
Exploration for the Efficient Deployment of Reinforcement Learning Agents

Exploration for the Efficient Deployment of Reinforce-
ment Learning Agents

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement learning (RL) provides a rich toolbox with which to learn sequential1
decision making policies. Notably, the ability to learn solely from offline interaction2
data has been a highly successful modality for training real-world policies without ever3
interacting in the real world. However, a gap exists in this paradigm when the offline4
dataset does not cover all the behaviors necessary to extract optimal policies. Naively,5
one can pre-train a policy using offline RL and fine-tune it using online RL; this can6
lead to catastrophe in safety critical settings, like healthcare and autonomous driving,7
where deploying an unverified policy is irresponsible. Deployment efficient learning is8
a potential solution, where the number of distinct data collection policies is relatively9
low compared to the number of updates to the policy. We argue that safely improving10
a dataset requires a deployment efficient algorithm with a carefully constructed data11
collection policy. We introduce a framework with a stationary exploration policy that12
aims to reduce out-of-distribution uncertainty while maintaining strong returns. We13
establish theoretical guarantees of this exploration framework without finetuning and14
demonstrate our methods on a small-scale toy environment and a large-scale supply15
chain environment with real-world data.16

1 Introduction17

Offline RL algorithms are popular in domains where online interactions can be costly or unsafe18
(Achiam & Amodei, 2019; Hu et al., 2024; Liu et al., 2023). To avoid potentially dangerous states,19
many offline algorithms (Kumar et al., 2020; Kostrikov et al., 2021) regularize the learned policy20
to take actions that stay within the distribution of interactions within the dataset. Naturally, the21
performance of policies trained with offline RL algorithms depends significantly on the coverage of22
this offline data. However, this restriction can be mitigated by performing some online exploration to23
improve the dataset’s coverage.24

25
Offline-to-online RL algorithms seek to overcome this limitation by refining offline trained26
policies via online interaction with the environment (Nair et al., 2020; Mark et al., 2024; Ball et al.,27
2023; Wang et al., 2023; Zhou et al., 2025). However, this approach falls short in the real world28
due to cost and safety considerations of online exploration. Real-world applications like health29
care or autonomous driving (Gottesman et al., 2019; Kiran et al., 2021) have little tolerance for30
error and typically require policies to be verified and tested before deployment. For this reason,31
updating the policy parameters online, as most offline-to-online methods do, cannot be permitted in32
the real world as every update to the policy parameters must be thoroughly tested and verified. As33
testing and verification can be time consuming and expensive, it makes sense to use the number34
of policy deployments as a suitable measure of efficiency. Specifically, the concept of deployment35
efficiency, which is defined as the ratio of the number of unique policies deployed during training36
to the number of samples collected, is most relevant for many real-world systems (Matsushima37
et al., 2020). On-policy RL methods are at one extreme of the deployment efficiency spectrum,38

1

Under review for RLC 2025, to be published in RLJ 2025

requiring one deployment per update. Purely offline methods are at the other end, only utilizing one39
deployment in total. In real-world settings, the only feasible way to improve an offline-trained policy40
is to explore in a manner that is neither costly in terms of deployment efficiency nor leads to losses41
due to poor selection of actions.42

A high-profile and socio-economically relevant setting in which deployment efficiency is crucial is43
that of supply chain management (Madeka et al., 2022), where an agent must place inventory orders44
to vendors to stock a company’s warehouses. In this domain, state-of-the-art RL agents (Andaz et al.,45
2023) are trained offline using historical data collected from a traditional linear programming-based46
behavior policy. However, to improve the offline policy, it is necessary to collect quality online47
interactions through exploration in the real world, but each suboptimal action has severe financial48
overheads. Since policies need to be verified and back-tested for safety and performance (Corsi49
et al., 2024; Matsushima et al., 2020; Madeka et al., 2022; Amir et al., 2021) before deployment, it is50
difficult to justify continuous online finetuning. Instead, we propose to use a stationary exploratory51
policy to collect high quality samples that can be used to re-train the policies offline on the augmented52
dataset. This stationary exploration policy should satisfy two desiderata: (a) it should be safe,53
meaning that it should not deviate too far from the well-tested policy, and (b) its exploration should54
be targeted, meaning that it should carefully collect data that are close to the known safe regions,55
while still meaningfully augmenting the dataset for high-quality offline policy improvements for56
future deployments.57

Our contributions can be summarized as: (1) establishing a framework for exploring through online58
interactions without fine-tuning the policy online, (2) developing a principled exploration strategy59
from the offline dataset that can collect informative samples through online interactions, and (3)60
empirically analyzing the samples collected using our exploration strategy on a discrete navigation61
environment and a real-world supply chain application (Madeka et al., 2022; Andaz et al., 2023).62

2 Preliminaries63

We consider problems that can be modelled as Markov Decision Processes (MDPs) (Puterman,64
1990), which are defined as M = ⟨S,A, P, r, γ, ρ0⟩ where S is the state space, A is the action65
space, P : S × A 7−→ S is the transition probability function, γ ∈ [0, 1) is the discount factor,66
ρ0 is the initial state distribution and r : S × A 7−→ R is the reward function. A policy πθ :67
S 7−→ A represents the probability of taking an action a from state s. The policy induces a68
trajectory distribution pπ(τ) = ρ0Π

∞
t=1π(at|st)P (st+1|st, at) and a corresponding state-visitation69

distribution dπ(s) = (1 − γ)
∑∞

t=0 γ
tpπ(st = s). The expected return is defined as J(πθ,M) =70

Eτ∼pπ(τ)[
∑∞

t=0 γ
tr(st, at)]. The goal of the agent is to find the optimal policy π∗ that maximizes71

the expected return, i.e,. π∗ = argmaxπ J(π,M).72

Offline RL algorithms try to regularize the policy to avoid taking actions out of dataset support. The73
regularization can be in the form of pessimism in Q-value for out-of-distribution actions (Kumar74
et al., 2020; Shimizu et al., 2024) or pessimism in the reward function based on uncertainties in the75
model predictions (Yu et al., 2020; Kidambi et al., 2021). In some sense, it can be assumed that the76
general objective for offline RL algorithms are,77

max
π

J(π,M)

s.t. D(pπ(s, a)||p̂(s, a)) ≤ ϵ,
(1)

78

where D is written as a divergence, but can more generally be any measure of the difference between79
distributions, pπ(s, a) is a measure of the true likelihood of state-actions under the policy, and p̂(s, a)80
is a measure of the likelihood of the state-action in the dataset (Nachum et al., 2019).81

3 Method82

The success of exploring in the real world hinges on two key considerations. First, the policy must83
targetedly collect data that that will augment the offline dataset in such a way that it improves future84
policy deployments. Second, the exploration conducted online must be “safe”, meaning that it should85
carefully stay close to the support of the offline data. In this section, we present the theoretical86

2

Exploration for the Efficient Deployment of Reinforcement Learning Agents

formulation of our efficient exploration framework, along with practical approximations. We obtain87
the optimal exploratory policy by improving the performance of the policy extracted from running88
offline RL algorithms on the historical dataset.89

3.1 The Exploratory Policy90

First, we construct the exploratory policy given a dataset D = {(si, ai, s′i, ri)}Ni=1; this is done using91
a distribution matching objective against a target distribution. First, we formalize the sub-optimality92
of a policy obtained using an offline dataset. We define u(s, a) ≈ log p((s, a) /∈ D) to provide a93
measure of the likelihood of (s, a) not being in the dataset. Using u(s, a) we can formally define the94
uncertain set (Kidambi et al., 2021):95

Definition 3.1. Let UD be the set of state-action pairs (s, a) that are not contained in the dataset D.96
Let u(s, a) represent the likelihood of (s, a) /∈ D. Define UD = {(s, a)|u(s, a) > α} ≈ {(s, a) ∈97
S ×A|(s, a, ., .) /∈ D}, where α is a scalar parameter.98

If (s, a) ∈ UD, pπ(s, a) would be low and if the probability π(a|s) is high, then D(pπ(s, a)||p̂(s, a))99
would be high. In other words, creating this partition in the state space allows the creation of an100
approximation of the given MDP M where the expected return is a pessimistic estimate of the101
objective in Equation (1). This pessimistic MDP will ensure that the trained policy will restrict the102
policy from taking actions outside the support of the dataset (Kidambi et al., 2021).103

Definition 3.2. Given an MDPM = ⟨S,A, P, r, γ, ρ0⟩, a dataset D = {(si, ai, s′i, ri)}Ni=1, define a104
pessimistic MDPMD = ⟨S ∪HALT,A, Pp, rp, γ, ρ0⟩ where,105

Pp(s
′|s, a) =

{
δ(s′ = HALT), (s, a) ∈ UD
P (s′|s, a), otherwise

rp(s, a) =

{
−Rmax, (s, a) ∈ UD
r(s, a), otherwise

106

Additionally, we make the following assumption to derive the suboptimality gap in the offline data.107
This assumption is also made by most offline RL algorithms using Equation (1) as their objective. It108
simply states that the offline RL algorithm produces the optimal policy for the pessimistic MDPMD.109

Assumption 3.3. Let π∗
D be the best policy obtained from a dataset D, essentially by optimizing110

the objective in Equation (1). We assume that π∗
D maximizes the expected return in MD i.e.111

J(π∗
D,MD) ≥ J(π,MD) ∀ π.112

Let dπ(X) be the visitation of set X following policy π and using the true dynamics P . We can now113
bound the true returns of the best policy obtained using the offline RL objective eq. (1) with the return114
of the optimal policy on MDPM or in other words define the suboptimality gap in the offline dataset.115

Theorem 3.4. LetM be a given MDP and D be the offline dataset. Let π∗ = argmaxπ J(π,M) be116
the true optimal policy onM and π∗

D = argmaxπ Equation (1) ≈ argmaxπ J(π,MD) be the best117
offline RL policy on dataset D. The following holds: J(π∗,M)− J(π∗

D,M) ≤ 2Rmax

(1−γ)2 d
π∗
(UD).118

A direct consequence of Theorem 3.4 is that if dπ
∗
(UD) = 0, i.e. all transitions taken by the optimal119

policy are in the dataset D, the optimal return of the best offline policy and the true optimal policy120
are the same. In other words, the best offline policy is in fact the true optimal policy. In general, if121
we want to improve the dataset, we need to tighten the bound or minimize dπ

∗
(UD). This means the122

exploratory policy must aim to maximize this visitation.123

Formally, let U∗
D be the set of state-action pairs visited by the optimal policy π∗ which are in124

the set UD. Mathematically, p((s, a) ∈ U∗
D) = dπ

∗
δ((s, a) ∈ UD). In practical situations, it is125

difficult to obtain the set UD. Rather, we will be using the measure u(s, a) to provide an estimate126
of (s, a) ∈ UD. We will approximate δ((s, a) ∈ UD) as 1

Z(s) exp(u(s, a)). The exploratory policy127
must be the one that maximizes its visitation for the state-action pairs in U∗

D. Using p((s, a) ∈ U∗
D)128

as a target distribution, we can obtain the optimal policy minimizing an f -divergence between the129
policy’s visitation distribution and the target distribution as discussed in several previous works (Ma130
et al., 2022; Agarwal et al., 2024). We use Forward KL because of its performance and exploration131
properties. The optimization can be further simplified into a regularized RL objective.132

3

Under review for RLC 2025, to be published in RLJ 2025

π∗
exp = argmin

π
DFKL(d

π(s, a)||d∗(s, a) exp(u(s, a)))

= argmax
π

Edπ [u(s, a)]−DKL(d
π(s, a)||d∗(s, a)).

(2)

Practically, we do not have access to π∗, preventing us from defining π∗
exp exactly. We will use a133

biased estimate of π∗, which is the best offline policy, π∗
D. In general this isn’t true, but if we restrict134

the marginal state visitation to be close to the dataset, i.e. ensuring D(dπ
∗
(s)||dπ∗

D (s)) ≤ ϵ, we can135
further simplify this objective to,136

π∗
exp = argmax

π
Edπ [u(s, a)]− βDKL(π||π∗

D). (3)

Common offline RL algorithms (Kostrikov et al., 2021; Kumar et al., 2020) learn π∗
D that are highly137

constrained to induce transitions that are found in D. For any given state, a policy trained using138
AWR (Peng et al., 2019b) has negligible probability of taking an action that is not present in the139
dataset, making out-of-distribution exploration difficult. We use fitted Q learning for some of our140
experiments to avoid the regularizations that are common to recent offline RL methods.141

Note that the KL constraint on visitations has been approximated to be on behavior or policy. This142
approximation makes sense if the marginal state visitation is bounded to be close to the dataset.143
Further, it has been shown in Mao et al. (2024) that semi-gradient updates for visitation regularized144
offline RL is, in fact, performing the same updates as behavior regularized RL.145

Since the policy π∗
exp needs to be obtained only from offline data, offline RL algorithms will overly146

constrain π∗
exp to be within the dataset, which is not ideal for an exploratory policy. Hence, we147

construct the exploratory policy to approximate the solution of Equation (3) directly using π∗
D, u(s, a)148

and the offline dataset D.149

3.2 Approximate Construction150

Neither online interactions nor offline RL can be used to optimize Equation (3). We use the following151
two sampling based approximations for π∗

exp:152

Single Step: Equation (3) has a closed form solution as discussed in prior works (Peng et al., 2019a;153
Rafailov et al., 2024). π∗

exp can be written in closed form as,154

π∗
exp(a|s) ∝ π∗

D exp
(1
β
u(s, a)

)
. (4)

Equation (4) provides a single step exploratory policy. The partition function can be obtained for155
simple discrete action spaces but for general action spaces, sampling from this distribution can be156
complicated.157

Multi-Step: Given the difficulty of sampling from a distribution such as Equation (4), we also158
propose an alternative way to use the uncertainty metric u(s, a) for decision-making. Specifically,159
we formulate the following online trajectory optimization problem with a learned dynamics model T̂160
and learned reward function r̂,161

π∗
exp(a|s) = argmaxa0,··· ,aH−1

Eπ̂

[
H−1∑
t=0

γt (r̂(st, at) + c · u(st, at)) + γHV ∗
D(sH)

]
, (5)

such that162
s0 = s, at ∼ π̂(·|st), st+1 ∼ T̂ (st, at),

where c ∈ (0, 1] is a hyperparameter that trades off between exploration and exploitation. The H-step163
rollouts are taken using π̂ which a high-temperature version of the dataset policy:164

π̂(a|s) = eπ
∗
D(a|s)/T∑

a′ eπ
∗
D(a′|s)/T ,

4

Exploration for the Efficient Deployment of Reinforcement Learning Agents

where T ∈ R+ is the temperature parameter of the softmax function. The argmax is over sequences165
of actions, but we can use model predictive control (MPC) and only commit to the first action in the166
sequence. This multi-step exploratory policy can be used to sample actions for arbitrary complex167
action spaces.168

3.3 Rolling out the Exploration Policy169

Given that we have π∗
exp, we can simply execute it to collect samples. However, we want to stay170

close to our “safe” dataset. We had made an assumption that D(dπ
∗
exp(s)||dπ∗

D (s)) ≤ ϵ which needs171
to maintained in the real world. Ideally we would want to start at each state in the offline dataset and172
run k-steps of exploration from there but resetting at a random state is not possible in the real world.173
We have the following choices,174

Reset: The exploratory policy starts executing from the start-state defined by the initial state distri-175
bution. While this strategy is the most simple, the deviation from the “safe” policy grows as O(T 2)176
(Ross et al., 2010).177

ϵ-exploration: This method mimics the epsilon greedy method. At any state, an exploratory action178
is taken according to π∗

exp with probability ϵ and a greedy action is taken with probability (1− ϵ).179
Mathematically, this is synonymous to choosing a time step t ∼ Geom(ϵ) to explore. This method180
can lead to better exploration with the exploration happening closer to π∗

D. One might argue that the181
time step could be chosen simply uniformly over the trajectory but the trajectory length is not often182
known which makes a uniform sampling difficult.183

We describe the connections between our framework and well-studied exploration methods in184
Appendix B.185

4 Experiments186

We present experiments that represent the exploration challenges of the real world; Namely, we use a187
stationary exploratory policy throughout each deployment and desire the exploratory policy perform188
similarly to the exploitation policy. Through these experiments we aim to demonstrate that careful189
consideration of uncertainty is critical when deploying stationary exploration policies. We use two190
domains: 1) a discrete navigation environment called Nav-Chambers for ablating design choices and191
2) a large scale supply chain environment that is backtestable with real-world data (Andaz et al.,192
2023; Madeka et al., 2022) and has in fact been used to train real-world policies.193

4.1 Discrete Navigation Environment: Nav-Chambers194

Environment Description: We create a discrete navigation environment called Nav-Chambers.195
The environment has discrete state and action spaces. It acts as a playground to run ablations and196
compare the different design choices for the exploratory policies. Nav-Chambers consists of a discrete197
space divided into four chambers using walls with passages to move across each other. The agent198
needs to traverse these chambers to reach to the other end of the grid (see Appendix D.2 for details).199

Baselines: There are two variants of our exploration: Single-Step (defined in Equation (4)) and200
Multi-Step (defined in Equation (5)). These are compared against prototypical exploration method-201
ologies: Naive-ϵ-greedy chooses an uniformly random action with probability ϵ and the greedy202
action with probability 1− ϵ. Weighted-ϵ-greedy chooses an action based on the uncertainty with203
probability ϵ and the greedy action with probability 1 − ϵ. Bandit-Style Reward Bonus has no204
explicit exploration action, but trains a Q-network with an uncertainty augmented reward target205
where r′ = r(s, a) + c 1√

N(s,a)

, where N(s, a) are tabular visitation counts, and c ∈ [0, 1] is a fixed206

hyperparameter.207

Experiment Setup: We iterate between “explore” and “train” phases as would happen in the208
real world. The explore phase executes the exploratory policy in the environment to collect T209

5

Under review for RLC 2025, to be published in RLJ 2025

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

(a) Data Collection Policy ϵ = 0.4

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

(b) Extracted Policy ϵ = 0.4

Figure 1: Comparison of our exploration policies (Single-Step and Multi-Step) against the baselines using
collect-returns (left) and eval-returns (right). Each curve shows a mean of 5 seeds with a rolling average of
window length 5 and the shaded region represents the 95% confidence interval.

trajectories and the train phase uses the combined buffer to train the policy for K steps using fitted210
Q-learning (Ernst et al., 2005; Riedmiller, 2005). We perform N such deployments. Our exploratory211
policy (both Single-Step and Multi-Step) and baselines are run as ϵ−exploration. We provide results212
for the reset setting in Appendix C.1. In these experiments, we show 100 deployments with 1000213
environment and 1000 training steps, each.214

As a measure of performance, we measure the mean return of the exploration policy and the greedy215
policy obtained from the offline RL algorithm and call these eval-returns and collect-returns216
respectively. Collect-returns is compared against the eval-returns to measure the deviation from the217
exploitation policy.218

Uncertainty Estimation: Our exploration requires estimates of uncertainty of states with respect219
to the dataset. To isolate the design of the exploration policy, we use the ground truth state-action220
visitation to approximate uncertainty. Let N(s,a) denote the number of times the agent has taken221
action a in state s. As in previous work (Strehl & Littman, 2008; Lobel et al., 2023), the square-root222
inverse of the count 1√

N(s,a)

is used as a measure of uncertainty.223

Results: Figure 1 shows the collect-returns (left) and eval-returns (right) of both of our exploratory224
policies compared against the baselines in the ϵ−exploration setting. The results in Figure 1a225
demonstrate that our exploratory policies perform better when doing data collection than both226
variants of ϵ-greedy and all outperform the UCB baseline. We suspect the UCB baseline to perform227
poorly because the reward targets are non-stationary and change significantly between deployments.228
The performance of the exploitation policies, as shown in Figure 1b, is similar, which indicates229
the similar quality of the samples collected during exploration. In short, our and the baseline230
exploration methods collect similar data but our methods do so in a safer and more performant231
manner. Additional discussion and results that focus on the performance difference across different232
values of ϵ and annealed-ϵ-greedy can be found in Appendix E.1 and Appendix E.2, respectively.233

4.2 Backtesting Exploration: Application to a Real-World Supply Chain234
Next, we consider an application to an inventory control problem where a retailer needs to procure235
inventory and balance the costs associated with over-stocking versus missing sales due to under-236
stocking. Andaz et al. (2023) considers how to learn dynamics models—specifically for inventory237
arrivals from vendors—to construct a simulator for a large e-commerce retailer’s supply chain.238
Transitions in the simulator are modeled through dynamics models (Andaz et al., 2023) trained using239
offline data. The dynamics models are only reliable on-policy (for the behavior policy) which affects240
the performance of any policy trained on the simulator. To get a higher quality policy, exploration241
is needed to improve the simulator. Policies can be trained using backpropagation through time242
(Madeka et al., 2022) within this simulator and launched in the real-world supply chain pipeline.243

6

Exploration for the Efficient Deployment of Reinforcement Learning Agents

Experiment Setup: Let the simulator described in Madeka et al. (2022) be M . Andaz et al. (2023)244
showed that this simulator is well-calibrated with the real world. We create a suboptimal simulator M̂245
by training the dynamics models on data collected in M using a behavior policy which does not cover246
the entire state, action spaces. In our experiments, M acts as the proxy for the real world and M̂ as the247
proxy for the simulator. The Supply Chain Environment is grounded in a dataset containing 5 years248
of real-world supply chain data (e.g., inventory levels, demand, delivery status, etc.) for thousands of249
products sold by a large e-commerce company. Further, to demonstrate the deployment efficiency250
regime, we segment the data into three chronological splits: T1, T2, and T3 representing three, one, and251
one years of data, respectively. Let MTi

be the simulator trained using the real-world data from time252
segment Ti. M̂Ti denotes the simulator trained using the data collected from MDP MTi for time period253
Ti (Madeka et al. (2022) uses an approach where samples are replayed from historic data). Finally,254
we train a deterministic policy in M using DirectBackprop (Madeka et al., 2022) and denote it as π∗

M .255
The complementary exploration policy, π∗

exp is constructed from π∗
M and the uncertainty measure256

Sin
gle

-

ste
p (

ou
rs) Gree

dy

Ep
silo

n-

gre
ed

y Base

Sin
gle

-

ste
p (

ou
rs)

Gree
dy

Ep
silo

n-

gre
ed

y

Base

0.39
(*)

0.65
(***)

0.89
(***)

0.39
(*)

-0.26
(ns)

0.51
(***)

0.65
(***)

0.26
(ns)

0.25
(ns)

0.89
(***)

0.51
(***)

-0.25
(ns)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pe
rfo

rm
an

ce
 D

iff
er

en
ce

 (i
n

%
)

Figure 2: This figure shows a confusion matrix de-
scribing the relative difference in performance of a
policy trained using data collected by the Single-
step, Greedy, and Epsilon-greedy exploration meth-
ods as well as the original policy (Base). Each box
represents the percentage difference of the row
method against the column method. Bold num-
bers denote statistical significance and “ns” de-
notes not statistically significant. One, two, and
three asterisks denote a p-value of < 0.05, < 0.01,
and < 0.001, respectively.

We perform single deployment experiments in257
three phases: explore (i.e. deployment), retrain,258
and evaluate. At the start of the experiments,259
we are given M̂T1 on which π∗

M̂T1

is trained and260

π∗
exp constructed. Next, we deploy π∗

exp in MT2261

to collect data and subsequently train M̂T1,2 . Fi-262
nally, π∗

M̂T1,2

is trained and evaluated in MT3
.263

Our experiments demonstrate the effectiveness264
of our uncertainty-seeking exploration policy.265

We provide implementation details and experi-266
mental setup for the Supply Chain Environment267
in Appendix D.1 and uncertainty estimation in268
Appendix F.269

Constructing π∗
exp: The Supply Chain Environ-270

ment is high-dimensional and continuous, so it is271
infeasible to measure uncertainty using a count-272
based metric as is done in the Nav-Chambers273
environment. Instead, we model uncertainty274
by fitting an N -component Gaussian Mixture275
Model (GMM) to a dataset of state-action pairs,276
but only use a subset of the state features. We de-277
note the resulting joint distribution as pG(sr, a),278
where sr = s|I is the restriction of s to a se-279
lected index set I ⊆ {1, . . . ,dim(s)}. To cal-280
culate an exploratory action while in state s, we281

resample a component-reweighted version of pG according to the likelihood of the current state and282
proposed action pair. Further details can be found in Algorithm 2.283

Baselines: We compare our single-step exploration against two common-sense exploration frame-284
works: 1) greedy, which uses π∗

M̂T1

to explore in MT1,2
, as is done in Matsushima et al. (2020), and285

2) epsilon-greedy, which takes uniformly random action with probability ϵ and otherwise use π∗
M̂T1

.286

Results: Figure 2 shows a comparison of the return achieved by various policies evaluated in MT3
287

in terms of their relative performance. The policies being compared are trained in three distinct288
versions of M̂1,2, each constructed from data collected in M1,2 by the greedy, epsilon-greedy, and our289
single-step exploration policies. We also compare against a policy that was only trained in M̂1 (Base).290
Firstly, we confirm that exploration is necessary by seeing that the Base policy under-performs all291
other methods (left column). Further, we see that the our single-step exploration method outperforms292
the other three policies to a statistically significant degree (top row). Importantly, the greedy policy293

7

Under review for RLC 2025, to be published in RLJ 2025

does not sufficiently cover the state space to learn the most robust policy in the next round of294
deployment.295

5 Related Work296

Offline to Online finetuning: Offline RL algorithms are essentially off-policy RL algorithms that297
add additional constraints to the algorithm to ensure that the policy always stays within the data298
support. A number of such algorithms explicitly constrain the value functions (Kumar et al., 2020;299
Yu et al., 2020; Kidambi et al., 2021) or use regularization to ensure that the policy stays within the300
data support (Wu et al., 2019; Nachum et al., 2019). In all cases, the performance of the policy is301
restricted by the dataset quality (Kidambi et al., 2021).302

Online finetuning has been extensively used (Nair et al., 2020; Mark et al., 2024; Ball et al., 2023;303
Wang et al., 2023) to mitigate the dataset bias. While the offline RL algorithms themselves can be304
directly used for online finetuning like in Peng et al. (2019a); Nair et al. (2020); Kumar et al. (2020);305
Kostrikov et al. (2021), they are overly pessimistic. A number of works have been introduced that306
simply reduce the regularization for conservatism during online finetuning (Lee et al., 2021; Zhang307
et al., 2023; Hong et al., 2023; Ball et al., 2023; Zheng et al., 2023). There have also been works that308
have used offline datasets as a prior for online RL algorithms (Mark et al., 2024; Ball et al., 2023).309

All these methods have one major assumption: there is no restriction on online finetuning. The focus310
of all these works is to produce good policy updates combining the online samples and offline dataset.311
As discussed in works like Matsushima et al. (2020), there is often costs associated before deploying312
any policy in the real world. Our work differs from all these offline-to-online methods in that it aims313
to develop an exploration scheme suitable for applications where it is not possible to deploy arbitrary314
policies.315

Exploration: Our method constructs an exploratory policy from batched experience to deploy in the316
real world. Here, we will discuss some commonly used methods for constructing exploratory policies.317
Epsilon greedy (Watkins, 1989; Auer et al., 2002) is a simple, yet highly effective method used to318
take exploratory actions with probability ϵ. The idea is to ensure that the policy has some entropy and319
chooses every action with a non-zero probability. Another way of increasing the entropy of the policy320
is through explicit entropy maximization as in the MaxEnt RL methods (Haarnoja et al., 2017; 2018).321

322
Selecting actions using an upper confidence estimator for the average return (Q-function in323
case of RL algorithms) have been inspired from the UCB algorithm in multi-arm bandits (Auer324
et al., 2002). Strehl & Littman (2008) proposed using an uncertainty bonus for the reward function325
providing convergence guarantees. Algorithms have been proposed that extend the uncertainty326
bonus in several ways: using pseudocounts (Bellemare et al., 2016; Lobel et al., 2023), model errors327
(Burda et al., 2019) and using ensembles to estimate uncertainty (Kidambi et al., 2021). Distribution328
matching approaches have also been proposed that aim to increase the entropy of the state-visitation329
distribution (Lee et al., 2019; Agarwal et al., 2024). While our exploration method also draws from a330
similar objective, these exploration strategies have been proposed in settings where the aim is to331
explore all states, ultimately leading to a nearly zero uncertainty bonus for all states. Our method, on332
the other hand, uses the uncertainty bonus to select a few states from the prior policy distribution.333

6 Conclusion334

In many real-world settings, policies cannot be continuously updated online; we proposed exploration335
strategies for such domains. We adopted deployment efficiency as a relevant evaluation metric, and336
showed how our algorithms lead to high return and deployment efficiency. We constructed two337
exploration policies (single-step and multi-step) by combining a model of the uncertainty of a dataset338
along with the optimal policy that can be extracted from it. Along with theoretical bounds on the339
sub-optimality of these policies, we provide extensive experiments in the Nav-Chambers environment340
and a well-calibrated simulator of a real-world supply chain environment. Our proposed methods341
balance safety with exploration and show that it is possible to maintain performance while exploring342
in the deployment efficient regime.343

8

Exploration for the Efficient Deployment of Reinforcement Learning Agents

References344

Joshua Achiam and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning,345
2019. URL https://api.semanticscholar.org/CorpusID:208283920.346

Siddhant Agarwal, Ishan Durugkar, Peter Stone, and Amy Zhang. f-policy gradients: A general347
framework for goal-conditioned rl using f-divergences. Advances in Neural Information Processing348
Systems, 36, 2024.349

Guy Amir, Michael Schapira, and Guy Katz. Towards scalable verification of rl-driven systems.350
CoRR, abs/2105.11931, 2021. URL https://arxiv.org/abs/2105.11931.351

Sohrab Andaz, Carson Eisenach, Dhruv Madeka, Kari Torkkola, Randy Jia, Dean Foster, and Sham352
Kakade. Learning an inventory control policy with general inventory arrival dynamics. arXiv353
preprint arXiv:2310.17168, 2023.354

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit355
problem. Mach. Learn., 47(2–3):235–256, may 2002. ISSN 0885-6125. DOI: 10.1023/A:356
1013689704352. URL https://doi.org/10.1023/A:1013689704352.357

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning358
with offline data, 2023. URL https://arxiv.org/abs/2302.02948.359

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.360
Unifying count-based exploration and intrinsic motivation. Advances in Neural Information361
Processing Systems, 29, 2016.362

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network363
distillation. In Seventh International Conference on Learning Representations, pp. 1–17, 2019.364

Davide Corsi, Guy Amir, Andoni Rodriguez, Cesar Sanchez, Guy Katz, and Roy Fox. Verification-365
guided shielding for deep reinforcement learning, 2024. URL https://arxiv.org/abs/366
2406.06507.367

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.368
Journal of Machine Learning Research, 6(18):503–556, 2005. URL http://jmlr.org/369
papers/v6/ernst05a.html.370

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale371
Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare. Nature372
medicine, 25(1):16–18, 2019.373

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with374
deep energy-based policies. CoRR, abs/1702.08165, 2017. URL http://arxiv.org/abs/375
1702.08165.376

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy377
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,378
2018. URL http://arxiv.org/abs/1801.01290.379

Hado Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and380
A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran Asso-381
ciates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/paper/382
2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf.383

Joey Hong, Aviral Kumar, and Sergey Levine. Confidence-conditioned value functions for offline384
reinforcement learning, 2023. URL https://arxiv.org/abs/2212.04607.385

Xuemin Hu, Pan Chen, Yijun Wen, Bo Tang, and Long Chen. Long and short-term constraints driven386
safe reinforcement learning for autonomous driving, 2024.387

9

https://api.semanticscholar.org/CorpusID:208283920
https://arxiv.org/abs/2105.11931
https://doi.org/10.1023/A:1013689704352
https://arxiv.org/abs/2302.02948
https://arxiv.org/abs/2406.06507
https://arxiv.org/abs/2406.06507
https://arxiv.org/abs/2406.06507
http://jmlr.org/papers/v6/ernst05a.html
http://jmlr.org/papers/v6/ernst05a.html
http://jmlr.org/papers/v6/ernst05a.html
http://arxiv.org/abs/1702.08165
http://arxiv.org/abs/1702.08165
http://arxiv.org/abs/1702.08165
http://arxiv.org/abs/1801.01290
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://arxiv.org/abs/2212.04607

Under review for RLC 2025, to be published in RLJ 2025

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel : Model-388
based offline reinforcement learning, 2021. URL https://arxiv.org/abs/2005.05951.389

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani,390
and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE391
transactions on intelligent transportation systems, 23(6):4909–4926, 2021.392

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit393
q-learning, 2021. URL https://arxiv.org/abs/2110.06169.394

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via395
bootstrapping error reduction. CoRR, abs/1906.00949, 2019. URL http://arxiv.org/abs/396
1906.00949.397

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline398
reinforcement learning. CoRR, abs/2006.04779, 2020. URL https://arxiv.org/abs/399
2006.04779.400

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric P. Xing, Sergey Levine, and Ruslan Salakhut-401
dinov. Efficient exploration via state marginal matching. CoRR, abs/1906.05274, 2019. URL402
http://arxiv.org/abs/1906.05274.403

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online404
reinforcement learning via balanced replay and pessimistic q-ensemble. CoRR, abs/2107.00591,405
2021. URL https://arxiv.org/abs/2107.00591.406

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu,407
Wenhao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe408
reinforcement learning, 2023.409

Sam Lobel, Akhil Bagaria, and George Konidaris. Flipping coins to estimate pseudocounts for explo-410
ration in reinforcement learning, 2023. URL https://arxiv.org/abs/2306.03186.411

Yecheng Ma, Andrew Shen, Dinesh Jayaraman, and Osbert Bastani. Versatile offline imitation from412
observations and examples via regularized state-occupancy matching. In International Conference413
on Machine Learning, pp. 14639–14663. PMLR, 2022.414

Dhruv Madeka, Kari Torkkola, Carson Eisenach, Anna Luo, Dean P. Foster, and Sham M. Kakade.415
Deep inventory management, 2022. URL https://arxiv.org/abs/2210.03137.416

Liyuan Mao, Haoran Xu, Weinan Zhang, and Xianyuan Zhan. Odice: Revealing the mystery of417
distribution correction estimation via orthogonal-gradient update. In The Twelfth International418
Conference on Learning Representations, 2024.419

Max Sobol Mark, Archit Sharma, Fahim Tajwar, Rafael Rafailov, Sergey Levine, and Chelsea Finn.420
Offline RL for online RL: Decoupled policy learning for mitigating exploration bias, 2024. URL421
https://openreview.net/forum?id=lWe3GBRem8.422

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-423
efficient reinforcement learning via model-based offline optimization. CoRR, abs/2006.03647,424
2020. URL https://arxiv.org/abs/2006.03647.425

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of426
discounted stationary distribution corrections. Advances in neural information processing systems,427
32, 2019.428

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement429
learning with offline datasets. CoRR, abs/2006.09359, 2020. URL https://arxiv.org/430
abs/2006.09359.431

10

https://arxiv.org/abs/2005.05951
https://arxiv.org/abs/2110.06169
http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1906.00949
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2006.04779
http://arxiv.org/abs/1906.05274
https://arxiv.org/abs/2107.00591
https://arxiv.org/abs/2306.03186
https://arxiv.org/abs/2210.03137
https://openreview.net/forum?id=lWe3GBRem8
https://arxiv.org/abs/2006.03647
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359

Exploration for the Efficient Deployment of Reinforcement Learning Agents

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:432
Simple and scalable off-policy reinforcement learning. CoRR, abs/1910.00177, 2019a. URL433
http://arxiv.org/abs/1910.00177.434

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:435
Simple and scalable off-policy reinforcement learning, 2019b. URL https://arxiv.org/436
abs/1910.00177.437

Martin L Puterman. Markov decision processes. Handbooks in operations research and management438
science, 2:331–434, 1990.439

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea440
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances441
in Neural Information Processing Systems, 36, 2024.442

Martin Riedmiller. Neural fitted q iteration – first experiences with a data efficient neural rein-443
forcement learning method. In João Gama, Rui Camacho, Pavel B. Brazdil, Alípio Mário Jorge,444
and Luís Torgo (eds.), Machine Learning: ECML 2005, pp. 317–328, Berlin, Heidelberg, 2005.445
Springer Berlin Heidelberg. ISBN 978-3-540-31692-3.446

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. No-regret reductions for imitation447
learning and structured prediction. CoRR, abs/1011.0686, 2010. URL http://arxiv.org/448
abs/1011.0686.449

Yutaka Shimizu, Joey Hong, Sergey Levine, and Masayoshi Tomizuka. Strategically conservative450
q-learning. arXiv preprint arXiv:2406.04534, 2024.451

Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new452
methods for reinforcement and imitation learning. In The Twelfth International Conference on453
Learning Representations, 2023.454

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for455
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.456

Shenzhi Wang, Qisen Yang, Jiawei Gao, Matthieu Gaetan Lin, Hao Chen, Liwei Wu, Ning Jia, Shiji457
Song, and Gao Huang. Train once, get a family: State-adaptive balances for offline-to-online458
reinforcement learning, 2023. URL https://arxiv.org/abs/2310.17966.459

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards, 1989.460

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.461
CoRR, abs/1911.11361, 2019. URL http://arxiv.org/abs/1911.11361.462

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn,463
and Tengyu Ma. MOPO: model-based offline policy optimization. CoRR, abs/2005.13239, 2020.464
URL https://arxiv.org/abs/2005.13239.465

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforcement466
learning, 2023. URL https://arxiv.org/abs/2302.00935.467

Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy468
learning for offline-to-online reinforcement learning, 2023. URL https://arxiv.org/abs/469
2303.07693.470

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online reinforce-471
ment learning fine-tuning should not retain offline data. In The Thirteenth International Conference472
on Learning Representations, 2025.473

11

http://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
https://arxiv.org/abs/2310.17966
http://arxiv.org/abs/1911.11361
https://arxiv.org/abs/2005.13239
https://arxiv.org/abs/2302.00935
https://arxiv.org/abs/2303.07693
https://arxiv.org/abs/2303.07693
https://arxiv.org/abs/2303.07693

Under review for RLC 2025, to be published in RLJ 2025

Appendix474

A Offline RL and Pessimism475

Offline RL refers to the class of RL algorithms that train on a fixed dataset. Due to the inherent476
overestimation biases (Hasselt, 2010) in RL algorithms, naively trained policies have a tendency to477
steer out of the dataset towards the highly-biased value estimates. As a result, regularizations are478
added to the ensure pessimism in the value functions. These regularizations can be behavior based479
(Kumar et al., 2019; Wu et al., 2019), value based (Kumar et al., 2020), visitation based (Sikchi et al.,480
2023) or reward based (Kidambi et al., 2021; Yu et al., 2020). Recent works have shown several481
interconnections among these (Sikchi et al., 2023; Mao et al., 2024). We consider the following482
constraint optimization as offline RL optimization problem:483

max
π

J(π,M)

s.t. D(pπ(s, a)||p̂(s, a)) ≤ ϵ,
(6)

Equation 6 has been studied through common offline RL and imitation learning algorithms (Nachum484
et al., 2019; Sikchi et al., 2023). We approximate the optimization problem using a pessimistic MDP485
(as defined in Kidambi et al. (2021)). The pessimistic MDP ensures that D(pπ(s, a)||p̂(s, a)) ≤ ϵ is486
always satisfied as any transition outside the dataset is heavily penalized.487

A.1 Proof of Theorem 3.4488

We will be introducing some definitions and lemmas in order to prove Theorem 3.4. We begin by489
defining hitting time,490

Definition A.1. (Hitting time) Given an MDPM, starting state distribution ρ0, state-action pair491
(s, a) and a policy π, the hitting time Tπ

(s,a) is defined as the random variable denoting the first time492
action a is taken at state s by π onM, and is equal to∞ if a is never taken by π from state s. For a493

set of state-action pairs S ⊆ S ×A, we define Tπ
S

def
= min(s,a)∈S Tπ

(s,a). In other words, it is the time494
it takes to arrive at state s.495

Using the definition, we can introduce the following Lemma that bounds the returns obtained in the496
pessimistic MDPMD using the returns in the true MDPM.497

Lemma A.2. LetM be a given MDP. The following is true for any offline dataset D.498

J(π,M)− 2Rmax

1− γ
E[γTπ

UD] ≤ J(π,MD) ≤ J(π,M) (7)
499

Proof. A more extensive theorem and corresponding proof exists in Kidambi et al. (2021). The500
definition of pessimistic-MDP in the two works is slightly different leading to different bounds.501

The rollout of any policy π on the pessimistic MDPMD would be the same as that of the true MDP502
M as long as an unknown state (s ∈ UD) is encountered. At that point, the return of the policy on503
the pessimistic MDP will be −Rmax

1−γ . The maximum return of the policy for that rollout segment can504

be Rmax

1−γ . Hence,505

J(π,M)− 2Rmax

1− γ
E[γTπ

UD] ≤ J(π,MD) (8)

Since MD is a pessimistic MDP for the corresponding MDP M with each state in MD having506
rewards less than or equal toM, for any policy, the return of will be higher inM compared toMD507
i.e. J(π,MD) ≤ J(π,M).508

12

Exploration for the Efficient Deployment of Reinforcement Learning Agents

With this bound, we can compare the returns obtained by policies trained on the pessimistic MDP509
with the corresponding returns in true MDP. To simplify this comparison, we use the following510
Lemma relates hitting times to visitation distributions.511

Lemma A.3. (Kidambi et al., 2021) (Hitting time and visitation distributions) For any setX ⊆ S×A,512
and any policy π, we have E[γTπ

X] ≤ 1
1−γ d

π(X).513

Now, we have all the components required to prove Theorem 3.4.514

Theorem 3.4. LetM be a given MDP and D be the offline dataset. Let π∗ = argmaxπ J(π,M) be515
the true optimal policy onM and π∗

D = argmaxπ Equation (1) ≈ argmaxπ J(π,MD) be the best516
offline RL policy on dataset D. The following holds: J(π∗,M)− J(π∗

D,M) ≤ 2Rmax

(1−γ)2 d
π∗
(UD).517

Proof. From Lemma A.2,518

J(π,M)− 2Rmax

1− γ
E[γTπ

UD] ≤ J(π,MD) ≤ J(π,M)
519

J(π∗,M)− J(π∗,MD) ≤
2Rmax

1− γ
E[γTπ∗

UD]

From Lemma A.3, we replace the upper bound520

J(π∗,M)− J(π∗,MD) ≤
2Rmax

(1− γ)2
dπ(UD)

By definition, we know that J(π∗,MD) ≤ J(π∗
D,MD) ≤ J(π∗

D,M). Thus we substitute521

J(π∗,M)− J(π∗
D,M) ≤ 2Rmax

(1− γ)2
dπ(UD)

522

B Connections to Commonly Used Exploration523

As discussed above, defining u(s, a) is a major design decision that needs to be taken and there is no524
optimal way to define uncertainty. We can show that different heuristic definitions of u(s, a) and π∗

D525
can draw connections to commonly used exploration techniques.526

ϵ-greedy: Suppose u(s, a) is not learned but defined using a crude heuristic: For any state s, with527
probability 1− ϵ, the action is not uncertain i.e. exp 1

βu(s, a) = 1 and with probability ϵ, the action528

is uncertain with inversely depending on π∗
D i.e. exp 1

βu(s, a) =
c

π∗
D(a|s) . Then, the corresponding529

exploration turns out to be ϵ-greedy. What does the uncertainty mean here? The value c
π∗
D(a|s) means530

that the uncertainty is lower for policy actions which makes some sense as the actions taken by the531
policy are already known and present in the dataset.532

Bandit-style UCB: Bandit-style UCB produces a policy that takes action according to Q(s, a) +533
u(s, a) where u(s, a) is of a specific function depending on the frequency of actions. UCB is very534
efficient exploration method as it provides a logarithmic regret bound in bandits. If π∗

D is assumed to535
be a softmax of the offline Q function i.e. π∗

D ∝ expQ(s, a), the exploration policy π∗
exp becomes a536

soft version of the Bandit-style UCB. It must be noted though, for most offline RL algorithms, π∗
D is537

not ∝ expQ(s, a) (Kostrikov et al., 2021; Sikchi et al., 2023).538

Uncertainty aware reward bonus: A common way of exploring in RL is to use uncertainty based539
reward bonus. This method is inspired from UCB and is formalized better in Strehl & Littman540
(2008). Here the Q function are trained to be optimistic by adding u(s, a) to the reward function.541
Mathematically, Qπ(s, a) = Eπ[

∑
t γ

t(r(st, at) + c · u(st, at))]. These algorithms are online542
algorithms converging to optimal Q functions as u(s, a)→ 0.543

13

Under review for RLC 2025, to be published in RLJ 2025

C Additional Results544

C.1 Reset Starting State545

Figure 3 contains the results for using the reset setting to explore on the Chamber Navigation546
environment.

0 20 40 60 80 100
Iteration

100

80

60

40

20

Ep
iso

de
 R

et
ur

n

(a) Evaluation-Time Performance

0 20 40 60 80 100
Iteration

100

80

60

40

20

Ep
iso

de
 R

et
ur

n

(b) Deployment-Time Performance

Figure 3: Comparison of our exploration methods against baselines while taking exploration steps
beginning at each environmental reset.

547

D Experimental Setup548

D.1 Supply Chain Environment549

We use the supply chain environment described in detail in (Madeka et al., 2022; Andaz et al.,550
2023). Here the RL agent makes decisions about buying items from vendors. The agent takes in a551
state x and its history of length H to predict the next action. The state consists of several features552
including demand, inventory, cost, time of year, etc. The authors of Madeka et al. (2022) introduced553
an algorithm to solve this domain and use real-world data by assuming the environmental setup to be554
an Exogenous-MDP. A simulator is created with the learned dynamics models for the endogenous555
components and the exogenous components are sampled from the real-world data. Because of the556
exogenous assumption, this simulator allows for back-testing of the policies and is calibrated with557
the real world. An RL agent is trained in the simulator using the DirectBackprop algorithm (Madeka558
et al., 2022).559

While our method is designed for real-world exploration, it is infeasible to test in the real world due560
to time-constraints (each step in the simulator represents one week). To overcome this, we partition561
our data into three segments, T1, T2, and T3 that represent train, explore and test periods, respectively.562
Further, we construct a reduced fidelity versions of the data by clamping some of the extreme (but563
highly rewarding) features; this allows us to generate simulators that mimics low data coverage.564

D.2 Nav-Chamber Experiments565

The Nav-Chambers is a gridworld-like environment where the action space is [Up, Down, Left,566
Right] and the reward is −1 everywhere except the goal, where it is +1. In the Nav-Chambers en-567
vironment, we implement deployment efficient exploration using count-based uncertainty estimation568
and train extract a policy using fitted Q-iteration, as described in Algorithm 1. The results shown use569
100 deployments, each with 1000 train steps and 1000 collect steps.570

14

Exploration for the Efficient Deployment of Reinforcement Learning Agents

Chambers Environment
Start
Goal

Figure 4: Obstacle map for the Nav-Chambers environment.

Algorithm 1 Deployment Efficient Exploration with Fitted Q-Iteration

1: Initialize dataset of interactions D ← {}, initialize Q-function Qθ(s, a)
2: for n = 1 to N do
3: for k = 1 to K do
4: Sample s from environment or replay buffer
5: Sample action a ∼ πexploration(a | s)
6: Execute a, observe r, s′

7: Add transition to dataset: D ← D ∪ {(s, a, r, s′)}
8: end for
9: Fit Qθ to minimize Bellman loss on D:

L(θ) =
∑

(s,a,r,s′)∈D

(
Qθ(s, a)−

[
r + γmax

a′
Qθ′(s′, a′)

])2

10: Optionally update target network θ′ ← θ
11: end for
12: return final Q-function Qθ

Across the experiments, the exploration policy is deployed a total of 100 times, collecting 1000571
transitions and training the policy for 1000 gradient steps. After each deployment, we use fitted572

E Ablation573

E.1 Epsilon574

We ablate over different values of epsilon to demonstrate the importance of uncertainty across a575
variety of exploration budgets. Figure 5 shows the eval-returns (bottom row) and collect-returns576
(top row) of our method and various baselines across different epsilons. These results show the577
ϵ-exploration setting. Finally, from left to right, the value of ϵ increases. We see relative performance578
improvements on the collect-returns of our single- and multi-step methods as ϵ increases.579

15

Under review for RLC 2025, to be published in RLJ 2025

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

Ep
iso

de
 R

et
ur

n

(a) Data Collection Policy ϵ = 0.2

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

(b) Data Collection Policy ϵ = 0.4

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

(c) Data Collection Policy ϵ = 0.8

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

Ep
iso

de
 R

et
ur

n

(d) Extracted Policy ϵ = 0.2

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

(e) Extracted Policy ϵ = 0.4

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

(f) Extracted Policy ϵ = 0.8

Figure 5: Comparison of our exploration policies (Single-Step and Multi-Step) against the baselines using
collect-returns (top row) and eval-returns (bottom row). Each curve shows a mean of 5 seeds with a rolling
average of window length 5 and the shaded region represents the 95% confidence interval. From left to right,
each column represents a different value of epsilon (ϵ used for the ϵ-exploration across methods.)

16

Exploration for the Efficient Deployment of Reinforcement Learning Agents

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

10

Ep
iso

de
 R

et
ur

n

(a) Data Collection Policy ϵ = 0.2

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

10

(b) Data Collection Policy ϵ = 0.4

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

10

(c) Data Collection Policy ϵ = 0.8

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

10

Ep
iso

de
 R

et
ur

n

(d) Extracted Policy ϵ = 0.2

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

10

(e) Extracted Policy ϵ = 0.4

0 20 40 60 80 100
Iteration

100

90

80

70

60

50

40

30

20

10

(f) Extracted Policy ϵ = 0.8

Figure 6: Comparison of our exploration policies (Single-Step and Multi-Step) against the baselines using
collect-returns (top row) and eval-returns (bottom row). Each curve shows a mean of 5 seeds with the shaded
region as the 95% confidence interval. From left to right, each column represents a different value of epsilon (ϵ
used for the ϵ-exploration across methods.

E.2 Annealed epsilon greedy experiment580

One advantage of our single- and multi-step exploration methods is that they achieve high performance581
when in the collection phase of the deployment without sacrificing data quality for the policy extraction582
phase. We hypothesize that this advantage stems from the methods’ ability to automatically converge583
to the exploiting policy once enough exploration has occurred. To test this, we compare the single-step584
exploration method to a linearly-decaying epsilon-greedy exploration. Define annealed epsilon-greedy585
as:586

πAnnealed ϵ−greedy(a|s, t) =

{
argmaxQ(s, a) with probability (1− f(t))

U(A) with probability f(t)
(9)

where f(t) ∈ [0, 1) is some scalar-valued function that takes as input a notion of time (usually587
how many steps of experience have been gained at that point) and outputs an exploration parameter588
ϵ. Typically, f(t) is a linearly decays from a value of ϵstart to ϵend over a period of time. Figure 6589
demonstrates potential decays over a training period of 100k steps.590

F Uncertainty-aware Exploration Policy in Supply Chain Environment591

Because the Supply Chain Environment has high dimensional state and action spaces, we approximate592
uncertainty with a N -component Gaussian mixture model (GMM), and then construct an uncertainty-593
aware exploration policy by reweighting the model components at explore-time. The Gaussian594

17

Under review for RLC 2025, to be published in RLJ 2025

Algorithm 2 Uncertainty-aware Action Resampling

1: Given:
• Policy πM

• Fitted GMM pG(sr, a)

• Temperature parameter τ > 0

• Input state s, with relevant feature subset sr = s|I
2: Compute action: a← πM (s)
3: Evaluate state-action likelihood: pG(sr, πM (sr))
4: Extract GMM component contributions: {wi}Ki=1

5: Compute reweighted components:

w′
i ←

exp(wi/τ)∑K
j=1 exp(wj/τ)

for i = 1, . . . ,K

6: Construct reweighted GMM p′G using {w′
i}

7: Sample new action: a′ ∼ p′G(· | sr)

mixture model pG is learned to approximate the joint distribution of sr and a present in the dataset,595
where sr is defined in Section 4.2. To take an uncertainty-maximizing action in the Supply Chain596
Environment, the agent first calculates its deterministic nominal action a = π(s). Next, calculate597
the likelihood of the proposed state-action pair with respect to pG and determine contributions w598
of each of the N component Gaussians. Lastly, resample the action a from the conditional GMM599
p′G(a|sr) but reweigh the components using a higher temperature distribution based on the component600
contributions w where601

w′
i =

exp(wi/τ)∑
i exp(wi/τ)

. (10)

The procedure is outlined in detail in Algorithm 2.602

18

