both SWA and EMA are fixed averaging strategies, which may not adequately adapt to the head
stage of training and would result in estimation errors, due to the fact that early historical solutions
have not stepped into a stationary distribution.

In this paper, we propose to optimize the averaging coefficients of different weights with the hope
of reducing the corresponding estimation error. Specifically, the set of possible TWA solutions
considered, i.e., wtwa, can be represented as follows:

A = {α1w1 + α2w2 + · · ·+ αnwn | αi ∈ R} . (1)

The weight vectors between consecutive solutions could have a high cosine similarity. To decouple
them and for better optimization, we will further orthogonalize {wi}ni=1 and find a set of orthogonal
bases {ei}ni=1 to support the solution space, i.e., A = {β1e1 + β2e2 + · · ·+ βnen | βi ∈ R}.
Then we search for a good solution wtwa in A by optimizing the following problem,

min
β1,β2,··· ,βn

E(x,y)∼D [L (f (wtwa;x) ,y)] +
λ

2

n∑
i=1

β2
i ,

s.t. wtwa = β1e1 + β2e2 + · · ·+ βnen,

(2)

where L(·, ·) is the loss function as in regular training and the second term is a regularization coeffi-
cient λ > 0. Note that both SWA and EMA are special solutions of (2) without optimization.

Optimizing over βi brings benefits in the view of training loss, and a good generalization ability
could also be expected: in regular training, the number of optimization variables is D, which is very
large, but in (2), there are only n averaging coefficients {βi}ni=1 to be optimized. The significant
dimensionality reduction could benefit better generalization.

2.2 TRAINING ALGORITHM

Instead of directly optimizing βi, we note that there exists a bijection between the coefficient space
{βi}ni=1 ∈ Rn and the parameter space RD, i.e., each set of the coefficients is uniquely mapped to
one point in the parameter space, which forms a complete subspace (with dimensionality n). We
could alternatively optimize these coefficients in such a subspace.

We first focus on finding a set of orthogonal bases {ei}ni=1 to span the subspace that covers {wi}ni=1.
This is a standard Schmidt orthogonalization, which sequentially takes the following steps:{

ek = wk −
(
wk

⊤e1
)
e1 −

(
wk

⊤e2
)
e2 − · · · −

(
wk

⊤ek−1

)
ek−1,

ek = ek/∥ek∥2.
(3)

We then initialize the w
(0)
twa as one point in the subspace (e.g. 1

n

∑n
i=1 wi), and optimize the net-

work’s parameters therein. Let P = [e1, e2, · · · , en], such optimization can be easily achieved by
projecting the gradient onto the subspace via projection matrix PP⊤. We summarize the detailed
training procedures of the proposed TWA in Algorithm 1 with an intuitive illustration in Figure 1.
The detailed implementation is described in Appendix B.

3 OPTIMIZATION PROVIDES BETTER FLEXIBILITY

The key difference between SWA and TWA is that the averaging coefficients in TWA are determined
in a trainable manner, or more precisely, are data-dependent. This potentially enables more precise
estimation for the center minima and better tolerance for the outliers that are not aware by SWA.

3



Published as a conference paper at ICLR 2023

Figure 2: An efficient parallel scheme for distributed training.

Notice that in the view of coefficient optimization, there is no essential difference between SWA and
EMA, which both provide specific and data-independent solutions. Thus, we in the following only
compare TWA with SWA.

Mandt et al. (2017) demonstrated that under appropriate assumptions, running SGD with a constant
learning rate is equivalent to sampling from a stationary Gaussian distribution, and the variance of
the distribution is controlled by the learning rate. Accordingly, we assume the solutions at the tail
stage of SGD training are sampled from a Gaussian distribution N (µ,Σ) centered at the minimum
µ with covariance Σ. Approximately, the sampled solutions {wi}ni=1 are independent random vari-
ables from N (µ,Σ), as long as there are sufficient iterations between adjacent samplings. SWA
and TWA provide two estimators for the minimum µ, i.e., wswa and wtwa. As an averaged solution,
wswa has statistically better estimation than any single solution due to the effect of variance reduc-
tion, while wtwa is approaching the center by minimizing the training loss. As long as the training
loss serves as meaningful supervision (which holds under the typical assumption that µ is the center
minimum with lowest training loss Mandt et al. (2017); Izmailov et al. (2018)), wtwa could approach
µ better than wswa with the posterior optimization for averaging coefficients. In this regard, wtwa

could have a lower expected variance: E
(
∥wtwa − µ∥22

)
≤ E

(
∥wswa − µ∥22

)
.

The advantages of optimizing averaging coefficients could be more prominent in the head stage of
training, where the weights are going through a rapid evolution. A simple averaging strategy as
SWA could introduce a large estimation error (as illustrated in Table 3 and 4), while TWA enables
correcting it to a smaller estimation error via optimization. In fact, TWA provides much more
flexibility to sufficiently utilize historical solutions and produces an optimized solution adaptively.

4 AN EFFICIENT IMPLEMENTATION FOR DISTRIBUTED TRAINING

The above discussion shows promising improvement by optimizing the historical solutions. The
only issue one may worry about is the burden in storage (the additional time complexity is small as
shown in Table 6). During optimization, TWA requires the projection matrix P involving dozens or
hundreds of historical weights, which indeed poses a challenge for large models on storage burden.
It is preferable to locate P in GPUs to enable efficient matrix operations. However, the size of
P increases as the model becomes larger, making it prohibitive to store in a single GPU. To cope
with this, we design an efficient scheme with parallel distributed training to enable a) partition of the
memory burden of P into multiple GPUs and b) efficient parallel computation of gradient projection.
As a result, we successfully optimize more than 900 historical solution coefficients for ResNet-50
on ImageNet task by 4 v100 GPUs. In our experiments, we use at most 300 historical solutions and
there is still available space for larger tasks.

Suppose that there are k GPUs for parallel training. We first uniformly divide P into k sub-matrices
as P = [P1,P2, · · · ,Pk], where each GPU stores a local sub-matrix Pi, i = 1, · · · , k. Recall
that for an iteration in distributed training, each GPU computes a local gradient gi and synchro-
nizes it with other GPUs to obtain the global gradient through an efficient all-reduce operation
(Rabenseifner, 2004). We mimic such a process for gradient projection: the local projected gradi-
ent PiP

⊤
i g is firstly computed in each card and then synchronized with others to obtain the global

projected gradient with another all-reduce operation. We illustrate such a process in Figure 2.

For averaging n historical solutions with per size B, the memory burden for each GPU card is
reduced to ⌈n/k⌉B, while the computation of gradient projection is also reduced to O(⌈n/k⌉D) (D

4



Published as a conference paper at ICLR 2023

10 50 100
Epochs

80

85

90

95

Ac
cu

ra
cy

 (%
)

VGG16 on CIFAR-10

SGD final
TWA
SGD

10 50 100
Epochs

80

85

90

95
PreResNet-164 on CIFAR-10

SGD final
TWA
SGD

10 50 100
Epochs

40

60

80 VGG16 on CIFAR-100

SGD final
TWA
SGD

10 50 100
Epochs

50

60

70

80 PreResNet-164 on CIFAR-100

SGD final
TWA
SGD

Figure 3: Performance comparisons on before and after TWA w.r.t. different epochs of weights used.
“SGD final” indicates the accuracy reached by regular SGD training and “TWA” is the corresponding
accuracy reached by Algorithm 1 with these epochs of weights. The final accuracy of SGD training
is plotted for reference. TWA dramatically lifts the SGD accuracy and outperforms the final accuracy
of SGD within 100 epochs. The experiments are repeated over 3 trials.

is the number of the parameters). Hence, we can achieve efficient TWA training by making full use
of the remaining memory of each GPU aside the forward/backward training.

5 EXPERIMENTS

In this section, a series of numerical experiments are conducted, demonstrating the effectiveness of
our proposed TWA for fast convergence and better performance. First, we show that TWA improves
SWA in the existing SWA settings, i.e., used in the tail stage of training. Second, we apply TWA
to the head stage of training, which brings significant efficiency improvements together with better
performance. Then, we visualize loss / accuracy surfaces to demonstrate the improvements of TWA.

5.1 EXPERIMENTAL SETTINGS

Datasets. We experiment over three benchmark image datasets, i.e., CIFAR-10, CIFAR-100
(Krizhevsky & Hinton, 2009), and ImageNet (Deng et al., 2009). Following prior works (Izmailov
et al., 2018; Yang et al., 2019), we apply standard preprocessing for experiments on CIFAR datasets,
and adopt the preprocessing and data augmentation procedures in the public Pytorch example on
ImageNet (Paszke et al., 2017).

Architectures. We use two representative architectures, VGG-16 (Simonyan & Zisserman, 2014)
and PreAct ResNet-164 (He et al., 2016) on CIFAR experiments. For ImageNet, we use ResNet-18
and ResNet-50 (He et al., 2016).

Training. The main body of experiments contains two parts: (1) for the tail stage of training, we use
the same hyper-parameters as in SWA (Izmailov et al., 2018) and then a larger tail learning rate is
also tried. (2) for the head stage of training, we adopt the standard training protocol with a step-wise
learning rate. For CIFAR, we run all experiments with 3 seeds and report the mean test accuracy.
We use SGD optimizer with momentum 0.9, weight decay 10−4, and batch size 128. We train the
models for 200 epochs with an initial learning rate 0.1 and decay it by 10 at the 100th and the 150th
epochs. For ImageNet, we follow official PyTorch implementation1. For TWA, we sample solutions
once after each epoch training for CIFAR and uniformly sample 5 times per epoch for ImageNet.
We use a scaled learning rate (Figure 4), which takes 10 epochs of training for CIFAR and 2 epochs
for ImageNet for fast convergence. The regularization coefficient λ defaults to 10−5. More details
(including the number of the historical solutions used) could be found in Appendix A.

5.2 IMPROVING SWA SOLUTIONS

In this part, we compare SWA and TWA in the original SWA settings. Specifically, TWA and SWA
use the same weights sampled from the tail stage of training. For CIFAR, we try two different tail
learning rates: 0.05, the recommended one in (Izmailov et al., 2018), and 0.10, a larger one for the
case with greater variance. The results in Table 1 show that TWA brings consistent improvements

1Available at https://github.com/pytorch/examples/tree/main/imagenet.

5

https://github.com/pytorch/examples/tree/main/imagenet


Published as a conference paper at ICLR 2023

1 5 10 20
Epochs

1

2

4

Le
ar

ni
ng

 ra
te

Condensed learning rate
lr=1 (20 epochs)
lr=2 (10 epochs)
lr=4 (5 epochs)

1 5 10 20
Epochs

93.0

93.2

93.4

93.6

93.8

94.0

Ac
cu

ra
cy

 (%
)

VGG16 on CIFAR-10

lr=1 (20 epochs)
lr=2 (10 epochs)
lr=4 (5 epochs)

1 5 10 20
Epochs

76

77

78

Ac
cu

ra
cy

 (%
)

PreResNet-164 on CIFAR-100

lr=1 (20 epochs)
lr=2 (10 epochs)
lr=4 (5 epochs)

Figure 4: Left: Scaled learning rate schedules with different scaling factors; Middle and Right:
Test accuracy curves of TWA w.r.t. to different schedules on CIFAR-10/100. Training in subspace
shows high robustness to scaled learning rate, which enlarges the learning rate and reduces the
corresponding training epochs. In this way, TWA achieves very fast convergence.

over SWA. Especially when the learning rate is not well-tuned, SWA’s performance suffers a dis-
tinctive drop, but TWA is less sensitive since the estimation error could be well controlled through
training. For instance, in the case of CIFAR-100 with VGG-16 and a tail learning rate of 0.10,
the estimation error of SWA substantially increases while TWA achieves a significant accuracy im-
provement, i.e., 4.18%, over SWA. Note that for a fair comparison, TWA starts from the last sampled
weights, not the averaged solution of SWA.

Table 1: Test accuracy (%) on CIFAR-10/100 for tail training with different learning rates

SWA_LR = 0.05 SWA_LR = 0.10

DATASET MODEL SWA TWA (+10) SWA TWA (+10)

VGG16 94.01± 0.04 94.16± 0.14 91.03± 0.14 92.41± 0.15
CIFAR-10 PRERESNET-164 95.58± 0.09 95.65± 0.13 91.58± 0.45 92.61± 0.09

VGG16 74.71± 0.03 75.73± 0.18 65.52± 0.25 69.70± 0.45
CIFAR-100 PRERESNET-164 80.20± 0.41 80.35± 0.27 78.14± 0.48 78.87± 0.27

On ImageNet, we experiment with ResNet-18/50 (He et al., 2016). Following (Izmailov et al.,
2018; Yang et al., 2019), we start from pre-trained models in torchvision.models and collect
model weights by running SGD optimizer up to 10 epochs (with a constant learning rate 0.005).
In Table 2, we report the test accuracy and observe that with more sampling epochs, both TWA
and SWA achieve better performance. Notably, TWA performs better than SWA by 0.1 ∼ 0.3%,
and such improvements are more obvious in the “5 EPOCHS” case. For example, using 5 epochs
of sampled weights, TWA achieves 70.23% accuracy with ResNet-18 and 76.78% accuracy with
ResNet-50, outperforming the SWA counterparts with 10 epochs. This indicates that TWA requires
fewer historical solution samples to achieve a comparable or even better performance than SWA,
due to its ability to reduce the estimation variance with optimized averaging coefficients.

Table 2: Top-1 accuracy (%) on ImageNet for tail training with different averaging epochs

5 EPOCHS 10 EPOCHS

MODEL PRETRAINED SWA TWA (+1) SWA TWA (+1)

RESNET-18 69.76 70.02 70.28 70.12 70.32
RESNET-50 76.13 76.62 76.78 76.74 76.93

5.3 EFFICIENT TRAINING AND BETTER GENERALIZATION

In the head stage of training, SWA usually fails due to the large estimation variance from fast-
evolving solutions and large learning rate. Since TWA could reduce the variance and be less sensitive
to the learning rate, it can also be expected to work well in this stage. If so, it is promising to
simultaneously attain generalization improvements and training efficiency.

6

https://pytorch.org/vision/master/models.html


Published as a conference paper at ICLR 2023

We first investigate the experiments on CIFAR datasets. The original training schedule contains 200
epochs and we take the first 100 epoch explorations for TWA. The results are given in Table 3. It
can be observed that TWA achieves better performance compared to the regular SGD training with
a significantly reduced generalization gap. For instance, we attain 1.52% accuracy improvement
on CIFAR-100 with VGG-16 while the generalization gap is reduced by 9.56%. This suggests
that a better solution could already be composed using these historical solutions without further
training by more delicate learning rates, which instead may bring overfitting problems and harm
the generalization. By comparisons, we also apply SWA to average these samples, which shows
degraded performance due to the existence of estimation error. Apart from the good performance in
accuracy, TWA also manifests its great potential in improving the training efficiency: we use only 10
epochs to complete the convergence, while the regular SGD needs 100 epochs. As TWA and SGD
have nearly the same computation overhead per epoch, the time-saving is around 45% in TWA.

Table 3: Test accuracy (%) and generalization gap (%) on CIFAR-10/100 for the head training

SGD (200 EPOCHS) SWA (100 EPOCHS) TWA (100 + 10 EPOCHS)

DATASET MODEL ACCURACY GAP ACCURACY ACCURACY GAP

VGG16 93.54± 0.11 6.42 92.40± 0.08 93.79± 0.18 5.59 (↓ 0.83)
CIFAR-10 PRERESNET-164 95.11± 0.17 4.86 92.52± 0.04 95.19± 0.04 4.11 (↓ 0.75)

VGG16 72.72± 0.17 26.70 69.18± 0.24 74.24± 0.24 17.14 (↓ 9.56)
CIFAR-100 PRERESNET-164 75.85± 0.18 24.10 73.36± 0.34 78.11± 0.19 20.02 (↓ 4.08)

Generally, utilizing more epochs of explorations can provide a better estimation for the center min-
imum and hence lead to better performance. Then, we also study the impact of different averaging
epochs, and the results are illustrated in Figure 3, where the final accuracy of SGD and the accuracy
reached by SGD before averaging are also given for reference. It could be observed that the model’s
performance is consistently improved with more epochs of explorations. Notably, although each
historical solution in a relatively short period of explorations is not good, satisfied solutions have
already emerged in the subspace spanned by these solutions. Then through proper optimization in
subspace, TWA could find them out, e.g., on CIFAR-100 with PreAct ResNet-164 model, averaging
over 50 epochs via TWA has already matched the final performance of regular SGD training.

Table 4: Top-1 accuracy (%) and generalization gap (%) on ImageNet for head training

SGD (90 EPOCHS) SWA (60 EPOCHS) TWA (60 + 2 EPOCHS)

MODEL ACCURACY GAP ACCURACY ACCURACY GAP

RESNET-18 69.82 −1.59 62.19 69.82 −2.36 (↓ 0.77)
RESNET-50 75.82 0.25 67.66 75.90 −0.68 (↓ 0.93)

For ImageNet, the efforts required for each epoch training are much greater, and hence efficient meth-
ods to reduce the training epochs are highly desirable. The comparison results of SGD/SWA/TWA
are shown in Table 4. Besides the reduced generalization gap, TWA takes only 2 epochs to average
the historical solutions of the first 60 epochs, reaching comparable or even better performance than
regular SGD training with 90 epochs. For comparison, Lookahead (Zhang et al., 2019) is another
advanced optimizer recently proposed for improving convergence and reported 75.49% accuracy
at the 60th epoch (Table 2 in Zhang et al. (2019)) with an aggressive learning rate decay (i.e., the
learning rate is decayed at the 30th, 48th, and 58th epochs), while our TWA reaches 75.70% with
the same budget but simply using the conventional decay.

Table 5: Top-1 accuracy (%) on ImageNet
for tail training and short TWA

MODEL SGD TWA (+1 EPOCH)

RESNET-18 69.82 70.37
RESNET-50 75.82 76.34

TWA is very flexible and can be readily applied to
different training stages, and we also conduct an ex-
periment by averaging the solutions of the final train-
ing period (i.e. 61-90 epochs) and simply performing
TWA for one epoch training, as presented in Table
5. Such cheap training still shows to bring significant
improvements (e.g. +0.51% on ResNet-50 for Ima-
geNet). Thus, TWA can serve as an effective approach for composing a better final solution.

7



Published as a conference paper at ICLR 2023

Scaled learning rate The optimization of TWA is conducted in a very low-dimensional space,
which also suppresses the sensitivity of the learning rate. In fact, we can allow a very large learning
rate to accelerate the training. Thereby, we design a scaled learning rate, which linearly scales
up the learning rate and reduces the training epochs accordingly, as shown in Figure 4. Within an
appropriate range, scaling the learning rate largely speeds up the convergence without affecting the
final performance. For example, with the learning rate of 4, TWA approaches the final accuracy with
only 1 epoch and converges within 5 epochs.

Table 6: Wall-clock time per epoch

OPTIMIZER TIME PER EPOCH

SGD 59.04S
TWA 60.20S

Wall-clock time comparison In the above experiments,
we report the number of training epochs, since the wall-
clock time per epoch for SGD and TWA is similar. As an
illustration, Table 6 provides the wall-clock time of train-
ing PreAct ResNet-164 for CIFAR-100 on one Nvidia
Geforce GTX 2080 TI.

20 40 60 80 100
Epochs

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

PreResNet-164 on CIFAR-100

TWA
EMA: 0.99
EMA: 0.999
SWA
SGD

Figure 5: Comparisons with EMA.

Comparison with EMA EMA serves as an alternative
to SWA, which averages the model weights along the
training trajectory with exponential decay. It requires a
hyper-parameter γ to control the averaging horizons. As a
manually defined averaging strategy, EMA could be sensi-
tive to learning rates, datasets, architectures, etc. Here we
compare the performance of EMA with SWA and TWA in
the head stage of training, where we try γ = 0.99/0.999.
The results are illustrated in Figure 5. We observe that
the performance of EMA varies significantly with differ-
ent choices of γ. It could perform notably better than SWA in the early stage of training as more
weight is paid to the latest solutions. Note that both EMA and SWA are fixed averaging strategies
for adapting different training stages (essentially could be viewed as particular solutions of TWA).
By optimizing the averaging coefficients, TWA could consistently achieve better performance.

0 20 40 60 80 100
Epochs

0.04

0.02

0.00

0.02

0.04

0.06

Co
ef

fic
ie

nt
s 

i

PreResNet-164 on CIFAR-100

Figure 6: Averaging coefficients of TWA.

Optimized Averaging Coefficients In Figure 6, we
visualize the averaging coefficients αi learned by TWA.
Detailed derivation could be found in Appendix D. We
observe all historical solutions could contribute to the
final solutions. Solutions from the latter training stage
are attached with more importance as expected. Dif-
ferent from the fix averaging strategies like SWA or
EMA, such averaging coefficients enable to take full ad-
vantage of the historical solutions through delicate opti-
mization and better adapt to the training dynamics.

5.4 LANDSCAPE VISUALIZATION

Following (Garipov et al., 2018; Izmailov et al., 2018), we visualize the training loss and test error
surfaces of SWA and TWA in Figure 7 on CIFAR-100 with PreAct ResNet-164. We set the SGD
solution after 125 training epochs as the origin and plot the TWA and SWA solutions on the plane.
For the case with a default learning rate of 0.05, TWA achieves slightly better test accuracy with
lower training loss. This shows that in the subspace, minimizing the training loss is meaningful and
results in lower test errors. Especially for the case with a larger learning rate of 0.10, the superiority
of TWA over SWA is more significant (over 0.7% improvement on test accuracy), since the variance
grows larger and the variance reduction effect of TWA becomes more obvious.

6 RELATED WORK

Improving the model’s generalization capability is of great importance and has received wide atten-
tion. The recent efforts mainly focus on two aspects: (1) proper regularization terms to search for
more flat minimum (Keskar et al., 2016; Li et al., 2018), such as weight decay (Krogh & Hertz, 1991),
dropout (Srivastava et al., 2014), label smoothing (Szegedy et al., 2016), Shake-Shake (Gastaldi,

8



Published as a conference paper at ICLR 2023

0 10 20 30 40 50
2

0

2

4

6

8

10

12

TWA

SWA

Epoch 125

Training loss

0.09

0.10

0.12

0.14

0.20

0.30

0.52

0.94

> 0.94

0 10 20 30 40 50
2

0

2

4

6

8

10

12

TWA

SWA

Epoch 125

Test error (%)

19.5

19.7

20.0

20.6

21.8

24.2

29.1

39.0

> 39.0

(a) SWA_LR = 0.05

10 0 10 20 30 40 50 60
2

0

2

4

6

8

10

12

14

TWA

SWA

Epoch 125

Training loss

0.32

0.34

0.35

0.38

0.44

0.57

0.83

1.35

> 1.35

10 0 10 20 30 40 50 60
2

0

2

4

6

8

10

12

14

TWA

SWA

Epoch 125

Test error (%)

20.9

21.2

21.5

22.0

23.2

25.5

30.3

40.0

> 40.0

(b) SWA_LR = 0.10

Figure 7: Train loss and test error surface of TWA and SWA with different SWA_LR.

2017), MixUp (Zhang et al., 2018), SAM (Foret et al., 2020) and AMP (Zheng et al., 2021); (2) effec-
tive data augmentation to diversify the dataset, such as Cutout (DeVries & Taylor, 2017), AutoAug-
ment (Cubuk et al., 2019) and RandAugment (Cubuk et al., 2020). Different from these techniques,
we improve the generalization ability by constraining the training in a low-dimensional subspace
spanned by historical explorations, which regularizes the model complexity. We note that TWA is
orthogonal to these methods, and it is promising to combine them for boosted improvements.

A lot of efforts have been made to speed up the DNNs’ training. Apart from the well-known methods
on adaptive learning rates, e.g. Adam (Kingma & Ba, 2015) and accelerated schemes, e.g. Nesterov
momentum Nesterov (1983), a new method is proposed in Zhang et al. (2019) proposed, where
a look-ahead search direction generated by another “fast” optimizer is utilized, achieving faster
convergence and better learning stability. Goyal et al. (2017) adapted a large mini-batch to speed up
the training and introduced a scaling rule for adjusting the learning rates. In this paper, we realize
training efficiency by sufficiently utilizing the historical solutions of DNNs’ training and conducting
training in a subspace with substantially reduced dimensions.

For utilizing historical explorations, SWA (Izmailov et al., 2018) adopts a simple averaging strategy
at the tail of training. Cha et al. (2021) extended it to the domain generalization task with a dense
and overfit-aware stochastic weight sampling strategy. We firstly propose to utilize the explorations
at the head stage of training to achieve training efficiency. Exponentially decaying running average
(Hunter, 1986; Szegedy et al., 2016) is a common technique adopted by practitioners. It requires a
manually set averaging horizon and generally performs comparably as SGD (Izmailov et al., 2018).
Another closely related work is model soups (Wortsman et al., 2022), which improves the model
performance by averaging the weights from different fine-tuning configurations in a greedy order.
We differ in that the historical solutions are from one single configuration. We mainly focus on
improving training efficiency and optimizing the averaging coefficients in a trainable manner.

7 CONCLUSION

In this work, we propose TWA, a novel training algorithm that optimizes the averaging coefficients
of historical solutions in DNNs’ training to achieve efficiency and better performance. It differs from
the manually set averaging strategies as SWA or EMA and manifests better adaptation to different
stages of training. We further design a parallel framework for large-scale training with efficiency in
memory and computation. Extensive experiments demonstrate the superior performance of TWA on
benchmark computer vision tasks with various architectures.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We are very grateful for anonymous reviewers for the valuable feedback on the paper. We thank
Minqi Chen at Huawei Technologies for the great support. The research leading to these results has
received funding from National Natural Science Foundation of China (61977046), Shanghai Science
and Technology Program (22511105600), and Shanghai Municipal Science and Technology Major
Project (2021SHZDZX0102).

REFERENCES

Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. There are many con-
sistent explanations of unlabeled data: Why you should average. In International Conference on
Learning Representations (ICLR), 2018.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 113–123, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 248–255, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research (JMLR), 12(7), 2011.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations (ICLR), 2020.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning
(ICML), 2020.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Xavier Gastaldi. Shake-shake regularization of 3-branch residual networks. In Workshop Track
Proceedings in International Conference on Learning Representations (ICLR), 2017.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

10



Published as a conference paper at ICLR 2023

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim,
Youngjung Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum optimiz-
ers on scale-invariant weights. In International Conference on Learning Representations (ICLR),
2021.

J Stuart Hunter. The exponentially weighted moving average. Journal of Quality Technology, 18(4):
203–210, 1986.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical Report, 2009.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. In Advances in
Neural Information Processing Systems (NeurIPS), 1991.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Tao Li, Lei Tan, Zhehao Huang, Qinghua Tao, Yipeng Liu, and Xiaolin Huang. Low dimensional
trajectory hypothesis is true: Dnns can be trained in tiny subspaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019.

Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate
bayesian inference. Journal of Machine Learning Research (JMLR), 18:1–35, 2017.

Yurii Nesterov. On an approach to the construction of optimal methods of minimization of smooth
convex functions. Ekonomika i Mateaticheskie Metody, 24(3):509–517, 1988.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

Yurii E Nesterov. A method for solving the convex programming problem with convergence rate o
(1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Evgenii Nikishin, Pavel Izmailov, Ben Athiwaratkun, Dmitrii Podoprikhin, Timur Garipov, Pavel
Shvechikov, Dmitry Vetrov, and Andrew Gordon Wilson. Improving stability in deep reinforce-
ment learning with weight averaging. In Uncertainty in Artificial Intelligence Workshop on Un-
certainty in Deep learning, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr Compu-
tational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Rolf Rabenseifner. Optimization of collective reduction operations. In International Conference on
Computational Science, pp. 1–9. Springer, 2004.

11



Published as a conference paper at ICLR 2023

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research (JMLR), 15(1):1929–1958, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, 2016.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning (ICML), 2022.

Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, and Chris
De Sa. Swalp: Stochastic weight averaging in low precision training. In International Conference
on Machine Learning (ICML), pp. 7015–7024. PMLR, 2019.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael W. Mahoney.
ADAHESSIAN: an adaptive second order optimizer for machine learning. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI, 2021.

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Towards more efficient training
of deep networks. In International Conference on Learning Representations (ICLR), 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Richard C. Wilson, Edwin R.
Hancock, and William A. P. Smith (eds.), British Machine Vision Conference (BMVC), 2016.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations (ICLR), 2018.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks via adversarial
model perturbation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8156–8165, 2021.

A TRAINING DETAILS

For SWA experiments, we replicate the SWA baseline by using the publicly released implementa-
tion of Izmailov et al. (2018). We use VGG-16 architecture with batch normalization for a unified
learning rate setting as PreAct ResNet-164. For ImageNet experiments, we follow official PyTorch
implementation. We use a scaled learning rate for TWA training with 20x and 30x factors on CIFAR
and ImageNet, respectively (e.g. the original learning rate of 0.1 is scaled up to 2 on CIFAR). CIFAR
experiments are performed on one Nvidia Geforce GTX 2080 TI GPU, while ImageNet experiments
are on four NVIDIA Tesla A100. The number of historical solutions optimized by TWA is presented
in Table A1.

We now disclose the specific hyper-parameters in the following.

12

https://github.com/pytorch/examples/tree/main/imagenet


Published as a conference paper at ICLR 2023

Table A1: The number of historical solutions optimized by TWA

DATASETS SAMPLING EPOCHS TIMES / EPOCH #NUM

CIFAR 100 1 100
IMAGENET 60 5 300

A.1 SWA TRAINING

A.1.1 CIFAR

We use the same schedule and hyper-parameters as in Izmailov et al. (2018). For VGG-16, we use
weight decay of 5 × 10−4 and train the model for 300 epochs with weight averaging at 161 to 300
epochs. For PreAct ResNet-164, we use weight decay of 3 × 10−4 and train the model for 225
epochs with weight averaging at 126 to 225 epochs.

For TWA training, we use the same weights as SWA and initialize wtwa as the last checkpoint (i.e.
300 / 225 epochs). We train the models for 10 epochs with an initial learning rate of 2 and decay it
by 10 at the 5th and 8th epochs. The regularization coefficient λ is set to 5× 10−5.

A.1.2 IMAGENET

Following Izmailov et al. (2018); Yang et al. (2019), we start from pre-trained models (they are from
torchvision.models) and collect weights by running SGD optimizer up to 10 epochs (with a
constant learning rate 0.005, weight decay 1 × 10−4). We uniformly sample the solutions 5 times
per epoch.

For TWA training, we use the same weights as SWA and initialize wtwa as the pre-trained model.
For ImageNet, there are many iterations in one epoch, and hence we conduct TWA training for one
epoch, in which we linearly decay the learning rate from 0.03 to 0. The regularization coefficient λ
is set to 1× 10−5.

A.2 REGULAR TRAINING

A.2.1 CIFAR

For regular training, we train the models for 200 epochs with an initial learning rate of 0.1 and decay
it by 10 at the 100th and the 150th epoch. We use SGD optimizer with momentum 0.9, weight decay
1× 10−4, and batch size 128 by convention.

For TWA training, we initialize wtwa as 1
n

∑n
i=1 wi, i.e., the center of sampled solutions. We train

the models for 10 epochs with an initial learning rate of 2 and decay it by 10 at the 5th and 8th
epochs. The regularization coefficient λ is set to 1× 10−5.

A.2.2 IMAGENET

We follow the training protocol described in He et al. (2016). Specifically, we train the models for
90 epochs with an initial learning rate of 0.1 and decay it by a factor of 10 every 30 epochs. We use
SGD optimizer with momentum 0.9, weight decay 1× 10−4, and batch size 256.

For TWA training, we uniformly sample solutions 5 times per epoch and initialize wtwa as
1
n

∑n
i=1 wi. We train the models for 2 epochs with a learning rate of 0.3 and 0.03, respectively.

For the extra one epoch training, we use the same training protocol as in subsection A.1.2, i.e.,
linearly decaying the learning rate from 0.03 to 0. The regularization coefficient λ is set to 1×10−5.

A.2.3 RESULTS ON ADAM OPTIMIZER

Adam (Kingma & Ba, 2015) is another mainstream optimizer with adaptive gradient descent, which
enjoys fast convergence and insensitivity to the initial learning rate. Here, we apply TWA to the
solutions generated by Adam optimizer and the results are in Table A2. The training settings are the
same as in Table 3 with default β1 = 0.9 and β2 = 0.999 for Adam. TWA is trained for 5 epochs

13

https://pytorch.org/vision/master/models.html


Published as a conference paper at ICLR 2023

with a intial learning rate 3. We observe that it could similarly bring generalization improvement
and training efficiency.

Table A2: Test accuracy (%) and generalization gap (%) on CIFAR-10/100 with Adam Optimizer

ADAM (200 EPOCHS) SWA (100 EPOCHS) TWA (100 + 5 EPOCHS)

DATASET MODEL ACCURACY GAP ACCURACY ACCURACY GAP

VGG16 93.60± 0.12 6.31 92.39± 0.07 93.63± 0.11 5.74 (↓ 0.57)
CIFAR-10 PRERESNET-164 95.09± 0.11 4.89 92.65± 0.03 95.16± 0.09 3.85 (↓ 1.04)

VGG16 72.77± 0.13 26.67 68.74± 0.05 74.07± 0.07 17.35 (↓ 9.32)
CIFAR-100 PRERESNET-164 76.23± 0.14 23.71 73.09± 0.13 77.96± 0.14 19.62 (↓ 4.09)

B IMPLEMENTATION

Let β = [β1, β2, · · · , βn]
⊤ ∈ Rn, P = [e1, e2, · · · , en] ∈ RD×n, the optimization target for TWA

can be formulated as,

min
β

L(β) ≜ E(x,y)∼D [L (f (wtwa;x) ,y)] +
λ

2
β⊤β,

s.t. wtwa = Pβ.

(A.1)

We short the loss term E(x,y)∼D [L (f (w;x) ,y)] to L(w) and the gradient w.r.t. β can be written
as,

∂L

∂β
=

∂wtwa

∂β

∂L(wtwa)

∂wtwa
+ λβ (A.2)

= P⊤ ∂L(wtwa)

∂wtwa
+ λβ. (A.3)

Let η be the learning rate. We could optimize (A.1) with the following gradient descent:

β(t+1) = β(t) − η

(
P⊤ ∂L(w(t)

twa)

∂wtwa
+ λβ

)
. (A.4)

Since wtwa = Pβ, we have the corresponding update in the parameter space:

w
(t+1)
twa = w

(t)
twa − η

(
PP⊤ ∂L(w(t)

twa)

∂wtwa
+ λPβ

)
(A.5)

= (1− ηλ)w
(t)
twa − ηPP⊤ ∂L(w(t)

twa)

∂wtwa
. (A.6)

As β does not explicitly appear in (A.6), we could treat the coefficient β as an implicit variable.
In practice, we optimize (A.1) by directly updating the model weights wtwa with weight decay λ,
which is an optimization in the reduced subspace with projection matrix PP⊤.

C SWA WITH DIFFERENT STARTING EPOCHS

We test the performance of SWA with different starting epochs to average on ImageNet with the
ResNet-50 model. We observe that the performance of SWA gradually becomes better with the
relatively latter stage of solutions averaged, showing that SWA could not adapt well to the head
stage of training where the solutions are fast-evolving. Hence, a good solution for SWA may require
manually selecting which period to average. We also notice that TWA (with 0-60 epoch solutions)
consistently outperforms the SWA wherever the averaging begins, confirming that TWA could auto-
matically find a good set of averaging coefficients and provide better performance.

14



Published as a conference paper at ICLR 2023

SWA SWA SWA SWA SWA SWA TWA
Epoch 0-60 Epoch 10-60 Epoch 20-60 Epoch 30-60 Epoch 40-60 Epoch 50-60 Epoch 0-60

67.66 70.50 72.12 74.14 75.08 75.34 75.90

Table C3: SWA with different starting epochs.

D DISCUSSION ON THE SUM-ONE CONSTRAINT

Let α = [α1, α2, · · · , αn]
⊤ ∈ Rn, W = [w1,w2, · · · ,wn] ∈ RD×n, we have wtwa =

Wα. We multiply W⊤ on the both sides, i.e., W⊤wtwa = W⊤Wα, and could obtain
α =

(
W⊤W

)−1
W⊤wtwa. Further, we could establish the relation between α and β: α =(

W⊤W
)−1

W⊤Pβ, since they are the coordinates of wtwa under two different set of bases.

In the solution set A = {α1w1 + α2w2 + · · ·+ αnwn | αi ∈ R}, we do not explicitly require
that the sum of averaging coefficients

∑n
i=1 αi to be 1 since the network’s performance would be

sensitive to a direct scaling over all parameters (i.e. kw), that is, a good solution in A will inherently
have a coefficient sum very close to 1. We verify the sum of the averaging coefficients of the attained
solution wtwa on CIFAR-100 with PreResNet-164 model and observe that

∑n
i=1 αi = 1.02±<0.01.

E NUMERICAL DISCUSSION FOR DDP TRAINING

We numerically measure the averaged epoch training time and memory burden for SGD and TWA in
the DDP training setting. Specifically, we experiment with the ResNet-50 model on ImageNet and
use 1, 2, and 4 GPUs with a batch size of 256 per GPU and a total of 300 historical solutions. The
experiments are conducted on NVIDIA Tesla A100 40G GPUs. From the results reported in Table
E4, we observe that TWA brings minor additional costs, e.g. +2.8% on time cost and +2.9% on
memory burden with 4 GPUs, compared with regular SGD training. The additional memory burden
becomes even minor with more GPUs. This shows that TWA could provide efficient and scalable
averaging for large-scale problems.

Table E4: Time and memory comparisons of SGD and TWA with DDP training.

Time Memory

#GPUs SGD TWA SGD TWA

1 1638s 1692s (+3.3%) 28286.5 MB 31432.5 MB (+11.1%)
2 824s 862s (+4.6%) 28382.5 MB 30092.5 MB (+6.0%)
4 420s 432s (+2.8%) 28874.5 MB 29718.5 MB (+2.9%)

F ABLATION STUDY

We conduct an ablation study in Table F5 to analyze the impact of the regularization coefficient
λ. We observe that such regularization brings improvements but is not significant. This is because
the main regularization effects come from the significant decrease of training variables, i.e., regular
training has D variables but TWA contains only n. Since such regularization is easy to implement
and virtually brings little training cost, we include it in our method.

15



Published as a conference paper at ICLR 2023

Table F5: Ablation studies on the regularization coefficient λ.

Datasets Model TWA TWA (λ = 0)

VGG16 93.79± 0.18 93.78± 0.07
CIFAR-10 PreActResNet-164 95.11± 0.04 95.03± 0.09

VGG16 74.24± 0.24 74.02± 0.16
CIFAR-100 PreActResNet-164 78.11± 0.19 78.01± 0.22

G ADDITIONAL RESULTS ON NLP TASKS

For NLP datasets, we try a finetune task with pre-trained models and compare the performance of
SWA and TWA. Specifically, we experiment with The Corpus of Linguistic Acceptability (CoLA),
a text classification task in the General Language Understanding Evaluation (GLUE, Wang et al.
(2018)) benchmark. In experiment, we use a pre-trained BERT (Devlin et al., 2018) model
(bert-base-uncased) from Hugging Face community2. We fine-tune BERT on CoLA for 3
epochs with AdamW optimizer Loshchilov & Hutter (2017), learning rate 2e-5, and weight decay
0.0. The model weights at the end of these epochs are collected for SWA and TWA. In TWA, we
train the fine-tuned model for 1 epoch with a learning rate of 0.5 and regularization coefficients
λ = 0.001. From the results below, we observe that TWA could achieve better performance than the
competing methods. This further demonstrates the broad application of TWA.

Fine-tune SWA TWA

56.81 59.73 60.36

Table G6: Fine-tune results on CoLA.

2Available at https://huggingface.co/

16

https://huggingface.co/

	Introduction
	Method
	Optimization Target
	Training Algorithm

	Optimization Provides Better Flexibility
	An Efficient Implementation for Distributed Training
	Experiments
	Experimental settings
	Improving SWA solutions
	Efficient training and better generalization
	Landscape visualization

	Related Work
	Conclusion
	Training Details
	SWA training
	CIFAR
	ImageNet

	Regular training
	CIFAR
	ImageNet
	Results on Adam Optimizer


	Implementation
	SWA with Different Starting Epochs
	Discussion on the Sum-one Constraint
	Numerical Discussion for DDP Training
	Ablation Study
	Additional Results on NLP Tasks

