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Abstract
Sequence models, particularly those leveraging001
transformer architectures, have recently002
dominated the Automatic Text Classification003
(ATC) field. These models represent words004
as dense contextual vectors composing the005
document (dense) representations. Though006
effective, these models are expensive for007
training (fine-tuning) and inference (prediction)008
time. Traditional bag-of-words approaches that009
directly represent a document as a single sparse010
vector are usually much more efficient but011
are not as effective as sequence models. Both012
model types commonly involve constructing013
a representation of the entire document before014
predicting its class, overlooking the importance015
of some individual word (co-)occurrences for016
the target task. This paper takes a completely017
different approach to the ATC task by promot-018
ing words as “first-class” citizens for ATC. In019
other words, our method, called ETC2, directly020
classifies each term of a document – using an021
intricate combination of (i) frequentist infor-022
mation, (ii) explicit co-occurrence and context023
modeling, and (iii) (near-)attention layering. It024
then uses these predictions to estimate the doc-025
ument class. The proposed approach eliminates026
the need for a single document representation,027
thus enormously improving model efficiency.028
In our experimental evaluation, ETC2 was as029
effective as (if not better) than the best Trans-030
former baselines in the tested datasets, being031
up to 17x faster at inference (prediction) time032
than modern Transformer-based classifiers.033

1 Introduction034

Automatic text classification (ATC) plays a pivotal035

role in information systems, providing a systematic036

means to assign topical categories to diverse037

text units such as documents, social media posts,038

and news articles. As the volume of textual data039

escalates, efficient and accurate text classification040

methods become increasingly important.041

ATC approaches have predominantly employed042

bag-of-words and, more recently, sequence-based043

models, each with strengths and weaknesses. 044

Sequence models, particularly those leveraging 045

transformer architectures (Vaswani et al., 2017; 046

Yang et al., 2019; Sanh et al., 2019; Liu et al., 2019; 047

Radford et al., 2018), have emerged as a dominant 048

force in ATC (Cunha et al., 2021; de Andrade 049

et al., 2023). These models represent each word 050

as a dense vector and a document as a combination 051

of these representations, offering a nuanced under- 052

standing of the text’s semantic structure. However, 053

such a rich representation comes at the price of a 054

high computational demand, which might worsen 055

if long text sequences are considered, posing a 056

significant hurdle to their widespread applicability, 057

particularly in resource-constrained environments. 058

On the other hand, the traditional bag-of-word ap- 059

proaches rely on simpler representations that often 060

achieve superior efficiency by directly encoding a 061

document as a single (sparse) vector at the expense 062

of non-top-notch effectiveness in some scenarios. 063

This duality in model choices has prompted 064

researchers to explore novel methodologies that 065

balance representation complexity and computa- 066

tional efficiency. We follow this path. Indeed, our 067

main goal in this paper is to explore a trade-off 068

between representation complexity and algorithm 069

efficiency while, at the same time, achieving the 070

same or superior predictive capability. 071

One common characteristic of the afore- 072

mentioned Bag-of-words- and Sequence-based 073

approaches, which may be seen as a limitation, 074

is that they have to construct a representation of 075

the entire document before predicting its class. 076

This document-centric approach overlooks the 077

importance of individual term (co-)occurrences, 078

potentially hindering the models’ ability to capture 079

subtle nuances within the text. Recognizing this 080

gap in the current research landscape, our study 081

introduces a new framework designed to address 082

this limitation and enhance the ATC effectiveness. 083

In this context, we present a novel “word-centric” 084
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approach to ATC that goes beyond conventional085

document-level classification. Instead of treating086

the entire document as a monolithic entity, our087

proposed methodology, named Ensemble of Term088

Classification for Efficient Text Classification089

(ETC2), focuses on directly classifying each090

term within a contextualized bag of words and091

subsequently estimating the document class. This092

paradigm shift eliminates the need for a single093

document representation, allowing for more094

granular text analysis and improving the model’s095

ability to discern intricate details within the data.096

In a broad sense, ETC2 demonstrates proficiency097

in recognizing discriminating occurrences of term098

contexts that contribute to distinguishing labels.099

Conversely, to identify the most discriminative100

co-occurrences, a loss function is applied to101

mitigate the impact of easy-to-classify documents102

– a high probability of the expected label means103

less importance in the loss – and emphasize the104

uncertain co-occurrences, blurring the biased ones105

in the decision function. This strategy compels the106

algorithm to discern the specific co-occurrences107

of each term responsible for the discrimination in108

the final class decision.109

In a nutshell, our novel approach, depicted in110

Figure 1, encompasses a few embedding layers1, a111

single non-parametric multi-headed near-attention112

layer, and a linear layer to represent the model.113

Incorporating multiple embedding layers enables114

the model to capture intricate semantic features115

within the documents, facilitating a more nuanced116

understanding of the text. The non-parametric117

multi-headed attention mechanism also empowers118

the model to efficiently attend to relevant informa-119

tion across different document parts, effectively120

leveraging local and global classification contexts.121

Finally, the linear layer is a robust representation,122

consolidating the learned features into a better123

predictor. By leveraging a streamlined architecture124

comprising these key components, our method125

achieves higher predictive performance for126

unknown documents, especially for large datasets.127

To guide our research and evaluation of the po-128

tential ETC2 advantages in terms of efficiency and129

effectiveness when compared to strong baseline130

sequence-based methods (Transformers), we focus131

on answering the following research questions:132

1A layer in the context of neural networks refers to a func-
tional unit that processes input data through a series of mathe-
matical operations to produce output representations.

• R1: How does the ETC2 framework perform 133

compared to traditional fine-tuned sequence 134

classification methods across diverse datasets? 135

• R2: How does incorporating the proposed single 136

near-Attention layer impact the model’s ability 137

to capture nuanced term contexts compared to 138

the traditional inner product layer? 139

• R3: How stopwords removal and near-Attention 140

contribute to ETC2’s efficiency/effectiveness? 141

We conduct an extensive experimental evalua- 142

tion of the proposed ETC2 framework, considering 143

seven reference datasets and four strong sequence- 144

based transformer baselines. Our experimental 145

results show that ETC2 stands out as the most 146

efficient solution while maintaining comparable or 147

even better predictive capabilities when compared 148

to the baselines. In more detail, ETC2 achieves 149

state-of-the-art effectiveness results in most tested 150

datasets, achieving up to 17x speedup gains in ATC 151

prediction efficiency. Importantly, this high effi- 152

ciency is primarily attained without compromising 153

(or improving) effectiveness in most datasets. 154

Our proposed approach challenges the conven- 155

tional wisdom in ATC. Our main contributions 156

include: (i) introduction of the Ensemble of Term 157

Classification (ETC2) framework, a very novel 158

ATC approach, which changes the way classifica- 159

tion is thought and performed when compared with 160

the state-of-the-art; (ii) development of an efficient 161

BoW-Based algorithm designed to classify lengthy 162

documents; (iii) proposal of a novel representation 163

for contextualized BoW, achieved by leveraging 164

the weighted co-occurrences of n-grams through 165

a single near-Attention layer; (iv) extensive 166

experimentation of the proposed framework. 167

2 Related Work 168

Static word embeddings have been pivotal in 169

NLP tasks, offering pre-trained representations 170

that capture semantic relationships among words. 171

Word2Vec (Mikolov et al., 2013), with Continuous 172

Bag of Words (CBOW) and Skip-gram models, 173

are prominent examples of early word embedding 174

techniques. GloVe (Pennington et al., 2014), 175

another widely adopted static word embedding 176

model, constructs word vectors by leveraging 177

global co-occurrence statistics from a corpus, 178

effectively capturing syntactic and semantic word 179

relationships. FastText (Joulin et al., 2016) extends 180
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traditional word embeddings by incorporating181

subword information. While these models differ182

in operation, they all produce static Bag-of-Words183

(BoW) embeddings without considering contextual184

dependencies within the document. This static185

representation limits their ability to capture186

nuanced semantic relationships crucial for ATC.187

State-of-the-art ATC methods, based on188

sequences of word models, leverage advanced189

pre-trained language models to enhance effec-190

tiveness. BERT (Vaswani et al., 2017)´s ability191

to capture contextual information bidirectionally192

led to substantial improvements in various NLP193

tasks.DistilBERT (Sanh et al., 2019) further194

explores the efficiency-effectiveness trade-off by195

distilling the knowledge from BERT into a smaller,196

distilled version, with a significantly reduced pa-197

rameter count. RoBERTa (Liu et al., 2019) builds198

upon BERT’s architecture with modifications199

such as dynamic masking during pre-training.200

Based on a different architecture, XLNet (Yang201

et al., 2019) introduces a permutation language202

modeling objective, combining the strengths of203

autoregressive and autoencoding models.204

Models that integrate term co-occurrence205

relations within documents effectively capture206

contextualized terms. Unlike conventional bag-of-207

words embedding techniques, which overlook term208

co-occurrence and thus fail to contextualize terms209

adequately, newer Transformer-based models are210

explicitly designed to evaluate both term occur-211

rence and absolute position within the document,212

facilitated by mechanisms like attention layers.213

This enables them to infer masked or subsequent214

tokens in a sequence, leading to a richer under-215

standing of contextual semantics. However, this216

enhanced capability comes at a computational cost,217

particularly noticeable when processing large doc-218

uments due to the intensive computations required.219

By contrast, ETC2 presents a novel ATC ap-220

proach. While existing models excel in capturing221

complex contextual dependencies at the corpus222

or document level, ETC2 prioritizes a more223

granular classification of individual term contexts224

within documents. This distinct focus on the225

(word, class) relationship enables ETC2 to discern226

nuanced textual nuances as effectively as, or even227

surpassing, sequence models while maintaining the228

computational efficiency of BoW representations.229

3 ETC2 Framework 230

Let D = {(di, li)}N be a set with N documents 231

(di) associated with (training) labels (li). The prob- 232

lem can be generalized as predicting each label for 233

all unseen documents in D′: argmaxl∈L Pr(l|di). 234

To the best of our knowledge, all current ATC 235

algorithms implement the previous expression 236

to determine the label that maximizes the pre- 237

diction probability for the unknown document 238

di, based on a single representation for di. For 239

instance, in sequence-models, usually the <CSL>- 240

contextualized token represents di. This representa- 241

tion usually has di ∈ Rc, with c (a constant) being 242

the dimensionality of representation space. This 243

representation size (c) is fixed and can be small and 244

dense as in sequence models or large and sparse 245

(i.e., c = vocabulary size) as in TFIDF-models. 246

We exploit a very different approach for the ATC 247

task. ETC2 explores the manifold representations 248

intrinsic to a document. Here, we represent 249

each document as di ∈ Rkc, with k being a 250

constant (k < |di| for most documents2) and c a 251

hyperparameter denoting the number of hidden 252

units in the proposed architecture. This approach 253

involves encapsulating the document through 254

contextualized terms, wherein the term importance 255

discerns the document class label following its 256

co-occurrence discriminating power. 257
ETC2 represents the label/document posterior 258

as the joint probabilities of term contexts (tcj in 259
di) and labels (l), as shown in Eq. 1. 260

Pr(l|di) =
∑

tcj∈di

Pr(l|tcj) Pr(tcj |di) (1) 261

Figure 1 presents a simplified diagram of the 262

ETC2 framework, delineating the representation 263

of embeddings for terms (Q, K, and V ) and 264

specialized one-hot encoding for Term Frequency 265

(TF ) and Document Frequency (DF ). ETC2 266

constructs a contextualized term representation 267

by considering the intricate co-occurrence rela- 268

tionships between terms within the document, 269

named co-occurrence probability (Pr(to1, to2|d)), 270

which means the probability of both terms, to1 and 271

to2, co-occurring together at document d. ETC2 272

utilizes these probabilities to infer the posterior 273

Pr(tc|d). Ultimately, the probability Pr(l|tc) and 274

the final Pr(l|di) are inferred. 275

The term contexts operate in a shared space 276

of terms, their frequencies (TF and DF), and 277

co-occurrences, as described in Section 3.1. Next, 278

2We set k as the 90-percentile of training document sizes.
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Figure 1: ETC2 Overall Diagram.

in Section 3.2, we discuss how the label is inferred279

(Pr(l|tcj)) based on the importance of these terms’280

contexts (Pr(tcj |di)).281

3.1 Term Occurrence and Term Context282

ETC2 builds the (partial) document representation283

by converting a text sequence into a set of terms284

tj , formed by (i) unique uni- and bi-grams non-285

stopwords in the document di, (ii) their respective286

Term Frequency TF(i,j) within di, and (iii) the287

Document Frequency (DFj) within the dataset. We288

embed the term occurrences by encoding the term,289

term frequency (TF), and document frequency290

(DF) values into specialized one-hot encodings.291
While the term encoder uses the traditional292

one-hot-encoder, the TF and DF encoders con-293
sider the squared and logarithmic-scale rounded294
encoding, respectively. This results in terms295
with (scale-)comparable frequency distributions,296
whether within documents or across the corpus,297
being mapped to shared spaces. For instance,298
terms occurring 3, 4, or 5 times within the corpus299
are embedded equally, a.k.a., the same Document300
Frequency Bias, due to the encoding function.301

Enc(3) = Enc(4) = round(log2(5)) = 2 (2)302

When considering scale as the encoding factor in303

DF, we establish a basic representation of term rar-304

ity akin to the Inverse Document Frequency (IDF),305

quantifying the proportion of term occurrences in306

documents. Similarly, our approach integrates the307

rarity scale of terms as a quantifiable factor.308

Thus, all terms happening in just 1 document309

(DF=1) will have the same “bias” within docu-310

ments (the parameters). The same applies to terms311

that occurred in 2 documents, which will share the312

global rarity bias. On the other hand, terms that313

occur between 370,728 documents and 741,455314

documents will have the same bias (encoded to315

19), and terms that happen in more than 741,455316

documents will share the code 20 (the maximum317

supported occurrence).318

Similarly, Term Frequency Bias embeds com-319

parable frequencies, but based on the squared of320

TF(j,i), a.k.a. term frequency within the document.321

Table 1 shows an example of the TF and DF 322

encodings.The sum of these embeddings (term, 323

TF(j,i), and DFj) captures the joint influence of 324

terms on the view of term frequencies and rarity.

Code 0 1 2 3 5 10
TF(j,i) [1;2] [3;6] [7;12] [13;20] [31;42] [91;110]

DFj [1] [2] [3;5] [6;11] [23;45] [725;1448]

Table 1: Encoder to TF(j,i) and DFj values.
325

The term’s context tcj represents the integration 326
of the probability of its self-occurrence toj and its 327
co-occurrence with other terms within the docu- 328
ment (tok ∈ di). Applying the Euclidean distance 329
this process aims to evaluate the likelihood of both 330
terms being situated in the same location within 331
the spaces of occurrences and, to integrate these 332
probabilities, we introduce a novel layer termed 333
the near-Attention Layer, as depicted in Eq. 3. 334

tcj =
∑

tok∈di

Pr(toj , tok|di)tok (3) 335

336
This Layer, aligned with the conventional 337

approach to representing term context, as used in 338
Transformers, utilizes separate representations for 339
key and query term encoding (multi-headily). It en- 340
tails applying two normalization procedures under 341
the Q/K-terms Euclidean Distance, as in Eq. 4. 342

Pr(toj , tok|di) =
σ
(

Norm(toj , tok)
)

∑
tod∈di

σ
(

Norm(toj , tod)
) (4) 343

Norm(toj , tok) =
ndist(Ktoj , Qtok )− E[ndist]√

Var[ndist] + ϵ
344

ndist(K,Q) =
b+ ϵ

||K −Q||2 + b+ ϵ
(5) 345

where σ denotes the sigmoid function, E and 346
Var represent the expected value and variance 347

of the normalized Euclidean distance (ndist), 348

respectively; b is the bias of the expected distance; 349

and ||Ktoj − Qtok ||2 the Euclidean distance 350

between the occurrence representations of term j 351

(key) and term k (query) within the document. 352

By replacing the conventional inner product 353

typically used in most Transformers, we construct 354

spaces with enhanced granularity, eliminating the 355

need for multiple layers. Another key feature of 356

this Layer includes considering the term’s attention 357

within the document, normalized by their distance 358

to the average (layer norm), thereby significantly 359

extending the attention range. 360

This approach allows the model to discern and 361

quantify co-occurrences with higher discriminative 362

power than others. However, to facilitate this, 363

the model must prioritize attention towards 364

terms co-occurrences within less easy-to-classify 365

documents within the decision function. Hence, for 366
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the ETC2 framework to operate effectively, it must367

complement the co-occurrences with a focused368

loss function. In the next Section, we will detail369

how Focal Loss works and how to incorporate the370

near-Attention Layer into terms’ context weight371

to infer the label posterior probability. As we shall372

see in our Ablation analysis (Section 4.4.1) the373

significance of employing near-attention in contrast374

to the conventional inner product is notorious.375

3.2 Ensembling the Terms’s Classifications376

In ETC2, the combination of weights attributed377

to co-occurrences of terms plays a crucial role in378

determining the final classification outcome. This379

Section explores the methodology of integrating380

these weights and the associated challenges381

in mitigating the influence of well-classified382

examples through focal Loss.383

ETC2 integrates two essential equations to pre-384
dict term contexts and labels within a document.385
The probability of label l given document di is386
computed as the summation over all term contexts387
tcj present in di, where each term context’s like-388
lihood is determined by the product of Pr(l|tcj)389
and Pr(tcj |di), see Eq. 1. For each term context390
tcj , the probability of label l given the term context391
(Pr(l|tcj)) is obtained through a linear transforma-392
tion followed by a softmax over the label set L:393

Pr(l|tcj) = SoftmaxL(Linear(tcj)) (6)394

Linear(X) = W ×X + b395

where W ∈ R|L|×c and b ∈ Rc are learnable396
parameters. The softmax function, a standard397

component in ATC tasks, transforms the raw scores398

generated by the linear Layer into a probability399

distribution. The linear Layer is a critical com-400

ponent in the classification process, reflecting the401

likelihood of the raw term context X into mean-402

ingful class probabilities. This approach facilitates403

accurate and informed classification decisions.404
Simultaneously, the probability of each term405

context tcj given document di (Pr(tcj |di)) is406
calculated based on the conditional probabilities407
of term co-occurrences. This probability is deter-408
mined by the ratio of the sum of the conditional409
probabilities of tcj given all other term contexts tck410
within di to the sum of all possible combinations411
of term contexts tck′ and tck′′ within di:412

Pr(tcj |di) =
∑

k Pr(tcj |tck, di)∑
k′,k′′ Pr(tck′ |tck′′ , di)

(7)413

414
By combining these equations, ETC2´s model415

dynamically evaluates the importance of each416

term context within the document and predicts417

the labels accordingly, thus enabling nuanced and 418

contextually informed document classification. 419
One last challenge in leveraging co-occurrence 420

weights is obscuring the influence of easy-to- 421
classify documents during the classification 422
process. Focal loss (Lin et al., 2017), a strategy 423
commonly employed to address class imbalance 424
and prioritize learning from hard examples, can 425
inadvertently reinforce easy-to-classify documents’ 426
influence, thereby, their terms’ co-occurrences. 427
This Loss can lead to suboptimal classification 428
outcomes by prioritizing class-exclusive (but 429
non-discriminative) terms over more subtle 430
contextual cues. 431

FL(Pr(l|di)) = −(1− Pr(l|di))γ log (Pr(l|di)) (8) 432

In traditional cross-entropy Loss (γ = 0), 433
well-classified examples often dominate the loss 434

calculation, which can overshadow the learning 435

process for minority classes or challenging 436

instances. Focal Loss introduces a dynamic scaling 437

factor, termed the focal parameter (γ > 0), which 438

modulates the contribution of each example to 439

the Loss based on its classification difficulty. As 440

depicted in (Lin et al., 2017), Figure 2 illustrates 441

an example of the corresponding losses for various 442

gamma values, ranging from 0 to 5.

Figure 2: Focal Loss vs. Cross-Entropy Loss example.

443ETC2 stands out for its efficiency and simplic- 444

ity, characterized by a minimalistic parameter 445

footprint. With only embedding layers for Term 446

(TF ) and Document Frequency Bias (DF ), Term 447

Queries (Q), Keys (K), and Values (V ), alongside 448

parameters W and b, ETC2 embodies a stream- 449

lined architecture that optimizes computational 450

resources while maintaining robust performance. 451

The model captures the essential semantic 452

co-occurrence information for effective term 453

classification by leveraging embeddings for Q, K, 454

and V . The judicious use of parameters W and 455

b further enhances the model’s expressiveness, 456

enabling it to adapt to diverse text classification 457

tasks while minimizing computational overhead. 458

Consequently, ETC2 presents itself as a lean yet po- 459

tent ATC solution, offering a good balance among 460
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Dataset |L| Balance #Vocab #Docs DocLen #T/Doc

sogou 5 100.0↑ 273363↑ 510000↑ 535.23↑ 175.39↑
20ng 20 94.32 176493 18906 266.96 139.84

wos11967 33↑ 80.77 67978 11967↓ 201.99 120.97
books 8 85.11 157526 33594 276.27 112.56

dblp 10 39.12 68127 38128 146.17 86.741
acm 11 34.49↓ 55761↓ 24897 64.105 40.719

agnews 4↓ 100.0↑ 90137 127600 39.646↓ 33.834↓

Table 2: Statistics – Balance (%): class ratio in percentage
for each dataset; DocLen: average document length in each
dataset;#T/Doc: average number of unique tokens per docu-
ment in each dataset. Arrows represent the column’s highest
and smallest values.

simplicity in its parameterization, effectiveness,461

and efficiency, as our experiments shall confirm.462

4 Experimental Design and Results463

We conducted experiments to assess ETC2464

effectiveness/efficiency for ATC. The evaluation465

encompassed seven well-established and diverse466

ATC benchmarks, including five small-medium467

datasets (with less than 100k documents), namely,468

20 newsgroups (20ng), ACM, books, dblp, and469

Web of Science (wos11967), and two large datasets–470

SOGOU and AGNews (with more than 120k471

documents). Details for each dataset, including472

document size, class distribution, vocabulary size,473

and other characteristics, are outlined in Table 2.3474

As baselines, we compared ETC2 against the475

most traditional fine-tuned sequence modeling476

methods (Transformers) widely considered state-477

of-the-art in ATC, namely, BERT (Vaswani et al.,478

2017), RoBERTa (Liu et al., 2019), XLNet (Yang479

et al., 2019), and DistillBert (Sanh et al., 2019),480

with implementations from (Wolf et al., 2020).481

To evaluate the performance of each method, we482

employed the F1 micro and macro metrics, which483

summarize model effectiveness in terms of overall484

accuracy (micro) and F1 per class (macro), account-485

ing for dataset skewness. As an efficiency metric,486

we consider prediction speed at test time–the num-487

ber of predicted documents per second–, which488

considers the necessary computational resources489

to apply the learned model to unseen documents.490

Although model training time is crucial for491

initial development, a model’s true worth is492

demonstrated through its predictive prowess493

during deployment. These models must efficiently494

process incoming data to facilitate timely insights495

and actions across diverse applications. Since the496

number of labeled documents typically remains497

smaller than the total document count, focusing498

3Class ratio indicates class skewness within the dataset
(AV G_Len_Classes/MAX_Len_Classes).

on prediction time underscores the necessity for 499

responsive and scalable models. 500

The experimental procedure was conducted on 501

twin machines featuring Intel Xeon E5-2686 v4 502

processors with eight virtual CPUs and 62GiB of 503

RAM. Additionally, each machine was equipped 504

with one NVIDIA Tesla V100 GPU boasting 505

16GiB of video memory. 506

Lastly, to ensure statistical soundness, we con- 507

sider a setup based on a 10-fold cross-validation 508

procedure for small/medium datasets and a 509

5-fold cross-validation for large datasets. Results 510

correspond to the average of the test folds in each 511

scenario. For assessing statistical significance, 512

we employed a t-student test to compare the 513

proposed ETC² method with the baseline methods, 514

considering a 99% confidence level. 515

4.1 Effectiveness Results 516

Micro and MacroF1 results presented in Table 3 517

show that ETC2 excels in both effectiveness 518

metrics, being one of the overall best and most 519

consistent methods across all datasets. ETC2 is 520

the best single method (single winner) in three 521

out of seven datasets (20ng, wos11967, Sogou), in 522

terms of both Micro and MacroF1, being tied with 523

all transformers in first place in the ACM dataset 524

in terms of MicroF1. Overall, considering seven 525

datasets and two metrics, ETC2 has twenty-four 526

wins and ten ties out of the 56 baseline comparative 527

results (2 metrics × 4 baselines × 7 datasets). 528

In other words, 60% of the time, ETC2 is better 529

or equal to some Transformer. Comparatively, 530

BERT–the best Transformer–is the best single 531

method in only two datasets. Same for Roberta. 532

None of them are as consistent as ETC2. 533

Indeed, even when (statistically) failing to 534

win over other methods in some datasets, ETC2 535

effectiveness is still very competitive with the best 536

Transformers, losing by very small margins, even 537

without the expensive step of exploiting external 538

pre-training data. For instance, when considering 539

MicF1, ETC2’s losses against the best baselines 540

achieve no more than 2.0% in agnews (against 541

Roberta), 1.7% in dblp (also against Roberta) and 542

2.8% in books (against Bert). Furthermore, in 543

dblp, ETC2 statistically ties with Distillbert and in 544

books with Roberta and XLNet. Overall, ETC2’s 545

effectiveness is very similar, if not better, than that 546

of most Transformers in most tested datasets. 547

The excellent ETC2 results, especially in the 548
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F1 - Micro F1 - Macro
Dataset ETC BERT DistilBert RoBERTa XLNet ETC BERT DistilBert RoBERTa XLNet

sogou 97.1(0.1) 95.5(0.2)▽ 95.5(0.1)▽ 95.6(0.1)▽ 95.5(0.1)▽ 97.1(0.1) 95.5(0.2)▽ 95.5(0.1)▽ 95.6(0.0)▽ 95.5(0.1)▽
20ng 91.0(0.7) 88.0(0.9)▽ 87.3(0.7)▽ 87.1(1.0)▽ 87.7(0.7)▽ 90.7(0.7) 87.5(0.9)▽ 86.9(0.7)▽ 86.5(1.0)▽ 87.2(0.7)▽

wos11967 90.0(0.9) 87.4(1.0)▽ 87.2(1.1)▽ 87.5(1.0)▽ 87.2(0.9)▽ 89.6(0.9) 87.0(1.0)▽ 86.8(1.1)▽ 87.1(1.0)▽ 86.9(0.9)▽
acm 79.3(0.8) 79.9(0.8)• 79.4(0.8)• 78.8(0.8)• 79.3(0.8)• 68.1(1.7) 71.1(1.2)△ 70.2(1.2)△ 70.2(1.8)• 70.5(2.1)•

books 86.6(0.7) 89.1(0.6)△ 88.0(0.5)△ 87.2(0.6)• 87.3(0.7)• 86.7(0.6) 89.1(0.5)△ 88.0(0.5)△ 87.2(0.6)• 87.4(0.8)•
dblp 82.4(0.8) 83.5(0.6)△ 83.2(0.6)• 83.8(0.8)△ 83.7(0.7)△ 80.6(1.0) 81.9(0.8)△ 81.4(0.8)• 82.3(0.81)△ 82.1(0.8)△

agnews 92.5(0.2) 94.2(0.1)△ 94.1(0.1)△ 94.4(0.2)△ 94.1(0.3)△ 92.5(0.2) 94.2(0.1)△ 94.1(0.1)△ 94.4(0.2)△ 94.1(0.3)△

Table 3: Average Micro/Macro F1 results (and standard deviations) obtained from the experiments. The best results, including statistical ties for each dataset are
highlighted in bold. Symbols ▽, △and •indicate results that are significantly lower, higher than or tied with the ETC² results, respectively (with a p-value < 0.01).

Speed(docs/s) ETC BERT DistilBert RoBERTa XLNet

20ng 875.87(31.6) 175.69(2.97)▽ 286.81(7.12)▽ 171.21(3.4)▽ 78.564(0.623)▽
wos11967 1129.0(7.75) 186.78(0.521)▽ 314.35(2.2)▽ 187.15(1.12)▽ 80.995(1.02)▽

acm 2493.9(47.0) 210.33(0.922)▽ 386.99(1.41)▽ 216.84(1.14)▽ 86.951(0.206)▽
books 1282.7(15.8) 177.15(3.0)▽ 293.52(0.72)▽ 176.06(0.699)▽ 78.692(0.218)▽

dblp 1414.8(14.2) 196.95(1.56)▽ 344.03(1.61)▽ 198.51(1.94)▽ 84.034(0.176)▽
agnews 3672.4(22.0) 215.96(1.38)▽ 403.61(1.47)▽ 221.82(1.5)▽ 87.231(0.928)▽

sogou 94.268(0.109) 122.51(0.0)△ 174.64(6.81)△ 111.47(3.26)△ 68.334(0.0336)▽

Table 4: Prediction/Inference Time (Speed) Comparative Results.

datasets in which it is the sole winner in both Micro549

and MacroF1 - Sogou, 20ng, and wos11967–may550

be explained by the large vocabulary and high551

density (#terms/doc) of these datasets. We can552

see in Table 2 that the first two datasets have the553

largest vocabularies, while the three datasets have554

the highest density among all. Large vocabularies555

and higher densities greatly benefit ETC2 by556

enabling it to capture a wider range of linguistic557

nuances and semantic intricacies in textual data.558

With an expanded vocabulary, ETC2 can represent559

a broader array of terms, improving its ability to560

discern subtle contextual cues and relationships561

within documents. Consequently, ETC2 achieves562

superior performance in ATC, where understanding563

language syntactic co-occurrences is crucial for564

accurate predictions and insights.565

4.2 Prediction/Inference Time (Speed)566

Table 4 shows the ETC2’s prediction (inference)567

time against those of the Transformers regarding568

the number of documents classified per second.569

The higher the value, the faster the method. As570

highlighted, we consider prediction time even571

more important than training time, which can be572

done in batch and is run only once. Prediction at573

test time, on the other hand, involves the practical574

application of the method and is supposed to occur575

an unlimited number of times.576

In this scenario, the superiority of ETC2 is glar-577

ing. It is the sole winner in 6 out of 7 datasets, los-578

ing only in Sogou by a small margin. The speedup579

gains over some baselines achieve up to 42x, such580

as against XLNet, the slowest method. Compared581

to BERT, the most effective method, and the fastest 582

Transformer, the speedup gains at prediction time 583

ranges from 5x (in 20ng) to 17x (in agnews). 584

The remarkable efficiency in prediction speed 585

can be attributed to its simple architecture and 586

document representation approach. In essence, 587

the model’s design and method of representing 588

documents are straightforward and streamlined, 589

allowing for faster processing and inference 590

during prediction tasks. This simplicity reduces 591

computational overhead and enables the model to 592

make predictions swiftly and efficiently. 593

In sum, when combining the effectiveness 594

results with the efficiency ones, ETC2 is the 595

method of choice if the ATC task requires a fast 596

and effective classifier that delivers top-notch 597

effectiveness comparable to the best transformer 598

architectures at speed only similar to the simplest 599

and fastest of the Bow-based classifiers. 600

4.3 Visualization of ETC2 Inner Workings 601

Figure 3 illustrates the reduced dimensional repre- 602

sentation of terms contexts occurring in four doc- 603

uments from the first 20ng class, aimed at show- 604

casing ETC2’s ability to discern groups of signif- 605

icant terms. The document selection process ad- 606

hered to specific criteria: the correct prediction 607

with the highest and least expected probability and 608

the wrong prediction with the highest and least 609

expected probability, all drawn from the test exam- 610

ples. Despite a few misclassifications, the analysis 611

reveals that most impactful terms remain identi- 612

fiable, underscoring ETC2’s capacity to discern 613

terms with substantial discrimination power. 614
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Figure 3: 2D representation of the terms’ contexts. Point size
means expected class probability Pr(l|tcj) Pr(tcj |di).

((a)) 20ng Ablation. ((b)) ACM Ablation.

Figure 4: Ablation Analyzes.

4.4 Ablation Analysis615

To assess the impact of each component within the616

ETC2 framework, we run a series of experiments617

using 20ng and the ACM datasets, in which618

we either outperformed or achieved comparable619

results with all baseline methods. We employ620

the validation data in each step of the folded621

cross-validation process for this assessment,622

using MacroF1 as the evaluation metric. The623

reported values represent the highest F1 scores624

achieved up to the current point (epoch) over the625

training process, thereby enabling a comprehensive626

assessment of the effectiveness of each strategy.627

Confidence intervals were computed with a 95%628

confidence level for the average values obtained629

across the validation folds. Figure 4 encapsulates630

the outcomes derived from the datasets and some631

strategic approaches employed in the study.632

4.4.1 Inner Product vs Distance-Based633

Figure 4(a) presents a visual representation of the634

comparative analysis between the proposed near-635

attention layer and the traditional inner product636

method. The graphical depiction accentuates the637

substantial influence of the near-attention layer,638

especially notable in the early stages of the training639

process. As training progresses, the near-attention 640

layer consistently outperforms the traditional inner 641

product approach, maintaining its superior perfor- 642

mance over the entire training process. Despite 643

eventual convergence in performance between the 644

two methods at the end of the training process, sta- 645

tistical analysis confirms the continued superiority 646

of the near-attention layer in facilitating enhanced 647

model performance. Furthermore, this analysis 648

reveals the (future) possibility of an early stop in 649

training due to a strong start and rapid convergence 650

of ETC2, which can help diminish training costs. 651

4.4.2 Stopwords Removal Analysis 652

Figure 4(b) shows the impact of stopwords 653

removal in the ACM training. ETC2 strongly 654

relies on the terms’ discriminating capability; thus, 655

maintaining only terms in the model that can help 656

the decision process is crucial for effectiveness 657

and efficiency. The figure shows a notable impact 658

on the model’s final effectiveness. Particularly, the 659

absence of stopwords significantly influences the 660

ETC2’s outcomes throughout the training process, 661

especially at the initial and final training stages. 662

5 Conclusion and Future Work 663

We proposed ETC2, a novel ATC model that 664

completely rethinks the task by promoting docu- 665

ments’ terms as first-class citizens in the decision 666

process and taking their collective opinion to 667

make a final (class) prediction. Other innovations 668

of our solution include exploring a frequentist 669

approach, explicit co-occurrence and context 670

modeling, near-attention layers, dynamic dropouts, 671

and focal loss. All these innovations together were 672

essential for allowing ETC2 to achieve comparable 673

(or superior) effectiveness compared to the best 674

Transformers while preserving the efficiency of 675

Bow-based approaches, as demonstrated in our 676

comprehensible experimentation. Future research 677

will explore pre-training methodologies tailored 678

specifically for ETC2, leveraging its efficiency. 679

Indeed, our gains in efficiency motivate assessing 680

the scalability and robustness of ETC2 in handling 681

new extensive textual corpora. Finally, the good 682

performance on denser documents suggests that 683

semantic document expansion, such as in (Viegas 684

et al., 2019), may produce good results. 685
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Limitations686

Despite relevant contributions, our proposed ETC2687

framework has some limitations. One is apparent in688

datasets with lower document densities. This obser-689

vation stems from ETC2’s requirement to construct690

distinct class contexts, which becomes challenging691

when documents are located in denser regions that692

are difficult to tell apart due to the lack of infor-693

mation (low density). Conversely, in datasets with694

high densities, exemplified by Sogou, the speed per-695

formance of the tokenizer is inferior compared to696

traditional methods. This disparity arises primarily697

from the tokenizers used in most sequence-based698

models, which limit the number of tokens pro-699

cessed per document. Our proposal has also room700

for improvement in ATC tasks that are highly701

ambiguous (i.e., with terms with high ambiguity),702

such as sentiment analysis or spam detection.703
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