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Abstract001

Constant monitoring of the oceans is required to002

detect oil spills and reduce environmental damage003

associated with spills. Synthetic Aperture Radar004

(SAR) imaging is a critical tool for oil spill detec-005

tion, but is complex and requires time-consuming006

manual labor for analysis. Deep learning has shown007

encouraging performance in automatic classification008

of oil spills on these images, but the performance is009

not yet sufficient for a deep learning classifier to act010

autonomously, making manual assessment essential.011

However, if only a reduced subset of uncertain sam-012

ples had to be analyzed by human experts while the013

remaining samples could be automatically classified,014

it could greatly reduce the manual workload. In015

this study, we investigate if uncertainty estimates016

can identify which samples should be prioritized017

for manual inspection. Specifically, we propose a018

pipeline of defining a user-specified error tolerance019

and identifying an uncertainty threshold that filters020

out samples for automatic/manual thresholding. We021

evaluate the proposed pipeline on challenging real-022

world data. The results show that our proposed023

uncertainty-based ranking technique can reduce the024

manual workload by 41%, paving the way for new025

and more efficient ways to detect marine oil spills.026

1 Introduction027

Marine oil spills are common, with several thousand028

spills occurring each year in the United States [1].029

It can have major environmental impact due to the030

damage on the marine ecosystem and the wildlife031

at both the sea and shore [1]. Therefore, the ocean032

needs to be monitored to minimize the damage by033

removing them quickly after release. There are mul-034

tiple ways of large-scale monitoring of the ocean, but035

Synthetic Aperture Radar (SAR) imaging is often a036

preferred choice [2]. SAR is independent of daylight037

and cloud coverage while covering large areas, which038

is a big advantage compared to other options such039

as optical imagery [2].040

Despite all the advantages of SAR imaging, the041

resulting images are complex and cover large areas,042

making the manual image analysis time-consuming.043

Automatic systems based on deep learning models044

have shown encouraging performance for this spe-045

cific application [2, 3] and could potentially reduce046
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Figure 1. Three scenarios for SAR-based oil spill de-
tection: (1) human analysis with low error rate but high
workload, (2) automatic analysis with high error rate
but low workload, and (3) combined human and machine
analysis for low error and low workload. Images in figure
are artificially enhanced SAR images. © Copernicus
Sentinel data, processed by KSAT.

the manual workload. Even though the DL-based 047

systems achieve high accuracy [3–5], it is challenging 048

to put them into operational use-cases because of the 049

harsh consequences of a false negative. However, the 050

vast majority of images are still correctly classified. 051

Therefore, if there was a process that could reliably 052

identify samples that required human evaluation and 053

let the remaining samples be automatically classified, 054

it could significantly reduce the manual workload. 055

The bottom row of Figure 1 illustrates how such a 056

pipeline could be constructed. 057

In this work, we propose an uncertainty-guided 058

selection process for identifying SAR images of the 059

ocean with potential oil spills detected by a deep 060

learning model that must be processed by human 061

evaluators to ensure sufficient performance. It is 062

well-known that relying on the softmax output of 063

deep learning models is ill-advised due to their high 064

degree of overconfidence [6], and that more sophisti- 065

cated uncertainty estimation techniques can more 066

accurately identify samples that are likely to be mis- 067

classified [7]. The key idea in our proposed selection 068

process is to automatically identify an uncertainty 069

threshold that ensures a certain performance, where 070

all samples above the threshold are sent for human 071

evaluation. This approach allows for utilizing all 072
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the benefits of DL models without having to achieve073

perfect performance, while minimizing the risk of074

false negatives. Additionally, the automated process075

has the added benefit of minimizing inconsistent076

analysis due to human error in simple cases. Our077

contributions are:078

• A new procedure in automated deep learning-079

based classification for uncertainty-based selec-080

tion of samples for human evaluation.081

• Identification of domain-relevant augmentation082

strategies to allow for uncertainty estimation083

at test-time.084

• An in-depth analysis of the proposed pipeline085

on real-world challenging data. Our results086

show that using uncertainty-based selection for087

human evaluation can significantly reduce the088

manual workload of operators.089

2 Related Work090

Automatic detection of oil spills from SAR images091

has been extensively studied [2]. These approaches092

often revolve around sophisticated feature extraction093

techniques in combination with classical classifica-094

tion algorithms [8, 9]. More recently, such methods095

have been outperformed by deep learning-based ap-096

proaches [2]. Bianchi et al. [3] proposed a deep097

learning model based on convolutional neural net-098

works with encouraging performance. More recently,099

Trujillo-Acatitla, Tuxpan-Vargas, et al. [10] also100

demonstrated the high potential for deep learning-101

based oil spill detection but across a wider range102

of deep learning architectures. While all of these103

works demonstrate that automatic systems have104

great potential for alleviating the manual workload105

associated with oil spill detection, we are not aware106

of any works that have considered how uncertainty107

estimation could be practically integrated into the108

oil spill detection pipeline.109

3 Reducing Manual Workload110

With Uncertainty-Filtering111

Here, we present our proposed approach for filtering112

out samples that requires human evaluation.113

3.1 Uncertainty-Filtering With Test-114

Time Augmentation115

In this work, we focus on test-time augmentation116

(TTA) [11] to model uncertainty in the prediction ŷ117

of a deep learning model f . This choice is motivated118

by the flexibility of TTA, as it requires no modifi-119

cations to the model like Monte Carlo Dropout [12]120

or SWAG [13], nor does it require storing multi- 121

ple models like ensemble approaches [14]. This is 122

highly beneficial in industrial applications, where a 123

working model might already be in place and it is un- 124

desirable to alter the existing pipeline solely for the 125

uncertainty estimation. TTA works by generating 126

augmented views of an input and aggregating pre- 127

dictions across all augmented views, and has demon- 128

strated impressive performance across a wide range 129

of applications [11, 15]. This can be mathematically 130

described as taking an input x and transforming it 131

using a stochastic augmentation procedure T that 132

produces augmented versions x̃. Assuming M aug- 133

mentations are generated, a set of M predictions 134

{ŷ1, · · · , ŷM} are made. The uncertainty associated 135

with f ’s prediction of x is calculated as: 136

σ(tta) =

√√√√ 1

M − 1

M∑
m=1

(ŷm − ȳ), (1) 137

where ȳ is the mean of the M predictions. 138

Choosing augmentations in TTA A key aspect 139

of TTA is choosing a suitable data augmentation 140

procedure that fits the data and task at hand. A 141

common choice is to apply dropout [16] on the input 142

to generate augmented samples [11], which is moti- 143

vated by its flexibility, speed, and good performance 144

in many cases [11]. However, in the case of oil spill 145

detection from SAR images, we hypothesize that 146

dropout is not the most effective choice for augmen- 147

tation. Oil spills typically appear as dark areas in 148

SAR images, and dropping these pixels would do lit- 149

tle to alter their appearance, which would therefore 150

induce less informative uncertainty estimates. Also, 151

a high dropout rate could create areas that appear 152

similar to oil spills. Therefore, we instead propose 153

to use augmentations that are more suitable for the 154

particular task and data at hand. 155

The pixel-value shift (PVS) method shifts each 156

pixel based on the average pixel intensity in the 157

training set. PVS has demonstrated encouraging 158

results for hyperspectral imaging [17], which is often 159

attributed to its ability of generating in-distribution 160

samples. Mathematically, PVS generates samples 161

by 162

x(pvs) = x± γ · µ(tr), (2) 163

where µ(tr) is the average pixel intensity estimated 164

across the training set and γ is a coefficient that 165

controls the strength of the shift. This coefficient 166

is randomly sampled for each generated sample to 167

induce different shifts for the same sample, and the 168

sampling procedure for γ is an important hyperpa- 169

rameters for this type of augmentation. 170

Elastic transformations are transformations that 171

alter the geometry of an image, which is accom- 172

plished by generating displacement vectors for all 173
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Input image Elastic (grid=(20,20),magnitude=5) PVS (+,  = 1) Dropout (p=0.1)

Figure 2. An illustration of three types of data augmentation when applied to a SAR image with oil spills.

pixels based on random offsets. The displacement174

vectors are added to the image through an identity175

grid that performs the transformation. Our choice176

of the elastic transformation in the context of oil177

spills is motivated by the fact that oil spills often178

exhibit a curved shape, and the elastic transforma-179

tion generates variation of such curved shapes in a180

realistic looking manner.181

Figure 2 shows each of the augmentations applied182

to a SAR image containing oil spills. The elastic183

transformation slightly distorts the content of the184

image, which is apparent both on the oil spills in the185

top left corner and for the white line (interference186

from ground radar) that crosses the image. The dif-187

ference induced by PVS is more difficult to see, since188

the change is on the pixel values. As for dropout,189

the image appears more noisy with more dark spots190

across the entire image.191

3.2 Uncertainty-Sorting Procedure192

Our core idea is to send all samples that exceed a193

threshold of uncertainty to manual analysis, assum-194

ing that the human analysis will result in only correct195

predictions. The threshold can be adjusted in such196

a way that the overall system can obtain a desirable197

trade-off between the error rate and the reduction in198

manual workload. First, we assume an independent199

validation set X(val) = {xi}Nval
i=1 with Nval samples,200

and that this validation set is sorted from least to201

most uncertain according to a corresponding set of202

uncertainty estimates U (val) = {σi}Nval
i=1 .203

Next, we assume a function that measures the204

error rate of the classifier for a given set of samples,205

in this case Er = 1− accuracy. As part of the proce-206

dure, a user specified error rate e must be provided207

that indicates an acceptable error for the classifier208

f . The complete procedure is described in Listing 1,209

and the output of the algorithm is the uncertainty210

threshold τe that can be used to sort future sam-211

ples into either automatic or human evaluation. A212

key assumption here is human evaluators correctly213

classifies all samples they are provided.214

Listing 1. Python-like pseudocode for proposed
uncertainty-sorting procedure

# X_val - Sorted validation set 215

# U_val - Sorted uncertainties 216

# f - Classifier 217

# Er - Error rate function 218

# e - User specified error rate 219

# tau - Uncertainty threshold 220

221

while Er(f, X_val) >= e: 222

223

X_val.pop() 224

225

tau = U_val[len(X_val)] 226

227

return tau 228

For the process outlined in Listing 1 to be useful, 229

it is critical that the uncertainty estimates σi are 230

informative and highlight samples where there is a 231

high likelihood of error. There are numerous ways 232

to estimate uncertainty, and below we describe three 233

ways to estimate the uncertainties in U (val). 234

Probability-based ranking While often criti- 235

cized for being overconfident [6], the softmax proba- 236

bilities of deep learning-based classification models 237

can be used as confidence scores to filter out un- 238

certain predictions, where scores closer to 0.5 are 239

the most uncertain. Since the probabilities for oil 240

being present or not can be confident in both ends 241

(close to 1 or close to 0), we make the following 242

transformation such that the confidence scores can 243

be ranked: 244

σ
(p)
i = |0.5− ŷi|, (3) 245

where the p indicates that the uncertainty comes 246

from the output probabilities of the model. 247

Uncertainty-based filtering The standard devi- 248

ation of the softmax output over the TTA samples 249

described in Equation 1 can be used as an uncer- 250

tainty estimation to identify uncertain predictions. 251

The samples are ranked such that the images with 252

the highest standard deviation are considered the 253

most uncertain. 254
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Figure 3. The standard deviation from the uncertainty estimation using PVS (+/−, γ < 1) and the sigmoid values
from the network for the testing set. Image on the left is for the correctly classified images and the misclassified
images are on the right.

Probability and uncertainty-based filtering255

An alternative approach is to combine both the out-256

put probabilities and the uncertainty estimates to257

perform the filtering. Figure 3 shows the proba-258

bilities plotted versus the uncertainty estimates for259

correctly and incorrectly classified samples. A key260

observation here is that many misclassified samples261

have a probability of approximately 1, which means262

they will be among the last to be filtered out for263

human analysis. However, when taking uncertainty264

into account, many of the misclassified samples with265

an output of almost 1 also have high uncertainty,266

which means that they would be picked up in the267

filtering process. The complementary information in268

the probabilities and uncertainties could therefore269

provide complementary information for the ranking.270

4 Experimental Setup271

Here, we describe the data used in this study, the272

hyperparameters for each augmentation scheme, the273

model used to perform the oil spill detection, and274

how the model was trained.275

Data The dataset consists of 313 SAR images276

taken from the Satellite Sentinel-1A. The images277

were preprocessed by downsampling to a 480× 480278

pixels corresponding to a resolution of 60m and279

cropped into 10317 patches of which 6960 patches280

fell into a chosen area of interest which were used281

for this study. The images were segmented into 7282

classes: (i) Background: All pixels not explicitly as283

one of the following labels, present in 763 samples;284

(ii) Undefined: Low confidence oil spill, present in285

1223 samples; (iii) Possible spill: Medium confidence286

oil spills, present in 497 samples; (iv) Probable spill:287

High confidence oil spills, present in 497 samples; 288

(v) Seep: Oil seeping naturally from reservoirs at 289

known seep locations, present in 65 samples; (vi) 290

Produced water: Liquid byproduct of oil production, 291

contain some oil as well as wastewater, present in 30 292

samples; (vii) Ignore: Boundaries of all oil spills and 293

also missing data. These segmentation labels were 294

compiled into binary image-level labels based on the 295

occurrence of any of the oil spill classes (ii)-(vi). 296

The dataset is divided into 56% images for train- 297

ing (3926 images), 30% for testing (2050 images), 298

and 14% for validation (984 images). The division 299

is provided by Kongsberg Satellite Services (KSAT) 300

and based on the acquisition days to ensure no data 301

leakage between the splits as some images overlap 302

and there are potentially several images over the 303

same area each day. 304

Data augmentation hyperparameters For 305

dropout, we investigate a range of hyperparame- 306

ter ranging from a low dropout rate (0.01) to a 307

high dropout rate (0.5). For PVS, we consider sam- 308

pling γ in Equation 2 from either U(−a, b), U(0, b), 309

U(−a, 0), with a = b = 1 or a = b = 2. Due to the 310

computational load of the elastic transformation, 311

we qualitatively identified a set of hyperparameters 312

that induced some distortion and used those hyper- 313

parameters throughout all experiments. We use a 314

grid size of 20× 20 and a distortion magnitude of 5. 315

Model and training A ResNet-50 model [18] was 316

trained for binary classification for 50 epochs using 317

the Adam optimizer [19], binary cross-entropy loss, 318

learning rate of 0.00001, weight decay of 0.0001 and 319

batch size 16. As a stopping criteria, the highest 320

AUC (area-under-the-curve) for the validation set 321
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Table 1. Percentage of testing dataset needed to be manually analyzed to get a human error rate of 5%. Bold
numbers indicate improved performance compared to the regular model.

Method Sigmoid Uncertainty (std)
Sigmoid +

Uncertainty (std)
Regular model 51 ± 10 % - -
PVS (+/-, γ < 1) 42 ± 1 % 45 ± 4 % 42 ± 1 %
Dropout (p=0.01) 54 ± 11 % 50 ± 9 % 54 ± 11 %
Elastic transform 44 ± 4 % 41 ± 2 % 45 ± 4 %

is used. The network is initialized with pretrained322

weights using contrastive learning for Sentinel-1 and323

Sentinel-2 data [20, 21]. The weights are obtained324

from TorchGeo [22].325

5 Results326

Here, we present the evaluation of the proposed327

uncertainty-filtering approach to reduce manual328

workload in classification of oil spills in SAR im-329

ages. We first evaluate the performance, before330

we present the quantitative evaluation for the pro-331

posed uncertainty-filtering procedure. Afterwards,332

we present an investigation of the effect of oil spill333

type and size on the proecdure before an in-depth334

analysis of the hyperparameters used in TTA.335

Model performance A ResNet-50 is trained and336

classification performance is evaluated based on the337

experimental setup described in Section 4. The per-338

formance of the model was evaluated w.r.t. accuracy,339

F1 score, and AUC score. On the independent test340

set, the model achieves an accuracy of 83.6%, an341

AUC of 87.8%, and an F1 score of 75.9%. This342

model forms the basis for the following experiments343

in this section.344

Uncertainty-filtering reduces workload We345

evaluate the probability-based, uncertainty-based,346

and the combined approach for uncertainty filter-347

ing with dropout, PVS, and elastic transform as348

the data augmentation. Table 1 shows the results349

from the best performing setup across all hyper-350

parameters settings (see Table 2 for evaluation of351

hyperparameters), with the acceptable error rate set352

to 5 %. First, note that using the sigmoid output for353

the probability-based filtering (”regular model”-row)354

can already provide a reduction in the workload of355

the human evaluator. However, the greatest reduc-356

tion occurse when uncertainty is taken into account357

through TTA, with a reduction of up to ≈ 40%.358

Concretely, the test dataset in this manuscript has359

2050 images. Using the probability-based filtering360

reduces the amount of images need to be manually361

analyzed from 2050 to ≈ 1000 images, and taking362

uncertainty into account reduces the number further363

down to ≈ 850. This is a significant reduction in364

workload with great potential for practical gains. 365

Interestingly, using TTA with dropout rarely leads 366

to noteworthy improvements, which we attribute to 367

its poor fit with the oil spill detection task. 368

Figure 4 shows the error on as a function of the 369

percentage of samples sent to the operator. The 370

plots show how TTA with PVS and elastic transfor- 371

mations requires less samples to be analyzed by the 372

operator, which corroborates Table 1. 373

Alignment between human and machine un- 374

certainty of oil spill identification The labels 375

used for classification are either 0 (no oil) or 1 (oil), 376

but more fine-grained labels in form of segmenta- 377

tion masks are available, as explained in Section 4. 378

Figure 5 shows the uncertainty of images containing 379

pixels of the respective segmentation classes. The 380

boxplots are calculated using all images in the test- 381

ing dataset that contain the specified class. The 382

background class is in all images. 383

The uncertainty profiles of TTA based on PVS and 384

elastic transformations differ notably: PVS yields 385

generally high uncertainty (up to 0.5) with few out- 386

liers, while elastic transformations result in mostly 387

low uncertainty (maximum 0.35) but with many 388

outliers. This contrast likely arises from the na- 389

ture of each augmentation. PVS uniformly shifts 390

pixel values, altering image intensity and making 391

samples less familiar to the model, whereas elastic 392

transformation introduces local deformations but 393

preserves overall intensity, resulting in lower uncer- 394

tainty. Both methods show similar uncertainty for 395

ignore and background classes, with PVS having 396

slightly higher uncertainty for images containing 397

the ignore class, likely due to its proximity to oil 398

spills. Operator uncertainty for oil spill categories 399

(undefined, possible, probable) aligns with average 400

uncertainty values, and the seep class consistently 401

shows the lowest uncertainty. Produced water ex- 402

hibits the lowest uncertainty for PVS but nearly the 403

highest for elastic transformation, though its limited 404

representation makes conclusions difficult. 405

On the effect of oil spill size Another important 406

factor that characterizes an oil spill is the size, which 407

refers to the surface area the oil spill covers. Fig- 408

ure 6 shows the standard deviation from using PVS 409

(+/−, γ < 1) and elastic transformation as augmen- 410
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Figure 4. Plots showing the classification error with respect to the percentage of images that have to be
analyzed by an operator. The three error thresholds are in grey. The three curves are from the methods with
best performance, which are dropout with probability 0.01, PVS (+/−, γ < 1) and elastic transformation. The
first plot is the performance when sending the images with highest standard deviation. The second for sending
the ones with most uncertain sigmoid values, which is the mean from the predictions using TTA. The last plot
combines both methods.

Table 2. Percentage of testing dataset needed to be manually analyzed to get a human error rate of 5% across
different hyperparameters for each augmentation technique.

Method Sigmoid Uncertainty (std)
Sigmoid +
Uncertainty

Regular model 51 ± 10 % - -
PVS (+/−, γ < 1) 42 ± 1 % 45 ± 4 % 42 ± 1 %
PV S(+, γ < 1) 60 ± 7 % 58 ± 5 % 60 ± 7 %
PVS (−, γ < 1) 54 ± 4 % 46 ± 6 % 54 ± 4 %
PVS (+/−, γ < 2) 49 ± 7 % 52 ± 4 % 49 ± 7 %
PVS (+, γ < 2) 62 ± 5 % 56 ± 5 % 62 ± 5 %
PVS (−, γ < 2) 59 ± 6 % 52 ± 7 % 59 ± 6 %
Dropout (p=0.01) 54 ± 11 % 50 ± 9 % 54 ± 11 %
Dropout (p=0.1) 70 ± 4 % 66 ± 5 % 70 ± 4 %
Dropout (p=0.25) 79 ± 4 % 77 ± 4 % 79 ± 4 %
Dropout (p=0.5) 84 ± 1 % 82 ± 3 % 84 ± 1 %
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Figure 5. Boxplot of the standard deviation for the
different classes in the pixel annotations. Plots are made
using PVS (+/−, γ < 1) as augmentation (left) and
elastic transformation (right) as data augmentation.

tation for the different oil spill sizes in the testing411

dataset. Each data point in the plot corresponds to412

the uncertainty and oil spill size for a testing image413

containing oil. It shows that images with small oil414

spills generally have high uncertainty for using PVS415

(+/−, γ < 1). However, it is opposite for the elastic416

transformation. For this method, most images with417

small oil spills have low uncertainty. 418

Images with small oil spills tend to show high un- 419

certainty when using the PVS (+/−, γ < 1) method, 420

likely because such spills are difficult to distinguish 421

from natural features or may be partially visible 422

near image borders, making classification challeng- 423

ing. In contrast, small oil spills generally exhibit low 424

uncertainty with the elastic transformation method, 425

possibly because most images have low uncertainty 426

for this approach and the grid size used in the trans- 427

formation means small spills may remain largely 428

unaffected. 429

Investigating TTA hyperparameters A criti- 430

cal component of TTA is applying a suitable strength 431

of augmentation, for example the amount of shift 432

in PVS. In Table 2, we evaluate hyperparameters 433

associated with PVS and Dropout. Due to the 434

computational demand, we do not investigate the 435

hyperparameters associated with the elastic transfor- 436

mation, as described in Section 4. For dropout, we 437

see that the minimal amount of dropout noise gives 438

the best performance, while only slightly increasing 439
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Figure 6. Plot of the standard deviation for each of the oil spill sizes in the testing dataset. Plots are made using
PVS (+/−, γ < 1) (left) and elastic transformation (right) as data augmentation.

the dropout rate leads to much worse performance.440

We attribute this to the previously discussed hypoth-441

esis that dropout is not a suitable augmentation for442

oil spill detection due to its potential similarity with443

oil spills. For PVS, it is evident that pixel values444

should be shifted both in the positive and negative445

direction. Also, a weaker shift seems to be beneficial.446

6 Discussion447

On the compositions of augmentations In our448

main results, we have only considered applying one449

type of augmentation in the TTA procedure. How-450

ever, it has been shown that combing augmentations451

can lead to improved performance [15]. In Appendix452

A, we show some initial results where PVS and elas-453

tic transformations are combined, with encouraging454

results compared to the results in Table 1. However,455

the combination of augmentations introduces an ad-456

ditional element of complexity, as both the strength457

of the augmentations and the order in which they458

applied mush be investigated. We believe that fu-459

ture works could more thoroughly investigate this460

aspect of TTA in the context of uncertainty filtering.461

On the calibration of the classifier We trained462

our model following standard procedures in deep463

learning (see Section 4). This shows encouraging464

results, but it is well known that the output prob-465

abilities might not be well-calibrated [6]. This cer-466

tainly affects the output probabilities (see Figure467

3), but could potentially also affect the uncertainty468

estimates. We investigated standard methods for im-469

proving the calibration of the model (see Appendix470

B), but saw little difference between the models with471

different calibration. An interesting line of future472

research could be to incorporate more sophisticated473

robustness strategies [23], to see if more calibrated 474

classifiers could improve the filtering further. 475

7 Conclusion 476

We proposed an uncertainty-guided approach to re- 477

duce manual labor in oil spill detection from SAR 478

imagery of the ocean. Given a user specified accept- 479

able error threshold and an independent validation 480

set of data, we automatically tune an uncertainty 481

threshold to achieve a desirable trade-off between 482

performance and efficiency. Our extensive evalua- 483

tion on challenging real-world data shows that our 484

proposed filtering approach can significantly reduce 485

the manual workload associated with SAR-based 486

oil spill detection. We believe that our proposed 487

uncertainty-filtering also has potential outside this 488

particular application, and that it can play an im- 489

portant part in automated deep learning systems 490

for industrial applications in years to come. 491
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gives drastically worse results, seen in Table A.1.609

This might relate to the PVS being based on the610

data distribution of the training images. The elastic611

transformation shifts the values and possibly result-612

ing in another distribution. The usage of PVS on613

the elastic transformed images might then not be614

appropriate, as the parameters estimated in PVS615

are not fitting anymore.616

Table A.1. Percentage of testing dataset needed to be
manually analyzed to get a human error rate of 5% for
the PVS (+/-, γ < 1), elastic transformation and using
both.

Method Sigmoid Uncertainty (std)
Sigmoid +

Uncertainty (std)
PVS (+/-, γ <1) 42 ± 1 % 45 ± 4 % 42 ± 1 %
Elastic transform 44 ± 4 % 41 ± 2 % 45 ± 4 %
PVS + Elastic 40 ± 7 % 43 ± 6 % 40 ± 8 %
Elastic + PVS 77 ± 4 % 79 ± 6 % 77 ± 4 %

B Calibration617

Temperature scaling is a standard way to prevent618

overconfidence by calibrating the network [6]. This619

is when the output from the network is divided by620

the temperature value of the network. The tempera-621

ture is found using an optimization algorithm which622

minimizes the loss. The benefits of using temper-623

ature scaling on the model are explored. Results624

show that temperature scaling improves calibration,625

as shown in Table B.1. However, we found little626

improvement in terms of the uncertainty filtering, as627

seen in Figure B.1. We believe that this is because628

a single scaling factor is applied to the entire model,629

which might have less of an impact of the resulting630

ordering of samples.631

Table B.1. The Negative Log Likelihood (NLL) and
Expected Calibration Error (ECE) of the model using
the validation set before and after temperature scaling.
The temperature used for the network is 1.159

Before
temperature scaling

After
temperature scaling

NLL 0.573 0.574
ECE 0.466 0.439

0 10 20 30 40 50
Percentage analyzed by operator

0.05

0.10

0.15

0.20
Er

ro
r

No temperature scaling
With temperature scaling

Figure B.1. The figure shows the error for the different
percentages of images being sent to the operator, for both
with and without temperature scaling in the ResNet-50
network. The images being sent to the operator are
the ones with highest standard deviation using PVS (-,
γ <1)
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