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Abstract
Sequence models, particularly those leveraging
transformer architectures, have recently

dominated the Automatic Text Classification
(ATC) field. These models represent words
as dense contextual vectors composing the
document (dense) representations. Though
effective, these models are expensive for
training (fine-tuning) and inference (prediction)
time. Traditional bag-of-words approaches that
directly represent a document as a single sparse
vector are usually much more efficient but
are not as effective as sequence models. Both
model types commonly involve constructing
a representation of the entire document before
predicting its class, overlooking the importance
of some individual word (co-)occurrences for
the target task. This paper takes a completely
different approach to the ATC task by promot-
ing words as “first-class” citizens for ATC. In
other words, our method, called ETCZ, directly
classifies each term of a document — using an
intricate combination of (i) frequentist infor-
mation, (ii) explicit co-occurrence and context
modeling, and (iii) (near-)attention layering. It
then uses these predictions to estimate the doc-
ument class. The proposed approach eliminates
the need for a single document representation,
thus enormously improving model efficiency.
In our experimental evaluation, ETC? was as
effective as (if not better) than the best Trans-
former baselines in the tested datasets, being
up to 17x faster at inference (prediction) time
than modern Transformer-based classifiers.

1 Introduction

Automatic text classification (ATC) plays a pivotal
role in information systems, providing a systematic
means to assign topical categories to diverse
text units such as documents, social media posts,
and news articles. As the volume of textual data
escalates, efficient and accurate text classification
methods become increasingly important.

ATC approaches have predominantly employed
bag-of-words and, more recently, sequence-based

models, each with strengths and weaknesses.
Sequence models, particularly those leveraging
transformer architectures (Vaswani et al., 2017;
Yang et al., 2019; Sanh et al., 2019; Liu et al., 2019;
Radford et al., 2018), have emerged as a dominant
force in ATC (Cunha et al., 2021; de Andrade
et al., 2023). These models represent each word
as a dense vector and a document as a combination
of these representations, offering a nuanced under-
standing of the text’s semantic structure. However,
such a rich representation comes at the price of a
high computational demand, which might worsen
if long text sequences are considered, posing a
significant hurdle to their widespread applicability,
particularly in resource-constrained environments.
On the other hand, the traditional bag-of-word ap-
proaches rely on simpler representations that often
achieve superior efficiency by directly encoding a
document as a single (sparse) vector at the expense
of non-top-notch effectiveness in some scenarios.

This duality in model choices has prompted
researchers to explore novel methodologies that
balance representation complexity and computa-
tional efficiency. We follow this path. Indeed, our
main goal in this paper is to explore a trade-off
between representation complexity and algorithm
efficiency while, at the same time, achieving the
same or superior predictive capability.

One common characteristic of the afore-
mentioned Bag-of-words- and Sequence-based
approaches, which may be seen as a limitation,
is that they have to construct a representation of
the entire document before predicting its class.
This document-centric approach overlooks the
importance of individual term (co-)occurrences,
potentially hindering the models’ ability to capture
subtle nuances within the text. Recognizing this
gap in the current research landscape, our study
introduces a new framework designed to address
this limitation and enhance the ATC effectiveness.

In this context, we present a novel “word-centric”



approach to ATC that goes beyond conventional
document-level classification. Instead of treating
the entire document as a monolithic entity, our
proposed methodology, named Ensemble of Term
Classification for Efficient Text Classification
(ETC?), focuses on directly classifying each
term within a contextualized bag of words and
subsequently estimating the document class. This
paradigm shift eliminates the need for a single
document representation, allowing for more
granular text analysis and improving the model’s
ability to discern intricate details within the data.

In a broad sense, ETC? demonstrates proficiency
in recognizing discriminating occurrences of term
contexts that contribute to distinguishing labels.
Conversely, to identify the most discriminative
co-occurrences, a loss function is applied to
mitigate the impact of easy-to-classify documents
— a high probability of the expected label means
less importance in the loss — and emphasize the
uncertain co-occurrences, blurring the biased ones
in the decision function. This strategy compels the
algorithm to discern the specific co-occurrences
of each term responsible for the discrimination in
the final class decision.

In a nutshell, our novel approach, depicted in
Figure 1, encompasses a few embedding layers', a
single non-parametric multi-headed near-attention
layer, and a linear layer to represent the model.
Incorporating multiple embedding layers enables
the model to capture intricate semantic features
within the documents, facilitating a more nuanced
understanding of the text. The non-parametric
multi-headed attention mechanism also empowers
the model to efficiently attend to relevant informa-
tion across different document parts, effectively
leveraging local and global classification contexts.
Finally, the linear layer is a robust representation,
consolidating the learned features into a better
predictor. By leveraging a streamlined architecture
comprising these key components, our method
achieves higher predictive performance for
unknown documents, especially for large datasets.

To guide our research and evaluation of the po-
tential ETC? advantages in terms of efficiency and
effectiveness when compared to strong baseline
sequence-based methods (Transformers), we focus
on answering the following research questions:

'A layer in the context of neural networks refers to a func-
tional unit that processes input data through a series of mathe-
matical operations to produce output representations.

* R1: How does the ETC? framework perform
compared to traditional fine-tuned sequence
classification methods across diverse datasets?

* R2: How does incorporating the proposed single
near-Attention layer impact the model’s ability
to capture nuanced term contexts compared to
the traditional inner product layer?

* R3: How stopwords removal and near-Attention
contribute to ETC?’s efficiency/effectiveness?

We conduct an extensive experimental evalua-
tion of the proposed ETC? framework, considering
seven reference datasets and four strong sequence-
based transformer baselines. Our experimental
results show that ETC? stands out as the most
efficient solution while maintaining comparable or
even better predictive capabilities when compared
to the baselines. In more detail, ETC? achieves
state-of-the-art effectiveness results in most tested
datasets, achieving up to 17x speedup gains in ATC
prediction efficiency. Importantly, this high effi-
ciency is primarily attained without compromising
(or improving) effectiveness in most datasets.

Our proposed approach challenges the conven-
tional wisdom in ATC. Our main contributions
include: (i) introduction of the Ensemble of Term
Classification (ETC?) framework, a very novel
ATC approach, which changes the way classifica-
tion is thought and performed when compared with
the state-of-the-art; (ii) development of an efficient
BoW-Based algorithm designed to classify lengthy
documents; (iii) proposal of a novel representation
for contextualized BoW, achieved by leveraging
the weighted co-occurrences of n-grams through
a single near-Attention layer; (iv) extensive
experimentation of the proposed framework.

2 Related Work

Static word embeddings have been pivotal in
NLP tasks, offering pre-trained representations
that capture semantic relationships among words.
Word2Vec (Mikolov et al., 2013), with Continuous
Bag of Words (CBOW) and Skip-gram models,
are prominent examples of early word embedding
techniques. GloVe (Pennington et al., 2014),
another widely adopted static word embedding
model, constructs word vectors by leveraging
global co-occurrence statistics from a corpus,
effectively capturing syntactic and semantic word
relationships. FastText (Joulin et al., 2016) extends



traditional word embeddings by incorporating
subword information. While these models differ
in operation, they all produce static Bag-of-Words
(BoW) embeddings without considering contextual
dependencies within the document. This static
representation limits their ability to capture
nuanced semantic relationships crucial for ATC.

State-of-the-art ATC methods, based on
sequences of word models, leverage advanced
pre-trained language models to enhance effec-
tiveness. BERT (Vaswani et al., 2017) ’s ability
to capture contextual information bidirectionally
led to substantial improvements in various NLP
tasks.DistilBERT (Sanh et al., 2019) further
explores the efficiency-effectiveness trade-off by
distilling the knowledge from BERT into a smaller,
distilled version, with a significantly reduced pa-
rameter count. RoOBERTa (Liu et al., 2019) builds
upon BERT’s architecture with modifications
such as dynamic masking during pre-training.
Based on a different architecture, XLNet (Yang
et al., 2019) introduces a permutation language
modeling objective, combining the strengths of
autoregressive and autoencoding models.

Models that integrate term co-occurrence
relations within documents effectively capture
contextualized terms. Unlike conventional bag-of-
words embedding techniques, which overlook term
co-occurrence and thus fail to contextualize terms
adequately, newer Transformer-based models are
explicitly designed to evaluate both term occur-
rence and absolute position within the document,
facilitated by mechanisms like attention layers.
This enables them to infer masked or subsequent
tokens in a sequence, leading to a richer under-
standing of contextual semantics. However, this
enhanced capability comes at a computational cost,
particularly noticeable when processing large doc-
uments due to the intensive computations required.

By contrast, ETC? presents a novel ATC ap-
proach. While existing models excel in capturing
complex contextual dependencies at the corpus
or document level, ETC? prioritizes a more
granular classification of individual term contexts
within documents. This distinct focus on the
(word, class) relationship enables ETC? to discern
nuanced textual nuances as effectively as, or even
surpassing, sequence models while maintaining the
computational efficiency of BoW representations.

3 ETC? Framework

Let D = {(d;,l;)}n be a set with N documents
(d;) associated with (training) labels (/;). The prob-
lem can be generalized as predicting each label for
all unseen documents in D’: arg max;ey, Pr(l|d;).
To the best of our knowledge, all current ATC
algorithms implement the previous expression
to determine the label that maximizes the pre-
diction probability for the unknown document
d;, based on a single representation for d;. For
instance, in sequence-models, usually the <CSL>-
contextualized token represents d;. This representa-
tion usually has d; € R€, with ¢ (a constant) being
the dimensionality of representation space. This
representation size (c) is fixed and can be small and
dense as in sequence models or large and sparse
(i.e., ¢ = vocabulary size) as in TFIDF-models.
We exploit a very different approach for the ATC
task. ETC? explores the manifold representations
intrinsic to a document. Here, we represent
each document as d; € R, with k being a
constant (k < |d;| for most documents?) and ¢ a
hyperparameter denoting the number of hidden
units in the proposed architecture. This approach
involves encapsulating the document through
contextualized terms, wherein the term importance
discerns the document class label following its
co-occurrence discriminating power.

ETC? represents the label/document posterior
as the joint probabilities of term contexts (tc; in
d;) and labels (), as shown in Eq. 1.

Pr(l|d;) = > Pr(llte;) Pr(tej|d;) o)
tejed;

Figure 1 presents a simplified diagram of the
ETC? framework, delineating the representation
of embeddings for terms (@), K, and V) and
specialized one-hot encoding for Term Frequency
(T'F) and Document Frequency (DF). ETC?
constructs a contextualized term representation
by considering the intricate co-occurrence rela-
tionships between terms within the document,
named co-occurrence probability (Pr(toy, tos|d)),
which means the probability of both terms, to; and
toy, co-occurring together at document d. ETC?
utilizes these probabilities to infer the posterior
Pr(tc|d). Ultimately, the probability Pr(I|tc) and
the final Pr(l|d;) are inferred.

The term contexts operate in a shared space
of terms, their frequencies (TF and DF), and
co-occurrences, as described in Section 3.1. Next,

2We set k as the 90-percentile of training document sizes.
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encodings.The sum of these embeddings (term,
TF{;, and DFj) captures the joint influence of
terms on the view of term frequencies and rarity.
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Figure 1: ETC? Overall Diagram.
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in Section 3.2, we discuss how the label is inferred
(Pr(l|tcj)) based on the importance of these terms’
contexts (Pr(tc;|d;)).

3.1 Term Occurrence and Term Context

ETC? builds the (partial) document representation
by converting a text sequence into a set of terms
tj, formed by (i) unique uni- and bi-grams non-
stopwords in the document d;, (ii) their respective
Term Frequency T'F(; jy within d;, and (iii) the
Document Frequency (D F);) within the dataset. We
embed the term occurrences by encoding the term,
term frequency (TF), and document frequency

(DF) values into specialized one-hot encodings.
While the term encoder uses the traditional
one-hot-encoder, the TF and DF encoders con-
sider the squared and logarithmic-scale rounded
encoding, respectively. This results in terms
with (scale-)comparable frequency distributions,
whether within documents or across the corpus,
being mapped to shared spaces. For instance,
terms occurring 3, 4, or 5 times within the corpus
are embedded equally, a.k.a., the same Document
Frequency Bias, due to the encoding function.

Enc(3) = Enc(4) = round(log,(5)) = 2 2)

When considering scale as the encoding factor in

DF, we establish a basic representation of term rar-
ity akin to the Inverse Document Frequency (IDF),
quantifying the proportion of term occurrences in
documents. Similarly, our approach integrates the
rarity scale of terms as a quantifiable factor.

Thus, all terms happening in just 1 document
(DF=1) will have the same ‘“bias” within docu-
ments (the parameters). The same applies to terms
that occurred in 2 documents, which will share the
global rarity bias. On the other hand, terms that
occur between 370,728 documents and 741,455
documents will have the same bias (encoded to
19), and terms that happen in more than 741,455
documents will share the code 20 (the maximum
supported occurrence).

Similarly, Term Frequency Bias embeds com-
parable frequencies, but based on the squared of
TF;,ak.a. term frequency within the document.

Code 0 1 2 3 5 10
TF(;4 [1;2] [3:6] [7:12] [13;20] [31;42] [91;110]
DF; [1] [2] [3;5] [6;11] [23:45] [725;1448]

Table 1: Encoder to T'F{; ;y and DFj values.

The term’s context tc; represents the integration
of the probability of its self-occurrence to; and its
co-occurrence with other terms within the docu-
ment (toy € d;). Applying the Euclidean distance
this process aims to evaluate the likelihood of both
terms being situated in the same location within
the spaces of occurrences and, to integrate these
probabilities, we introduce a novel layer termed
the near-Attention Layer, as depicted in Eq. 3.

tej = Z Pr(to;, tox|d;)tox 3)

top €d;

This Layer, aligned with the conventional
approach to representing term context, as used in
Transformers, utilizes separate representations for
key and ?uery term encoding (multi-headily). It en-
tails applying two normalization procedures under
the Q/K-terms Euclidean Distance, as in Eq. 4.

o (Norm(toj7 tox ))

Pr(toj s t0k|di) = (4)
S togea, @ (Norm(to;, o))
dist(Kio,, Qto, ) — Elndist
ndist(K, Q) = bre )

1K = QI +b+e€

where o denotes the sigmoid function, E and
Var represent the expected value and variance

of the normalized Euclidean distance (ndist),
respectively; b is the bias of the expected distance;
and |[Ky, — Qio,|/* the Euclidean distance
between the occurrence representations of term j
(key) and term k (query) within the document.

By replacing the conventional inner product
typically used in most Transformers, we construct
spaces with enhanced granularity, eliminating the
need for multiple layers. Another key feature of
this Layer includes considering the term’s attention
within the document, normalized by their distance
to the average (layer norm), thereby significantly
extending the attention range.

This approach allows the model to discern and
quantify co-occurrences with higher discriminative
power than others. However, to facilitate this,
the model must prioritize attention towards
terms co-occurrences within less easy-to-classify
documents within the decision function. Hence, for



the ETC? framework to operate effectively, it must
complement the co-occurrences with a focused
loss function. In the next Section, we will detail
how Focal Loss works and how to incorporate the
near-Attention Layer into terms’ context weight
to infer the label posterior probability. As we shall
see in our Ablation analysis (Section 4.4.1) the
significance of employing near-attention in contrast
to the conventional inner product is notorious.

3.2 Ensembling the Terms’s Classifications

In ETC?, the combination of weights attributed
to co-occurrences of terms plays a crucial role in
determining the final classification outcome. This
Section explores the methodology of integrating
these weights and the associated challenges
in mitigating the influence of well-classified
examples through focal Loss.

ETC? integrates two essential equations to pre-
dict term contexts and labels within a document.
The probability of label ! given document d; is
computed as the summation over all term contexts
tc; present in d;, where each term context’s like-

lihood is determined by the product of Pr(l|tc;)
and Pr(tc;|d;), see Eq. 1. For each term context
tc;, the probability of label [ given the term context
(Pr(l|tc;)) is obtained through a linear transforma-
tion followed by a softmax over the label set L:

Pr(l|tc;) = Softmaxy, (Linear(tc;)) (6)
Linear(X) =W x X +b

where W € RIZI%¢ and b € R are learnable
parameters. The softmax function, a standard

component in ATC tasks, transforms the raw scores
generated by the linear Layer into a probability
distribution. The linear Layer is a critical com-
ponent in the classification process, reflecting the
likelihood of the raw term context X into mean-
ingful class probabilities. This approach facilitates
accurate and informed classification decisions.
Simultaneously, the probability of each term
context tc; given document d; (Pr(tc;|d;)) is
calculated based on the conditional probabilities
of term co-occurrences. This probability is deter-

mined by the ratio of the sum of the conditional
probabilities of ¢c; given all other term contexts tcy,

within d; to the sum of all possible combinations
of term contexts tcy and tcy» within d;:

Ek Pr(tcﬂtck, di)
Pr(tc;ldi) = 7
1"( CJ‘ ) Zk’,k" Pr(tck/|tckn, dl) ( )

By combining these equations, ETC? “s model
dynamically evaluates the importance of each
term context within the document and predicts

the labels accordingly, thus enabling nuanced and

contextually informed document classification.

One last challenge in leveraging co-occurrence
weights is obscuring the inﬁuenee of easy-to-
classify documents during the -classification
process. Focal loss (Lin et al., 2017), a strategy
commonly employed to address class imbalance
and prioritize learning from hard examples, can
inadvertently reinforce easy-to-classify documents’
influence, thereby, their terms’ co-occurrences.
This Loss can lead to suboptimal classification
outcomes by prioritizing class-exclusive (but
non-discriminative) terms over more subtle
contextual cues.

FL(Pr(l|d;)) = —(1 — Pr(l]d;))" log (Pr(l|d;)) (8)

In traditional cross-entropy Loss (y = 0),
well-classified examples often dominate the loss

calculation, which can overshadow the learning
process for minority classes or challenging
instances. Focal Loss introduces a dynamic scaling
factor, termed the focal parameter (v > 0), which
modulates the contribution of each example to
the Loss based on its classification difficulty. As
depicted in (Lin et al., 2017), Figure 2 illustrates
an example of the corresponding losses for various
gamma values, ranging from O to 5.

2

CE(p:) = — log(p)
FL(p;) = —(1 — p.)" log(p:)

2222

o

aNn—=o0

well-classified
examples

0 02 04 0.6 08 1
probability of ground truth class

Figure 2: Focal Loss vs. Cross-Entropy Loss example.

ETC? stands out for its efficiency and simplic-
ity, characterized by a minimalistic parameter
footprint. With only embedding layers for Term
(T'F) and Document Frequency Bias (D F'), Term
Queries (@), Keys (K), and Values (1), alongside
parameters W and b, ETC? embodies a stream-
lined architecture that optimizes computational
resources while maintaining robust performance.

The model captures the essential semantic
co-occurrence information for effective term
classification by leveraging embeddings for @), K,
and V. The judicious use of parameters W and
b further enhances the model’s expressiveness,
enabling it to adapt to diverse text classification
tasks while minimizing computational overhead.
Consequently, ETC? presents itself as a lean yet po-
tent ATC solution, offering a good balance among



[ Dataset [ JL] | Balance | #Vocab [ #Docs

[ DocLen | #T/Doc |

sogou 5 100.07 2733637 5100007 535.231 175.391
20ng 20 94.32 176493 18906 266.96 139.84
wos11967 331 80.77 67978 11967 201.99 120.97
books 8 85.11 157526 33594 276.27 112.56
dblp 10 39.12 68127 38128 146.17 86.741
acm 11 34.49] 55761 24897 64.105 40.719

agnews 4] 100.01 90137 127600 39.646.) 33.834)

Table 2: Statistics — Balance (%): class ratio in percentage
for each dataset; DocLen: average document length in each
dataset;#T/Doc: average number of unique tokens per docu-
ment in each dataset. Arrows represent the column’s highest
and smallest values.

simplicity in its parameterization, effectiveness,
and efficiency, as our experiments shall confirm.

4 Experimental Design and Results

We conducted experiments to assess ETC?
effectiveness/efficiency for ATC. The evaluation
encompassed seven well-established and diverse
ATC benchmarks, including five small-medium
datasets (with less than 100k documents), namely,
20 newsgroups (20ng), ACM, books, dblp, and
Web of Science (wos11967), and two large datasets—
SOGOU and AGNews (with more than 120k
documents). Details for each dataset, including
document size, class distribution, vocabulary size,
and other characteristics, are outlined in Table 2.3
As baselines, we compared ETC? against the
most traditional fine-tuned sequence modeling
methods (Transformers) widely considered state-
of-the-art in ATC, namely, BERT (Vaswani et al.,
2017), RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2019), and DistillBert (Sanh et al., 2019),
with implementations from (Wolf et al., 2020).
To evaluate the performance of each method, we
employed the F1 micro and macro metrics, which
summarize model effectiveness in terms of overall
accuracy (micro) and F1 per class (macro), account-
ing for dataset skewness. As an efficiency metric,
we consider prediction speed at test time—the num-
ber of predicted documents per second—, which
considers the necessary computational resources
to apply the learned model to unseen documents.
Although model training time is crucial for
initial development, a model’s true worth is
demonstrated through its predictive prowess
during deployment. These models must efficiently
process incoming data to facilitate timely insights
and actions across diverse applications. Since the
number of labeled documents typically remains
smaller than the total document count, focusing

3Class ratio indicates class skewness within the dataset
(AVG_Len_Classes/M AX_Len_Classes).

on prediction time underscores the necessity for
responsive and scalable models.

The experimental procedure was conducted on
twin machines featuring Intel Xeon E5-2686 v4
processors with eight virtual CPUs and 62GiB of
RAM. Additionally, each machine was equipped
with one NVIDIA Tesla V100 GPU boasting
16GiB of video memory.

Lastly, to ensure statistical soundness, we con-
sider a setup based on a 10-fold cross-validation
procedure for small/medium datasets and a
5-fold cross-validation for large datasets. Results
correspond to the average of the test folds in each
scenario. For assessing statistical significance,
we employed a t-student test to compare the
proposed ETC? method with the baseline methods,
considering a 99% confidence level.

4.1 Effectiveness Results

Micro and MacroF1 results presented in Table 3
show that ETC? excels in both effectiveness
metrics, being one of the overall best and most
consistent methods across all datasets. ETC? is
the best single method (single winner) in three
out of seven datasets (20ng, wos11967, Sogou), in
terms of both Micro and MacroF1, being tied with
all transformers in first place in the ACM dataset
in terms of MicroF1. Overall, considering seven
datasets and two metrics, ETC? has twenty-four
wins and ten ties out of the 56 baseline comparative
results (2 metrics x 4 baselines x 7 datasets).
In other words, 60% of the time, ETC? is better
or equal to some Transformer. Comparatively,
BERT-the best Transformer—is the best single
method in only two datasets. Same for Roberta.
None of them are as consistent as ETC2,

Indeed, even when (statistically) failing to
win over other methods in some datasets, ETC?
effectiveness is still very competitive with the best
Transformers, losing by very small margins, even
without the expensive step of exploiting external
pre-training data. For instance, when considering
MicF1, ETC?’s losses against the best baselines
achieve no more than 2.0% in agnews (against
Roberta), 1.7% in dblp (also against Roberta) and
2.8% in books (against Bert). Furthermore, in
dblp, ETC? statistically ties with Distillbert and in
books with Roberta and XLNet. Overall, ETC?’s
effectiveness is very similar, if not better, than that
of most Transformers in most tested datasets.

The excellent ETC? results, especially in the



F1 - Micro F1 - Macro

Dataset ETC BERT DistilBert | RoBERTa XLNet ETC BERT DistilBert RoBERTa XLNet
sogou | 97100 | 955002 | 95500 [ 95600y | 9550-Dg [[ 97100 | 9550-2¢ | 9550 D¢ [ 95600 | 95500
20ng | 910007 | 880009, | 87307y, | 87109y | 87707 [[ 90707 | 875097 [ 86907, [ 86500y | 87207
wos11967 | 90.0°9) | 874010 [ 8720 D [ 87500g | 872097 | 89609 | 870007 [ 8680-Dg [ 87.10-0¢ | 86909y

acm | 79.30% | 799008 79.400-® 78.800-® 79.300-® 6817 | 7110DA [ 702TD A | 70209 705D

books | 866007 | 89109 A | 8800 A | 872000 873007 86709 [ 89109 A | 8800 A | 872000 87.400-%)
dblp | 824008 [ 83509 A | 832006 83809 A | 837070 A || 80600 | 81909 A [ 81405 823080 A | 82108 A
agnews | 925002 [ 9420 DA [ 9410 DA | 0440 A | 94103 A | 92502 [ 9420 DA [ 9410DA | 9440 A | 94103 A

Table 3: Average Micro/Macro F1 results (and standard deviations) obtained from the experiments. The best results, including statistical ties for each dataset are
highlighted in bold. Symbols 57, Aand -indicate results that are significantly lower, higher than or tied with the ETC? results, respectively (with a p-value < 0.01).

[ Speed(aocs/s) | ETC [ BERT [ DistilBert [ RoBERTa [ XLNet |

20ng | 875870310 1756997, | 286.817 12, 171219 78.564(0-623)

wos11967 | 1129.07 7 | 186.7800-52D ¢, | 31435C Dy 187.15012) ¢, 80.995(1-02) ¢,

acm | 249397770 1 2103300922, | 3869901, | 21684 1D, 86.951(0-206) ¢,

books | 1282.7(75-8) 177.15G9 20352072 | 176.06°-699) ¢, | 78.69200-218)

dblp | 14148072 19695050, | 3440360, | 198517090 84.0340-170) ¢,

agnews | 3672.4(220) 21596738 | 403610 | 2218209 87.2310-928) ¢,

sogou | 94.268(0-109) 1225109 A 1746430 A | 111.47C 200 A | 68.334(0:0336)

Table 4: prediction/Inference Time (Speed) Comparative Results.

datasets in which it is the sole winner in both Micro
and MacroF1 - Sogou, 20ng, and wos11967-may
be explained by the large vocabulary and high
density (#terms/doc) of these datasets. We can
see in Table 2 that the first two datasets have the
largest vocabularies, while the three datasets have
the highest density among all. Large vocabularies
and higher densities greatly benefit ETC? by
enabling it to capture a wider range of linguistic
nuances and semantic intricacies in textual data.
With an expanded vocabulary, ETC? can represent
a broader array of terms, improving its ability to
discern subtle contextual cues and relationships
within documents. Consequently, ETC? achieves
superior performance in ATC, where understanding
language syntactic co-occurrences is crucial for
accurate predictions and insights.

4.2 Prediction/Inference Time (Speed)

Table 4 shows the ETC?’s prediction (inference)
time against those of the Transformers regarding
the number of documents classified per second.
The higher the value, the faster the method. As
highlighted, we consider prediction time even
more important than training time, which can be
done in batch and is run only once. Prediction at
test time, on the other hand, involves the practical
application of the method and is supposed to occur
an unlimited number of times.

In this scenario, the superiority of ETC? is glar-
ing. It is the sole winner in 6 out of 7 datasets, los-
ing only in Sogou by a small margin. The speedup
gains over some baselines achieve up to 42x, such
as against XLNet, the slowest method. Compared

to BERT, the most effective method, and the fastest
Transformer, the speedup gains at prediction time
ranges from 5x (in 20ng) to 17x (in agnews).

The remarkable efficiency in prediction speed
can be attributed to its simple architecture and
document representation approach. In essence,
the model’s design and method of representing
documents are straightforward and streamlined,
allowing for faster processing and inference
during prediction tasks. This simplicity reduces
computational overhead and enables the model to
make predictions swiftly and efficiently.

In sum, when combining the effectiveness
results with the efficiency ones, ETC? is the
method of choice if the ATC task requires a fast
and effective classifier that delivers top-notch
effectiveness comparable to the best transformer
architectures at speed only similar to the simplest
and fastest of the Bow-based classifiers.

4.3 Visualization of ETC? Inner Workings

Figure 3 illustrates the reduced dimensional repre-
sentation of terms contexts occurring in four doc-
uments from the first 20ng class, aimed at show-
casing ETC?’s ability to discern groups of signif-
icant terms. The document selection process ad-
hered to specific criteria: the correct prediction
with the highest and least expected probability and
the wrong prediction with the highest and least
expected probability, all drawn from the test exam-
ples. Despite a few misclassifications, the analysis
reveals that most impactful terms remain identi-
fiable, underscoring ETC?’s capacity to discern
terms with substantial discrimination power.
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Figure 3: 2D representation of the terms’ contexts. Point size
means expected class probability Pr(l|tc;) Pr(tc;|d;).
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Figure 4: Ablation Analyzes.

4.4 Ablation Analysis

To assess the impact of each component within the
ETC? framework, we run a series of experiments
using 20ng and the ACM datasets, in which
we either outperformed or achieved comparable
results with all baseline methods. We employ
the validation data in each step of the folded
cross-validation process for this assessment,
using MacroF1 as the evaluation metric. The
reported values represent the highest F1 scores
achieved up to the current point (epoch) over the
training process, thereby enabling a comprehensive
assessment of the effectiveness of each strategy.
Confidence intervals were computed with a 95%
confidence level for the average values obtained
across the validation folds. Figure 4 encapsulates
the outcomes derived from the datasets and some
strategic approaches employed in the study.

4.4.1 Inner Product vs Distance-Based

Figure 4(a) presents a visual representation of the
comparative analysis between the proposed near-
attention layer and the traditional inner product
method. The graphical depiction accentuates the
substantial influence of the near-attention layer,
especially notable in the early stages of the training

process. As training progresses, the near-attention
layer consistently outperforms the traditional inner
product approach, maintaining its superior perfor-
mance over the entire training process. Despite
eventual convergence in performance between the
two methods at the end of the training process, sta-
tistical analysis confirms the continued superiority
of the near-attention layer in facilitating enhanced
model performance. Furthermore, this analysis
reveals the (future) possibility of an early stop in
training due to a strong start and rapid convergence
of ETC2, which can help diminish training costs.

4.4.2 Stopwords Removal Analysis

Figure 4(b) shows the impact of stopwords
removal in the ACM training. ETC? strongly
relies on the terms’ discriminating capability; thus,
maintaining only terms in the model that can help
the decision process is crucial for effectiveness
and efficiency. The figure shows a notable impact
on the model’s final effectiveness. Particularly, the
absence of stopwords significantly influences the
ETC?’s outcomes throughout the training process,
especially at the initial and final training stages.

5 Conclusion and Future Work

We proposed ETC?, a novel ATC model that
completely rethinks the task by promoting docu-
ments’ terms as first-class citizens in the decision
process and taking their collective opinion to
make a final (class) prediction. Other innovations
of our solution include exploring a frequentist
approach, explicit co-occurrence and context
modeling, near-attention layers, dynamic dropouts,
and focal loss. All these innovations together were
essential for allowing ETC? to achieve comparable
(or superior) effectiveness compared to the best
Transformers while preserving the efficiency of
Bow-based approaches, as demonstrated in our
comprehensible experimentation. Future research
will explore pre-training methodologies tailored
specifically for ETC?, leveraging its efficiency.
Indeed, our gains in efficiency motivate assessing
the scalability and robustness of ETC? in handling
new extensive textual corpora. Finally, the good
performance on denser documents suggests that
semantic document expansion, such as in (Viegas
et al., 2019), may produce good results.



Limitations

Despite relevant contributions, our proposed ETC?
framework has some limitations. One is apparent in
datasets with lower document densities. This obser-
vation stems from ETC?’s requirement to construct
distinct class contexts, which becomes challenging
when documents are located in denser regions that
are difficult to tell apart due to the lack of infor-
mation (low density). Conversely, in datasets with
high densities, exemplified by Sogou, the speed per-
formance of the tokenizer is inferior compared to
traditional methods. This disparity arises primarily
from the tokenizers used in most sequence-based
models, which limit the number of tokens pro-
cessed per document. Our proposal has also room
for improvement in ATC tasks that are highly
ambiguous (i.e., with terms with high ambiguity),
such as sentiment analysis or spam detection.
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