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ABSTRACT

Knowledge distillation plays a key role in compressing the Large Language Models
(LLMs), which boosts a small-size student model under large teacher models’ guid-
ance. However, existing LLM distillation methods overly rely on student-generated
outputs, which may introduce generation errors and misguide the distillation pro-
cess. Moreover, the distillation loss functions introduced in previous works struggle
to align the most informative part due to the complex distribution of LLMs’ out-
puts. To address these problems, we propose a multi-granularity semantic revision
method for LLM distillation. At the sequence level, we propose a sequence cor-
rection and re-generation (SCRG) strategy. SCRG first calculates the semantic
cognitive difference between the teacher and student to detect the error token, then
corrects it with the teacher-generated one, and re-generates the sequence to reduce
generation errors. At the token level, we design a distribution adaptive clipping
Kullback-Leibler (DAC-KL) loss as the distillation objective function. DAC-KL
loss exploits a learnable sub-network to adaptively extract semantically dense areas
from the teacher’s output, avoiding the interference of redundant information in
the distillation process. Finally, at the span level, we leverage the span priors of a
sequence to compute the probability correlations within spans, and constrain the
teacher and student’s probability correlations to be consistent, further enhancing
the transfer of semantic information. Extensive experiments across different model
families with parameters ranging from 0.1B to 13B demonstrate the superiority of
our method compared to existing methods.

1 INTRODUCTION

The remarkable advancements in auto-regressive Large Language Models (LLMs) (Kaplan et al.,
2020; Wei et al., 2022; Radford et al.; Zhang et al.; Brown et al., 2020) have led to unprecedented
breakthroughs in a diverse array of text generative tasks, with numerous open-source models (Touvron
et al.; Zhang et al., 2022) now available. A crucial factor contributing to this success is the ability
to scale up the models, which involves increasing both the amount of training data and the number
of model parameters. However, the massive size and computational intensity of these state-of-the-
art models pose significant challenges, particularly when it comes to deployment and real-time
applications. In contrast, smaller models with limited parameters often sacrifice performance on
real-world generation tasks (Wang et al., 2022a). To mitigate these challenges, Knowledge Distillation
(KD) (Hinton et al., 2015) has emerged as a pivotal technique, enabling the development of smaller,
more efficient student models that inherit the strengths of their larger teacher counterparts.

Traditional knowledge distillation methods (Hinton et al., 2015; Kim & Rush, 2016) directly employ
Kullback-Leibler divergence (KLD) as the distillation loss for aligning the output distributions of
teacher and student models on a static dataset (see Figure 1 (a)). Unlike these methods, recent LLM
distillation methods are exploring diverse divergence loss functions tailored to LLMs and leveraging
student-generated datasets to avoid distribution mismatch between the outputs student-generated
in the training and inference stages. GKD (Agarwal et al., 2024) and MiniLLM (Gu et al., 2023)
propose to exploit reverse KLD as the distillation objective, replacing the commonly used forward
KLD. These approaches aim to prevent students from overestimating the low-probability regions of
the teacher’s distribution. Also, these methods train the student on self-generated sequences that are
on-policy instead of a fixed set of output sequences. Recently, Distillm (Ko et al., 2024) proposes an
adaptive off-policy student-generation strategy to improve the sample efficiency and high generation
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Figure 1: Knowledge Distillation using Different Sampled Datasets. (a) Traditional KD using a fixed
dataset (Hinton et al., 2015). (b) KD using the student-generated dataset, which can be categorized
into on-policy based methods (Agarwal et al., 2024; Gu et al., 2023) and the off-policy based
method (Ko et al., 2024). (c) Our proposed KD approach, which leverages a sequence correction and
re-generation strategy and can be seamlessly integrated with both on-policy and off-policy generation
schedules.

time faced in on-policy generation (see Figure 1 (b)). Meanwhile, it designs a new distillation
object function i.e., skew KLD loss for better generalizability and convergence. However, relying on
student-generated sequences may introduce generation errors and lead to suboptimal learning, as the
distillation process becomes vulnerable to the inaccuracies inherent in the student’s predictions. The
student model’s limited capacity and biases can further perpetuate these errors, resulting in a distorted
representation of the teacher’s knowledge. Moreover, the rich semantic knowledge and the significant
variance across different tokens make it challenging for existing distillation objective functions to
capture and transfer the essential knowledge within the teacher model’s output distribution.

To address the above-mentioned issues, we introduce a novel multi-level semantic revision approach,
across sequence token and span levels, to significantly improve the KD process for LLMs. At the
sequence level, we propose a sequence correction and re-generation (SCRG) strategy. We detect
the error token in the student-generated sequence and re-generate the sequence from the position
of the error token to reduce generation errors. As shown in Figure 1 (c), by assessing the semantic
cognitive differences between teacher and student outputs on a token-by-token basis, we identify
and correct errors, leading to re-generated sequences that steer the student model towards generating
more reliable samples and can be seamlessly integrated with both on-policy and off-policy generation
schedules. At the token level, we employ a distribution adaptive clipping Kullback-Leibler (DAC-KL)
loss function, which leverages a learnable sub-network to target semantically salient regions of the
output distribution. This loss function effectively filters out redundant information, preserving only
the most relevant signals for distillation. Finally, at the span level, we incorporate pre-defined span
priors of sequences to align the relations of probability vectors of the student and teacher models,
ensuring a consistent transfer of semantic information across related tokens within the same span.
Through extensive experiments with different models, including the LLAMA2, OpenLLAMA2, OPT,
and GPT2 series, ranging from 0.1B to 13B parameters, we showcase the superiority of our approach
over existing knowledge distillation methods.

The contributions of this paper are summarized as follows:

• We introduce a novel multi-level semantic revision approach to enhance the knowledge
distillation (KD) process for large language models (LLMs).

• At the sequence level, we propose a sequence correction and re-generation strategy to steer
the student model towards generating more reliable sequences.

• At the token level, we propose a distribution adaptive clipping Kullback-Leibler loss to
capture semantically salient regions of the output space.

• At the span level, we incorporate input span priors to ensure a consistent transfer of semantic
knowledge across related tokens.

• Through extensive experimentation with models ranging from 0.1B to 13B parameters, we
demonstrate the superiority of our method over existing KD methods for LLMs.
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2 RELATED WORK

KD for encoder-only language models. Pretrained encoder-only language models, such as
BERT (Jiao et al., 2019), can be compressed using the traditional logit distillation (Hinton et al.,
2015) and feature distillation (Adriana et al., 2015). These knowledge distillation methods minimize
the Kullback-Leibler divergence loss between the outputs of the student and teacher models on a fixed
dataset (Kim & Rush, 2016). Liang et al.(Liang et al., 2020) applied this objective to train students
on masked language modelling and text classification tasks. Jiao et al.(Jiao et al., 2019) utilized
intermediate representations from each transformer layer of the teacher as transferable knowledge.
Despite the potential of KD in encoder-only language models (Sanh et al., 2019; Liang et al., 2023;
Sun et al., 2019; Liu et al., 2022), the complex predictions generated by large language models
(LLMs) through auto-regressive inference present a new challenge. This paper primarily discusses
KD for auto-regressive LLMs.

KD for auto-regression large language models. Existing knowledge distillation (KD) methods
for auto-regressive large language models (LLMs) can be divided into black-box methods for closed-
source models such as GPT-3.5 (Ouyang et al., 2022) and GPT-4 (Achiam et al., 2023), and white-box
methods for open-source models such as LLaMA (Touvron et al.). Black-box methods (Chen et al.,
2024; Jiang et al., 2023; Hsieh et al., 2023) cannot access the internal parameters of the teacher
model and utilize only the inference results provided by the teacher API (Taori et al., 2023; Chiang
et al., 2023; Peng et al., 2023). The inference results of the teacher model are used to construct
prompt-response pairs, which serve as a new training dataset to fine-tune the student model. In
contrast, white-box KD methods (Ko et al., 2024; Agarwal et al., 2024; Gu et al., 2023) leverage the
internal parameters of the teacher model, providing richer training signals such as the probability
distribution of predictions, potentially leading to better student model performance. Our methods
primarily address the challenges of existing methods in the realm of white-box KD.

3 PRELIMINARY

Before introducing our method, we provide some preliminary information on KD for LLMs. We
consider the inference of LLMs as a vocabulary classification task, where a model p predicts the
conditional probability distribution of a target response y given a prompt and target sequence pair
(x, y). Let y<i = (y1, y2, ...., yi−1) denote the generated output sequence up to the (i− 1)

th

token yi−1. A token-level auto-regression model outputs a next-token M−vocabulary probability
distribution. Specifically, for the model p, ŷi = p(.|y<i, X)(ŷi ∈ RM ) represents the probability
distribution of the generated ith token, where ŷi ∈ (0, 1)M . yi ∼ p(.|y<i, X) is the corresponding
output token.

We formulate KD as an optimization problem that aims to minimize the difference between the
prediction distribution of a fixed teacher model p(.|y<i, x) and that of a parameterized student model
qθ(.|y<i, x), using sampled input-output sequence pairs (x,y) from the fixed dataset (X ,Y ). θ is the
student’s parameters to be optimized. The sequence-level distillation with Ly tokens employs KL
Divergence DKL as the distillation object. The total distillation loss LKD is broken down into a sum
of token-wise distillation:

LKD = 1
Ly

Ly∑
i=1

DKL(p(.|y<i, x)||qθ(.|y<i, x)) =
1
Ly

Ly∑
i=1

p(.|y<i, x)log
p(.|y<i, x)

qθ(.|y<i, x))
, (1)

where the conditional sequence y can be easily generated by sampling from the teacher or student
model policy, i.e.,{x ∈ X, y ∼ p(.|x)} or {x ∈ X, y ∼ qθ(.|x)} instead of directly {(x, y) ∈
(X,Y )}.

During the distillation process, the student model is also guided by the ground-truth output sequence
without querying the policies of the teacher or student models. The supervised fine-tuning (SFT) loss
is formulated as

LSFT = E(x,y)∼(X,Y )[−log qθ(y|x)]. (2)
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Figure 2: The workflow of sequence correction and re-generation strategy.

4 MULTI-GRANULARITY SEMANTIC REVISION

In this section, we introduce the proposed multi-granularity semantic revision for LLM distilla-
tion, which revises the semantic representation during the knowledge transfer stage at three levels:
sequence-level, token-level, and span-level.

4.1 SEQUENCE-LEVEL CORRECTION AND RE-GENERATION

As illustrated by Eq. equation 1, prevalent KD methods (Agarwal et al., 2024; Gu et al., 2023; Ko et al.,
2024), utilizes conditional sequences generated from the student model (denoted as y ∼ qθ(·|x) ) for
the distillation process. While these methods are designed to mitigate the training-inference mismatch
between the fixed training data and the student’s auto-regressive inferences, they simultaneously risk
introducing generation errors. Due to the limited capabilities of the student model, the generated
sequences may contain additional errors which reduces the effectiveness of KD. To address this issue,
we propose a sequence correction and re-generation (SCRG) strategy (shown in Fig. 2) to detect
generation errors and re-generate sequences that steer the student model towards generating reliable
sequences.

We denote the generated n-token sequence from the student model qθ as ys<n+1 = (ys1, y
s
2, ...., y

s
n)

which correspondences the probability outputs (ŷs1, ŷ
s
2, ...., ŷ

s
n), where ysi ∼ qθ(.|ys<i, x)(1 ≤ i ≤

n). Similarly, we denote the teacher model’s output sequence as yt<n+1 = (yt1, y
t
2, ...., y

t
n) and

probability outputs (ŷt1, ŷ
t
2, ...., ŷ

t
n). We denote each token of the teacher model’s output sequence as

yti ∼ p(.|ys<i, x). We follow previous methods (Agarwal et al., 2024; Gu et al., 2023; Ko et al., 2024)
using the student-generated outputs as the distillation dataset, and calculate token-wise KLD loss to
evaluate the semantic cognitive differences between the teacher and student for each token to detect
the position of the error token within the sequence yt<n+1. We formulate the detection process of the
error token ysj as

j = argmax
1≤i≤n

(
DKL(ŷ

s
i ∥ŷti) if ysi ̸= yti

)
. (3)

We then replace the ysj by ytj to construct new samples and re-generate the student output sequence
and each token in ys<n+1 is formulated as

ysi ∼


qθ(.|ys<i, x) if i < j

p(.|ys<i, x) if i = j

qθ(.|ys<i,̸=j , y
t
j , x) if i > j.

(4)

Our SCRG strategy can be seamlessly integrated with existing on-policy sampling (Agarwal et al.,
2024) and off-policy sampling (Ko et al., 2024). By incorporating an adaptive scheduler (Ko et al.,
2024) for student-model generation, we enhance the efficiency of our sampling process.

4
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Figure 3: The workflow of the DAC-KL loss function.

4.2 TOKEN-LEVEL DAC-KL LOSS FUNCTION

The probability output of LLMs is a high-dimensional vector for each token. However, existing
modified Kullback-Leibler divergence (KLD) loss functions, used as knowledge distillation objectives,
struggle to effectively capture the valuable distribution with high semantic knowledge from the teacher
network. They either underfit the teacher’s distribution, as seen in forward KLD, or tend to overfit
to a part of the high-probability region, as seen in reverse KLD. To address this issue, we design
a Distribution-Adaptive Clipping Kullback-Leibler (DAC-KL) loss function (in Fig. 3) to capture
high-density semantic regions of the teacher’s output probability distribution, which can be more
easily imitated by the student models with limited capacity.

The probability outputs at the ith token position of both the teacher and student models are high-
dimensional probability vectors with M tokens, which are denoted as

ŷti = p(.|ys<i, x) = [vt1, v
t
2, ..., v

t
M ] ∈ RM ,

ŷsi = qθ(.|ys<i, x) = [vs1, v
s
2, ..., v

s
M ] ∈ RM .

(5)

We input these two probability vectors to a learnable MLP sub-network fsub to predict the upper
limit quantile u ∈ [0, 1] and the lower limit quantile l ∈ [0, u] of the probability distribution ŷti . We
formulate this process as

u, l = σ(fsub(ŷ
t
i | sort(ŷti) | ŷsi )), (6)

where σ(·) is the SIGMOID activation, sort(·) is the decending sort operation, and | represents the
concatenation operation, l is clipped into the range [0, u].

The predicted quantiles u and l are used to adaptively clip out the high-density semantic classes from
the teacher’s probability vector ŷti . We utilize the clipped high-density classes and the target class
with the most probability value to construct a new probability vector ŷt∗i , which is formulated as

ŷt∗i =

[{
σ

(
vti − l

ϵ

)
× σ

(
u− vti

ϵ

)}
1≤i≤M

| max(vt1, v
t
2, . . . , v

t
M )

]
, (7)

where ϵ = 1e− 7 is a small positive number that controls smoothness. This implementation ensures
proper gradient backpropagation by leveraging the smooth characteristics of the sigmoid function.
Specifically, we calculate a mask for the LLM’s probability distribution to determine the clipping
region (high-density classes) , ensuring that gradients can flow correctly. By using this approach, we
ensure that the learnable parameters for predicting the lower limit quantile and upper limit quantile
are updated correctly during the training process, and gradients are propagated effectively.

The high-density classes and the target class contain the most knowledge in the teacher’s probability
distribution. Based on the corresponding positions of the clipped classes and target class of ŷt∗i , we
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Figure 4: The workflow of the span-level correlation distillation. ◦ denotes Hadamard multiplication.

construct the student’s new probability vector ŷs∗i . Then, we adopt a vanilla KLD to calculate the
sum of token-wise distillation loss and the final loss is calculated on the dataset (X ,Y ):

LDAC-KLD = Ex∼X [ 1
Lys∗

Lys∗∑
i=1

ŷt∗i log
ŷt∗i
ŷs∗i

], (8)

where Lys∗ is the length of the sequence generated from the proposed SCRG strategy.

4.3 SPAN-LEVEL CORRELATION CONSISTENCY

Motivated by the work (Liu et al., 2022), we utilize the pre-defined chunker (Kiss & Strunk, 2006) to
extract spans (including noun phrases, verb phrases, and prepositional phrases) that have complete
meanings from the input sequences, which split a sequence into several token sets. For each token
in the input sequence, LLMs predict a high-dimensional probability vector. The relations between
tokens within the same span should maintain consistent relations in the transformed probability space.
Constraining the relation consistency between the outputs of the student and the teacher models is
crucial to transfer semantic knowledge, as shown in Fig. 4.

We divide a probability sequence [ŷ1, ŷ2, ..., ŷn] into ns spans s = [s1, s2, ..., sns
] according to the

pre-defined span priors from [y1, y2, ..., yn]. Here, si =
[
ŷj , ŷj+1, ..., ŷj+nsi

−1

]
represents ithspan,

which starts at the jth token of the sequence and contains nsi tokens. Both the student and teacher
model outputs adhere to the same span priors for token divisions. Consequently, we divide the
probability outputs of the student and teacher models into spans, denoting the ith span as

ssi =
[
ŷsj , ŷ

s
j+1, ..., ŷ

s
j+nsi

−1

]
, sti =

[
ŷtj , ŷ

t
j+1, ..., ŷ

t
j+nsi

−1

]
. (9)

Next, we calculate the correlation between two adjacent tokens within the same spans and ensure
consistency of this correlation between the probability outputs of the student model and the teacher
model. To achieve this, we utilize the L2 distance to align the consistency. The span consistency loss
is defined as follows:

Lspan = Ex∼X [
1

ns

ns∑
i=1

1

nsi

∑
(ŷs

j ,ŷ
s
j+1)∈ssi ,(ŷ

t
j ,ŷ

t
j+1)∈sti

∥∥ŷsj ◦ ŷsj+1 − ŷtj ◦ ŷtj+1

∥∥
2
], (10)

where |·|2 represents the L2 distance function, and ◦ denotes the Hadamard multiplication operation
calculating correlation in the high-dimensional probability space. It is important to note that the
output sequence is also generated by the student using the SCRG strategy. For simplicity, we adopt a
standard symbol representation for ŷtj and ŷsj instead of ŷt∗j and ŷs∗j .

4.4 OVERALL OPTIMIZATION

We use the proposed KD method in the SFT stage of based models. The student model is supervised
by the distillation loss, guided by the finetuned teacher model, and also supervised by the SFT loss.
The overall optimization objective for the student model is formulated as

Loverall = LSFT + LDAC-KLD + Lspan. (11)

where LSFT represents the SFT loss, LDAC-KLD represents the distillation loss using the DAC-KLD
object, and Lspan represents the span consistency loss which assists the distillation process.

6
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5 EXPERIMENTS

In this section, we experiment by initially fine-tuning a large model on the dataset comprising
instructions and corresponding responses (X,Y ), establishing it as the teacher model p. Subsequently,
we examine various knowledge distillation methods for distilling a smaller student model under the
guidance of the teacher, evaluating the instruction-following performance of the distilled model.

5.1 EXPERIMENTAL DESCRIPTION

Dataset and evaluation metrics. We conduct the KD experiments on five instruction-following
datasets: (1) Dolly Evaluation (Dolly, 2023) is a a sampled subset of atabricks-dolly-15k 1 (Dolly)
dataset consists of 500 samples. It covers various behavioural categories such as brainstorming,
classification, closed QA, generation, information extraction, open QA, and summarization; (2)
Self-Instruct (Wang et al., 2022a) is a dataset for language models’ ability to understand and follow
instructions. It incorporates 252 expert-written tasks; (3) Vicuna (Wang et al., 2022b) is a dataset
consisting of 80 challenging questions used for evaluating the Vicuna model. It follows the evaluation
methodology introduced by MiniLLM (Gu et al., 2023); (4) Super-Natural Instruction (Wang et al.,
2022b) is introduced as a benchmark, and this dataset contains 1,616 diverse NLP tasks along with
their expert-written instructions. It covers 76 different task types, and its test set consists of 9K
samples from 119 tasks; (5) Unnatural Instruction (Honovich et al., 2022) dataset comprises 240K
instructions generated by AI with minimal human involvement. It shows that AI-generated data can
be as effective as human-created data for training language models. The core component of this
dataset has 60K samples.

We use the ROUGE-L (Lin, 2004) metric to evaluate the model-generated results and report the
average scores of 5 generations for each prompt with different random seeds (10, 20, 30, 40, 50)
for all test datasets. ROUGE-L evaluates the precision of the model’s output by measuring the
longest common subsequence between the generated text and the reference text. It is well-suited for
large-scale instruction-following evaluation due to its ability to capture both sentence-level structure
and content.

Base models and baselines. We distil four kinds of teacher-student model pairs with different model
sizes: LLAMA2 (Touvron et al., 2023) (13B teacher, 7B student), OpenLLAMA2 (Geng & Liu, 2023)
(7B teacher, 3B student), OPT (Zhang et al., 2022) (6.7B teacher, 1.3B student), GPT2 (Radford
et al., 2019) (1.5B teacher, 0.1B student).

We benchmark our method against several advanced knowledge distillation methods: (1) SFT
Fine-tunes the student model on a fixed dataset in a vanilla manner; (2) KD (Hinton et al., 2015)
utilizes KLD on a fixed dataset; (3) SeqKD (Kim & Rush, 2016) fine-tunes on a teacher-generated
dataset; (4) ImitKD (Lin et al., 2020) utilizes KLD on a dataset generated by the student model; (5)
GKD (Agarwal et al., 2024) utilizes Jensen-Shannon Divergence (JSD) (Agarwal et al., 2024) on a
mixture of a student-generated dataset and a fixed dataset; (6) MiniLLM (Gu et al., 2023) utilizes a
policy gradient approach on a dataset generated by the student model; (7) DistiLLM (Ko et al., 2024)
utilizes Skew KLD on a student-generated dataset sampling with an off-policy scheduler.

All of our baseline experiments are re-implemented using the open-source code 2 on the same
GPU servers utilized by our method. Additionally, we execute these experiments using the exact
hyper-parameters as specified in the original codebase.

Training details. We follow MiniLLM (Gu et al., 2023) to finetune base models using the training
set of the databricks-dolly-15k. Dolly is divided into 14K samples as the training set and equally
left 500 samples for validation and testing, respectively. After the fine-tuning process, we select the
best-performing model based on its validation set of the Dolly dataset. We then proceeded to test this
selected model on the test sets of the five above-mentioned datasets.

For training the teacher and student models, we utilize four A100 (40GB) GPUs for the OpenL-
LAMA2, OPT, and GPT2 models and four A800 (80GB) GPUs for the LLAMA2 models. A fixed
learning rate of 5e-4 is applied consistently across all experiments. Specifically, for the LLAMA2,
OpenLLAMA2, and OPT models, we follow DistiLLM (Ko et al., 2024), employing low-rank adap-

1https://github.com/databrickslabs/dolly/tree/master
2https://github.com/jongwooko/distillm
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tation (LoRA) for the query and value weights with a rank of 16 for 10 epochs. In contrast, for the
GPT2 models, we fine-tune all parameters for 20 epochs.

Table 1: Comparison of state-of-the-art knowledge distillation methods evaluated by the ROUGE-L
metric (Lin, 2004). ‘Average’ is the average score on the five test datasets The bold and underlined
markings signify the best and second-best results, respectively.

Methods Parameters
Datasets

Dolly Evaluation Self-Instruct Vicuna Super-Natural Unnatural Average

LLAMA2

Teacher (SFT) 13B 29.8241 21.0617 19.4909 35.8318 35.7802 28.3978

SFT

7B

27.3504 28.4430 18.7567 28.4430 30.2788 26.6544
KD (Hinton et al., 2015) 27.0737 20.7076 17.9850 30.3350 31.4926 25.5188

SeqKD (Kim & Rush, 2016) 26.2689 19.0278 18.4602 25.9461 28.1010 23.5608
ImitKD (Lin et al., 2020) 27.4359 20.6792 18.8058 29.1726 30.5764 25.3340

GKD (Agarwal et al., 2024) 28.4662 22.1717 20.7564 33.3325 33.2682 27.5990
MiniLLM (Gu et al., 2023) 30.6447 23.9493 22.3010 34.3454 36.0828 29.4646
DistiLLM (Ko et al., 2024) 30.7277 25.2181 20.8356 36.1154 37.5072 30.0808

Ours 31.9195 25.4937 21.7810 37.9154 38.1257 31.0471

OpenLLAMA2

Teacher (SFT) 7B 27.5100 17.9400 17.6900 32.7500 31.4000 25.4580

SFT

3B

24.4000 16.1300 16.5600 27.4862 28.0500 22.5252
KD (Hinton et al., 2015) 25.4814 19.1805 16.6562 31.3307 31.8136 24.8924

SeqKD (Kim & Rush, 2016) 24.8184 16.0980 17.2718 29.4081 28.7395 23.2672
ImitKD (Lin et al., 2020) 25.3600 18.1600 17.5700 31.0900 28.9600 24.2280

GKD (Agarwal et al., 2024) 26.8525 20.1060 18.4337 34.4383 32.4797 26.4621
MiniLLM (Gu et al., 2023) 28.4950 21.7770 20.6260 35.4001 34.7011 28.1999
DistiLLM (Ko et al., 2024) 27.8546 19.3456 19.1723 34.4973 34.9434 27.1627

Ours 29.3062 20.5835 19.0086 37.6171 37.2410 28.8724

OPT

Teacher (SFT) 6.7B 25.8758 14.8408 16.4199 24.9551 25.8377 21.5859

SFT

1.3B

22.7595 11.9784 15.2267 22.8556 24.5763 19.4793
KD (Hinton et al., 2015) 22.4476 13.4676 13.9975 23.7679 25.4132 19.8188

SeqKD (Kim & Rush, 2016) 22.4556 12.1588 14.8157 21.4574 24.5907 19.0956
ImitKD (Lin et al., 2020) 21.6624 12.9286 15.8039 22.0426 24.9619 19.4799

GKD (Agarwal et al., 2024) 22.5062 12.8309 15.3303 23.8537 26.6441 20.2330
MiniLLM (Gu et al., 2023) 24.3168 13.5880 17.4633 26.6789 28.7968 22.1688
DistiLLM (Ko et al., 2024) 24.7311 14.9932 16.3293 27.1037 29.3285 22.4972

Ours 27.1486 17.3016 14.8491 32.0618 34.9709 25.2664

GPT2

Teacher (SFT) 1.5B 27.0357 14.5594 16.7390 24.9659 29.4874 22.5575

SFT

0.1B

23.8269 9.6682 14.9022 16.4117 18.3221 16.6262
KD (Hinton et al., 2015) 23.2172 10.0899 14.9954 15.4826 18.9597 16.5490

SeqKD (Kim & Rush, 2016) 23.7248 10.3935 14.6558 19.8119 22.7425 18.2657
ImitKD (Lin et al., 2020) 21.7724 10.1876 15.4640 17.1918 20.8907 17.1013

GKD (Agarwal et al., 2024) 23.3150 10.3364 15.9384 16.0802 17.7699 16.6880
MiniLLM (Gu et al., 2023) 23.8142 12.2771 17.0158 23.8555 24.9101 20.3745
DistiLLM (Ko et al., 2024) 25.6114 12.5988 16.7521 24.6374 27.5827 21.4365

Ours 26.5614 13.1174 17.6781 24.6973 27.4025 21.8913

5.2 COMPARISON WITH STATE-OF-THE-ART KD METHODS

We present the quantitative comparison of state-of-the-art knowledge distillation methods evaluated
using the ROUGE-L metric in Table 1. It is observed that:

(1) Our method outperforms existing methods in most distillation tasks, with only a few achieving
second-best results, across five test datasets, including the LLAMA2, OPT, OpenLLAMA2, and
GPT2 series of large language models. Particularly for the OPT datasets, our method shows an
average score improvement of over 12% compared to the second-best performing methods.

(2) The KD methods, such as GKD, MiniLLM, and DistiLLM, utilizing student-generated datasets
show a greater improvement in enhancing student performance compared to those using the fixed
dataset. Furthermore, the distilled student models generally outperform the teacher models, which can
be attributed to the mismatch between teacher-forcing training and free-run generation, i.e., exposure
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Table 2: Ablation study of the proposed multi-granularity semantic revision.

Sequence-correcting DAC-KL Span Relation Dolly Validation Dolly Evaluation Self-Instruct

% % % 29.1874 24.1603 14.8578
! % % 29.6982 24.5307 14.9485
! ! % 30.3486 26.9012 17.2392
! ! ! 31.2575 27.1486 17.3016

bias (Bengio et al., 2015). Our method can improve the performance of all student models on average
scores of the five test datasets by at least 15%.

(3) We also provide some representative instruction-following cases in Appendix F, further highlight-
ing the effectiveness and superiority of our method in achieving high-quality answers.

5.3 ABLATIONS AND ANALYSIS

We provide more ablations and analysis of the proposed methods on the Dolly Validation set, Dolly
Evaluation set and Self-Instruct dataset.

Overall Ablation. We conduct an overall ablation study to validate the effectiveness of the proposed
multi-granularity semantic revision, in Table 2. Initially, employing sequence correction alone yields
moderate performance improvement across all evaluation datasets compared to the vanilla result.
Upon the addition of DAC-KL, an improvement is observed. A further enhancement is achieved with
the inclusion of span-level relation distillation, resulting in more notable performance gains. The most
significant improvement is witnessed when all components of the proposed method are combined,
leading to the highest performance metrics across all evaluation datasets. This demonstrates that
each component contributes to the overall enhancement of model performance, with the combined
approach yielding the most substantial improvements. For the span relation loss, we further provide
detailed analyses for the span loss and provide examples of the enhanced performance of distilled
models relative to their predistillation counterparts in Appendix C.

Different student-generation methods. To validate the effectiveness of the proposed SCRG strategy,
we compare it with different student-generation methods for sampling the distillation dataset. As
illustrated in Table 3a, we observe substantial performance enhancements with SCRG compared
to existing student-generation methods. For on-policy sampling, We follow GKD (Agarwal et al.,
2024) to utilize a mixture of student-generated and fixed datasets. For off-policy sampling, we follow
Distillm (Ko et al., 2024) to adopt an adaptive student-generation schedule for improved sample
efficiency. Remarkably, when employing both off-policy and on-policy sampling methods, SCRG
achieves notably higher scores across all evaluation metrics. This underscores the effectiveness of
SCRG in augmenting performance by improving the quality of generated sequences. Additionally,
we provide analysis on the example of SCRG in Appendix E.

Different distillation loss functions. To validate the effectiveness of the proposed DAC-KL loss,
we compare it with different loss functions in Table 3c. The results demonstrate that DAC-KL
significantly outperforms other loss functions across all evaluation metrics. This indicates that DAC-
KL effectively captures high-density semantic regions of the teacher’s output probability distribution,
facilitating easier imitation by the student models. Additionally, we provide the analysis on the
visualized examples of the DAC-KL impact on the probability distribution of the teacher’s output
depicted using kernel density estimation in Appendix D.

Different components involved in DAC-KL. The DAC-KL loss guides the distillation process to
effectively transfer knowledge from the high-density semantic classes and the target class of the
teacher’s probability outputs. As evidenced by the results in Table 3b, when both high-density and
target classes are considered, the DAC-KL loss achieves the highest validation, evaluation, and
self-instruct scores compared to other configurations. This indicates that focusing on these specific
classes leads to better performance in knowledge distillation, highlighting the importance of targeting
relevant semantic regions for the effective transfer of knowledge.

Exposure Bias Comparison. We provide a comparison of our method with existing methods on
the exposure bias metric (Gu et al., 2023) in Table 4a. The results show that our method introduces
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Table 3: Ablation studies on the proposed SCRG strategy and the DAC-KL loss.

(a) Different student-generation methods

Generation Validation Evaluation Self-Instruct

On-policy (Lin et al., 2020) 30.3786 26.0948 16.1853
Mixed (Agarwal et al., 2024) 30.8335 26.4667 16.7789
Off-policy (Ko et al., 2024) 30.4539 27.0961 16.7745

SCRG w. off policy 31.0444 27.1453 17.2574
SCRG w. on policy 31.2575 27.1486 17.3016

(b) Components involved in DAC-KL losses
High-density Target Validation Evaluation Self-Instruct

% ! 29.3490 24.3130 14.3810
! % 21.3936 19.5050 11.5035
! ! 31.2575 27.1486 17.3016

(c) Different distillation loss functions

Loss Function Validation Evaluation Self-Instruct

Forward KL 28.9631 24.1922 14.5108
Reverse KL 30.0209 25.6688 14.7184

Symmetric KL 30.2584 27.0961 16.7745
Generalized JSD 27.8759 23.3144 14.3154

TVD (Wen et al., 2023) 30.1973 25.0033 14.6138
SRKL (Ko et al., 2024) 29.9858 25.4849 14.9514
SFKL (Ko et al., 2024) 29.1226 25.1400 14.4412

DAC-KL 31.2575 27.14864 17.3016

Table 4: Comparison of different methods on generation length, training efficiency, and regeneration
frequency of SCRG.

(a) Exposure bias evaluated by training-decoding dis-
crepancy (ExAccErr) accumulated with generation
length. Lower ExAccErr indicates less exposure bias.

Generation Length MiniLLM DistiLLM Ours

50 6% 4% 4%
100 19% 18% 16%
200 21% 20% 18%

(b) Training efficiency for different distillation methods.

Method batch(4 samples) / Seconds Average Rouge-L

MiniLLM 0.05 28.1999
DistiLLM 0.25 27.1627

Ours w/o SCRG 0.25 28.0122
Ours 0.18 28.6114

(c) Impact of SCRG frequency on Average Rouge-L.

Frequency of SCRG 0 1 3 5

Average Rouge-L 28.2016 28.8724 28.9100 28.9710

less exposure bias than baselines, by comparing the excess error caused by the training-decoding
discrepancy (ExAccErr) accumulated with the generation length. This analysis explains why the
distilled student models generally outperform the teacher models.

Training Efficiency. Knowledge distillation methods that rely on student-generated output can
significantly extend training time, including existing methods MiniLLM and Distillm. However, our
approach flexibly combines existing on-policy and off-policy generation sampling methods to balance
performance and training efficiency optimally. As evidenced in the Table 4b, our SCRG strategy,
when combined with off-policy sampling, achieves superior performance with efficient training for
the OpenLLAMA2-3B model on four A800 GPUs.

Frequency of SCRG. we provide results from experiments on OpenLLAMA2-3B where multiple
SCRGs per sample were conducted, as shown in Table 4c. Considering the trade off between the
training cost and performance, we perform sequence correction and re-generation (SCRG) only
once per sample, which marginally increases the training time. We also provide more analysis in
Appendix E.3

6 CONCLUSION

In this paper, we address the challenges in knowledge distillation for LLMs by proposing a novel
multi-level semantic revision approach at the sequence, token, and span levels. At the sequence
level, our sequence correction and re-generation strategy improves reliability in student-generated
sequences. At the token level, the DAC-KL loss function targets semantically salient regions in the
teacher’s probability distribution, filtering out redundant information. At the span level, input span
priors ensure consistent transfer of semantic information across related tokens. Our experiments with
four various model series, demonstrate the effectiveness of our approach, significantly improving
student model performance over existing KD methods.
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A SOCIAL IMPACT

The primary objective of this study is to contribute to the advancement of the field of Machine Learn-
ing, without explicitly emphasizing any specific societal consequences. Although smaller models
can lead to positive outcomes, such as reduced emissions, it is crucial to conduct a comprehensive
study on potential biases associated with model compression. However, there are potential negative
impacts to consider. Model compression may inadvertently exacerbate existing biases within data,
leading to unfair outcomes, particularly for underrepresented groups. Additionally, the simplification
involved in compression could result in the loss of critical nuances and reduce the model’s ability to
handle complex tasks accurately.

B LIMITATIONS

Our experiments and evaluations were conducted within specific linguistic domains, which may limit
the direct applicability of our findings to other domains or tasks. Further research is necessary to
determine the generalizability of our approach across various contexts. Additionally, our method’s
reliance on an external chunker for span extraction could be a limiting factor, especially for low-
resource languages where such tools may not be as accessible or effective.

For mainstream languages, however, there is a robust ecosystem of NLP toolkits, such as SpaCy and
NLTK, which offer reliable chunking capabilities. These tools have been extensively developed and
optimized, ensuring their effectiveness and broad applicability to tasks similar to ours.

For low-resource languages, we suggest that our approach could be adapted by utilizing alternative
span extraction methods. For example, in the case of Chinese, the JieBa library effectively enables the
extraction of spans, such as noun and verb phrases. For languages with smaller datasets or those that
are less resourced, employing large pretrained models like GPT-4 for data preprocessing to generate
spans could be a feasible solution. This unsupervised or weakly supervised approach could enhance
the adaptability of our method to diverse linguistic resources.

We plan to explore these possibilities in future work, with the aim of broadening the applicability
of our method and overcoming its current limitations to extend its utility across different language
environments.
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C DETAILED ANALYSIS OF THE SPAN-LEVEL LOSS FUNCTION.

Our method emphasizes distilling correlation consistency among tokens within a span, rather than
merely aligning semantics at the token level (as done in token-level KL divergence). This distinction
is critical, as it enables us to capture the nuanced relationships and dependencies inherent within
spans. By leveraging the structural and prior knowledge embedded in spans, our method goes beyond
simple semantic alignment, enabling more contextually aware and meaningful distillation.

To further clarify the intuition behind our approach, we conducted the following analysis:

C.1 HUMAN EVALUATION

We compared our Span-Relation method with a random chunking approach (where the number of
chunks is controlled to match that of span-relation) and a method that directly extracts relations
between adjacent tokens without chunking.

To conduct a more comprehensive and reliable evaluation, we further employed GPT-4 to conduct a
human-like evaluation of the models on the Dolly evaluation dataset. We sampled 100 test examples
from both models with and without span-level loss and assessed their outputs based on the following
criteria:

• Accuracy (Rate 1-5): Does the output correctly include all relevant details from the input?
• Completeness (Rate 1-5): Does the output provide a comprehensive list or description as

required by the instruction?
• Fluency (Rate 1-5): Is the output natural, readable, and grammatically correct?
• Relevance (Rate 1-5): How well does the output align with the specific requirements of the

instruction?

Table 5: Evaluation Results of Different Loss Types

Loss Type Average GPT-4 Evaluation Dolly Validation Dolly Evaluation Self-Instruct

w/o Span-Relation loss 3.89 30.3486 26.9012 17.2392
Adjacent Relation 4.10 30.8348 27.0384 17.2144
Random Chunking Relation 4.01 30.5938 26.9284 17.0028
Span-Relation 4.42 31.2575 27.1486 17.3016

These results in Table 5 illustrate that models utilizing span-level loss achieve higher average evalua-
tions across all criteria compared to other configurations, highlighting the benefits of incorporating
span-level signals to enhance model performance. Span Priors primarily enhance the semantic
coherence of the model’s outputs. To evaluate this, we included GPT-4-based human evaluations in
our experiments, where the scores were significantly different—*3.89 (w/o Span-Relation Loss) vs.
4.42 (Span-Relation)*—despite the relatively smaller differences observed on datasets like Dolly.
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C.2 ANALYSIS OF THE SPAN-LEVEL LOSS FUNCTION

To demonstrate the improved correlation among span-level tokens, we selected several typical
examples where information extraction requires the output to repeat specific phrases from the input
prompt. Below, we give an example of the model’s performance with and without the span-level loss.
Our model distilled with the span-level loss successfully and accurately outputs the fixed phrases
from the prompt and context, showcasing the enhanced correlation among tokens within the span.

Table 6: Examples of the enhanced performance of distilled models relative to their predistillation
counterparts.

Example 1:

Instruction: Extract the essential tools for a mini survival kit from the following
Wikipedia article.

Input: Mini survival kits or ”Altoids” tin survival kits are small kits that contain a
few basic survival tools. These kits often include a small compass, waterproof matches,
minimum fishing tackle, large plastic bag, small candle, jigsaw blade, craft knife or scalpel
blade, and/or a safety pin/s. Pre-packaged survival kits may also include instructions in
survival techniques such as fire-starting or first aid methods. In addition, paracord can be
wrapped around the tin. The paracord can be used for setting up an emergency shelter or
snaring small animals. They are designed to fit within a container roughly the size of a mint tin.

Without Span-Level Loss: The essential tools include a small compass, waterproof
matches, fishing tackle, plastic bag, candle, blade, knife, and safety pin.

Adjacent Relation: The essential tools include a small compass, waterproof matches, fishing
tackle, plastic bag, candle, scalpel blade, and safety pin.

With Span-Level Loss: The essential tools include a small compass, waterproof
matches, minimum fishing tackle, large plastic bag, small candle, jigsaw blade, craft knife or
scalpel blade, and safety pin/s.

Example 2:

Instruction: Given the reference text below, what is Isthmohyla debilis?

Input: Isthmohyla debilis is a rare species of frog in the family Hylidae. It occurs
in the Atlantic slopes of the Cordillera Central and Cordillera Talamanca in Costa Rica and
western Panama as well as on the Pacific slopes in southwestern Panama. Common name Isla
Bonita treefrog has been suggested for it (the type locality is ”Isla Bonita” in Costa Rica).

Without Span-Level Loss: Isthmohyla debilis is a rare frog species in the family
Hylidae. It is found in Costa Rica and Panama. The common name Isla Bonita treefrog is
suggested for it.

Adjacent Relation: Isthmohyla debilis is a rare species of frog in the family Hyli-
dae. It is found in the Cordillera Central and Costa Rica. The common name Isla Bonita
treefrog has been suggested for it.

With Span-Level Loss: Isthmohyla debilis is a rare species of frog in the family
Hylidae. It occurs in the Atlantic slopes of the Cordillera Central and Cordillera Talamanca in
Costa Rica and western Panama as well as on the Pacific slopes in southwestern Panama. The
common name Isla Bonita treefrog has been suggested for it.
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The model distilled with span-level loss can better extract the important adjectives in phrases like
minimum fishing tackle, large plastic bag, and small candle in the first example, and output long
phrase of complex location as in the second example.

D ANALYSIS ON THE VISUALIZED PROBABILITY DISTRIBUTION OF THE
TEACHER MODEL
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Figure 5: Examples of the probability distribution of the teacher’s output are depicted using kernel
density estimation. The original distribution is represented by the blue line, while the distribution
of the adaptively clipped probability classes is shown by the red line. From this picture, we can
observe that the DAC-KL loss constrains the regions of probability distribution with dense semantic
knowledge. Enforcing student model to imitate the distribution of these regions can effectively
mitigate the training interference caused by low-semantic regions for student models with limited
learning capacity.

In Figure 5, We illustrate examples of the teacher’s output probability distribution using kernel density
estimation. The DAC-KL loss primarily focuses on capturing low-probability yet high-frequency
regions of the distribution and combines these with the target class to form new logit vectors.

D.1 COMPARING OTHER LOGITS-SELECTIVE METHODS WITH DAC LOSS

Our motivation stems from the idea of modulating the probability distribution to reduce the alignment
difficulty between the teacher and student distributions, similar to methods like DKD and SKD.
However, the key difference is that we suppress redundant information in the original distribution
to reduce the difficulty of fitting the student’s output to the teacher’s distribution when the student’s
capacity is limited. we compare DAC-KL with other logits-selective methods, including the Fixed
Clipping Threshold approach, which is conceptually similar to the method described in Raman et
al. (Raman et al., 2023), except that it uses a cumulative sum threshold of 95% as the clipping up.

The necessity of using DAC-KL lies in its adaptive nature for a complex probability distribution. We
have tried other clipping and sampling methods, but these approaches rely on manually set thresholds.
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Table 7: Comparison of different knowledge distillation methods.

Method Dolly Validation Dolly Evaluation Self-Instruct

DKD (Zhao et al., 2022) 29.7182 24.3986 15.4907
SKD (Yuan et al., 2024) 29.9332 25.2840 15.9172
Fixed clipping threshold 30.7910 26.4911 16.5682
Zhang et al. (Zhang et al., 2023) 29.9443 25.3442 16.0382
Wang et al. (Wang et al., 2021) 29.8221 25.2321 15.9138
Raman et al. (Raman et al., 2023) 30.6910 26.3120 16.4839
Ours 31.2575 27.1486 17.3016

Fixed thresholds during training did not perform as well as our current method, which adapts to the
probability distribution of different tokens in different samples throughout the training process.

The results in Table 7 allow for direct comparison and demonstrate how DAC-KL, which operates at
the token level, provides superior performance by effectively balancing information retention and
noise reduction compared to simplistic logit pruning approaches.

E ANALYSIS ON THE EXAMPLE OF THE SEQUENCE CORRECTION AND
RE-GENERATION (SCRG) STRATEGY.

The role of SCRG is to mitigate the introduction of errors in the data produced by the student model
during the initial phase of the knowledge distillation training. It achieves this by employing the
teacher model’s guidance to refine the generation process, thereby improving the overall quality of
the output. We provide an example of the SCRG strategy in Table 8.

Table 8: Example of the student-generated output sequence using the sequence correction and
re-generation strategy. The red token represents the detected position of the error token.

Instruction: What is the difference between men’s and women’s lacrosse

Samples from student: Men’s lacrosse has a limited amount of time to play play
play as as as as as as as as as as as as as as as as as as as as

Student’s Prediction: Men’s lacrosse is a of of of to play and play play as as as as
as as as as as as as as as as as as as as as as

Teacher’s Prediction: Men’s lacrosse is a limited number of movesouts play each
each. opposed opposed they a they opposed opposed opposed opposed opposed opposed
opposed opposed opposed opposed opposed opposed they a they opposed opposed opposed
opposed opposed opposed opposed opposed opposed opposed

Re-sample: Men’s lacrosse has a limited number of players and women’s lacrosse
has a maximum number of players.

E.1 EMPIRICAL EVIDENCE FOR SCRG

To provide empirical evidence in terms of distinct n-grams, we present a comparison of two example
sentences: one generated early in the distillation process without SCRG (Sentence 1) and another
generated after applying SCRG (Sentence 2).

Sentence 1 (Without SCRG): “Men’s lacrosse has a limited amount of time to play play play as as
as as as as as as as as as as as as as as as as as as”

• 1-grams: Total: 31, Unique: 12, Distinct-1: 0.387
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• 2-grams: Total: 30, Unique: 13, Distinct-2: 0.433
• 3-grams: Total: 29, Unique: 14, Distinct-3: 0.483

Sentence 2 (With SCRG): “Men’s lacrosse has a limited number of players and women’s lacrosse
has a maximum number of players.”

• 1-grams: Total: 19, Unique: 12, Distinct-1: 0.632
• 2-grams: Total: 18, Unique: 13, Distinct-2: 0.722
• 3-grams: Total: 17, Unique: 14, Distinct-3: 0.824

The distinct n-gram statistics reveal significant improvements in output quality when SCRG is applied.
Sentence 2 exhibits higher distinct n-gram scores across all levels, demonstrating an increase in
unique words and phrases. This not only highlights the effectiveness of SCRG in refining data but
also emphasizes its role in enhancing the overall quality of the student model’s generation process.

E.2 COMPARISION TO THE LEADING DATA QUALITY IMPROVEMENT APPROACH

Furthermore, we conducted experiments to provide a robust comparison of SCRG against a leading
data quality improvement approach by Kim et al. (Kim & Baek, 2024), which focuses on offline data
pruning and selection.

Table 9: Performance Comparison of SCRG and Kim et al.’s Method

Data Enhancement Dolly Validation Dolly Evaluation Self-Instruct

Kim et al. 30.7346 26.8665 17.2208
SCRG 31.2575 27.1486 17.3016
SCRG + Kim et al. 31.3610 27.2068 17.3342

These results in Table 9 show that SCRG not only outperforms the approach by Kim et al. but
when combined with Kim et al.’s method, a slight improvement in performance is observed. While
both SCRG and the method proposed by Kim et al. enhance data quality, the incremental gains
from combining them are limited. This is likely due to the fact that both methods address similar
underlying issues related to data quality, resulting in diminishing returns when applied together.

E.3 IMPACT OF THE FREQUENCY OF SCRG

It is important to clarify that the purpose of our corrections is not to make the student model’s outputs
identical to the teacher’s but to provide initial guidance that prevents severe errors, such as repetitive
generation. In our experiments, even a single correction significantly improves output quality. While
increasing the number of corrections may lead to outputs that resemble those of the teacher, this
approach does not effectively address exposure bias. We have conducted a performance experiment
on OpenLLAMA2-3B, which demonstrates how varying the number of corrections impacts the
results, as shown below:

Table 10: Impact of varying the number of corrections on output quality measured by Average
Rouge-L.

Frequency of SCRG 0 1 3 5 10

Average Rouge-L 28.2016 28.8724 28.9100 28.9710 28.3273

The results in Table 10 demonstrate the scenario where we directly address exposure bias using
student-generated data, which, while effective, can introduce additional generation errors. Our aim is
not to ignore the exposure bias but to highlight the challenges inherent in this approach.

To address these challenges and to mitigate the introduction of generation errors, we have implemented
SCRG. SCRG is not only about solving exposure bias but also about doing so in a way that avoids
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the propagation of erroneous data. It achieves this by refining the student model’s outputs with
the guidance of the teacher model, thus enhancing the quality of the distillation dataset without
compromising the integrity of the data.

Furthermore, the ’Frequency of SCRG=10’ experiment was included to illustrate the scenario where
student-generated data closely resembles that of the teacher, which, as you correctly pointed out,
could potentially undermine the effectiveness of addressing exposure bias. This experiment serves
to demonstrate the balance that SCRG strikes between maintaining the teacher’s guidance and the
student’s independence.

F EXAMPLES OF MODEL RESPONSES ON THE INSTRUCTION-FOLLOWING
TASK.

Table 11: Instruction-following cases from the databricks-dolly-15k dataset.

Case #1, Category: classification

Instruction If we were playing a game where we had to identify things that can be found inside a
house, which of these would we call out: car, chair, table, park, cloud, microwave.

Input -

Groundtruth Inside a house you can find a chair, a table and a microwave. Cars, clouds and parks
are found outside of houses.

SFT car, chair, table, microwave.

KD Car, chair, table and microwave are things that can be found in a house. Park and
cloud are unlikely to be found in a house but are things that can be seen from a house.

SeqKD We would call out: chair, table, car and microwave.

ImitKD Car, chair, table and microwave are items that can be found inside of a house. Park
and cloud are outdoors items.

MiniLLM Car, chair, table, and microwave can all be found inside a house. Park and cloud
cannot be found inside a house because they are neither objects nor locations.

GKD You can find a car, chair, table and microwave inside a house. A park and cloud are
not found inside a house.

DISTILLM In this list, we can find a car, chair, table and microwave. A park and a cloud are not
things you would typically find inside a house.

Ours In this game, a car, park, and cloud would not be things that could be found inside
a house. A chair, table, and microwave would be things that could be find inside a
house.
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Table 12: Instruction-following cases from the databricks-dolly-15k dataset.

Case #2, Category: closed QA

Instruction How many managers have Arsenal had?

Input There have been twenty permanent and eight caretaker managers of Arsenal since
1897; Stewart Houston has managed the club in two separate spells as caretaker. The
most successful person to manage Arsenal is Arsé8ne Wenger, who won three Premier
League titles, seven FA Cups and seven Community Shields between 1996 and 2018.
Wenger is the club’s longest-serving manager; he surpassed George Allison’s record
of 13 years in October 2009. Two Arsenal managers have died in the job 2̆013 Herbert
Chapman and Tom Whittaker.

Groundtruth Arsenal have had twenty permanent and eight caretake managers.

SFT There have been thirty-seven managers since 1896.

KD There have been 28 managers of Arsenalf FC.

SeqKD Arsenal has had 20 permanent managers, 8 caretaker managers and 2 manager with
dead in the job.

ImitKD There have been thirty-seven managers since 1896.

MiniLLM Since 1897, Arsenal have had twenty-eight managers. Eight of these were caretaker
managers. The most successful manager is Arséne Wener, who won three Premier
Leagues, seven FA Cups, and seven Community Shield trophies. He is the longest-
serving manager, as he surpassed George Alison’s record of twelve years in October
2,009. Two managers have died in this job; Herbert Chapman and Tom Whitaker.

GKD There have been thirty managers of Arsenals football club since 1896. This includes
twenty permanent managers and eight caretaker or interim managers.

DISTILLM There have been 20 permanent managers and 8 caretaker managers for a total of 28
managers.

Ours There have been 20 permanent and 8 caretaker managers at Arsenal.
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Table 13: Instruction-following cases from the databricks-dolly-15k dataset.

Case #3, Category: brainstorming

Instruction What is a good way to get around without a car?

Input -

Groundtruth If you live in a city you can access public transport such as buses and trains. You can
also walk, use a bicycle, or electric scooter to get around.

SFT When you don’t have a car, you need to find alternative ways to get around. If you
are able-bodied and live in a city, your best bet would be to use public transportation.
Every city has trains, buses and other modes of transportation that are accessible
without a car.If you are unable-bodied or have a car that doesn’t work, you may want
to consider ride-sharing services such as Uber and Lyft.

KD A few examples of ways to get around without a personal car are using public
transportation such as the bus or subway, carpooling with friends or coworkers, or
using ride-sharing services such as Uber or Lyft. If none of these options are viable
for you, it is still possible to get around without a vehicle; for example, it is often
possible to walk or ride a bike for short distances, and in some cases, it is possible to
use a bicycle, scooter, or skateboard for longer distances.

SeqKD There are multiple options for getting around without a car. Biking, walking, riding
a scooter, riding a bike with a scooter, using public transportation, rideshare, or a
moped are all good options. If you are in a smaller town where public transportation
is available, walking or riding a bike may also be a good option.

ImitKD Public transportation is a good way to avoid a need for a car. In many cities in the US,
public transportation includes buses, subways, and trains that can take you where you
need to go. For shorter distances, many cities and towns have bike-shares which can
provide an easy way to get around without having to rely on a car.

MiniLLM There are many ways to get around without a driver’s license or car. The most
common way is to walk, but you can also use a bicycle, public transportation, or
ride-sharing services. If you live in a city, you can also take advantage of public
transportation, which is often more affordable than owning a car.

GKD There are multiple ways to get around without a personal vehicle. Public transporta-
tion is available in many cities and towns. Many cities also have bike share programs,
where you can rent a bike or low-cost electric scooter for short trips. You can also
walk, but this may depend on the distance and weather.

DISTILLM There are many ways to get around without cars. You can walk, ride a bike, use public
transportation, or ride share services such as Uber and Lyft.

Ours If you don’t have a car, there are still many ways to get around. You can take public
transportation, which includes buses, trains, and subways. If you are near a large city,
you may also have access to light rail, which is like a bus that runs on rails. If you are
in a suburb, you can use public transportation such as a bus or train. If you live in a
small town, you may need to take a taxi or ride share service.
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G PROMPT TEMPLATE FOR THE INSTRUCTION-FOLLOWING TASK

We provide the prompt template for the instruction-following task in Table 14.

Table 14: The prompt template for training and evaluation of instruction-following task experiments.

Below is an instruction that describes a task.
Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:
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H STATISTICAL SIGNIFICANCE TESTS

We appreciate the reviewer’s suggestion regarding statistical significance testing. To clarify, our
experiments were conducted using 5 random seeds, with the reported results representing the average
performance across these runs. While we did not perform formal statistical significance tests, we
computed the standard deviations for each result, and based on our observations, there were no large
anomalies or outliers in the data. Below, we provide the average values along with the corresponding
standard deviations for each metric:

Table 15: Performance comparison with standard deviations.

Sequence-correcting DAC-KL Span Relation Dolly Validation (↑) Dolly Evaluation (↑) Self-Instruct (↑)

× × × 29.1874 (0.18) 24.1603 (0.22) 14.8578 (0.15)
✓ × × 29.6982 (0.19) 24.5307 (0.21) 14.9485 (0.16)
✓ ✓ × 30.3486 (0.21) 26.9012 (0.23) 17.2392 (0.18)
✓ ✓ ✓ 31.2575 (0.19) 27.1486 (0.22) 17.3016 (0.17)

I MORE COMPLEX TEACHER THAN STUDENT

We extended our experiments from the previous OPT 6.7B → 1.3B distillation setup by using a
larger teacher model, OPT-13B, to distil the 1.3B student. The results, shown in the table below,
demonstrate that while distilling with a much larger teacher does lead to smaller improvements in
performance compared to the 6.7B → 1.3B case, our proposed distillation method still outperforms
vanilla KD loss significantly, even when using a much more complex teacher.

Table 16: Performance comparison of distillation methods using different teacher models.

Model Method Params Dolly Evaluation Self-Instruct Vicuna Super-Natural Unnatural Average

OPT(6.7B-1.3B) Teacher (SFT) 6.7B 25.8758 14.8408 16.4199 24.9551 25.8377 21.5859

Student (SFT) 1.3B 22.7595 11.9784 15.2267 22.8556 24.5763 19.4793

Vanilla KD 1.3B 22.4476 13.4676 13.9975 23.7679 25.4132 19.8188

Ours 1.3B 27.1486 17.3016 14.8491 32.0618 34.9709 25.2664

OPT(13B-1.3B) Teacher (SFT) 13B 26.4438 15.9537 17.1171 28.1131 29.0092 23.3274

Student (SFT) 1.3B 22.7595 11.9784 15.2267 22.8556 24.5763 19.4793

Vanilla KD 1.3B 22.7027 12.8890 14.8943 21.9863 25.0162 19.4977

Ours 1.3B 26.5122 15.7949 15.6140 31.4153 34.4243 24.7522

As seen from Table 16, while the performance improvement decreases with the larger teacher (OPT-
13B), our distillation method still provides a significant advantage over the vanilla KD approach, even
when using a more complex and larger teacher model. This indicates that our method with DAC-KL
loss helps mitigate the potential performance degradation seen when distilling with a much larger
teacher.
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