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ABSTRACT

Building generalist robot policies that can handle diverse tasks in open-ended
environments is a central challenge in robotics. To leverage knowledge from large-
scale pretraining, prior work has typically built generalist policies either on top of
vision-language understanding models (VLMs) or generative models. However,
both semantic understanding from vision-language pretraining and visual dynam-
ics modeling from visual-generation pretraining are crucial for embodied robots.
Recent unified models of generation and understanding have demonstrated strong
capabilities in both comprehension and generation through large-scale pretrain-
ing. We posit that robotic policy learning can likewise benefit from the combined
strengths of understanding, planning and continuous future representation learn-
ing. Building on this insight, we introduce UniCoD, which acquires the ability to
dynamically model high-dimensional visual features through pretraining on over
1M internet-scale instructional manipulation videos. Subsequently, UniCoD is
fine-tuned on data collected from the robot embodiment, enabling the learning of
mappings from predictive representations to action tokens. Extensive experiments
show our approach consistently outperforms baseline methods in terms of 9%
and 12% across simulation environments and real-world out-of-distribution tasks.
Demos and code can be found at our anonymous website.
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Figure 1: Overview of UniCoD. Our proposed UniCoD, which utilizes both understanding and
prediction tasks under discrete and continuous representation space, demonstrates strong semantic
generalization capabilities on real-world manipulation tasks, particularly in its ability to handle
completely novel objects not seen during training. The upper right displays benchmark evaluations
across several simulations and 2 real-world robots.
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1 INTRODUCTION

Constructing generalist foundation models (Zitkovich et al., 2023; Kim et al., 2024b) for robots
manipulation in the physical world has emerged as a rapidly growing frontier within embodied AI.
Vision–language–action (VLA) models aim to learn robotic policies from data annotated with vision,
linguistic, and action signals. However, the scarcity of robotic data and the heterogeneity across
embodiments present substantial challenges, particularly in achieving generalization to novel scenes
and task instructions, and in accurately predicting actions.

To mitigate these limitations, recent studies have explored mapping Vision–Language Models (VLMs)
into the action space(Black et al., 2024; Team et al., 2024). This strategy provides robot policies with
alignment priors across language and vision modalities. Nevertheless, these approaches often overlook
the fundamental discrepancies between robotic action tasks and vision–language tasks. Unlike the
abundance of internet-scale vision–language data, fine-tuning VLMs on limited robotic datasets
frequently leads to degradation of their foundational capabilities (Xing et al., 2025). Complementary
lines of work have investigated leveraging generation models as intermediaries for action policy
learning(Hu et al., 2024; Wen et al., 2024). While such visual foresight approaches facilitate dynamic
representation learning and enable the use of heterogeneous data sources, they typically fail to
preserve vision–language alignment inherent to pretrained VLMs. These observations highlight a
central insight: it is crucial to design robot-specific post-training paradigms tailored to embodied
scenarios. Upon re-examining this line of approaches, we observe that both language understanding
and future state prediction can provide preliminary guidance for general manipulation tasks. The
unified learning strategy further enables the model to acquire representations beneficial for robotic
tasks from a broader range of data.

Building upon these insights and prior advances in vision–language–action (VLA) research(Zhang
et al., 2025; Wang et al., 2025b), we propose UniCoD, which follows an understand-
ing–generation–execution paradigm that integrates discrete task comprehension with continuous
prediction of future robotic states. To address heterogeneous modalities, UniCoD employs a MOT
architecture (Liang et al., 2024) with modality-specialized experts. UniCoD is trained in two stages
to introduce continuous feature forecasting to action learning while maintaining general capabilities
within VLM. In the first stage, we curate and label a diverse collection of Embodied QA data sourced
from both robots(Khazatsky et al., 2024; Bu et al., 2025; Wu et al., 2024) and human demonstra-
tions(Hoque et al., 2025; Grauman et al., 2022). We enable the model to learn discrete language
representations for understanding of embodied scenes and continuous visual representations for world
modeling. In the second stage, we introduce embodiment-specific robotic data annotated with action
behaviors. By jointly predicting continuous visual futures and actions, the model learns to utilize
semantically aligned features that are rich in dynamic information. This, in turn, equips the VLA
policy with better generalization capabilities for new objects and scenes.

In experiments, UniCoD achieves a 9% improvement in the Simpler benchmark compared to existing
SOTA approach and demonstrates strong semantic generalization for real-world robots for complex
tasks on both robot arms and dexterous hands. In summary, our contributions are as follows:

• We propose a novel vision–language–action (VLA) that integrates both discrete and continuous
representations for understanding and learning dynamics, which is pre-trained on large-scale data
from both robot and human demonstrations, enabling effective transfer to embodied tasks.

• We propose a two-stage training framework that aligns action representations while preserving the
aligned intermediate representations.

• Our best-performing model achieves state-of-the-art results across both simulated and real-world
environments, and we further analyze the impact of different feature design choices on the model’s
capabilities.

2 RELATED WORKS

Vision-Language-Action Models Vision-Language-Action (VLA) models introduce multimodal
large language models (Dai et al., 2024; Touvron et al., 2023; Wang et al., 2025a; Bai et al., 2025)
into robot policy models to enhance their generalization ability (Brohan et al., 2023; Kim et al.,
2024a; Black et al., 2024; Guo et al., 2025). This line of work either utilizes the VLM and an
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action head for end-to-end action prediction (Li et al., 2023; Wen et al., 2025) or uses the VLM
to extract key information to condition downstream policy (Zhang et al., 2024; Li et al., 2025).
Some recent works have introduced additional auxiliary tasks to VLAs, including enhancing spatial
understanding (Qu et al., 2025), QA reasoning (Zhou et al., 2025), visual reasoning (Zhao et al.,
2025) and prediction (Zhang et al., 2025), demonstrating that both general-purpose understanding and
generation capabilities can promote action learning. However, these methods are primarily limited to
unifying generative tasks within a discrete token prediction framework, which may compromise the
robust vision-language alignment inherent in the pre-trained VLM. In this work, we incorporate a
continuous-space visual prediction task to aid downstream action learning.

Generalist Robot Policies with Joint Prediction Explorations into generalist robot policies have
considered using world models (Blattmann et al., 2023; Assran et al., 2025; Chen et al., 2024; Guo
et al., 2024) to learn physical dynamics and subsequently predict actions (Du et al., 2024; Black et al.,
2023). Many recent methods have incorporated prediction into larger-scale data and models: GR-1
(Wu et al., 2023) utilizes video pre-training to initialize the action policy; VPP (Hu et al., 2024) uses
a video foundation model as the visual encoder for action policy. While these methods fully leverage
the rich information from video data, they lack semantic grounding capabilities due to the absence of
large language models. Recent works (Zhang et al., 2025; Wang et al., 2025b) use VQ quantization
to incorporate predictive generation tasks into VLA policies, demonstrating the potential for unifying
understanding and prediction. In contrast, we utilize continuous visual features as the prediction
supervision signal and pre-train our model on large-scale language prediction and continuous visual
prediction tasks.

3 METHODOLOGY

Figure 2: Illustration of the UniCoD framework. UniCoD adopts a MoT framework to handle
text understanding and planning, continuous visual prediction, and action execution. The continuous
features are derived from future observations using a frozen vision encoder.

In this section, we present the overall framework design and the two-stage training strategy of UniCoD,
as illustrated in Figure 2. In the first stage, UniCoD is trained to learn joint text–image representations
across diverse manipulation datasets, including understanding, planning, and continuous future
prediction tasks. In the subsequent stage, an action expert is employed to integrate the multimodal
inputs and predicted future states with action. In the subsequent subsections, we will respectively
describe: (1) the joint visual-language embedding learning for pre-training in Sec 3.1, (2) our policy
learning method in Sec 3.2, and (3) the implementation details and training data in Sec 3.3.

3
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3.1 UNIFIED VISION LANGUAGE JOINT EMBEDDING MODELING

Before introducing the robot action space, we first establish a cross-embodiment pre-training paradigm
for robots. In this stage, a subset of the model parameters Uv,l is jointly optimized via the Text-Image
to Embedding(TI2E) (examples can be found in A.5). Concretely, given a language instruction l
and the current view observations ot at time t, UniCoD is trained to predict the joint visual–text
embedding: ôt+h, l̂ = Uv,l(ot, l) , where ôt+h = V (ot+h) = {c1, c2, . . . , cn} denotes the predicted
continuous future representation encoded by the visual encoder V , while l̂ = {d1, d2, . . . , dm}
corresponds to the m-token textual sequence.

Discrete Representation Learning. To enhance vision–language alignment, the parameters Uv,l

are initialized from a pre-trained vision–language model. Fine-grained language representations are
derived from large-scale vision–language datasets, as well as planning and scene descriptions from
embodied tasks, which are annotated using pre-trained MLLM into a VQA-style format. This target
enables the agent to gain a better understanding of diverse instructions and scenes, thereby facilitating
the learning of continuous representations for visual prediction and action.

World Modeling under Continuous Space. In the pre-training stage, to acquire dynamic represen-
tations associated with the action space, we introduce additional attention weights dedicated to future
state prediction, which are integrated with the original VLM within the mixture-of-transformers
framework. Unlike prior approaches that directly predict image pixels, we leverage a frozen visual
encoder to represent future observations in a continuous high-dimensional space, capturing high-level
information across different semantics. A more detailed discussion can be found in Appendix A.1.

For the visual inputs, we employ a dual-encoder design that combines the VLM visual encoder with
a generator encoder. The tokens generated by the latter are processed by the generative expert in
the mixture-of-transformers and, together with the language tokens and VLM visual tokens, jointly
participate in the attention computation. This design preserves the pretrained model’s vision–language
alignment while enabling the prediction process to benefit from richer semantic understanding.

Training Objective. The visual and language inputs are processed respectively through the MoT
framework, then autoregresively generate l̂predt+h = dpred1:m , while the generation expert obtains the
ôpredt+h = cpred1:n . We follow the standard setup of generative–understanding models, employing
cross-entropy loss for the language branch and mean squared error loss for the generative branch.
This optimaze progress can be formulated as:

L1 = λ1 ·
1

n

n∑
i=1

∥∥∥cpredi − ci

∥∥∥2
2
− (1− λ1) ·

1

m

m∑
j=1

logPθ(dj | d<j , l, ot) (1)

where λ1 serves as a weighting factor to balance the loss contributions of the discrete and continuous
representations.

3.2 UNIFIED ACTION MODELING

In the previous stage, we obtained Uv,l through pre-training, which endowed the model with basic
capabilities in future state prediction and vision–language alignment. However, Uv,l cannot yet be
directly mapped to the action space. To address this limitation, in the second stage we fine-tune
Uv,l on embodiment data comprising visual, language, and action modalities, while simultaneously
training an action expert from scratch to construct Uv,l,a.

Action & State Expert. Similar to the generation and understanding experts, we employ distinct
attention weights to project actions and states (i.e., proprioception) into a shared attention space.
Unlike the other experts, the action expert leverages flow matching to capture the continuous and
inherently multi-modal distribution of the action space. Proprioceptive signals st are processed by an
MLP-based state expert encoder, enabling fusion within the unified model. Given an action sequence
At = (at, at+1, . . . , at+h) to be executed, along with the observation ot and instruction l, the unified
model Uv,l,a is trained to approximate vector fields as:

Lflow = Eτ∼U(0,1) E{At,ot,st,l}∼D

[
∥Uv,l,a(A

τ
t , ot, st, l, τ)− (At −Aτ

t )∥
2
2

]
, (2)

where Aτ
t = (1− τ)ϵ+ τAt denotes the interpolated actions at step τ , and ϵ ∼ N (0, I).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In this action training stage, we also jointly optimize the generation expert by predicting the future
observation states c1:n, yielding the following objective:

L2 = λ2 ·
1

n

n∑
i=1

∥∥∥cpred
i − ci

∥∥∥2
2
+ (1− λ2)Lflow. (3)

3.3 IMPLEMENTATION DETAILS

Model Setting. UniCoD employs Paligemma Beyer et al. (2024) as the VLM expert. For future
observation encoding, we experiment with SigLIP Tschannen et al. (2025), DINOv3 Siméoni et al.
(2025), and direct pixel-level prediction. Considering the information flow across modalities, we
adopt a block-wise masking mechanism in the MoT attention: within each modality, bidirectional
attention is applied, while across modalities a causal mask is enforced following the order of image,
language, image prediction, state information, and action.

Pre-training Data. In the pretraining stage, we utilize three categories of data to acquire joint
text–image representations: (1) 320k robot videos paired with fine-grained subtask descriptions and
overall task instructions, which yield VQA and TI2E data for the generation–understanding task; (2)
870k robot and human operation videos accompanied by task instructions, which are used as TI2E
data; and (3) 560k generic vision–language question answering data, employed for co-training to
preserve the fundamental capabilities of the VLM. In the action modeling stage, we exclusively adopt
VLA data collected in both simulation and real-world robotic environments. Further details regarding
the datasets are provided in Appendix A.5.

4 EXPERIMENT

To comprehensively evaluate our proposed method, UniCoD, we conduct extensive experiments
across two simulation benchmarks and on two distinct real-world robotic platforms. Our experiments
are designed to assess the performance of UniCoD and validate the effectiveness of our proposed
modules.

4.1 EXPERIMENTAL SETUP

Our experiments are conducted and deployed across four distinct environments. Figure 3 illustrates a
selection of tasks from both our simulation and real-world settings.

Figure 3: Our evaluation environments, including 2 simulation benchmarks and 2 real-world embodi-
ments.

Calvin Benchmark Calvin is a simulation benchmark designed for evaluating long-horizon,
language-conditioned manipulation policies. We employ the ABC-D split to evaluate the single-view
generalization capabilities of the models. The evaluation suite includes 1,000 long-horizon sequences,
each of length 5. We report the average length of completed sub-task sequences.
SimplerEnv Benchmark SimplerEnv is a simulation benchmark designed to evaluate policies
trained on real-world datasets, such as Bridge-V2 and Fractal. The benchmark supports two types of
robot arms: WindowX and Google Robot. For our evaluation, we conduct 240 runs for each task and
report the average success rate.

5
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Real-World Franka Emika Panda Arm We deploy models on a Franka Emika arm for real-world
task comparison. We first collected a dataset of 2,000 trajectories spanning over 20 distinct tasks,
encompassing six fundamental skills: picking, placing, opening a drawer, closing a drawer, pressing
a button, and routing a cable. We evaluate performance on both seen and unseen task variations.
The unseen category primarily involves grasping novel objects not present in the training data and
introducing misleading objects. More details can be found in Appendix A.3.1.

Real-World XArm with 12-DOF X-Hand On our dexterous manipulation platform, we train
different models using a dataset of 4,000 trajectories across more than 100 tasks. The models are
then evaluated in a variety of seen and unseen scenarios, which cover 13 distinct skills in 9 categories.
More details can be found in Appendix A.3.2.

4.2 SIMULATION EXPERIMENTS

Implementation Details We first pre-train UniCoD following the methodology described in Sec-
tion 3. Subsequently, we fine-tune the model on 8 A100 GPUs for 22k steps, using a learning rate
of 5 × 10−5 and a batch size of 1024. For all simulation training, we consistently use a single,
third-person-view image of size 224 × 224 as the visual input. In Calvin, we use an action chunk
size of 10, and during deployment, the full 10-step chunk is executed at each inference step. In
SimplerEnv, we use an action chunk size of 4; for the WindowX environment (corresponding to
the Bridge dataset), the full 4-step chunk is executed, whereas for the Google Robot environment
(corresponding to the Fractal dataset), half of the action chunk is executed.

Baselines We compare UniCoD against several state-of-the-art VLAs and prediction-based policies.
On SimplerEnv, we benchmark UniCoD against RT-1-X (Brohan et al., 2022), Octo (Team et al.,
2024), OpenVLA (Kim et al., 2024a), RoboVLMs (Liu et al., 2025), SpatialVLA (Qu et al., 2025),
π0 (Black et al., 2024), CogAct (Li et al., 2024) and Villa-x (Chen et al., 2025). On Calvin, we
compare UniCoD against several policies that leverage visual generation tasks, including GR-1 (Wu
et al., 2023), π0 (Black et al., 2024), VPP (Hu et al., 2024), and UP-VLA (Zhang et al., 2025). To
ensure a fair comparison, we reproduce these baselines and standardize their visual input to a single
third-person view. For π0, we specifically use the implementation from the open-pi-zero and report its
performance under the same training and evaluation setup used in UniCoD for a direct comparison.

4.2.1 PERFORMANCE ON SIMULATION BENCHMARKS

Table 1: Results on SimplerEnv-WindowsX (visual matching). Entries marked with * are methods
reproduced with our training and test settings.

Model
Carrot on Plate Eggplant in Basket Spoon on Towel Stack Cube Success

Grasp Success Grasp Success Grasp Success Grasp Success Average

RT-1-X 20.8 4.2 0.0 0.0 16.7 0.0 8.3 0.0 1.1
Octo-Base 52.8 8.3 66.7 43.1 34.7 12.5 31.9 0.0 16.0
OpenVLA 33.3 0.0 8.3 4.1 4.1 0.0 12.5 0.0 1.0
RoboVLMs 33.3 20.8 91.7 79.2 70.8 45.8 54.2 4.2 37.5
SpatialVLA 29.2 25.0 100.0 100.0 20.8 16.7 62.5 29.2 42.7
π0* 58.5 48.8 78.8 64.6 83.3 73.3 62.5 12.5 49.8
CogAct / 58.3 / 45.8 / 29.2 / 95.8 57.3
Villa-x / 46.3 / 64.6 / 77.9 / 61.3 62.5
UniCoD (Ours) 75.0 63.0 100.0 89.6 83.3 78.8 91.7 52.5 71.0

Tables 1 and 3 present the performance of our method on the SimplerEnv-WindowX and SimplerEnv-
Google Robot benchmarks, respectively. We report the officially published results of other methods
for comparison. On both robotic platforms, our method achieves the highest success rates of 71.0%
and 78.4%, attaining state-of-the-art (SOTA) performance. We highlight the top-performing and
second-best methods for each task category in bold and with an underline. It is evident that UniCoD
demonstrates consistently high success rates across all sub-tasks. This contrasts with other methods,
which often exhibit “spiky” performance profiles—excelling on some tasks while performing poorly
on others. This finding underscores the superior multi-task learning capabilities of our approach.

6
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Furthermore, for a fair, apple-to-apple comparison with the architecturally similar π0 baseline, we
reproduced it within our identical training and evaluation framework. Across both environments, we
found that the novel components in UniCoD yield a significant performance uplift of over 20%. We
also observed that this improvement is consistently present at every training checkpoint, indicating
that the stable gains can be attributed to our method’s ability to learn continuous future features and
discrete representations simultaneously.

Table 2: Long-horizon evaluation on the Calvin ABC→D
benchmark. Entries marked with * are methods reproduced
with our training and test settings. We only use a single
224x224 third-view image as input in all methods.

Method
Tasks completed in a row

Avg. Len ↑
1 2 3 4 5

RT-1* 0.533 0.222 0.094 0.038 0.013 0.900
GR-1 0.854 0.712 0.596 0.497 0.401 3.06
π0* 0.937 0.832 0.740 0.629 0.510 3.65
VPP* 0.909 0.815 0.713 0.620 0.518 3.58
UP-VLA* 0.928 0.865 0.815 0.769 0.699 4.08
UniCoD (Ours) 0.973 0.895 0.823 0.752 0.670 4.11

We also compare UniCoD against sev-
eral policies that leverage advanced
vision-based training methodologies
on the Calvin ABC-D split, with
results shown in Table 2. Since
many prior works utilize multi-view
images and historical information,
we re-implemented these baselines
using a standardized single, third-
person-view image as visual input
to ensure a fair comparison of the
benefits conferred by our training
method. The results demonstrate
that UniCoD achieves the best performance on single-view manipulation tasks within
the Calvin benchmark. Moreover, when compared to the baseline pi0, our method
again exhibits a performance improvement, consistent with the results on SimplerEnv.

4.3 REAL WORLD EXPERIMENTS

Table 3: Results on SimplerEnv-Google Robot (visual
matching). Entries marked with * are methods repro-
duced with our training and test settings.

Model
Pick Move O./C. Put in AVG↑Coke Near Drawer Drawer

RT-1-X 56.7 31.7 59.7 21.3 42.4
Octo-Base 17.0 4.2 22.7 0.0 11.0
OpenVLA 16.3 46.2 35.6 0.0 24.5

RoboVLMs 77.3 61.7 43.5 24.1 51.7
π0* 93.3 78.1 23.6 12.5 51.9

CogACT 91.3 85.0 71.8 50.9 74.8
Villa-x 98.7 75.0 59.3 5.6 59.6

UniCod (Ours) 98.7 81.5 63.2 70.0 78.4

Implementation Details We fine-tune
the pre-trained UniCoD model separately
on the datasets collected from our two
real-world robotic platforms to evaluate its
performance on a variety of seen and un-
seen tasks. The fine-tuning process is con-
ducted for 10 epochs using a batch size
of 1024 and a learning rate of 5 × 10−5,
with both the prediction horizon and ac-
tion chunk length set to 10. For the Franka
Emika Panda arm, the model is fine-tuned
on 2,000 trajectories, and during deploy-
ment, we evaluate both full and half action
chunk execution, reporting the superior result. On the XArm with a 12-DOF dexterous hand, we use
a larger dataset of 4,000 trajectories and execute the full 10-step action chunk at each inference step.
We test on seen tasks, which involve familiar objects in novel, randomized positions, and unseen
tasks, which introduce novel color, objects, and background. For each task configuration, we conduct
20 trials from randomized initial configurations and report the average task success rate. More details
can be found in Appendix A.3.

4.3.1 PERFORMANCE ON REAL WORLD EXPERIMENTS

We compare UniCoD against OpenVLA(Kim et al., 2024a), GR-1 (Wu et al., 2023), π0 (Black et al.,
2024), UP-VLA (Zhang et al., 2025) and VPP (Hu et al., 2024) in two environments, visualizing
the results in Figure 4 and 5. Our method achieves the highest overall task success rates on
both real-world robotic platforms. Specifically, on the Franka Panda arm, UniCoD attains the best
performance across all four task categories, outperforming baselines on both seen and unseen tasks.
This demonstrates that our approach effectively enhances both multi-task learning and generalization
capabilities. Consistent with our findings in the Simpler simulation environment, our method again
shows superior performance over the architecturally similar π0 baseline across a majority of these
real-world tasks. Furthermore, on the more complex 12-DoF dexterous hand platform, UniCoD
achieves the highest average success rate across all nine skill categories. Notably, we observe that our
method exhibits a significant generalization advantage when dealing with novel objects and scenes.
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Figure 4: Results on real-world 7DOF robotarm experiment. More detailed quantitative results are
provided in Table 6.

Figure 5: Results on real-world 12-DOF dexterous hands experiment. More detailed quantitative
results can be found in Table 7.

We provide several illustrative examples in Appendix A.4, where the model successfully grasps
completely unseen objects and correctly interprets out-of-distribution (OOD) language descriptions.

These consistent, state-of-the-art results across two morphologically distinct robots validate the
effectiveness and broad applicability of our proposed method.

4.4 ABLATION STUDY

In this section, we conduct a series of ablation studies to validate the effectiveness of the different
components within UniCoD. These experiments investigate the role of our continuous visual rep-
resentations, the impact of our large-scale pre-training phase involving both language and visual
prediction, and a comparison of several continuous vision encoding methods proposed in Sec 3. All
ablation studies are conducted in the Simpler simulation environment, following the same training
and evaluation protocols described in Sec 4.2.

Table 4: Ablation study on unified pretraining paradigm and
continuous feature for prediction.

Model Carrot Eggplant Spoon Cube AVG↑

w/o Pretrain

w/o Continuous 48.8 64.6 73.3 12.5 49.8
w/o Continuous w/ Pred 52.5 79.2 79.6 30.0 60.3

UniCoD 60.8 87.1 78.8 50.4 69.3

w/ Pretrain

UniCoD (Ours) 63.0 89.6 78.8 52.5 71.0

Effectiveness of Continuous Predic-
tive Visual Representations To val-
idate the effectiveness of prediction
using continuous representations, we
compare a version of UniCoD without
pre-training against two baselines, as
shown in Table 4. We evaluate the fol-
lowing without using pretraining: (1)
w/o Continuous (π0), where the
modules for predicting continuous fu-
ture features (including the auxiliary
prediction expert and its correspond-
ing encoder/decoder) are removed. (2) w/Pred, which predicts future raw pixels using a two-layer
MLP. This helps us elucidate the trade-offs between using high-level visual features versus raw pixels

8
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as the predictive signal. The results in w/o Pretrain section of the table show that our proposed
continuous visual feature prediction boosts performance by approximately 20%. Furthermore, the
comparison with w/Pred reveals that continuous features are indeed a more effective signal for
future prediction, enabling the model to extract dynamic information crucial for action generation.

Effectiveness of Large-Scale Planning and Prediction Pre-training Table 4 also presents a
comparison between UniCoD with and without pre-training. Overall, pre-training improves the
success rate across all tasks, yielding a performance gain of approximately 2%. During fine-tuning,
we observe that leveraging large-scale external data for future and language prediction accelerates
the model’s convergence on the robotics dataset. This effect is particularly pronounced in the
convergence of the future prediction loss. This indicates that our joint pre-training scheme, which
combines continuous and discrete prediction, provides a superior model initialization, especially for
the prediction expert module, which translates to tangible benefits during downstream fine-tuning.

Method
Google robot WidowX robot

Pick Move Drawer Put AVG Carrot Eggplant Spoon Cube AVG

UniCoD-Distill 97.2 82.6 61.9 74.4 79.0 48.8 95.8 89.6 34.6 67.2
UniCoD-Dino 98.3 80.2 51.1 63.3 73.2 54.6 81.7 78.8 49.6 66.1
UniCoD-Siglip 97.7 80.2 61.3 72.4 77.9 60.8 87.1 78.8 50.4 69.3

Table 5: Ablation study on choice of continuous vision features.

Choice of Continuous Visual Prediction We further compare the different encoding methods for
future prediction proposed in our methodology. Specifically, we evaluate three distinct approaches (all
without pre-training), with results on both Simpler environments shown in Table 5: (1) UniCoD-Distill,
which takes the input embeddings of the ViT (from the current frame) as input to the prediction expert
and predicts the output features of ViT for the future frame. This approach is analogous to distilling
knowledge from the ViT encoder itself. (2) UniCoD-Dino and (3) UniCoD-Siglip, which take the
output features of their respective vision encoders (DINO Siméoni et al. (2025) or SigLIP Tschannen
et al. (2025)) for the current frame as input to predict the corresponding features for the future frame.
The results show that UniCoD-Siglip demonstrates better performance on both benchmarks, and
consequently, we select SigLIP as the vision encoder for our UniCoD model. Notably, on Google
Robot environment, UniCoD-Distill achieves better performance than the UniCoD-Siglip when
neither is pre-trained. This suggests that the distillation-style architecture has inherent advantages. In
contrast, UniCoD-Dino performs significantly worse than the other two. This is likely because the
DINO feature space is not aligned with the VLM backbone. Conversely, since SigLIP is the native
vision encoder for Paligemma, its feature space is naturally more aligned with that of the VLM expert,
facilitating more effective integration within the prediction expert.

5 CONCLUSION

In this paper, we introduce UniCoD, a Vision-Language-Action (VLA) framework that enhances
policy learning by integrating discrete token prediction with continuous visual prediction. During
the pre-training stage, we leverage embodied VQA and robotic planning tasks to align the discrete
language features of a Vision-Language Model (VLM). Concurrently, we train a predictive module
on large-scale video data to forecast future continuous visual features. These two components—the
VLM backbone and the prediction module—are effectively fused using a Mixture-of-Experts (MoE)
Transformer architecture. In the subsequent action fine-tuning stage, an action expert is incorporated,
and the entire model is fine-tuned on a joint objective of continuous action generation and future fea-
ture prediction. Our method achieves state-of-the-art (SOTA) performance in two distinct simulation
environments. Furthermore, on real-world hardware, including a 7-DoF robot arm and a 12-DoF
dexterous hand, our model demonstrates superior performance and stronger semantic generalization,
particularly when handling novel objects not encountered during training.

9
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A APPENDIX

A.1 QUALITATIVE COMPARISON OF ENCODED FUTURE VISUAL REPRESENTATIONS

To qualitatively analyze the characteristics of different encoding methods, we visualize the features
they produce. Specifically, we compare features from a single robot trajectory encoded in three ways:
raw image pixels, continuous visual features from a ViT encoder, and discrete visual tokens from a
VQ-GAN. We selected a trajectory from the Fractal dataset corresponding to the instruction pick
the coffee bag from the drawer onto the table. For each frame, the resulting features—raw pixels
(flattened from 224 × 224 × 3), ViT features (flattened from 256 × 1152), and VQ-VAE tokens
(2048-dim)—are first reduced to 50 dimensions via PCA and then projected into a 2D space using
t-SNE for visualization.

Figure 6: t-SNE Visualization of Different Future Representations.

Figure 6 illustrates the t-SNE visualizations for the trajectory encoded by these three methods. To
highlight the temporal evolution, feature points from adjacent frames are connected by lines.

• Pixel Features (Left): This encoding preserves the most low-level information. We observe
that despite small visual changes between consecutive frames, the corresponding pixel-level
features exhibit high variance, often jumping into regions occupied by features from distant
timesteps. This suggests that using raw pixel values as a predictive signal could mislead the
policy by causing it to over-emphasize low-level, high-frequency changes.

• ViT vs. VQ Features (Center and Right): A comparison reveals a distinct “circling
phenomenon” in the VQ-GAN visualization, where features from many different timesteps
collapse into a dense central region. This indicates poor temporal separability in the context
of manipulation trajectories. In contrast, the ViT features provide the best separation of the
three methods, organizing features from different frames into distinct, minimally overlapping
clusters.

This qualitative analysis supports our insight that continuous features, by virtue of focusing on
high-level semantic information, serve as a more stable and suitable predictive signal for robot action
policies within our framework.

A.2 DETAILS ABOUT SIMULATION BENCHMARKS

Calvin Benchmark Calvin is a simulation benchmark designed for evaluating long-horizon,
language-conditioned manipulation policies. It comprises four distinct environments (A, B, C,
and D) and offers evaluation splits such as ABC-D and ABCD-D. In our experiments, we employ
the ABC-D split to evaluate the single-view generalization capabilities of the models. Models are
trained on data collected from environments A, B, and C, and subsequently evaluated in the unseen
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environment D. This evaluation suite includes 34 different manipulation tasks organized into 1,000
long-horizon sequences, each of length 5. We report the average length of successfully completed
sub-task sequences.

SimplerEnv Benchmark SimplerEnv is a simulation benchmark designed to evaluate policies
trained on large-scale real-world datasets, such as Bridge-V2 and Fractal. It procedurally generates
scenes that mimic real-world environments using texturing techniques, allowing models trained on
real data to be tested directly in simulation without requiring physical deployment. The benchmark
supports two types of robot arms: the WindowX and the Google Robot. For our evaluation, we
conduct 240 runs for each task and report the average success rate.

A.3 DETAILS ON REAL WORLD EXPERIMENTS

A.3.1 FRANKA PANDA ROBOT ARM

Real-World Franka Emika Panda Arm We deploy several models on a Franka Emika Panda
arm for real-world task comparison. The robot arm features 7 degrees of freedom (DoF). Its action
space is defined by a 7-dimensional vector, where the first six dimensions specify the relative change
in the end-effector’s 6D pose (3D position and 3D orientation), and the final dimension controls
the binary state of the gripper (open or closed). In our experiments, the policy takes images from
an on-board, first-person-view camera as visual input and outputs these relative actions. We first
collected a dataset of 2,000 trajectories spanning over 20 distinct tasks, encompassing six fundamental
skills: picking, placing, opening a drawer, closing a drawer, pressing a button, and routing a cable.
We evaluate performance on both seen and unseen task variations. The unseen category primarily
involves grasping novel objects not present in the training data.

The task suite for the Franka Panda arm includes:

• Pick & Place: Grasping and placing a variety of objects. The training set includes items
such as a toy banana, a toy eggplant, red/green/blue blocks, and red/yellow/black plates.

• Press Button: Pressing a toy button using a grasped black block as a tool.

• Route Cable: Routing a thin black rubber cable into a narrow slot.

• Drawer Operation: Opening a toy drawer.

Unseen Tasks These are designed to evaluate generalization: Novel Objects: Grasping objects not
seen during training (e.g., toy chili, toy strawberry, yellow block, large toy eggplant, arrow sticker,
marker pen). Distractors: Operating in the presence of irrelevant distractor objects. Visual Variations:
Adapting to changes in background color and object color.

We tested UniCoD, OpenVLA(Kim et al., 2024a), GR-1(Wu et al., 2023), π0 (Black et al., 2024),
UP-VLA (Zhang et al., 2025) and VPP (Hu et al., 2024) on this environment. The detailed results are
shown in Table 6 (corresponding to Figure 4).

Table 6: Detailed results on Franka-Emika Panda Robotarm. We evaluate each task 20 times (100
trials per skill) with random initialization and report the average success rate.

Model
Pick & Place Press Button Route Cable Drawer Avg Success

Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen

OpenVLA 38 18 65 50 40 20 45 40 47 32
GR-1 45 32 80 60 50 50 60 40 59 46
UP-VLA 80 70 90 80 65 55 80 70 78 72
VPP 88 76 85 80 75 70 85 60 83 72
π0 90 80 85 70 65 60 80 65 80 69
UniCoD (Ours) 90 85 95 80 80 75 85 80 88 80
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A.3.2 XARM DEXTEROUS MANIPULATION

Real-World XArm with 12-DOF X-Hand Our 12-DoF single-arm dexterous manipulation plat-
form, which comprises a 7-DoF XArm and a 5-DoF hand, is controlled using a dual-view visual
input from both first-person and third-person cameras. During evaluation, we test pick-and-place
capabilities across 5 distinct task variations for a total of 50 trials. For all other skills, we conduct 20
trials per task. The final performance is reported as the average success rate for each skill. We train
different models using a dataset of 4,000 trajectories across more than 100 tasks. The models are
then evaluated in a variety of seen and unseen scenarios, which cover 13 distinct skills, e.g., picking,
placing, stacking, and pouring. To specifically test for visual generalization, we alter the background
colors and novel objects during evaluation in the unseen scenarios.

The task suite for the XArm platform includes:

• Dexterous Pick & Place: Dexterously grasping and placing a wide range of objects. The
training set includes a toy banana, a toy eggplant, a toy orange, small and large toy soccer
balls, a computer mouse, a toy drawer, and more.

• Move Cup: Grasping and moving a cup to a different location.
• Relocate: Grasping an object and placing it adjacent to another target object.
• Stack Cube: Placing one block on top of another.
• Pass: Grasping an object and handing it to a human operator.
• Press Button: Directly actuating a toy button with a finger.
• Unplug: Extracting a rubber cable from a socket.
• Drawer Operation: Opening or closing a toy drawer.
• Tool Use: Using various tools, such as a spoon (e.g., for scooping) and a toy hammer (e.g.,

for striking).

Unseen Tasks These are designed to evaluate generalization: Novel Objects: Grasping unseen
objects and placing them to not-seen targets during training (e.g., apple, lemon, glass cup, glass
plate, blue plate, toy kapibla, transparent plate, green apple, big ball, and various of novel objects).
Distractors: Operating in the presence of irrelevant distractor objects. Visual Variations: Adapting to
changes in background color and object color.

Table 7: Detailed results on XArm with dexterous hand. We evaluate 50 times on Pick & Place tasks
and 20 trials on other tasks with random initialization and report the average success rate.

Model
Pick & Place Move Cup Relocate Stack Cube Pass

Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen

OpenVLA 35 8 0 0 28 12 0 0 4 0
GR-1 40 10 0 0 16 12 0 0 0 0
VPP 69 35 64 40 70 66 64 44 48 32
π0 65 45 50 28 75 56 45 40 40 35
UniCoD (Ours) 75 73 75 45 83 78 62 50 50 40

Model
Press Button Unplug Drawer Tool Use Avg Success

Seen Unseen Seen Unseen Seen Unseen Seen Unseen Seen Unseen

OpenVLA 68 44 0 0 40 28 10 / 21 12
GR-1 64 40 0 0 48 24 20 / 21 16
VPP 96 88 52 20 72 56 75 / 67 48
π0 95 90 45 30 85 75 42 / 60 50
UniCoD (Ours) 97 95 40 35 80 77 65 / 70 62

A.4 EXAMPLES OF DEMOS ON OOD-TASKS

Examples of video on unseen objects are shown in Figure 7, where unseen objects are bold in the
instructions. More demos can be found in our anonymous website.
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Put the green apple into the blue plate

Put the toy into the blue plate

Put the apple into the transparent plate

Lift up the transparent cup

Figure 7: Examples of Semantic Generalization to OOD objects

A.5 DATA USED FOR PRE-TRAINING

Table 8 summarizes the datasets employed during pre-training. To creating the robot vqa data, we
employ Gemini 2.5(Comanici et al., 2025) to annotate text descriptions and task planning for a subset
of video data. The RoboMind dataset inherently contains overall task descriptions and sub-tasks,
which can be directly utilized as vision–language question–answer pairs.

Table 8: Datasets and the number of samples used for TI2E task and VQA task.

Task name Dataset name Number of samples
AgibotWorld(Bu et al., 2025) 120k

Galaxea Open-World(Jiang et al., 2025) 99k
Robomind(Wu et al., 2024) 20k

TI2E Droid(Khazatsky et al., 2024) 76k
Bridge(Walke et al., 2023) 55k
Egodex(Hoque et al., 2025) 320k

Ego4D(Grauman et al., 2022) 500k

AgibotWorld VQA 120k
Galaxea Open-World VQA 99k

VQA Robomind VQA 20k
Droid VQA 76k

LLaVA-Pretrain(Liu et al., 2023) 558k
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A.6 VQA DATA DESIGH

We present several examples of embodied VQA question–answer pairs in Figure 8.

Question: Based on current observations  
and instruction < Put apples, oranges and 
peaches in plastic bags.>, what subtask 
does the robot need to do next?

Answer: Next subtask is: place the held 
red apple into the plastic bag in the 
shopping cart.

Question: Based on current observations
and instruction < Using the TV Remote.>, 
what subtask does the robot need to do 
next?

Answer: Next subtask is: Pick up the 
remote control from the table with left 
arm.

Question: Based on current observations 
and instruction < Stacking the blue, 
yellow, and orange cups.>, planning for 
the task the robot need to do?

Answer: Planning: Pick the blue cup; 
Place the blue cup on the yellow cup; 
Pick up the yellow cup; Place the yellow 
cup on the orange cup

Figure 8: Example of VQA.

For part of the embodied datasets (e.g., Agibot and RoboMIND), which contain precise instruction
descriptions, we can directly construct QA pairs. For other datasets, we employ Gemini to decompose
and annotate instruction descriptions according to the following prompt in Figure 9, 10.

B USAGE OF LLMS

In the final stages of preparing this manuscript, the authors used a Large Language Model (LLM)
solely for grammar checking and language polishing. The model assisted in improving sentence
structure and correcting grammatical errors to enhance readability.
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Prompt Example

System Message:

"You are an expert in video analysis and robotic task

understanding.

You will be given an image sequence representing a video and a

reference

description. Your task is to decompose the total task into

several steps

which are needed to complete the task, and label each step with a

frame range."

User Message:

## Task Description

You will analyze an image sequence of a robotic arm performing a

specific task.

Your task is to make the overall task description more detailed

with the help of

the video clip, extract the necessary steps, and specify the

frame range for each step.

## Target

Step Extraction: Extract the key steps required to complete the

task. Each step includes:

- Specific actions decomposed from video and description

- Frame window: Specify the start and end frame for each step

## Requirements:

1. Different steps must correspond to different action types.

2. A step cannot contain two or more actions.

3. Two similar steps need to be merged into one.

4. The first step must start at frame 0, and the last step cannot

exceed {frame_num-1}.

## Output Format

Return output in JSON:

{

"task_summary": "...",

"steps": [

{"step_description": "...", "start_frame": 0, "end_frame": 6},

{"step_description": "...", "start_frame": 7, "end_frame": 12}

]

}

## Example Input

"task description": "Moving colored blocks into a container."

"video": image sequence with length {frame_num}

1

Figure 9: prompt for Gemini.
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## Example Output

{

"task_summary": "Moving the red and yellow blocks into a

container.",

"steps": [

{"step_description": "pick the red block.", "start_frame": 0,

"end_frame": 6},

{"step_description": "place the red block into container.",

"start_frame": 7, "end_frame": 12},

{"step_description": "pick the yellow block.", "start_frame":

13, "end_frame": 15},

{"step_description": "place the yellow block into

container.", "start_frame": 16, "end_frame":

{frame_num-1}}

]

}

2

Figure 10: prompt for Gemini.
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