MULTI-GRANULARITY SEMANTIC REVISION FOR LARGE LANGUAGE MODEL DISTILLATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Knowledge distillation plays a key role in compressing the Large Language Models (LLMs), which boosts a small-size student model under large teacher models' guidance. However, existing LLM distillation methods overly rely on student-generated outputs, which may introduce generation errors and misguide the distillation process. Moreover, the distillation loss functions introduced in previous works struggle to align the most informative part due to the complex distribution of LLMs' outputs. To address these problems, we propose a multi-granularity semantic revision method for LLM distillation. At the sequence level, we propose a sequence correction and re-generation (SCRG) strategy. SCRG first calculates the semantic cognitive difference between the teacher and student to detect the error token, then corrects it with the teacher-generated one, and re-generates the sequence to reduce generation errors. At the token level, we design a distribution adaptive clipping Kullback-Leibler (DAC-KL) loss as the distillation objective function. DAC-KL loss exploits a learnable sub-network to adaptively extract semantically dense areas from the teacher's output, avoiding the interference of redundant information in the distillation process. Finally, at the span level, we leverage the span priors of a sequence to compute the probability correlations within spans, and constrain the teacher and student's probability correlations to be consistent, further enhancing the transfer of semantic information. Extensive experiments across different model families with parameters ranging from 0.1B to 13B demonstrate the superiority of our method compared to existing methods.

033

004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

028

1 INTRODUCTION

The remarkable advancements in auto-regressive Large Language Models (LLMs) (Kaplan et al., 034 2020; Wei et al., 2022; Radford et al.; Zhang et al.; Brown et al., 2020) have led to unprecedented breakthroughs in a diverse array of text generative tasks, with numerous open-source models (Touvron et al.; Zhang et al., 2022) now available. A crucial factor contributing to this success is the ability 037 to scale up the models, which involves increasing both the amount of training data and the number of model parameters. However, the massive size and computational intensity of these state-of-theart models pose significant challenges, particularly when it comes to deployment and real-time 040 applications. In contrast, smaller models with limited parameters often sacrifice performance on 041 real-world generation tasks (Wang et al., 2022a). To mitigate these challenges, Knowledge Distillation 042 (KD) (Hinton et al., 2015) has emerged as a pivotal technique, enabling the development of smaller, 043 more efficient student models that inherit the strengths of their larger teacher counterparts.

044 Traditional knowledge distillation methods (Hinton et al., 2015; Kim & Rush, 2016) directly employ Kullback-Leibler divergence (KLD) as the distillation loss for aligning the output distributions of 046 teacher and student models on a static dataset (see Figure 1 (a)). Unlike these methods, recent LLM 047 distillation methods are exploring diverse divergence loss functions tailored to LLMs and leveraging 048 student-generated datasets to avoid distribution mismatch between the outputs student-generated in the training and inference stages. GKD (Agarwal et al., 2024) and MiniLLM (Gu et al., 2023) propose to exploit reverse KLD as the distillation objective, replacing the commonly used forward 051 KLD. These approaches aim to prevent students from overestimating the low-probability regions of the teacher's distribution. Also, these methods train the student on self-generated sequences that are 052 on-policy instead of a fixed set of output sequences. Recently, Distillm (Ko et al., 2024) proposes an adaptive off-policy student-generation strategy to improve the sample efficiency and high generation

Figure 1: Knowledge Distillation using Different Sampled Datasets. (a) Traditional KD using a fixed dataset (Hinton et al., 2015). (b) KD using the student-generated dataset, which can be categorized into on-policy based methods (Agarwal et al., 2024; Gu et al., 2023) and the off-policy based method (Ko et al., 2024). (c) Our proposed KD approach, which leverages a sequence correction and re-generation strategy and can be seamlessly integrated with both on-policy and off-policy generation schedules.

time faced in on-policy generation (see Figure 1 (b)). Meanwhile, it designs a new distillation object function *i.e.*, skew KLD loss for better generalizability and convergence. However, relying on student-generated sequences may introduce generation errors and lead to suboptimal learning, as the distillation process becomes vulnerable to the inaccuracies inherent in the student's predictions. The student model's limited capacity and biases can further perpetuate these errors, resulting in a distorted representation of the teacher's knowledge. Moreover, the rich semantic knowledge and the significant variance across different tokens make it challenging for existing distillation objective functions to capture and transfer the essential knowledge within the teacher model's output distribution.

079 To address the above-mentioned issues, we introduce a novel multi-level semantic revision approach, across sequence token and span levels, to significantly improve the KD process for LLMs. At the 081 sequence level, we propose a sequence correction and re-generation (SCRG) strategy. We detect 082 the error token in the student-generated sequence and re-generate the sequence from the position 083 of the error token to reduce generation errors. As shown in Figure 1 (c), by assessing the semantic cognitive differences between teacher and student outputs on a token-by-token basis, we identify 084 and correct errors, leading to re-generated sequences that steer the student model towards generating 085 more reliable samples and can be seamlessly integrated with both on-policy and off-policy generation schedules. At the token level, we employ a distribution adaptive clipping Kullback-Leibler (DAC-KL) 087 loss function, which leverages a learnable sub-network to target semantically salient regions of the output distribution. This loss function effectively filters out redundant information, preserving only the most relevant signals for distillation. Finally, at the span level, we incorporate pre-defined span 090 priors of sequences to align the relations of probability vectors of the student and teacher models, 091 ensuring a consistent transfer of semantic information across related tokens within the same span. 092 Through extensive experiments with different models, including the LLAMA2, OpenLLAMA2, OPT, 093 and GPT2 series, ranging from 0.1B to 13B parameters, we showcase the superiority of our approach 094 over existing knowledge distillation methods.

- The contributions of this paper are summarized as follows:
- 096 097 098

099

102

103

105

106

063

064

065

066

067

068

069

• We introduce a novel multi-level semantic revision approach to enhance the knowledge distillation (KD) process for large language models (LLMs).

- At the sequence level, we propose a sequence correction and re-generation strategy to steer the student model towards generating more reliable sequences.
- At the token level, we propose a distribution adaptive clipping Kullback-Leibler loss to capture semantically salient regions of the output space.
- At the span level, we incorporate input span priors to ensure a consistent transfer of semantic knowledge across related tokens.
- Through extensive experimentation with models ranging from 0.1B to 13B parameters, we demonstrate the superiority of our method over existing KD methods for LLMs.

108 2 RELATED WORK

109 110

KD for encoder-only language models. Pretrained encoder-only language models, such as 111 BERT (Jiao et al., 2019), can be compressed using the traditional logit distillation (Hinton et al., 112 2015) and feature distillation (Adriana et al., 2015). These knowledge distillation methods minimize 113 the Kullback-Leibler divergence loss between the outputs of the student and teacher models on a fixed 114 dataset (Kim & Rush, 2016). Liang et al. (Liang et al., 2020) applied this objective to train students 115 on masked language modelling and text classification tasks. Jiao et al., 2019) utilized 116 intermediate representations from each transformer layer of the teacher as transferable knowledge. 117 Despite the potential of KD in encoder-only language models (Sanh et al., 2019; Liang et al., 2023; Sun et al., 2019; Liu et al., 2022), the complex predictions generated by large language models 118 (LLMs) through auto-regressive inference present a new challenge. This paper primarily discusses 119 KD for auto-regressive LLMs. 120

121

122 **KD** for auto-regression large language models. Existing knowledge distillation (KD) methods for auto-regressive large language models (LLMs) can be divided into black-box methods for closed-123 source models such as GPT-3.5 (Ouyang et al., 2022) and GPT-4 (Achiam et al., 2023), and white-box 124 methods for open-source models such as LLaMA (Touvron et al.). Black-box methods (Chen et al., 125 2024; Jiang et al., 2023; Hsieh et al., 2023) cannot access the internal parameters of the teacher 126 model and utilize only the inference results provided by the teacher API (Taori et al., 2023; Chiang 127 et al., 2023; Peng et al., 2023). The inference results of the teacher model are used to construct 128 prompt-response pairs, which serve as a new training dataset to fine-tune the student model. In 129 contrast, white-box KD methods (Ko et al., 2024; Agarwal et al., 2024; Gu et al., 2023) leverage the 130 internal parameters of the teacher model, providing richer training signals such as the probability 131 distribution of predictions, potentially leading to better student model performance. Our methods 132 primarily address the challenges of existing methods in the realm of white-box KD.

133 134

3 PRELIMINARY

135 136

Before introducing our method, we provide some preliminary information on KD for LLMs. We consider the inference of LLMs as a vocabulary classification task, where a model p predicts the conditional probability distribution of a target response y given a prompt and target sequence pair (x, y). Let $y_{<i} = (y_1, y_2, ..., y_{i-1})$ denote the generated output sequence up to the $(i - 1)^{th}$ token y_{i-1} . A token-level auto-regression model outputs a next-token M-vocabulary probability distribution. Specifically, for the model p, $\hat{y}_i = p(.|y_{<i}, X)(\hat{y}_i \in \mathbb{R}^M)$ represents the probability distribution of the generated i^{th} token, where $\hat{y}_i \in (0, 1)^M$. $y_i \sim p(.|y_{< i}, X)$ is the corresponding output token.

We formulate KD as an optimization problem that aims to minimize the difference between the prediction distribution of a fixed teacher model $p(.|y_{< i}, x)$ and that of a parameterized student model $q_{\theta}(.|y_{< i}, x)$, using sampled input-output sequence pairs (x,y) from the fixed dataset (X,Y). θ is the student's parameters to be optimized. The sequence-level distillation with L_y tokens employs KL Divergence D_{KL} as the distillation object. The total distillation loss \mathcal{L}_{KD} is broken down into a sum of token-wise distillation:

151 152

153 154

$$\mathcal{L}_{KD} = \frac{1}{L_y} \sum_{i=1}^{L_y} D_{KL}(p(.|y_{< i}, x)) || q_{\theta}(.|y_{< i}, x)) = \frac{1}{L_y} \sum_{i=1}^{L_y} p(.|y_{< i}, x) log \frac{p(.|y_{< i}, x)}{q_{\theta}(.|y_{< i}, x))}, \quad (1)$$

where the conditional sequence y can be easily generated by sampling from the teacher or student model policy, *i.e.*, $\{x \in X, y \sim p(.|x)\}$ or $\{x \in X, y \sim q_{\theta}(.|x)\}$ instead of directly $\{(x, y) \in (X, Y)\}$.

During the distillation process, the student model is also guided by the ground-truth output sequence without querying the policies of the teacher or student models. The supervised fine-tuning (SFT) loss is formulated as

$$\mathcal{L}_{\text{SFT}} = \mathbb{E}_{(x,y)\sim(X,Y)}[-\log q_{\theta}(y|x)].$$
⁽²⁾

162 $y_i^s \sim q_ heta(. \ket{y_{< i,
eq i}^s, y_i^t, x})$ Probability $y_i^s \sim q_ heta(. \ket{y_{< i}^s, x})$ 163 \hat{y}_1^s \hat{y}_2^s \hat{y}_n^s Student an \hat{y}_3^s \hat{y}_n^s 164 \hat{y}_n^s Student q_{θ} y_1^s y_2^s y_3^s y_n^s 165 166 Response sequence 167 \hat{y}_n^t \hat{y}_2^t \hat{y}_3^t \hat{y}_n^t Teacher p Teacher p 169 Sample y_1^t y_2^t y_3^t y_n^t $\sim p(.|y|)$ 170 $y_i^t \sim p(. \ket{y_{< i}^s, x})$ 171 ▷: argmax S: Token-wise KL Divergence : SCRG strategy 172 173

Figure 2: The workflow of sequence correction and re-generation strategy.

4 MULTI-GRANULARITY SEMANTIC REVISION

In this section, we introduce the proposed multi-granularity semantic revision for LLM distillation, which revises the semantic representation during the knowledge transfer stage at three levels: sequence-level, token-level, and span-level.

4.1 SEQUENCE-LEVEL CORRECTION AND RE-GENERATION

185 As illustrated by Eq. equation 1, prevalent KD methods (Agarwal et al., 2024; Gu et al., 2023; Ko et al., 186 2024), utilizes conditional sequences generated from the student model (denoted as $y \sim q_{\theta}(\cdot|x)$) for 187 the distillation process. While these methods are designed to mitigate the training-inference mismatch between the fixed training data and the student's auto-regressive inferences, they simultaneously risk 188 introducing generation errors. Due to the limited capabilities of the student model, the generated 189 sequences may contain additional errors which reduces the effectiveness of KD. To address this issue, 190 we propose a sequence correction and re-generation (SCRG) strategy (shown in Fig. 2) to detect 191 generation errors and re-generate sequences that steer the student model towards generating reliable 192 sequences. 193

We denote the generated *n*-token sequence from the student model q_{θ} as $y_{< n+1}^s = (y_1^s, y_2^s, ..., y_n^s)$ 194 195 n). Similarly, we denote the teacher model's output sequence as $y_{\leq n+1}^t = (y_1^t, y_2^t, ..., y_n^t)$ and 196 probability outputs $(\hat{y}_1^t, \hat{y}_2^t, ..., \hat{y}_n^t)$. We denote each token of the teacher model's output sequence as 197 $y_i^t \sim p(.|y_{<i}^s, \hat{x})$. We follow previous methods (Agarwal et al., 2024; Gu et al., 2023; Ko et al., 2024) using the student-generated outputs as the distillation dataset, and calculate token-wise KLD loss to 199 evaluate the semantic cognitive differences between the teacher and student for each token to detect 200 the position of the error token within the sequence $y_{< n+1}^t$. We formulate the detection process of the 201 error token y_i^s as 202

$$j = \underset{1 \le i \le n}{\operatorname{arg\,max}} \left(D_{KL}(\hat{y}_i^s \| \hat{y}_i^t) \text{ if } y_i^s \neq y_i^t \right).$$
(3)

We then replace the y_j^s by y_j^t to construct new samples and re-generate the student output sequence and each token in $y_{< n+1}^s$ is formulated as

$$y_{i}^{s} \sim \begin{cases} q_{\theta}(.|y_{< i}^{s}, x) & \text{if } i < j \\ p(.|y_{< i}^{s}, x) & \text{if } i = j \\ q_{\theta}(.|y_{< i, \neq j}^{s}, y_{j}^{t}, x) & \text{if } i > j. \end{cases}$$
(4)

211 212 213

209 210

203

204 205

174 175 176

177 178

179

180

181 182 183

Our SCRG strategy can be seamlessly integrated with existing on-policy sampling (Agarwal et al., 2024) and off-policy sampling (Ko et al., 2024). By incorporating an adaptive scheduler (Ko et al., 2024) for student-model generation, we enhance the efficiency of our sampling process.

Figure 3: The workflow of the DAC-KL loss function.

4.2 TOKEN-LEVEL DAC-KL LOSS FUNCTION

The probability output of LLMs is a high-dimensional vector for each token. However, existing 236 modified Kullback-Leibler divergence (KLD) loss functions, used as knowledge distillation objectives, 237 struggle to effectively capture the valuable distribution with high semantic knowledge from the teacher 238 network. They either underfit the teacher's distribution, as seen in forward KLD, or tend to overfit 239 to a part of the high-probability region, as seen in reverse KLD. To address this issue, we design 240 a Distribution-Adaptive Clipping Kullback-Leibler (DAC-KL) loss function (in Fig. 3) to capture 241 high-density semantic regions of the teacher's output probability distribution, which can be more 242 easily imitated by the student models with limited capacity. 243

The probability outputs at the i^{th} token position of both the teacher and student models are high-244 dimensional probability vectors with M tokens, which are denoted as 245

 $\hat{y}_{i}^{t} = p(.|y_{< i}^{s}, x) = [v_{1}^{t}, v_{2}^{t}, ..., v_{M}^{t}] \in \mathbb{R}^{M},$

231

232 233 234

235

247 2

251

259 260

261 262

 $\hat{y}_{i}^{s} = q_{\theta}(.|y_{< i}^{s}, x) = [v_{1}^{s}, v_{2}^{s}, ..., v_{M}^{s}] \in \mathbb{R}^{M}.$ We input these two probability vectors to a learnable MLP sub-network f_{sub} to predict the upper

250 limit quantile $u \in [0, 1]$ and the lower limit quantile $l \in [0, u]$ of the probability distribution \hat{y}_i^t . We formulate this process as 252

$$u, l = \sigma(f_{\text{sub}}(\hat{y}_i^t \mid sort(\hat{y}_i^t) \mid \hat{y}_i^s)), \tag{6}$$

(5)

253 where $\sigma(\cdot)$ is the SIGMOID activation, $sort(\cdot)$ is the decending sort operation, and | represents the 254 concatenation operation, l is clipped into the range [0, u]. 255

The predicted quantiles u and l are used to adaptively clip out the high-density semantic classes from 256 the teacher's probability vector \hat{y}_i^t . We utilize the clipped high-density classes and the target class 257 with the most probability value to construct a new probability vector \hat{y}_i^{t*} , which is formulated as 258

$$\hat{y}_i^{t*} = \left[\left\{ \sigma\left(\frac{v_i^t - l}{\epsilon}\right) \times \sigma\left(\frac{u - v_i^t}{\epsilon}\right) \right\}_{1 \le i \le M} \mid \max(v_1^t, v_2^t, \dots, v_M^t) \right],\tag{7}$$

where $\epsilon = 1e - 7$ is a small positive number that controls smoothness. This implementation ensures 263 proper gradient backpropagation by leveraging the smooth characteristics of the sigmoid function. 264 Specifically, we calculate a mask for the LLM's probability distribution to determine the clipping 265 region (high-density classes), ensuring that gradients can flow correctly. By using this approach, we 266 ensure that the learnable parameters for predicting the lower limit quantile and upper limit quantile 267 are updated correctly during the training process, and gradients are propagated effectively. 268

The high-density classes and the target class contain the most knowledge in the teacher's probability 269 distribution. Based on the corresponding positions of the clipped classes and target class of \hat{y}_i^{t*} , we

Figure 4: The workflow of the span-level correlation distillation. \circ denotes Hadamard multiplication.

construct the student's new probability vector \hat{y}_i^{s*} . Then, we adopt a vanilla KLD to calculate the sum of token-wise distillation loss and the final loss is calculated on the dataset (X,Y):

$$\mathcal{L}_{\text{DAC-KLD}} = E_{x \sim X} \left[\frac{1}{L_{y^{s*}}} \sum_{i=1}^{L_{y^{s*}}} \hat{y}_i^{t*} \log \frac{\hat{y}_i^{t*}}{\hat{y}_i^{s*}} \right], \tag{8}$$

where $L_{y^{s*}}$ is the length of the sequence generated from the proposed SCRG strategy.

4.3 SPAN-LEVEL CORRELATION CONSISTENCY

Motivated by the work (Liu et al., 2022), we utilize the pre-defined chunker (Kiss & Strunk, 2006) to extract spans (including noun phrases, verb phrases, and prepositional phrases) that have complete meanings from the input sequences, which split a sequence into several token sets. For each token in the input sequence, LLMs predict a high-dimensional probability vector. The relations between tokens within the same span should maintain consistent relations in the transformed probability space. Constraining the relation consistency between the outputs of the student and the teacher models is crucial to transfer semantic knowledge, as shown in Fig. 4.

We divide a probability sequence $[\hat{y}_1, \hat{y}_2, ..., \hat{y}_n]$ into n_s spans $s = [s_1, s_2, ..., s_{n_s}]$ according to the pre-defined span priors from $[y_1, y_2, ..., y_n]$. Here, $s_i = [\hat{y}_j, \hat{y}_{j+1}, ..., \hat{y}_{j+n_{s_i}-1}]$ represents $i^{th}span$, which starts at the j^{th} token of the sequence and contains n_{s_i} tokens. Both the student and teacher model outputs adhere to the same span priors for token divisions. Consequently, we divide the probability outputs of the student and teacher models into spans, denoting the i^{th} span as

$$s_i^s = \left[\hat{y}_j^s, \hat{y}_{j+1}^s, ..., \hat{y}_{j+n_{s_i}-1}^s\right], s_i^t = \left[\hat{y}_j^t, \hat{y}_{j+1}^t, ..., \hat{y}_{j+n_{s_i}-1}^t\right].$$
(9)

Next, we calculate the correlation between two adjacent tokens within the same spans and ensure
 consistency of this correlation between the probability outputs of the student model and the teacher
 model. To achieve this, we utilize the L2 distance to align the consistency. The span consistency loss
 is defined as follows:

$$\mathcal{L}_{\text{span}} = E_{x \sim X} \left[\frac{1}{n_s} \sum_{i=1}^{n_s} \frac{1}{n_{s_i}} \sum_{(\hat{y}_j^s, \hat{y}_{j+1}^s) \in s_i^s, (\hat{y}_j^t, \hat{y}_{j+1}^t) \in s_i^t} \left\| \hat{y}_j^s \circ \hat{y}_{j+1}^s - \hat{y}_j^t \circ \hat{y}_{j+1}^t \right\|_2 \right], \tag{10}$$

310 311 312

313

314

315

321 322

308

302 303

278 279

281

282

284

286 287

288

where $|\cdot|_2$ represents the L2 distance function, and \circ denotes the Hadamard multiplication operation calculating correlation in the high-dimensional probability space. It is important to note that the output sequence is also generated by the student using the SCRG strategy. For simplicity, we adopt a standard symbol representation for \hat{y}_i^t and \hat{y}_j^s instead of \hat{y}_i^{t*} and \hat{y}_j^{s*} .

316 317 4.4 OVERALL OPTIMIZATION

We use the proposed KD method in the SFT stage of based models. The student model is supervised by the distillation loss, guided by the finetuned teacher model, and also supervised by the SFT loss.
The overall optimization objective for the student model is formulated as

$$\mathcal{L}_{overall} = \mathcal{L}_{SFT} + \mathcal{L}_{DAC-KLD} + \mathcal{L}_{span}. \tag{11}$$

where \mathcal{L}_{SFT} represents the SFT loss, $\mathcal{L}_{DAC-KLD}$ represents the distillation loss using the DAC-KLD object, and \mathcal{L}_{span} represents the span consistency loss which assists the distillation process.

³²⁴ 5 EXPERIMENTS

325 326 327

328

330

In this section, we experiment by initially fine-tuning a large model on the dataset comprising instructions and corresponding responses (X, Y), establishing it as the teacher model p. Subsequently, we examine various knowledge distillation methods for distilling a smaller student model under the guidance of the teacher, evaluating the instruction-following performance of the distilled model.

331 5.1 EXPERIMENTAL DESCRIPTION 332

Dataset and evaluation metrics. We conduct the KD experiments on five instruction-following 333 datasets: (1) Dolly Evaluation (Dolly, 2023) is a sampled subset of atabricks-dolly-15k¹ (Dolly) 334 dataset consists of 500 samples. It covers various behavioural categories such as brainstorming, 335 classification, closed QA, generation, information extraction, open QA, and summarization; (2) 336 Self-Instruct (Wang et al., 2022a) is a dataset for language models' ability to understand and follow 337 instructions. It incorporates 252 expert-written tasks; (3) Vicuna (Wang et al., 2022b) is a dataset 338 consisting of 80 challenging questions used for evaluating the Vicuna model. It follows the evaluation 339 methodology introduced by MiniLLM (Gu et al., 2023); (4) Super-Natural Instruction (Wang et al., 340 2022b) is introduced as a benchmark, and this dataset contains 1,616 diverse NLP tasks along with 341 their expert-written instructions. It covers 76 different task types, and its test set consists of 9K 342 samples from 119 tasks; (5) Unnatural Instruction (Honovich et al., 2022) dataset comprises 240K 343 instructions generated by AI with minimal human involvement. It shows that AI-generated data can be as effective as human-created data for training language models. The core component of this 344 dataset has 60K samples. 345

We use the ROUGE-L (Lin, 2004) metric to evaluate the model-generated results and report the average scores of 5 generations for each prompt with different random seeds (10, 20, 30, 40, 50) for all test datasets. ROUGE-L evaluates the precision of the model's output by measuring the longest common subsequence between the generated text and the reference text. It is well-suited for large-scale instruction-following evaluation due to its ability to capture both sentence-level structure and content.

Base models and baselines. We distil four kinds of teacher-student model pairs with different model
sizes: LLAMA2 (Touvron et al., 2023) (13B teacher, 7B student), OpenLLAMA2 (Geng & Liu, 2023)
(7B teacher, 3B student), OPT (Zhang et al., 2022) (6.7B teacher, 1.3B student), GPT2 (Radford
et al., 2019) (1.5B teacher, 0.1B student).

356 We benchmark our method against several advanced knowledge distillation methods: (1) SFT 357 Fine-tunes the student model on a fixed dataset in a vanilla manner; (2) KD (Hinton et al., 2015) 358 utilizes KLD on a fixed dataset; (3) SeqKD (Kim & Rush, 2016) fine-tunes on a teacher-generated 359 dataset; (4) ImitKD (Lin et al., 2020) utilizes KLD on a dataset generated by the student model; (5) 360 GKD (Agarwal et al., 2024) utilizes Jensen-Shannon Divergence (JSD) (Agarwal et al., 2024) on a 361 mixture of a student-generated dataset and a fixed dataset; (6) MiniLLM (Gu et al., 2023) utilizes a policy gradient approach on a dataset generated by the student model; (7) DistiLLM (Ko et al., 2024) 362 utilizes Skew KLD on a student-generated dataset sampling with an off-policy scheduler. 363

- All of our baseline experiments are re-implemented using the open-source code ² on the same
 GPU servers utilized by our method. Additionally, we execute these experiments using the exact
 hyper-parameters as specified in the original codebase.
- Training details. We follow MiniLLM (Gu et al., 2023) to finetune base models using the training set of the databricks-dolly-15k. Dolly is divided into 14K samples as the training set and equally left 500 samples for validation and testing, respectively. After the fine-tuning process, we select the best-performing model based on its validation set of the Dolly dataset. We then proceeded to test this selected model on the test sets of the five above-mentioned datasets.
- For training the teacher and student models, we utilize four A100 (40GB) GPUs for the OpenL-LAMA2, OPT, and GPT2 models and four A800 (80GB) GPUs for the LLAMA2 models. A fixed learning rate of 5e-4 is applied consistently across all experiments. Specifically, for the LLAMA2, OpenLLAMA2, and OPT models, we follow DistiLLM (Ko et al., 2024), employing low-rank adap-

¹https://github.com/databrickslabs/dolly/tree/master

²https://github.com/jongwooko/distillm

tation (LoRA) for the query and value weights with a rank of 16 for 10 epochs. In contrast, for the
 GPT2 models, we fine-tune all parameters for 20 epochs.

Table 1: Comparison of state-of-the-art knowledge distillation methods evaluated by the ROUGE-L metric (Lin, 2004). 'Average' is the average score on the five test datasets The bold and underlined markings signify the best and second-best results, respectively.

385 386		Methods	Parameters		D	atasets			
387				Dolly Evaluation	Self-Instruct	Vicuna	Super-Natural	Unnatural	Average
388		Teacher (SFT)	13B	29.8241	21.0617	19.4909	35.8318	35.7802	28.3978
389		SFT		27.3504	28.4430	18.7567	28.4430	30.2788	26.6544
390		KD (Hinton et al., 2015)		27.0737	20.7076	17.9850	30.3350	31.4926	25.5188
201		SeqKD (Kim & Rush, 2016)		26.2689	19.0278	18.4602	25.9461	28.1010	23.5608
391	LLAMA2	ImitKD (Lin et al., 2020)	7B	27.4359	20.6792	18.8058	29.1726	30.5764	25.3340
392		GKD (Agarwal et al., 2024)		28.4662	22.1717	20.7564	33.3325	33.2682	27.5990
393		MiniLLM (Gu et al., 2023)		30.6447	23.9493	22.3010	34.3454	36.0828	29.4646
394		DistiLLM (Ko et al., 2024)		30.7277	25.2181	20.8356	<u>36.1154</u>	37.5072	30.0808
205		Ours		31.9195	25.4937	21.7810	37.9154	38.1257	31.0471
306		Teacher (SFT)	7B	27.5100	17.9400	17.6900	32.7500	31.4000	25.4580
007		SFT		24.4000	16.1300	16.5600	27.4862	28.0500	22.5252
397		KD (Hinton et al., 2015)		25.4814	19.1805	16.6562	31.3307	31.8136	24.8924
398		SeqKD (Kim & Rush, 2016)		24.8184	16.0980	17.2718	29.4081	28.7395	23.2672
399	OpenLLAMA2	ImitKD (Lin et al., 2020)	3B	25.3600	18.1600	17.5700	31.0900	28.9600	24.2280
400		GKD (Agarwal et al., 2024)		26.8525	20.1060	18.4337	34.4383	32.4797	26.4621
400		MiniLLM (Gu et al., 2023)		28.4950	21.7770	20.6260	35.4001	34.7011	28.1999
401		DistiLLM (Ko et al., 2024)		27.8546	19.3456	19.1723	34.4973	34.9434	27.1627
402		Ours		29.3062	20.5835	19.0086	37.6171	37.2410	28.8724
403		Teacher (SFT)	6.7B	25.8758	14.8408	16.4199	24.9551	25.8377	21.5859
404		SFT		22.7595	11.9784	15.2267	22.8556	24.5763	19.4793
405		KD (Hinton et al., 2015)		22.4476	13.4676	13.9975	23.7679	25.4132	19.8188
406		SeqKD (Kim & Rush, 2016)		22.4556	12.1588	14.8157	21.4574	24.5907	19.0956
400	OPT	ImitKD (Lin et al., 2020)	1.3B	21.6624	12.9286	15.8039	22.0426	24.9619	19.4799
407		GKD (Agarwal et al., 2024)		22.5062	12.8309	15.3303	23.8537	26.6441	20.2330
408		MiniLLM (Gu et al., 2023)		24.3168	13.5880	17.4633	26.6789	28.7968	22.1688
409		DistiLLM (Ko et al., 2024)		24.7311	14.9932	16.3293	27.1037	29.3285	22.4972
/110		Ours		27.1486	17.3016	14.8491	32.0618	34.9709	25.2664
411		Teacher (SFT)	1.5B	27.0357	14.5594	16.7390	24.9659	29.4874	22.5575
/110		SFT		23.8269	9.6682	14.9022	16.4117	18.3221	16.6262
412		KD (Hinton et al., 2015)		23.2172	10.0899	14.9954	15.4826	18.9597	16.5490
413		SeqKD (Kim & Rush, 2016)		23.7248	10.3935	14.6558	19.8119	22.7425	18.2657
414	GPT2	ImitKD (Lin et al., 2020)	0.1B	21.7724	10.1876	15.4640	17.1918	20.8907	17.1013
415		GKD (Agarwal et al., 2024)		23.3150	10.3364	15.9384	16.0802	17.7699	16.6880
/16		MiniLLM (Gu et al., 2023)		23.8142	12.2771	17.0158	23.8555	24.9101	20.3745
410		DistiLLM (Ko et al., 2024)		25.6114	12.5988	16.7521	24.6374	27.5827	21.4365
417		Ours		26.5614	13.1174	17.6781	24.6973	27.4025	21.8913

5.2 COMPARISON WITH STATE-OF-THE-ART KD METHODS

We present the quantitative comparison of state-of-the-art knowledge distillation methods evaluated using the ROUGE-L metric in Table 1. It is observed that:

(1) Our method outperforms existing methods in most distillation tasks, with only a few achieving
second-best results, across five test datasets, including the LLAMA2, OPT, OpenLLAMA2, and
GPT2 series of large language models. Particularly for the OPT datasets, our method shows an
average score improvement of over 12% compared to the second-best performing methods.

(2) The KD methods, such as GKD, MiniLLM, and DistiLLM, utilizing student-generated datasets
show a greater improvement in enhancing student performance compared to those using the fixed
dataset. Furthermore, the distilled student models generally outperform the teacher models, which can
be attributed to the mismatch between teacher-forcing training and free-run generation, i.e., exposure

Sequence-correcting	DAC-KL	Span Relation	Dolly Validation	Dolly Evaluation	Self-Instruct
×	×	×	29.1874	24.1603	14.8578
\checkmark	×	×	29.6982	24.5307	14.9485
\checkmark	\checkmark	×	30.3486	26.9012	17.2392
\checkmark	\checkmark	\checkmark	31.2575	27.1486	17.3016

Table 2: Ablation study of the proposed multi-granularity semantic revision.

bias (Bengio et al., 2015). Our method can improve the performance of all student models on average scores of the five test datasets by at least 15%.

(3) We also provide some representative instruction-following cases in Appendix F, further highlighting the effectiveness and superiority of our method in achieving high-quality answers.

446 447 5.3 Ablations and analysis

432

433 434

442

443

444

445

We provide more ablations and analysis of the proposed methods on the Dolly Validation set, Dolly Evaluation set and Self-Instruct dataset.

Overall Ablation. We conduct an overall ablation study to validate the effectiveness of the proposed 451 multi-granularity semantic revision, in Table 2. Initially, employing sequence correction alone yields 452 moderate performance improvement across all evaluation datasets compared to the vanilla result. 453 Upon the addition of DAC-KL, an improvement is observed. A further enhancement is achieved with 454 the inclusion of span-level relation distillation, resulting in more notable performance gains. The most 455 significant improvement is witnessed when all components of the proposed method are combined, 456 leading to the highest performance metrics across all evaluation datasets. This demonstrates that 457 each component contributes to the overall enhancement of model performance, with the combined 458 approach yielding the most substantial improvements. For the span relation loss, we further provide 459 detailed analyses for the span loss and provide examples of the enhanced performance of distilled models relative to their predistillation counterparts in Appendix C. 460

461 **Different student-generation methods.** To validate the effectiveness of the proposed SCRG strategy, 462 we compare it with different student-generation methods for sampling the distillation dataset. As 463 illustrated in Table 3a, we observe substantial performance enhancements with SCRG compared 464 to existing student-generation methods. For on-policy sampling, We follow GKD (Agarwal et al., 465 2024) to utilize a mixture of student-generated and fixed datasets. For off-policy sampling, we follow Distillm (Ko et al., 2024) to adopt an adaptive student-generation schedule for improved sample 466 efficiency. Remarkably, when employing both off-policy and on-policy sampling methods, SCRG 467 achieves notably higher scores across all evaluation metrics. This underscores the effectiveness of 468 SCRG in augmenting performance by improving the quality of generated sequences. Additionally, 469 we provide analysis on the example of SCRG in Appendix E. 470

471 Different distillation loss functions. To validate the effectiveness of the proposed DAC-KL loss,
472 we compare it with different loss functions in Table 3c. The results demonstrate that DAC-KL
473 significantly outperforms other loss functions across all evaluation metrics. This indicates that DAC-KL effectively captures high-density semantic regions of the teacher's output probability distribution,
475 facilitating easier imitation by the student models. Additionally, we provide the analysis on the
476 visualized examples of the DAC-KL impact on the probability distribution of the teacher's output
477 depicted using kernel density estimation in Appendix D.

Different components involved in DAC-KL. The DAC-KL loss guides the distillation process to effectively transfer knowledge from the high-density semantic classes and the target class of the teacher's probability outputs. As evidenced by the results in Table 3b, when both high-density and target classes are considered, the DAC-KL loss achieves the highest validation, evaluation, and self-instruct scores compared to other configurations. This indicates that focusing on these specific classes leads to better performance in knowledge distillation, highlighting the importance of targeting relevant semantic regions for the effective transfer of knowledge.

Exposure Bias Comparison. We provide a comparison of our method with existing methods on the exposure bias metric (Gu et al., 2023) in Table 4a. The results show that our method introduces

Table 3: Ablation studies on the proposed SCRG strategy and the DAC-KL loss.

(a) Different student-generation methods Generation Validation Evaluation Self-Instruct On-policy (Lin et al., 2020) 30.3786 26.0948 16.1853 Mixed (Agarwal et al., 2024) 30.8335 26.4667 16.7789 Off-policy (Ko et al., 2024) 30.4539 27.0961 16.7745 27.1453 SCRG w. off policy 31.0444 17.2574 SCRG w. on policy 31.2575 27.1486 17.3016 (b) Components involved in DAC-KL losses High-density Target Validation Evaluation Self-Instruct х 29 3490 24 3130 14 3810 Х 1 21.3936 19.5050 11.5035 1 31.2575 27.1486 17.3016

Loss Function	Validation	Evaluation	Self-Instruct
Forward KL	28.9631	24.1922	14.5108
Reverse KL	30.0209	25.6688	14.7184
Symmetric KL	30.2584	27.0961	16.7745
Generalized JSD	27.8759	23.3144	14.3154
TVD (Wen et al., 2023)	30.1973	25.0033	14.6138
SRKL (Ko et al., 2024)	29.9858	25.4849	14.9514
SFKL (Ko et al., 2024)	29.1226	25.1400	14.4412
DAC-KL	31.2575	27.14864	17.3016

(c) Different distillation loss functions

Table 4: Comparison of different methods on generation length, training efficiency, and regeneration frequency of SCRG.

 (a) Exposure bias evaluated by training-decoding discrepancy (ExAccErr) accumulated with generation length. Lower ExAccErr indicates less exposure bias.

Generation Length	MiniLLM	DistiLLM	Ours
50	6%	4%	4%
100	19%	18%	16%
200	21%	20%	18%

(b) Training efficiency for different distillation methods.

Method	batch(4 samp	oles) / Seco	nds Av	erage Rouge
MiniLLM	0	.05		28.1999
DistiLLM	0	.25		27.1627
Ours w/o SCRG	0	.25		28.0122
Ours	0	18		28 6114
ouis	0	.10		20.0114
(c) Impact of S	CRG freque	ency on A	Average 3	20.0114 Rouge-L.

515
516
516
517
518
518
518
519
519
510
510
511
512
513
514
515
516
517
518
518
518
518
518
519
519
510
510
510
511
512
513
514
515
515
516
517
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518

Training Efficiency. Knowledge distillation methods that rely on student-generated output can significantly extend training time, including existing methods MiniLLM and Distillm. However, our approach flexibly combines existing on-policy and off-policy generation sampling methods to balance performance and training efficiency optimally. As evidenced in the Table 4b, our SCRG strategy, when combined with off-policy sampling, achieves superior performance with efficient training for the OpenLLAMA2-3B model on four A800 GPUs.

Frequency of SCRG. we provide results from experiments on OpenLLAMA2-3B where multiple
 SCRGs per sample were conducted, as shown in Table 4c. Considering the trade off between the
 training cost and performance, we perform sequence correction and re-generation (SCRG) only
 once per sample, which marginally increases the training time. We also provide more analysis in
 Appendix E.3

530 531

532

486

487 488

489

490

491

492

493

494

495

496

497

498

499 500 501

502

504

505

506

507

6 CONCLUSION

In this paper, we address the challenges in knowledge distillation for LLMs by proposing a novel multi-level semantic revision approach at the sequence, token, and span levels. At the sequence level, our sequence correction and re-generation strategy improves reliability in student-generated sequences. At the token level, the DAC-KL loss function targets semantically salient regions in the teacher's probability distribution, filtering out redundant information. At the span level, input span priors ensure consistent transfer of semantic information across related tokens. Our experiments with four various model series, demonstrate the effectiveness of our approach, significantly improving student model performance over existing KD methods.

540 REFERENCES

564

578

579

580

585

586

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 arXiv preprint arXiv:2303.08774, 2023.
- Romero Adriana, Ballas Nicolas, K Samira Ebrahimi, Chassang Antoine, Gatta Carlo, and Bengio
 Yoshua. Fitnets: Hints for thin deep nets. <u>Proc. ICLR</u>, 2(3):1, 2015.
- Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
 Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self generated mistakes. In The Twelfth International Conference on Learning Representations, 2024.
- Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence prediction with recurrent neural networks. <u>Advances in neural information processing systems</u>, 28, 2015.
- TomB. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Thomas Henighan, Rewon Child, Aditya Ramesh, DanielM. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Samuel McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. <u>arXiv: Computation</u> and Language,arXiv: Computation and Language, May 2020.
- Hongzhan Chen, Xiaojun Quan, Hehong Chen, Ming Yan, and Ji Zhang. Knowledge distillation for
 closed-source language models. arXiv preprint arXiv:2401.07013, 2024.
- Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. Imsys. org (accessed 14 April 2023), 2(3):6, 2023.
- Free Dolly. Introducing the world's first truly open instruction-tuned llm. databricks. com, 2023.
- Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama. <u>URL: https://github.</u>
 com/openlm-research/open_llama, 2023.
- 573
 574
 575
 Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large language models. In <u>The Twelfth International Conference on Learning Representations</u>, 2023.
- Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. <u>arXiv</u>
 preprint arXiv:1503.02531, 2015.
 - Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning language models with (almost) no human labor. arXiv preprint arXiv:2212.09689, 2022.
- Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger language models with less training data and smaller model sizes. <u>arXiv preprint arXiv:2305.02301</u>, 2023.
 - Yuxin Jiang, Chunkit Chan, Mingyang Chen, and Wei Wang. Lion: Adversarial distillation of closed-source large language model. arXiv preprint arXiv:2305.12870, 2023.
- Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. Tinybert: Distilling bert for natural language understanding. <u>arXiv preprint arXiv:1909.10351</u>, 2019.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

594 595 596	Minsang Kim and Seungjun Baek. Measuring sample importance in data pruning for training llms from a data compression perspective. <u>arXiv preprint arXiv:2406.14124</u> , 2024.
597 598	Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. <u>arXiv preprint</u> <u>arXiv:1606.07947</u> , 2016.
599 600 601	Tibor Kiss and Jan Strunk. Unsupervised multilingual sentence boundary detection. <u>Computational</u> <u>linguistics</u> , 32(4):485–525, 2006.
602 603	Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. Distillm: Towards streamlined distillation for large language models. <u>arXiv preprint arXiv:2402.03898</u> , 2024.
604 605 606	Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, and Tuo Zhao. Less is more: Task-aware layer-wise distillation for language model compression. In <u>International Conference</u> on Machine Learning, pp. 20852–20867. PMLR, 2023.
608 609 610	Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan Zhou, Weizhu Chen, Changyou Chen, and Lawrence Carin. Mixkd: Towards efficient distillation of large-scale language models. <u>arXiv</u> preprint arXiv:2011.00593, 2020.
611 612	Alexander Lin, Jeremy Wohlwend, Howard Chen, and Tao Lei. Autoregressive knowledge distillation through imitation learning. <u>arXiv preprint arXiv:2009.07253</u> , 2020.
613 614 615	Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In <u>Text summarization</u> <u>branches out</u> , pp. 74–81, 2004.
616 617 618	Chang Liu, Chongyang Tao, Jiazhan Feng, and Dongyan Zhao. Multi-granularity structural knowledge distillation for language model compression. In <u>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</u> , pp. 1001–1011, 2022.
619 620 621 622 623	Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. <u>Advances in neural information processing systems</u> , 35:27730–27744, 2022.
624 625	Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with gpt-4. <u>arXiv preprint arXiv:2304.03277</u> , 2023.
626 627 628	Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners.
629 630	Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. <u>OpenAI blog</u> , 1(8):9, 2019.
631 632 633	Mrigank Raman, Pranav Mani, Davis Liang, and Zachary Lipton. For distillation, tokens are not all you need. In <u>NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following</u> , 2023.
634 635	Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. <u>arXiv preprint arXiv:1910.01108</u> , 2019.
636 637 638	Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model compression. <u>arXiv preprint arXiv:1908.09355</u> , 2019.
639 640	Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.
641 642 643 644 645	Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timoth'ee Lacroix, Baptiste Rozi'ere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models.
646 647	Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. <u>arXiv preprint arXiv:2307.09288</u> , 2023.

675

696 697

699 700

- Fusheng Wang, Jianhao Yan, Fandong Meng, and Jie Zhou. Selective knowledge distillation for neural machine translation. <u>arXiv preprint arXiv:2105.12967</u>, 2021.
- Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 <u>arXiv preprint arXiv:2212.10560</u>, 2022a.
- Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al. Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. <u>arXiv</u> preprint arXiv:2204.07705, 2022b.
- Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, EdH. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. Jun 2022.
- Yuqiao Wen, Zichao Li, Wenyu Du, and Lili Mou. f-divergence minimization for sequence-level
 knowledge distillation. arXiv preprint arXiv:2307.15190, 2023.
- Mengyang Yuan, Bo Lang, and Fengnan Quan. Student-friendly knowledge distillation.
 Knowledge-Based Systems, 296:111915, 2024.
- Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
 Dewan, Mona Diab, Xian Li, Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster,
 Daniel Simig, Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. Opt: Open
 pre-trained transformer language models.
- Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
 arXiv preprint arXiv:2205.01068, 2022.
- Yuanchi Zhang, Peng Li, Maosong Sun, and Yang Liu. Continual knowledge distillation for neural machine translation. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7978–7996, 2023.
- Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
 In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 11953–11962, 2022.

702 A SOCIAL IMPACT

The primary objective of this study is to contribute to the advancement of the field of Machine Learning, without explicitly emphasizing any specific societal consequences. Although smaller models can lead to positive outcomes, such as reduced emissions, it is crucial to conduct a comprehensive study on potential biases associated with model compression. However, there are potential negative impacts to consider. Model compression may inadvertently exacerbate existing biases within data, leading to unfair outcomes, particularly for underrepresented groups. Additionally, the simplification involved in compression could result in the loss of critical nuances and reduce the model's ability to handle complex tasks accurately.

712

714

713 B LIMITATIONS

Our experiments and evaluations were conducted within specific linguistic domains, which may limit
 the direct applicability of our findings to other domains or tasks. Further research is necessary to
 determine the generalizability of our approach across various contexts. Additionally, our method's
 reliance on an external chunker for span extraction could be a limiting factor, especially for low resource languages where such tools may not be as accessible or effective.

For mainstream languages, however, there is a robust ecosystem of NLP toolkits, such as SpaCy and
 NLTK, which offer reliable chunking capabilities. These tools have been extensively developed and
 optimized, ensuring their effectiveness and broad applicability to tasks similar to ours.

For low-resource languages, we suggest that our approach could be adapted by utilizing alternative span extraction methods. For example, in the case of Chinese, the JieBa library effectively enables the extraction of spans, such as noun and verb phrases. For languages with smaller datasets or those that are less resourced, employing large pretrained models like GPT-4 for data preprocessing to generate spans could be a feasible solution. This unsupervised or weakly supervised approach could enhance the adaptability of our method to diverse linguistic resources.

We plan to explore these possibilities in future work, with the aim of broadening the applicability of our method and overcoming its current limitations to extend its utility across different language environments.

14

733

756 C DETAILED ANALYSIS OF THE SPAN-LEVEL LOSS FUNCTION.

Our method emphasizes distilling correlation consistency among tokens within a span, rather than merely aligning semantics at the token level (as done in token-level KL divergence). This distinction is critical, as it enables us to capture the nuanced relationships and dependencies inherent within spans. By leveraging the structural and prior knowledge embedded in spans, our method goes beyond simple semantic alignment, enabling more contextually aware and meaningful distillation.

To further clarify the intuition behind our approach, we conducted the following analysis:

C.1 HUMAN EVALUATION

We compared our Span-Relation method with a random chunking approach (where the number of chunks is controlled to match that of span-relation) and a method that directly extracts relations between adjacent tokens without chunking.

To conduct a more comprehensive and reliable evaluation, we further employed GPT-4 to conduct a human-like evaluation of the models on the Dolly evaluation dataset. We sampled 100 test examples from both models with and without span-level loss and assessed their outputs based on the following criteria:

- Accuracy (Rate 1-5): Does the output correctly include all relevant details from the input?
- **Completeness (Rate 1-5)**: Does the output provide a comprehensive list or description as required by the instruction?
- Fluency (Rate 1-5): Is the output natural, readable, and grammatically correct?
- **Relevance** (**Rate 1-5**): How well does the output align with the specific requirements of the instruction?

Loss Type	Average GPT-4 Evaluation	Dolly Validation	Dolly Evaluation	Self-Instruct
w/o Span-Relation loss	3.89	30.3486	26.9012	17.2392
Adjacent Relation	4.10	30.8348	27.0384	17.2144
Random Chunking Relation	4.01	30.5938	26.9284	17.0028
Span-Relation	4.42	31.2575	27.1486	17.3016

Table 5: Evaluation Results of Different Loss Types

These results in Table 5 illustrate that models utilizing span-level loss achieve higher average evaluations across all criteria compared to other configurations, highlighting the benefits of incorporating span-level signals to enhance model performance. Span Priors primarily enhance the semantic coherence of the model's outputs. To evaluate this, we included GPT-4-based human evaluations in our experiments, where the scores were significantly different—*3.89 (w/o Span-Relation Loss) vs. 4.42 (Span-Relation)*—despite the relatively smaller differences observed on datasets like Dolly.

810 C.2 ANALYSIS OF THE SPAN-LEVEL LOSS FUNCTION

To demonstrate the improved correlation among span-level tokens, we selected several typical
examples where information extraction requires the output to repeat specific phrases from the input
prompt. Below, we give an example of the model's performance with and without the span-level loss.
Our model distilled with the span-level loss successfully and accurately outputs the fixed phrases
from the prompt and context, showcasing the enhanced correlation among tokens within the span.

Table 6: Examples of the enhanced performance of distilled models relative to their predistillation counterparts.

Example 1:

Instruction: Extract the essential tools for a mini survival kit from the following Wikipedia article.

Input: Mini survival kits or "Altoids" tin survival kits are small kits that contain a few basic survival tools. These kits often include a small compass, waterproof matches, minimum fishing tackle, large plastic bag, small candle, jigsaw blade, craft knife or scalpel blade, and/or a safety pin/s. Pre-packaged survival kits may also include instructions in survival techniques such as fire-starting or first aid methods. In addition, paracord can be wrapped around the tin. The paracord can be used for setting up an emergency shelter or snaring small animals. They are designed to fit within a container roughly the size of a mint tin.

Without Span-Level Loss: The essential tools include a small compass, waterproof matches, fishing tackle, plastic bag, candle, blade, knife, and safety pin.

Adjacent Relation: The essential tools include a small compass, waterproof matches, fishing tackle, plastic bag, candle, scalpel blade, and safety pin.

With Span-Level Loss: The essential tools include a small compass, waterproof matches, minimum fishing tackle, large plastic bag, small candle, jigsaw blade, craft knife or scalpel blade, and safety pin/s.

Example 2:

Instruction: Given the reference text below, what is Isthmohyla debilis?

Input: Isthmohyla debilis is a rare species of frog in the family Hylidae. It occurs in the Atlantic slopes of the Cordillera Central and Cordillera Talamanca in Costa Rica and western Panama as well as on the Pacific slopes in southwestern Panama. Common name Isla Bonita treefrog has been suggested for it (the type locality is "Isla Bonita" in Costa Rica).

Without Span-Level Loss: Isthmohyla debilis is a rare frog species in the family Hylidae. It is found in Costa Rica and Panama. The common name Isla Bonita treefrog is suggested for it.

Adjacent Relation: Isthmohyla debilis is a rare species of frog in the family Hylidae. It is found in the Cordillera Central and Costa Rica. The common name Isla Bonita treefrog has been suggested for it.

With Span-Level Loss: Isthmohyla debilis is a rare species of frog in the family Hylidae. It occurs in the Atlantic slopes of the Cordillera Central and Cordillera Talamanca in Costa Rica and western Panama as well as on the Pacific slopes in southwestern Panama. The common name Isla Bonita treefrog has been suggested for it. The model distilled with span-level loss can better extract the important adjectives in phrases like
 minimum fishing tackle, large plastic bag, and small candle in the first example, and output long
 phrase of complex location as in the second example.

871 25000 872 873 40000 20000 874 875 30000 Frequency 50000 50000 876 Frequency 15000 877 878 10000 879 10000 880 5000 0 0.001 0.004 0.005 0.006 0.007 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.000 0.002 0.003 883 Probability value Probability value 885 40000 40000 887 30000 30000 Frequency Frequency 889 20000 890 891 10000 10000 892 893 894 0 0 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.001 0.005 0.0000 0.000 0.002 0.003 0.004 Probability value 895 Probability value

D ANALYSIS ON THE VISUALIZED PROBABILITY DISTRIBUTION OF THE TEACHER MODEL

Figure 5: Examples of the probability distribution of the teacher's output are depicted using kernel density estimation. The original distribution is represented by the blue line, while the distribution of the adaptively clipped probability classes is shown by the red line. From this picture, we can observe that the DAC-KL loss constrains the regions of probability distribution with dense semantic knowledge. Enforcing student model to imitate the distribution of these regions can effectively mitigate the training interference caused by low-semantic regions for student models with limited learning capacity.

In Figure 5, We illustrate examples of the teacher's output probability distribution using kernel density estimation. The DAC-KL loss primarily focuses on capturing low-probability yet high-frequency regions of the distribution and combines these with the target class to form new logit vectors.

906 907 908

909

903 904

905

896

868

870

D.1 COMPARING OTHER LOGITS-SELECTIVE METHODS WITH DAC LOSS

Our motivation stems from the idea of modulating the probability distribution to reduce the alignment difficulty between the teacher and student distributions, similar to methods like DKD and SKD.
However, the key difference is that we suppress redundant information in the original distribution to reduce the difficulty of fitting the student's output to the teacher's distribution when the student's capacity is limited. we compare DAC-KL with other logits-selective methods, including the Fixed Clipping Threshold approach, which is conceptually similar to the method described in Raman et al. (Raman et al., 2023), except that it uses a cumulative sum threshold of 95% as the clipping up.

917 The necessity of using DAC-KL lies in its adaptive nature for a complex probability distribution. We have tried other clipping and sampling methods, but these approaches rely on manually set thresholds.

Method	Dolly Validation	Dolly Evaluation	Self-Instruct
DKD (Zhao et al., 2022)	29.7182	24.3986	15.4907
SKD (Yuan et al., 2024)	29.9332	25.2840	15.9172
Fixed clipping threshold	30.7910	26.4911	16.5682
Zhang et al. (Zhang et al., 2	023) 29.9443	25.3442	16.0382
Wang et al. (Wang et al., 20	21) 29.8221	25.2321	15.9138
Raman et al. (Raman et al.,	2023) 30.6910	26.3120	16.4839
Ours	31.2575	27.1486	17.3016

 Table 7: Comparison of different knowledge distillation methods.

Fixed thresholds during training did not perform as well as our current method, which adapts to the probability distribution of different tokens in different samples throughout the training process.

The results in Table 7 allow for direct comparison and demonstrate how DAC-KL, which operates at the token level, provides superior performance by effectively balancing information retention and noise reduction compared to simplistic logit pruning approaches.

E ANALYSIS ON THE EXAMPLE OF THE SEQUENCE CORRECTION AND RE-GENERATION (SCRG) STRATEGY.

The role of SCRG is to mitigate the introduction of errors in the data produced by the student model during the initial phase of the knowledge distillation training. It achieves this by employing the teacher model's guidance to refine the generation process, thereby improving the overall quality of the output. We provide an example of the SCRG strategy in Table 8.

Table 8: Example of the student-generated output sequence using the sequence correction and re-generation strategy. The red token represents the detected position of the error token.

Instruction: What is the difference between men's and women's lacrosse

Teacher's Prediction: Men's lacrosse is a limited number of movesouts play each each. opposed opposed they a they opposed op

Re-sample: Men's lacrosse has a limited number of players and women's lacrosse has a maximum number of players.

E.1 EMPIRICAL EVIDENCE FOR SCRG

To provide empirical evidence in terms of distinct n-grams, we present a comparison of two example sentences: one generated early in the distillation process without SCRG (Sentence 1) and another generated after applying SCRG (Sentence 2).

- 1-grams: Total: 31, Unique: 12, Distinct-1: 0.387

972	• 2-grams: Total: 30 Unique: 13 Distinct-2: 0.433
973	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
974	• 3-grams : Iotal: 29, Unique: 14, Distinct-3: 0.483
975 976 977	Sentence 2 (With SCRG): "Men's lacrosse has a limited number of players and women's lacrosse has a maximum number of players."
978	• 1-grams: Total: 19. Unique: 12. Distinct-1: 0.632
979	• 2-grams : Total: 18 Unique: 13 Distinct-2: 0.722
980	2 grams. Total: 10, Unique: 13, Distinct 2: 0.722
981	• 3-grams : Total: 17, Unique: 14, Distinct-3: 0.824
982 083	The distinct n-gram statistics reveal significant improvements in output quality when SCRG is applied.
984	Sentence 2 exhibits higher distinct n-gram scores across all levels, demonstrating an increase in
985	unique words and phrases. This not only highlights the effectiveness of SCRG in refining data but
986	also emphasizes its role in enhancing the overall quality of the student model's generation process.
987	E 2 Comparison to the Leading data only indequences approach
988	E.2 COMPARISION TO THE LEADING DATA QUALITY IMPROVEMENT APPROACH
989	Furthermore, we conducted experiments to provide a robust comparison of SCRG against a leading
990	data quality improvement approach by Kim et al. (Kim & Baek, 2024), which focuses on offline data
991	pruning and selection.
992	Table 0: Performance Comparison of SCPG and Kim et al.'s Method
993	Table 9. Terrormance Comparison of SERO and Kini et al. S Method
994	Data Enhancement Dolly Validation Dolly Evaluation Self-Instruct
996	Kim et al 30.7346 26.8665 17.2208
997	SCRG 31.2575 27.1486 17.3016
998	SCRG + Kim et al. 31.3610 27.2068 17.3342
999	
1000	These results in Table 9 show that SCRG not only outperforms the approach by Kim et al. but
1001	when combined with Kim et al.'s method, a slight improvement in performance is observed. While
1002	from combining them are limited. This is likely due to the fact that both methods address similar
1003	underlying issues related to data quality, resulting in diminishing returns when applied together.
1004	
1005 1006	E.3 IMPACT OF THE FREQUENCY OF SCRG

1007 It is important to clarify that the purpose of our corrections is not to make the student model's outputs 1008 identical to the teacher's but to provide initial guidance that prevents severe errors, such as repetitive 1009 generation. In our experiments, even a single correction significantly improves output quality. While 1010 increasing the number of corrections may lead to outputs that resemble those of the teacher, this 1011 approach does not effectively address exposure bias. We have conducted a performance experiment 1012 on OpenLLAMA2-3B, which demonstrates how varying the number of corrections impacts the 1013 results, as shown below:

Table 10: Impact of varying the number of corrections on output quality measured by Average Rouge-L.

Frequency of SCRG	0	1	3	5	10
Average Rouge-L	28.2016	28.8724	28.9100	28.9710	28.3273

1019 1020

1017 1018

The results in Table 10 demonstrate the scenario where we directly address exposure bias using student-generated data, which, while effective, can introduce additional generation errors. Our aim is not to ignore the exposure bias but to highlight the challenges inherent in this approach.

1025 To address these challenges and to mitigate the introduction of generation errors, we have implemented SCRG. SCRG is not only about solving exposure bias but also about doing so in a way that avoids

the propagation of erroneous data. It achieves this by refining the student model's outputs with the guidance of the teacher model, thus enhancing the quality of the distillation dataset without compromising the integrity of the data.

Furthermore, the 'Frequency of SCRG=10' experiment was included to illustrate the scenario where student-generated data closely resembles that of the teacher, which, as you correctly pointed out, could potentially undermine the effectiveness of addressing exposure bias. This experiment serves to demonstrate the balance that SCRG strikes between maintaining the teacher's guidance and the student's independence.

F EXAMPLES OF MODEL RESPONSES ON THE INSTRUCTION-FOLLOWING TASK.

Table 11: Instruction-following cases from the databricks-dolly-15k dataset.

	Case #1, Category: classification
Instruction	If we were playing a game where we had to identify things that can be found inside a house, which of these would we call out: car, chair, table, park, cloud, microwave.
Input	-
Groundtruth	Inside a house you can find a chair, a table and a microwave. Cars, clouds and parks are found outside of houses.
SFT	car, chair, table, microwave.
KD	Car, chair, table and microwave are things that can be found in a house. Park and cloud are unlikely to be found in a house but are things that can be seen from a house.
SeqKD	We would call out: chair, table, car and microwave.
ImitKD	Car, chair, table and microwave are items that can be found inside of a house. Park and cloud are outdoors items.
MiniLLM	Car, chair, table, and microwave can all be found inside a house. Park and cloud cannot be found inside a house because they are neither objects nor locations.
GKD	You can find a car, chair, table and microwave inside a house. A park and cloud are not found inside a house.
DISTILLM	In this list, we can find a car, chair, table and microwave. A park and a cloud are not things you would typically find inside a house.
Ours	In this game, a car, park, and cloud would not be things that could be found inside a house. A chair, table, and microwave would be things that could be find inside a house.

Ta	able 12: Instruction-following cases from the databricks-dolly-15k dataset.
	Case #2, Category: closed QA
Instruction	How many managers have Arsenal had?
Input	There have been twenty permanent and eight caretaker managers of Arsenal since 1897; Stewart Houston has managed the club in two separate spells as caretaker. The most successful person to manage Arsenal is Arsé8ne Wenger, who won three Premier League titles, seven FA Cups and seven Community Shields between 1996 and 2018. Wenger is the club's longest-serving manager; he surpassed George Allison's record of 13 years in October 2009. Two Arsenal managers have died in the job 2013 Herbert Chapman and Tom Whittaker.
Groundtruth	Arsenal have had twenty permanent and eight caretake managers.
SFT	There have been thirty-seven managers since 1896.
KD	There have been 28 managers of Arsenalf FC.
SeqKD	Arsenal has had 20 permanent managers, 8 caretaker managers and 2 manager with dead in the job.
	There have been thirty-seven managers since 1896.
ImitKD	
ImitKD MiniLLM	Since 1897, Arsenal have had twenty-eight managers. Eight of these were caretaker managers. The most successful manager is Arséne Wener, who won three Premier Leagues, seven FA Cups, and seven Community Shield trophies. He is the longest-serving manager, as he surpassed George Alison's record of twelve years in October 2,009. Two managers have died in this job; Herbert Chapman and Tom Whitaker.
ImitKD MiniLLM GKD	 Since 1897, Arsenal have had twenty-eight managers. Eight of these were caretaker managers. The most successful manager is Arséne Wener, who won three Premier Leagues, seven FA Cups, and seven Community Shield trophies. He is the longest-serving manager, as he surpassed George Alison's record of twelve years in October 2,009. Two managers have died in this job; Herbert Chapman and Tom Whitaker. There have been thirty managers of Arsenals football club since 1896. This includes twenty permanent managers and eight caretaker or interim managers.
ImitKD MiniLLM GKD DISTILLM	 Since 1897, Arsenal have had twenty-eight managers. Eight of these were caretaker managers. The most successful manager is Arséne Wener, who won three Premier Leagues, seven FA Cups, and seven Community Shield trophies. He is the longest-serving manager, as he surpassed George Alison's record of twelve years in October 2,009. Two managers have died in this job; Herbert Chapman and Tom Whitaker. There have been thirty managers of Arsenals football club since 1896. This includes twenty permanent managers and eight caretaker or interim managers. There have been 20 permanent managers and 8 caretaker managers for a total of 28 managers.

Ta	ble 13: Instruction-following cases from the databricks-dolly-15k dataset.
	Case #3, Category: brainstorming
Instruction	What is a good way to get around without a car?
Input	-
Groundtruth	If you live in a city you can access public transport such as buses and trains. You can also walk, use a bicycle, or electric scooter to get around.
SFT	When you don't have a car, you need to find alternative ways to get around. If you are able-bodied and live in a city, your best bet would be to use public transportation Every city has trains, buses and other modes of transportation that are accessible without a car.If you are unable-bodied or have a car that doesn't work, you may want to consider ride-sharing services such as Uber and Lyft.
KD	A few examples of ways to get around without a personal car are using public transportation such as the bus or subway, carpooling with friends or coworkers, or using ride-sharing services such as Uber or Lyft. If none of these options are viable for you, it is still possible to get around without a vehicle; for example, it is often possible to walk or ride a bike for short distances, and in some cases, it is possible to use a bicycle, scooter, or skateboard for longer distances.
SeqKD	There are multiple options for getting around without a car. Biking, walking, riding a scooter, riding a bike with a scooter, using public transportation, rideshare, or a moped are all good options. If you are in a smaller town where public transportation is available, walking or riding a bike may also be a good option.
ImitKD	Public transportation is a good way to avoid a need for a car. In many cities in the US public transportation includes buses, subways, and trains that can take you where you need to go. For shorter distances, many cities and towns have bike-shares which can provide an easy way to get around without having to rely on a car.
MiniLLM	There are many ways to get around without a driver's license or car. The most common way is to walk, but you can also use a bicycle, public transportation, or ride-sharing services. If you live in a city, you can also take advantage of public transportation, which is often more affordable than owning a car.
GKD	There are multiple ways to get around without a personal vehicle. Public transporta- tion is available in many cities and towns. Many cities also have bike share programs where you can rent a bike or low-cost electric scooter for short trips. You can also walk, but this may depend on the distance and weather.
DISTILLM	There are many ways to get around without cars. You can walk, ride a bike, use public transportation, or ride share services such as Uber and Lyft.
Ours	If you don't have a car, there are still many ways to get around. You can take public transportation, which includes buses, trains, and subways. If you are near a large city you may also have access to light rail, which is like a bus that runs on rails. If you are in a suburb, you can use public transportation such as a bus or train. If you live in a small town, you may need to take a taxi or ride share service.

1188 G PROMPT TEMPLATE FOR THE INSTRUCTION-FOLLOWING TASK

We provide the prompt template for the instruction-following task in Table 14.

Table 14: The prompt template for training and evaluation of instruction-following task experiments.

1194	
1195	Below is an instruction that describes a task.
1196	Write a response that appropriately completes the request.
1197	
1198	### Instruction:
1199	{instruction}
1200	
1201	### Input:
1202	{input}
1203	### Desponse:
1204	
1205	
1206	
1207	
1208	
1209	
1210	
1211	
1212	
1213	
1214	
1215	
1216	
1217	
1218	
1219	
1220	
1221	
1222	
1223	
1224	
1225	
1220	
1227	
1220	
1223	
1230	
1232	
1233	
1234	
1235	
1236	
1237	
1238	
1239	
1240	
1241	

Η **STATISTICAL SIGNIFICANCE TESTS**

We appreciate the reviewer's suggestion regarding statistical significance testing. To clarify, our experiments were conducted using 5 random seeds, with the reported results representing the average performance across these runs. While we did not perform formal statistical significance tests, we computed the standard deviations for each result, and based on our observations, there were no large anomalies or outliers in the data. Below, we provide the average values along with the corresponding standard deviations for each metric:

Sequence-correcting	DAC-KL	Span Relation	Dolly Validation (\uparrow)	Dolly Evaluation (\uparrow)	Self-Instruct (\uparrow)
×	×	×	29.1874 (0.18)	24.1603 (0.22)	14.8578 (0.15)
\checkmark	×	×	29.6982 (0.19)	24.5307 (0.21)	14.9485 (0.16)
\checkmark	\checkmark	×	30.3486 (0.21)	26.9012 (0.23)	17.2392 (0.18)
\checkmark	\checkmark	\checkmark	31.2575 (0.19)	27.1486 (0.22)	17.3016 (0.17)

Table 15: Performance comparison with standard deviations.

Ι MORE COMPLEX TEACHER THAN STUDENT

We extended our experiments from the previous OPT $6.7B \rightarrow 1.3B$ distillation setup by using a larger teacher model, OPT-13B, to distil the 1.3B student. The results, shown in the table below, demonstrate that while distilling with a much larger teacher does lead to smaller improvements in performance compared to the $6.7B \rightarrow 1.3B$ case, our proposed distillation method still outperforms vanilla KD loss significantly, even when using a much more complex teacher.

Table 16: Performance comparison of distillation methods using different teacher models.

Model	Method	Params	Dolly Evaluation	Self-Instruct	Vicuna	Super-Natural	Unnatural	Averag
OPT(6.7B-1.3B)	Teacher (SFT)	6.7B	25.8758	14.8408	16.4199	24.9551	25.8377	21.585
	Student (SFT)	1.3B	22.7595	11.9784	15.2267	22.8556	24.5763	19.479
	Vanilla KD	1.3B	22.4476	13.4676	13.9975	23.7679	25.4132	19.818
	Ours	1.3B	27.1486	17.3016	14.8491	32.0618	34.9709	25.266
OPT(13B-1.3B)	Teacher (SFT)	13B	26.4438	15.9537	17.1171	28.1131	29.0092	23.327
	Student (SFT)	1.3B	22.7595	11.9784	15.2267	22.8556	24.5763	19.479
	Vanilla KD	1.3B	22.7027	12.8890	14.8943	21.9863	25.0162	19.497
	Ours	1.3B	26.5122	15.7949	15.6140	31.4153	34.4243	24.752

As seen from Table 16, while the performance improvement decreases with the larger teacher (OPT-13B), our distillation method still provides a significant advantage over the vanilla KD approach, even when using a more complex and larger teacher model. This indicates that our method with DAC-KL loss helps mitigate the potential performance degradation seen when distilling with a much larger teacher.