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Abstract

The task of distinguishing individuals of interest from a vast pool of candidates
using predictive models has garnered significant attention in recent years. This
task can be framed as a conformalized multiple testing procedure, which aims at
quantifying prediction uncertainty by controlling the false discovery rate (FDR)
via conformal inference. In this paper, we tackle the challenge of conformalized
multiple testing after data-dependent selection procedures. To guarantee the con-
struction of valid test statistics that accurately capture the distorted distribution
resulting from the selection process, we leverage a holdout labeled set to closely
emulate the selective distribution. Our approach involves adaptively picking labeled
data to create a calibration set based on the stability of the selection rule. This
strategy ensures that the calibration data and the selected test unit are exchangeable,
allowing us to develop valid conformal p-values. Implementing with the famous
Benjamini-Hochberg (BH) procedure, it effectively controls the FDR over the se-
lected subset. To handle the randomness of the selected subset and the dependence
among the constructed p-values, we establish a unified theoretical framework. This
framework extends the application of conformalized multiple testing to complex
selective settings. Furthermore, we conduct numerical studies to showcase the
effectiveness and validity of our procedures across various scenarios.

1 Introduction

In recent years, there has been a notable focus on the use of predictive models to distinguish specific
individuals from a pool of candidates. For instance, in the field of financial investment [17, 2], machine
learning models can be used to predict profits for different investment opportunities. Candidates
with high predicted profits can then be given more preference and considered as potential investment
options. Similarly, in disease diagnostics [29, 45], researchers can utilize relevant information and
corresponding predictions from machine learning models to identify potential patients.

In a typical scenario, we are presented with a labeled/holdout data set Dc = {Zi = (Xi, Yi)}ni=1,
where Xi ∈ Rd is the observed covariate and Yi ∈ R is the response, and an unlabelled/test set
Du = {Xi}n+m

i=n+1. In practice, we only observe the covariates in the test set Du and the responses Y
are unknown. Our goal is to distinguish individuals in Du whose undisclosed responses fall within a
predetermined region A. Region A can take various forms, such as (b,∞), [a, b] and (−∞, a) per
user’s requirements. To estimate the value of Y for the identification, we employ a predictive model
µ̂ : Rd → R. However, directly using the black-box prediction µ̂(Xi) as a substitute for Yi leads to
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inherent uncertainty. In order to quantify this uncertainty, we reformulate our problem as multiple
hypothesis testing [10]: for j = {n+ 1, · · · , n+m},

H0,j : Yj ̸∈ A v.s. H1,j : Yj ∈ A.

Under this framework, we wish to make rejections as much as possible with the false discovery rate
(FDR) controlled at a pre-given level α. Denote the index set of test data as U = {n+1, · · · , n+m}.
The FDR is defined as the expectation of false positive proportion (FDP) over the test units in U , i.e.

FDR(U) = E[FDP(U)], FDP(U) =
∑

j∈U 1{j ∈ R, Yj ̸∈ A}
1 ∨ |R|

.

where we denote a ∨ b = max{a, b} for any a, b ∈ R, |S| as the cardinality of a set S andR as the
rejection set. To derive the testing rule, one feasible method is to construct the conformal p-value [8]
by ranking the nonconformity score associated with the test unit’s prediction among the scores in the
holdout set. Then we can apply the well-known Benjamini-Hochberg (BH) procedure [10] on these
conformal p-values to obtain a rejection set with controlled FDR. Here we term this procedure as
“conformalized multiple testing”.

In practice, researchers may be interested in specific subsets rather than analyzing the entire dataset.
For example, they might aim to determine the presence or absence of lung cancer among heavy
smokers. By establishing data-driven criteria or thresholds based on factors such as the daily number
of cigarettes smoked and smoking history, researchers can create a filtered subset consisting of heavy
smokers. This allows researchers to gain insights into the patterns of the medical condition within
this particular group. Here we address that the group partition may not be predetermined and could
instead be learned from data, through methods like clustering [25] or thresholding. Denote the
selected subset from unlabelled data as Ŝu ⊂ U . In our paper, we aim to find a rejection set R̂u ⊂ Ŝu
with the following FDR criterion controlled at α, i.e.

FDR(Ŝu) = E

[∑
j∈Ŝu

1{j ∈ R̂u, Yj ̸∈ A}
1 ∨ |R̂u|

]
≤ α.

For simplicity, we use FDR to denote FDR(Ŝu) only. The selection procedure would distort the
distribution of test statistics, invalidating the p-values and leading to the failure of FDR control. This
falls into the category of selective inference, which has been addressed in both statistics and machine
learning fields [53, 16]. To tackle the selective issue, the use of labeled data becomes crucial. By
leveraging labeled data, it is possible to obtain the conditional distribution of the selected data, which
in turn allows for the construction of valid p-values.

Nevertheless, even with valid p-values, controlling the FDR proves to be a challenging task. This
difficulty arises from the inherent randomness of the selected subset Ŝu. Even a minor disturbance in
Ŝu can lead to significant changes in the final rejection set R̂u. Consequently, in order to address this
issue, we focus on several commonly used selection rules with certain selection stability. We employ
an adaptive strategy to carefully choose labeled data, thereby creating a calibration set that takes into
account the selection stability.

1.1 Our contributions

In this paper, we construct the selective conformal p-value for each selected individual, built on the
marginal conformal p-value [8]. To address the selection effects, we adaptively pick a calibration
set from the labeled data according to the selection rule, to ensure the exchangeability between the
test data and labeled data. The selective conformal p-values are then constructed using the picked
calibration set. By combining the selective conformal p-values with the well-known BH procedure,
we achieve FDR control after data-driven selection, as verified through our comprehensive analysis.

The main contributions of our paper can be summarized as follows.

• Firstly, we frame the problem of multiple testing after data-dependent selection in the
predictive setting and propose a viable solution utilizing the labeled data.

• Secondly, the proposed method achieves exact FDR control for selection rules with strong
stability, including joint-exchangeable rules and the top-K selection. And we further extend
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our method to handle more general cases where the selection rules satisfy a weaker stability
condition such as sample mean selection.

• Thirdly, the theoretical advancement extends the scope of classic multiple testing into the
selective setting, providing a unified analytical technique for handling the randomness
arising from data-driven selection.

• Finally, through extensive experiments, we evaluate the reliability of our method in delivering
the desired FDR control, and emphasize its easy integration with various algorithms.

1.2 Connections to existing works

Multiple testing Ever since the seminal work of Benjamini and Hochberg [10], the framework of
multiple testing has been well developed by many researchers [49, 5, 66, 20, 44]. Our paper connects
to the area of two-stage testing [62], which firstly selects a subset of hypotheses and subsequently
applies a multiple testing procedure to the selected set. To maintain the validity of test statistics after
the selection, Bourgon et al. [14] recommended using an independent statistic specifically for the
purpose of selection, but it is unavailable in our predictive setting. Instead of assuming independence
between the test statistic and the selection statistic, Du and Zhang [19] introduced the concept of
a “single-index” p-value for the joint modeling of both statistics and provided FDR control under
symmetry assumption. Besides, Efron [21] considers applying multiple testing procedures over
pre-given groups to guarantee group-wise FDR control, while our work considers the FDR control
over data-driven subgroups, which is more challenging.

Conformal inference Conformal inference [57, 40, 56, 55] has garnered significant attention in
recent years, which leverages data exchangeability to construct model-agnostic prediction intervals.
We present some recent developments therein [39, 6, 59, 61, 50, 18, 15, 1]. Within the conformal
inference framework, several studies have focused on controlling the FDR in predictive setting,
i.e. the conformalized multiple testing [8, 26]. These studies involve constructing a valid testing
procedure using a holdout set. Such procedures include the BH procedure based on conformal p-
values [27, 35, 34, 24], thresholding via an FDP estimator [63, 41] and the e-BH procedure applied to
generalized e-values [7, 64]. Different from them, we focus on a selective scenario in conformalized
multiple testing, addressing new challenges arising from selective randomness.

Selective inference Selective inference concerns the inference problem after data-dependent process-
ing. Previous works have mainly focused on the inference of parameters [60, 31]. Recently, Bao et al.
[3] extended selective inference to the realm of conformal inference. They proposed a method to con-
struct selection conditional prediction intervals with controlled false coverage-statement rate (FCR)
[12] after data selection. Building upon this work, selective conformal inference with FCR control
has been further extended to accommodate more general selection rules [23, 28] or the online setting
[4]. In particular, under a certain class of selection rules, Gazin et al. [23] involves a procedure for
FDR control after selection which closely aligns with our method. However, their approach focuses
on selecting an informative set with FCR control under specific selection assumptions, limiting its
applicability in more general scenarios such as those with data-dependent selection. The problem we
tackle presents additional complexities, due to the intricate dependence on the selection procedure
and final decision procedure, requiring a more intricate and delicate analysis. Besides, Sarkar and
Kuchibhotla [47] proposed a post-selection framework to guarantee simultaneous inference [13] for
all coverage levels, which differs greatly from our scenarios.

2 Methodology

2.1 Recap: conformalized multiple testing

We first introduce how to make multiple testing in the predictive setting. Denote the index sets for the
labelled data Dc as C = {1, · · · , n}. Suppose µ̂(·) is a predictor via a machine learning algorithm
that is pre-given or can be trained on extra labeled data. Thus we can treat µ̂(x) as fixed. To construct
a valid test statistic based on µ̂(Xj), Bates et al. [8] considered to use conformal p-values built upon
the conformal inference framework [56]. Consider a monotone transformation V such that the larger
value of V (µ̂(Xj)) indicates the bigger likelihood of Y ̸∈ A. For example, if A = (b,∞), we can
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use V (y) = b− y. The marginal conformal p-value pMj for Xj is defined as

pMj =
1 + |{i ∈ C0 : Vi ≤ Vj}|

1 + |C0|
, j ∈ U ; (1)

where we denote Vj = V (µ̂(Xj)) as the nonconformity score for j-th sample and C0 = {i ∈ C :
Yi ̸∈ A} as the index set of labeled set containing only null samples.

The properties of marginal conformal p-value constructed by i.i.d.∼labeled and test data have been
investigated by Bates et al. [8] and we present them in the following proposition. Proposition 2.1
(i) guarantees that marginal conformal p-value is superuniform, thus it is a valid p-value. As the
conformal p-values have a nice dependence structure, the rejection set obtained by the famous BH
procedure [10] enjoys valid FDR control Proposition 2.1 (ii) indicates. For a set of p-values {pi}mi=1,
the BH procedure finds k = max{j : p(j) ≤ jα/m} where p(j) denotes the j-th smallest p-value in
{pj}mj=1 and obtain the rejection set as R̂u = {j : pj ≤ kα/m}.
Proposition 2.1 (Properties of the conformal p-value [8]). Suppose the labeled data and test data
are i.i.d.. For simplicity, we assume U0 = {j ∈ U : Yj ̸∈ A} = {n+ 1, · · · , n+m0} for m0 ≤ m.
The conformal p-values in (1) satisfy:

(i) The pMj is a marginally superuniform p-value, i.e. for any t, Pr(pMj ≤ t | j ∈ U0) ≤ t.

(ii) Furthermore, the BH procedure applied at level α on the conformal p-values {pMj }j∈U
controls the FDR level at πα, where π is the null proportion of test samples.

The property of the conformal p-value is obtained by the exchangeability between the labeled data
and test data. Through this, we can approximate the distribution of Vj , where j ∈ U0, using Vi from
i ∈ C0. Therefore, when the labeled data and test data have different distributions, maintaining the
exchangeability becomes crucial in constructing valid conformal p-values.

As Storey [48] suggested, we can further estimate the null proportion and incorporate it in the BH
procedure to further increase detection power. With the aid of labeled data, the null proportion can be
directly estimated by the corresponding proportion in the labeled set, i.e. π̂ = |C0|/|C|.

2.2 Selective conformal p-value

A selection procedure could possibly be employed to the test samples. In this case, the focus lies
primarily on the selected subgroup rather than the entire dataset, and decisions are made solely based
on this subset. Define the selection rule as SDc,Du

, which is a function of labeled set Dc and test set
Du. For simplicity, we may omit this subscript. The selection rule maps an individual point X into a
selection decision {0, 1}. And the selected subset can be written as Ŝu = {j ∈ U : S(Xj) = 1}.
There are many examples for data-dependent S. The S can be the clustering algorithm which
automatically determines the subgroup. Alternatively, S is associated with the selection score Tj ,
which is derived from certain components of Xj , and a selection threshold τ , such as the sample
mean value in {Tj}j∈U . In this case, we can express {S(Xj) = 1} = {Tj <

1
m

∑
k∈U Tk}.

After the selection procedure, we would make multiple testing on the selected subset Ŝu. However,
the distribution of the selected conformal p-values in (1) would be distinct from the original ones, due
to the selection effects. Consequently, directly running the BH procedure on the marginal conformal
p-values (1) in selected set Ŝu has no guarantee, which may lead to an inflated FDR level or poor
power. Addressing this issue raises two important considerations:

• How to characterize the selection conditional distribution of the selected individuals to
construct valid p-values?

• How to take account of the dependence structure among the valid p-values and the stochastic
nature of the selection event to design a trustful multiple testing procedure?

The first issue is widely considered in post-selection inference. Previous literature heavily relies on
the normality assumption to derive the conditional distribution of test statistics [32, 52]. By the spirit
of conformal inference, we consider constructing the selective conformal p-value by picking up the
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calibration set via the same selection rule, thereby guaranteeing the exchangeability between the
selected test unit and picked calibration data.

To be specific, we employ the selective algorithm S on the labeled set to derive the picked calibration
set Ŝc = {i ∈ C : S(Xi) = 1}. If S involves a selection threshold τ , we will choose the calibration
set as Ŝc = {i ∈ C : Ti ≤ τ}. We hope {Vi : i ∈ Ŝc} ∪ Vj for j ∈ Ŝu exhibits a certain level of
exchangeability, enabling us to capture the distribution of Vj .

With the aid of Ŝc, the selective conformal p-value can be accordingly constructed as:

pj :=
1 + |{i ∈ Ŝc ∩ C0 : Vi ≤ Vj}|

1 + |Ŝc ∩ C0|
, for j ∈ Ŝu. (2)

After obtaining valid p-values, ensuring the guarantee of the BH procedure is not straightforward due
to the dependence arising from the use of the same calibration set in computing conformal p-values
and the randomness from the data-dependent selection. Therefore, the second concern needs to be
carefully addressed. In this article, we examine the BH procedure applied to the selective conformal
p-values can enjoy finite sample FDR control for several commonly used selection rules. We outline
our procedure in Algorithm 1 and refer to our method as Selective Conformal P-Value (SCPV).

Algorithm 1 Selective conformal p-value with BH procedure (SCPV)
Input: Labeled set Dc, test set Du, selection procedure SDc,Du

, prediction model µ̂(·), target FDR
level α ∈ (0, 1).
Step 1 (Selection) Apply the selective procedure SDc,Du

to obtain the selected subsets Ŝu and Ŝc.
Step 2 (Calibration) Compute {Vi : i ∈ Ŝc ∩ C0}, {Vj : j ∈ Ŝu}.
Step 3 (Construction) Construct selective conformal p-value for each j ∈ Ŝu as (2)
Step 4 (BH procedure) Compute k∗ = max{k :

∑
j∈Ŝu

1(pj ≤ αk/m) ≥ k}
Output: Rejection set R̂u = {j ∈ Ŝu : pj ≤ αk∗/m}.

3 Theoretical guarantee

In this section, we aim to verify the FDR guarantee of Algorithm 1 for several commonly used
selection rules. Our focus here is to tackle the technical challenges associated with the selective
multiple testing problem. Unlike the conventional approach where a fixed number m of test units is
considered, we encounter a challenge due to the involvement of a random number of test units |Ŝu|.
This randomness makes the analysis considerably intricate unless we impose certain restrictions on
the selection rule. To deal with the selection set Ŝu, we introduce the concept of strong stability.

Definition 3.1 (Strong stability). Given selection set Ŝu = {j ∈ U : SDc,Du(Xj) = 1}. The
selection rule SDc,Du

is strongly stable if either of the conditions holds: for any i ∈ C∪U and j ∈ Ŝu

• (Leave out) SDc,Du
(Xi) = SDc∪{Zj},Du\{Zj}(Xi);

• (Replace) SDc,Du
(Xi) = SDc,Du\{Zj}∪{z}(Xi) for a fixed point z.

Here we define the strong stability of selection rule in two common ways: leaving one point out or
replacing one point with a fixed value. Many popular selection rules are strongly stable, such as
joint-exchangeable rule and top-K selection. Detailed discussions are provided in next subsections.

The strong stability plays a crucial role in our analysis, as it enables us to fix the randomness of the
selected set Ŝu. With the strongly stable property, we can perform a delicate analysis for the rejection
set from Algorithm 1 to obtain the theoretical guarantee.

Theorem 3.2. Suppose the data are i.i.d. and the selection rule SDc,Du
is strongly stable. Then the

selective conformal p-values defined in (2) satisfies Pr(pj ≤ t|j ∈ Ŝu, j ∈ U0) ≤ t, and the output
R̂u of Algorithm 1 satisfies FDR ≤ αE[|Ŝu ∩ U0|/|Ŝu|] ≤ α.
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We present the insight of our proof for Theorem 3.2. As a common operation in analyzing FDR
[22, 35], we decompose the FDR into the FDR contribution for each j ∈ U as

FDR = E

[∑
j∈U 1{j ∈ R̂u, j ∈ U0}

1 ∨ |R̂u|

]
=
∑
j∈U

E

1{pj ≤ α |R̂u|
|Ŝu|

, j ∈ Ŝu, j ∈ U0}

1 ∨ |R̂u|

 .

By the stability of selection rule, we can replace |R̂u| with a decoupled version |R̂(j)
u | which removes

the influence of pj . If given some quantity Φj that blocks most of the nuisance parameters, the
p-value pj has a uniform distribution and |R̂(j)

u |, |Ŝu| are fixed. Then the FDR control is by

FDR =
∑
j∈U

E

E[1{pj ≤ α
|R̂(j)

u |
|Ŝu|

, j ∈ Ŝu, j ∈ U0} | Φj ]

1 ∨ |R̂(j)
u |


≤
∑
j∈U

E

[
α|R̂(j)

u |
|Ŝu|

1

1 ∨ |R̂(j)
u |
1{j ∈ Ŝu, j ∈ U0}

]
= αE

[
|Ŝu ∩ U0|
|Ŝu|

]
By the construction of the conformal p-value, we analyze each selected unit j ∈ Ŝu by conditioning
on a carefully constructed quantity Φj = (D∗

C∪{j},DU\{j}). It comprises two components: DU\{j},
the test data with the j-th sample excluded, and D∗

C∪{j} := [Zi; i ∈ C ∪ {j}], the unordered set of
labeled data along with the j-th sample. The unordered set provides the order statistics but not the
specific ordering, which is a common convention in conformal inference literature [35, 34].

Through this approach, we are able to decouple the dependence that arises from the data-dependent
selection and the construction of p-values that share the same calibration data. If the selection rule is
strongly stable, then |Ŝu| is fixed given Φj for j ∈ Ŝu and the selective conformal p-value in (2) is
valid. By performing a careful analysis of the rejection set R̂u, i.e. replacing it with a pseudo rejection
set R̂(j)

u that remains fixed given Φj and j ∈ R̂u, we obtain the finite sample FDR guarantee.

3.1 Joint-exchangeable selection

Firstly, we consider the joint-exchangeable selection procedure. The joint-exchangeable selection
procedure is applied to {Xi : i ∈ C ∪ U} with exchangeability, i.e. the selection results remain
unchanged after any permutation of data in the merged set C ∪ U , as Definition 3.3 indicates.
Definition 3.3 (Joint-exchangeable selection). The selection procedure S is joint-exchangeable with
respective to the {Xi : i ∈ C ∪ U} if

SDc,Du
(Xi) = SDk,Dl

(Xi) for any i ∈ C ∪ U and Dk,Dl that are arbitrary partitions of Dc ∪ Du.

If the selection procedure is independent of both the labeled and test data, it is joint-exchangeable. In
the case of the selection with a threshold, the joint-exchangeable selection is equivalent to

τ(X1, · · · , X|C∪U|) = τ(Xπ(1), · · · , Xπ(|C∪U|)).

where τ(D) denotes that τ is computed using the dataset D. Therefore, the joint-exchangeable selec-
tion includes selection using constant thresholds or thresholds computed by {Ti}i∈C∪U exchangeably.
We can verify joint-exchangeable selection is strongly stable through the leaving out condition.
Proposition 3.4. The joint exchangeable selection procedure SDc,Du

is strongly stable.

According to Theorem 3.2, our procedure ensures FDR control for any joint-exchangeable selection
rule, which makes the choice of selection rule quite flexible. For example, we can perform a clustering
algorithm on the {Xi}i∈C∪U to divide the data into different groups. As a special case, our approach
aligns with the InfoSCOP proposed by Gazin et al. [23] under the joint-exchangeable selection rule.
They proposed a novel procedure for selecting an informative set and also provided FDR control
guarantee as an extension of their FCR control results.

While the joint-exchangeable rule contains various selection strategies, it is worth noting that many
cases involve selection that depends solely on the test data. In the following subsections, we
investigate several commonly used selection rules that are determined only by the test data. And the
assumption in InfoSCOP [23] is not satisfied under these cases.
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3.2 Top-K/Quantile selection

Next, we consider the top-K or quantile selection rule, which relies solely on the test data Du. This
type of rule is extensively studied in the literature [42, 3, 28] and is commonly used in practice.

Let τtopK denote the top-K selection threshold, which is defined as the (K + 1)-th smallest value in
{Tj : j ∈ U}. The top-K rule is equivalent to the quantile selection rule since τtopK corresponds to
the (K + 1)/m-quantile of the test data, and the threshold for the q-quantile is the ⌈mq⌉-th smallest
value. The selected test set and the chosen calibration set under the top-K rule are defined as:

Ŝu = {j ∈ U : Tj < τtopK} , Ŝc = {i ∈ C : Ti < τtopK} . (3)

We can verify that the top-K selection rule is strongly stable by the following proposition. With the
support of Theorem 3.2, we can ensure FDR control when employing the top-K selection rule.

Proposition 3.5. For top-K selection rule S with threshold τtopK(U), if j ∈ Ŝu, then

τtopK(Tn+1, · · · , Tj−1, Tj , Tj+1, · · · , Tn+m) = τtopK(Tn+1, · · · , Tj−1,−∞, Tj+1, · · · , Tn+m).

Thus top-K selection rule is strongly stable by the replacing condition.

3.3 General extension to weakly stable selection

In this subsection, we consider weakening the strongly stable condition. For example, the mean
thresholding rule does not satisfy the strong stability. By the insight of our proof, the key requirement
is the property of Ŝu such that we can handle the randomness of the selection event. Hence we define
the weakly stable selection rule as follows:

Definition 3.6 (Weak stability). Given selection set Ŝu = {j ∈ U : SDc,Du
(Xj) = 1}. We call the

selection rule SDc,Du
is weakly stable if

SDc,Du
(Xi) = SDc∪{Zj},Du\{Zj}(Xi) for any j ∈ Ŝu and any i ∈ U .

The weak stability does not require the SDc,Du(Xi) = SDc∪{Zj},Du\{Zj}(Xi) hold for i ∈ C. Except
for the selection rules previously discussed, the commonly used mean selection rule by test data only
is also weakly stable, i.e. {j ∈ U : Tj <

1
m

∑
i∈U Ti} = {j ∈ U : Tj <

1
m−1

∑
i∈U\{j} Ti}.

As the weakly stable rule fails to guarantee the exchangeability of the selected calibration set and
test set, it motivates us to explore a new construction method for selective p-values. The selection
set is denoted as Ŝu = {j ∈ U : SDc,Du

(Xj) = 1}. By the definition of weakly stable selection, we
know that Ŝu = {j ∈ U : SDc∪{Zj},Du\{Zj}(Xi) = 1} is also true. Specially, if the selection rule is
determined only by the test data, it holds that SDc∪{Zj},Du\{Zj}(·) = SDu\{Zj}(·).
Therefore, we adaptively pick data from the labeled set using the same “leaving out” rule as selecting
Zj . For any i ∈ C and j ∈ U , {SDu\{Zj}(Xi) = 1} and {SDu\{Zj}(Xj) = 1} are symmetric to Xi

and Xj . Leveraging this, we can pick up the calibration set by

Ŝc(j) = {i ∈ C : SDu\{Zj}(Xj) = 1} for j ∈ Ŝu

and construct the adaptive selective conformal p-value as

padaptj :=
1 + |{i ∈ Ŝc(j) ∩ C0 : Vi ≤ Vj}|

1 + |Ŝc(j) ∩ C0|
. (4)

For example, the mean selection rule picks up calibration set by Ŝc(j) = {i ∈ C : Ti ≤
1

m−1

∑
k∈U\{j} Tk}. Our adaptive strategy shares the same goal as the swapping strategy [? 28, 4] in

terms of constructing valid p-value after selection. However, our approach is different from the others
in core motivations since ours is directly related to weak stability, leading to a faster computation
and a more intuitive explanation here. We can verify that padaptj is valid since {Zk}k∈Ŝc(j)∪{j} are
exchangeable.

Proposition 3.7. The adaptive selective conformal p-value padaptj for weakly stable selection which
is determined only by the test data satisfies Pr(padaptj ≤ t | j ∈ Ŝu, j ∈ U0) ≤ t.
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However, the p-value for each selected test point padaptj is based on a different calibration set Ŝc(j),
making the dependence structure intricate. Consequently, the BH procedure has no safe guarantee to
control the FDR. But we find that BH is robust and can produce satisfactory results empirically.

Although this observation is acceptable, it would be desirable to design a new procedure to guarantee
the finite sample FDR control. To remedy this, we employ the conditional calibration framework [22]
to achieve finite sample FDR control. The overall procedure can be re-framed as the e-BH framework
[58] and a recent novel approach for boosting the power of e-BH procedure [33] can be employed in
our setting. The details are displayed in Appendix B.

Under the weakly stable selection rule, our method differs fundamentally from InfoSCOP [23] in
both methodology and theory. Since our approach and InfoSCOP are designed for different goals,
resulting in different analytical frameworks. Ours is specifically designed to address the multiple
testing problem across various selection rules. From the perspective of conditional calibration, our
method is unified, where the BH procedure for strongly stable selection can be seen as a special
case. As a comparison, InfoSCOP stands out as a remarkable work for selecting an informative
set with FCR control, but it is not primarily designed for our problem, which limits their method’s
applicability to more general selection rules.

4 Numerical studies

To demonstrate the wide applicability of the proposed method in Algorithm 1, we conduct compre-
hensive numerical studies. For regression setting, the region for the hypothesis is A = {y : y > c0},
where c0 is a fixed constant. For classification, we set A = {1}, i.e. the class 1 as the target region,
and we denote the prediction µ̂(X) as the predicted probability of Y = 1. The nonconformity score
we use to construct conformal p-value for both settings is V (µ̂(Xj)) = −µ̂(Xj).

Benchmarks: Since selective multiple testing has not been investigated before, we consider several
intuitive methods as comparing benchmarks.

• SCPV: Our procedure in Algorithm 1. Specially, for mean selection rule, we use the adaptive
p-value in (4) along with the BH procedure. The results for using conditional calibration
can be found in Appendix B;

• OMT: Ordinary multiple testing which constructs the conformal p-value directly as in
equation (1) for each selected sample based on the entire labeled set.

• AMT (BH/BY): An intuitive procedure by multiplying (1) with the selection proportion of
null samples. As the adjusted p-values have intractable dependence, making the validity of
BH procedure suspicious, we also utilize the Benjamini-Yekutieli (BY) [11] procedure to
control the FDR. More details are provided in Appendix A.1.

• SCOP: Directly invert the selective prediction interval constructed by Bao et al. [3] into
a test and make decision by whether the c0 is contained in the interval. It is designed for
regression setting and does not have FDR guarantee. See more detail in Appendix A.2.

We also use the Storey’s method [49] to increase power. See more information in Appendix C.1.
Selection rule: In the numerical studies, we choose the selection statistic Ti based on a specific
component of X . The selected subset is Ŝu = {i ∈ U : Ti < τ̂}, where τ̂ is the threshold. Three
different choices of selection thresholds are considered.

• Exchangeable (Exch): 70%-quantile of the first component of X in both labeled set and
test set, that is τ̂ is the 70%-quantile of {Ti : i ∈ C ∪ U}.

• Quantile (Quan): 70%-quantile of the first component of X in the test set, that is τ̂ is the
70%-quantile of {Ti : i ∈ U}.

• Mean: the sample mean of the first component of X in the test set, that is τ̂ = 1
m

∑
j∈U Tj .

Evaluation metrics: We empirically evaluate the FDR by averaging the FDP based on selected
samples and the power by averaging the proportion of correct selections among all selected alternative
test samples, i.e. Power := |i ∈ Ŝu : i ∈ R, Yi > c0|/|i ∈ Ŝu : Yi > c0| over 100 independent runs.
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4.1 Results on synthetic data
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Figure 1: Empirical FDR (left) and Power (right) of five methods under different scenarios and
selection rules. The Noise Strength varies from 0.1 to 1. The black dashed line in the left plot denotes
the target FDR level α = 10%.

In synthetic studies, we generate i.i.d. 10-dimensional covariates from Xi ∼ Unif([−1, 1])10. The
corresponding regression responses are generated as Yi = µ(Xi) + ϵi, where ϵi denotes independent
random noise. The following data-generating scenarios are considered:

• Case A: The data generating model is µ(X) = 4(X(1) + 1)|X(1)|1{X(2) > −0.4} +
4(X(1) − 1)1{X(2) ≤ −0.4}. The noise is ϵi ∼ N(0, σ2), independent of X . And c0 = 2.

• Case B: µ(X) = 1{XTβ > 1.5}, where β = (1,−1, 2,−2, 0, 0, 0, 0, 0, 0). The noise is
ϵi ∼ N(0, 0.1σ2), independent of X . And c0 = 0.12.

We fix the labeled data size n = 1, 200 and the unlabeled data size m = 1, 200. We fit the
regression models µ̂(·) on an additional labeled set with size 1, 200 using the random forest algorithm,
implemented by R package randomForest with default parameters. Specifically, for both scenarios,
we select the first component of X as the selection statistic, i.e., Ti = X

(1)
i .

Figure 1 displays the FDR (left) and power (right) through varying noise strength. Across both
settings, SCPV can deliver valid FDR control. As expected, the OMT fails to control FDR. This can
be understood since the OMT constructs conformal p-values without consideration of the selection
procedure, leading to smaller p-values possibly. Moreover, our method demonstrates greater statistical
power compared to AMT. This is because AMT does not make full use of information from the
selection procedure. Meanwhile, SCOP fails to control FDR in case B. And even if SCOP can control
FDR in case A, the accompanying loss of power is substantial. This is because the SCOP is not
designed for multiple testing and can not deliver valid FDR results.

4.2 Results on real data

Table 1: Summary of real-world datasets for conformal-
ized multiple testing

Abalone[37] Census[9] Credit[30] Promotion[36]
#Features 8 14 30 12
#Instances 4,177 48,842 284,808 54,809

Task Reg Cla Cla Cla

We consider several real data experi-
ments including both regression (Reg)
and classification (Cla) settings. We sum-
marize the datasets in Table 1. The test
samples and labeled samples are con-
structed by subsampling the dataset with
n = 1000 and m = 2000, and the null
proportion is fixed by π = 0.8. We sam-
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ple another 1000 samples to train a ran-
dom forest model for classification and
regression. See more details in Appendix C.2. The results are reported in Table 2. The AMT(BY)
outputs null rejection set in most cases, hence we omit it. As expected, SCPV achieves highest power
among methods controlling the FDR, verifying its effectiveness and validity.

Table 2: Empirical FDR (%) and Power (%) with target FDR α = 10%. The bracket contains the
standard error (%). The highest power among methods controlling the FDR is bolded.

EXCH QUAN MEAN

DATASET METHOD FDR POWER FDR POWER FDR POWER

SCPV 6.68(0.75) 11.3(0.13) 6.61(0.75) 11.2(1.3) 6.37(0.73) 7.92(0.96)

ABALONE OMT 24.8(0.51) 51.7(0.86) 24.9(0.51) 51.8(0.88) 20.1(0.65) 30.9(1.2)

AMT(BH) 5.12(0.65) 8.30(1.0) 5.13(0.65) 8.30(1.1) 6.09(0.71) 7.50(0.90)

SCPV 7.12(0.80) 15.3(1.5) 7.04(0.75) 15.2(1.5) 7.20(0.69) 15.7(1.3)

CENSUS OMT 13.9(0.68) 30.3(1.2) 14.0(0.68) 30.4(1.2) 14.7(0.57) 32.6(1.1)

AMT(BH) 2.55(0.49) 5.48(0.86) 2.48(0.49) 5.26(0.85) 6.63(0.65) 12.4(1.1)

SCPV 8.85(0.54) 85.9(0.33) 8.85(0.54) 85.9(0.33) 9.15(0.72) 84.5(0.35)

CREDIT OMT 12.6(0.62) 86.7(0.33) 12.7(0.61) 86.7(0.33) 14.9(0.70) 85.9(0.36)

AMT(BH) 3.46(0.31) 84.9(0.32) 3.46(0.31) 84.9(0.32) 2.77(0.28) 83.0(0.38)

SCPV 7.44(0.61) 19.6(1.1) 7.67(0.62) 19.7(1.1) 7.55(0.64) 14.3(0.90)

PROMOTION OMT 19.7(0.68) 35.7(0.65) 19.7(0.69) 35.6(0.66) 18.3(0.68) 25.4(0.58)

AMT(BH) 5.33(0.52) 16.5(1.0) 5.45(0.52) 16.8(1.0) 6.07(0.57) 13.1(0.85)

5 Limitations and discussions

Here we point out the current limitations of our paper and discuss the potential directions. First, our
work relies on the i.i.d. assumption. Exploring the selective multiple testing problem in scenarios
where the labeled set and test set exhibit different distributions would be interesting. Second, we
require the selection rule to be stable for theoretical guarantee. It would be attractive to consider
complex selection procedures that lack stability, such as clustering based on test data only.
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A Details of the comparing benchmarks

A.1 The adjusted p-value (AMT)

Here, we provide an overview of the statistical properties associated with the adjusted p-values.

We draw inspiration from the work of Benjamini and Yekutieli [12], which constructs adjusted
confidence intervals for selected parameters for FCR control. They multiplies the confidence level α
by a quantity related to the proportion of selected candidates over all candidates. In most cases, the
quantity is approximately the selection proportion. And they proved such simple adjustment on the
level can provide FCR control.

Analogously, we can adjust the p-value after selection by multiplying the selection proportion:

p∗j = min

{
θ̂
1 + |{i ∈ C0 : Vi ≤ Vj}|

1 + |C0|
, 1

}
, j ∈ Ŝu. (5)

where θ̂ represents an estimator that estimates the selected proportion under the null hypotheses.
Since the response of the test data is not directly observable, we estimate this proportion by employing
the same selection procedure on the labeled data, i.e. θ̂ = |C0|

|C0∩Ŝc|
. We can verify that the adjusted

p-value is super-uniform for joint-exchangeable selection rule.
Proposition A.1. The adjusted p-value is super-uniform i.e.

P(p∗j ≤ α | j ∈ U0 ∩ Ŝu) ≤ α

where p∗j is defined in (8).

Proof. The case p∗ = 1 is trivial, so we only consider the case π̂
1+|{i∈C0:Vi≤Vj}|

1+|C0| ≤ 1. In this case,
we have

P
(
p∗j ≤ α | j ∈ U0 ∩ Ŝu

)
= P

(
|C0|

|C0 ∩ Ŝc|
1 + |{i ∈ C0 : Vi ≤ Vj}|

1 + |C0|
≤ α | j ∈ U0 ∩ Ŝu

)

≤ P

(
1 + |{i ∈ C0 : Vi ≤ Vj}|

1 + |C0 ∩ Ŝc|
≤ α | j ∈ U0 ∩ Ŝu

)

≤ P

(
1 + |{i ∈ C0 ∩ Ŝc : Vi ≤ Vj}|

1 + |C0 ∩ Ŝc|
≤ α | j ∈ U0 ∩ Ŝu

)
(i)

≤ α

where (i) use the property that the variables {Vj : j ∈ U0 ∩ Ŝu} and {Vi : i ∈ C0 ∩ Ŝc} are
exchangeable when the selection procedure is exchangeable of the test and labeled data.

The correlation of the adjusted p-values can be complex when using an arbitrary selection procedure.
In order to address this issue, we propose utilizing the Benjamini-Yekutieli (BY) [11] procedure to
effectively control the FDR. It replaces the original level α with α/L|Ŝu|, where

L|Ŝu| =

|Ŝu|∑
i=1

1

i
= log |Ŝu|+O(1).

The BY method can handle the dependence between p-values, but deliver a more conservative result.

A.2 Selection conditional conformal prediction (SCOP)

The selection conditional conformal prediction (SCOP) proposed by Bao et al. [3] is a method for
constructing valid prediction intervals after selection. The prediction interval is reported only when it
is selected. The SCOP aims to control the false coverage-statement rate (FCR) [12], which is the
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expected ratio of the number of selected prediction intervals failing to cover their respective true
outcomes to the total number of selected prediction interval, i.e.

FCR := E

[∑
j∈U I{j ∈ Ŝu, Yj ̸∈ PI(Xj)}

1 ∨ |Ŝu|

]
,

where PI(Xj) is the prediction interval. To ensure FCR control, the SCOP involves a similar
procedure to pick up a calibration set from the labeled data using the same selection rule. And then
the prediction interval for selected individual is constructed via the residuals in picked calibration set.

As a natural idea, we can simply invert the prediction interval into a hypothesis testing. If the
hypothesis is H0,j : Yj ≤ c0 v.s. H0,j : Yj > c0, reject the single hypothesis with type I error at α is
equivalent to that the one sided prediction interval covers c0. We formulate this idea as an intuitive
benchmark as Algorithm 2.

Algorithm 2 SCOP for selective multiple testing
Input: Labeled set Dc, test set Du, selection procedure SDc,Du , prediction model µ̂(·), FCR level
α ∈ (0, 1).
Step 1 Apply the selective procedure S to obtain the selected subsets Ŝu and Ŝc.
Step 2 Compute residuals {Ri = Yi − µ̂(Xi) : i ∈ Ŝc}.
Step 3 Construct selective conformal prediction intervals for each j ∈ Ŝu by

PI(Xj) = (−∞, µ̂(Xj) +Qα({Ri}i∈Ŝc
)],

where Qα({Ri}i∈Ŝc
) denotes the ⌈(1− α)(|Ŝc|+ 1)⌉-th smallest value in {Ri}i∈Ŝc

.
Step 4 Reject sample j if c0 ∈ PI(Xj)

Output: Rejection set R̂SCOP = {j ∈ Ŝu : c0 ∈ PI(Xj)}.

Under the null, we have P(c0 /∈ PI(Xj)) ≤ P(Yj /∈ PI(Xj)) ≤ α/P(Yj ≤ c0). This implies
marginal coverage, as for a single hypothesis H0j , we can control the type I error. It is important to
note that the scaling of the inequality P(c0 /∈ PI(Xj)) ≤ P(Yj /∈ PI(Xj)) is often too conservative.

However, when it comes to simultaneous testing, the SCOP procedure fails to control the FDR.
This is because the FDR is built up on the rejection set R̂ ⊂ Ŝu, where the rejection decisions are
intricately linked to the entire selection set and the inherent randomness within the selection set
further complicates the distribution of the final rejection set. Hence our work address this challenge
by carefully analyzing the randomness from selection and rejection set.

B Conditional calibration

Here we introduce the frame work of conditional calibration [22].

The first idea of conditional calibration is to control a conditional expectation, given some conditioning
statistic Φj that blocks most or all of the nuisance parameters from influencing the conditional analysis.
And we require that padaptj is conditionally superuniform given Φj :

Pr(padaptj ≤ t | j ∈ Ŝu, j ∈ U0,Φj) ≤ t

Secondly, the number of rejections should should be bound from below by a known function of Φj .
If all constraints are satisfied, that set of rejections is guaranteed to control the FDR bellow α.

Step 1: Calibration For each of the m test points, i ∈ D = {n + 1, ..., n + m}, let Φj =

(D∗
C∪{j},DU\{j}). For each test point j ∈ Ŝu, compute the adaptive p-value

p
adapt,(j)
ℓ =

∑
i∈Ŝc∩C0

1 {Vi < Vℓ}+ 1 {Vj < Vℓ}
1 + |Ŝc ∩ C0|

, ∀ℓ ̸= j, ℓ ∈ Ŝu. (6)

Next, let R̂i indicate the number of rejections obtained by applying BH at level α, for some fixed
α ∈ (0, 1), to the approximate p-values {padapt,(j)l : ℓ ̸= j, ℓ ∈ Ŝu} ∪ {0}.
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Step 2: Preliminary rejection. Define the preliminary rejection setR+ as:

R+ =

{
i ∈ Ŝu : padapti ≤ αR̂i

|Ŝu|

}
R̂+ = |R+|. If R̂+ ≥ R̂i for all i ∈ R+, then return the final rejection set R = R+. Otherwise,
proceed to the next step.

Step 3: Pruning. (a) Deterministic pruning: Define R as:

Rdtm = max
{
r :
∣∣∣i ∈ R+ : R̂i ≤ r

∣∣∣ ≥ r
}
.

The pruned rejection setR is that containing the indices with i ∈ R+ and R̂i < R.

(b) Randomized pruning: Generate independent standard uniform random variables ϵi for each
i ∈ R+, and define R as:

Rrdm = max
{
r :
∣∣∣i ∈ R+ : ϵi ≤ r/R̂i

∣∣∣ ≥ r
}
.

The pruned rejection setR is the set containing the indices i ∈ R+ such that ϵi < R/R̂i.

The conventional conditional calibration offers a flexible framework to decouple the dependence
between p-values. But in our selective setting, the number of test units is |Ŝu|, which can be compli-
catedly dependent with both pj and R̂j . And when analyzing the FDR, the event that j-th sample is

selected is also involved. So our primary focus is on ensuring E

[
1{pj≤

αR̂i
|Ŝu|

,j∈Ŝu}|Ŝu|

|R̂j |
| Φj

]
≤ α.

The conditional calibration framework primarily focuses on the correlation of p-values. However, a
significant challenge arises because FDR control in a selective setting involves not only individual
p-values but also the selection procedure itself. Consequently, the selective effects are unavoidable
when implementing conditional calibration. To address this, we leverage the stability property of the
selection rule, which allows us to effectively conduct analysis over the selected subset effectively and
rigorously.

We can prove that the conditional calibration applied to the adaptive selective conformal p-values can
control the FDR at α. The technical proofs are deferred in Appendix F.8.
Theorem B.1. Assume the data are i.i.d. and the selection rule is weakly stable. Then, the FDR

output by the above three-step procedure applied to padapt is smaller than αE
[
|Ŝu∩U|0

|Ŝu|

]
.

It is easy to observe that Rdtm ⊆ Rrdm, indicating that randomized pruning results in larger rejection
sets. Therefore, we employ randomized pruning in practice to enhance power. By our empirical
investigations, we find the BH procedure applied to padaptj can ideally control the FDR, and the
conditional calibration approach with random pruning also has a close performance in power. Figure
2 displays the FDR (left) and power (right) through varying noise strength employing conditional
calibration and BH procedure.

B.1 Eliminating randomness by boosting e-BH

The deterministic pruning process would lose certain power. Although randomized pruning can
improve this situation, the external randomness can potentially hinder the reproducibility of the
results (the procedure can be quite sensitive to the realization of the ϵ’s, leading to different selections
across various algorithm runs). A recent method [33] can enhance the power of the pruning process
without introducing additional randomness.

Specifically, letR(e) represent the rejection set yielded by the e-BH procedure on e at level α ∈ (0, 1).
For each j ∈ [m], define R̂j(e) := R(e) ∪ {j} and subsequently define the function

ϕj (c;Sj) := E

m

α
·
1

{
cẽj ≥ m

α|R̂j(ẽ)|

}
∣∣∣R̂j(ẽ)

∣∣∣ − ẽj

∣∣∣∣∣∣∣∣ Sj
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Figure 2: Empirical FDR (left) and Power (right) of conditional calibration (Con) and BH procedure
under different cases for the mean selection rule. The black dashed line denotes the target FDR level
10%.

where ẽ = (ẽ1, . . . , ẽm) follows the conditional distribution e | Sj . With the associated critical value
ĉj := sup {c : ϕj (c;Sj) ≤ 0}, the boosted e-values are constructed as:

ebj =


m

α|R̂j(e)| · 1
{
ĉjej ≥ m

α|R̂j(e)|

}
if ϕj (ĉj ;Sj) ≤ 0

m

α|R̂j(e)| · 1
{
ĉjej >

m

α|R̂j(e)|

}
if ϕj (ĉj ;Sj) > 0

They prove that the boosted e-values are generalized e-values andR(e) ⊆ R(eb).
Our procedure can be viewed as a generalization for a selective scenario of their approach. The
conditional calibration approach with deterministic pruning is equivalent to the e-BH procedure

applied to {ej : j ∈ Ŝu}, where ej =
|Ŝu|1{pj≤

αR̂j(p)

|Ŝu|
}

αR̂j(p)
by referencing Jin and Candès [27] and

p = {pj}j∈Ŝu
. Another form of e-value existing in conformal inference is based on a specific

stopping time [43, 7]. But we find it is not directly applicable in our setting as our calibration sets are
different for each test data. Under our stability assumption, we can confirm that ej is a valid e-value
in a manner similar to Lemma E.2 in our paper. With this equivalence property, the boosting method
can be directly applied to our deterministic pruning approach by constructing the new boosted e-value
with m = |Ŝu| and Sj = (D∗

C∪{j},DU\{j}).

C Details for the numerical experiments

C.1 Implementation of Storey’s method

The Storey’s method [49] aims to estimate the null proportion π to increase the detection power.
In our setting, the null proportion can be directly estimated by the corresponding proportion in the
labeled set, i.e. π̂OMT = π̂AMT = |C0|/|C| and π̂SCPV = |Ŝc ∩ C0|/|Ŝc|. And when applying BH
procedure, we will use a level of α/π̂ instead of α, such that the FDR can be controlled at α exactly.

C.2 Details of the real data experiments

• Abalone [37]: contains easily obtainable measurements of abalone. The task is to predict
the age of abalone from physical measurements. We use the shell weight as the selection
score. The c0 we used for this task is taken by 12.

• Census [9]: contains census data extracted from 1994 Census Bureau database. We focus
on people from America and regard the income attribute as the response of interest, which is
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a binary variable indicating whether one’s income exceeds $50K per year. The feature of
age is used as selection score T .

• Credit [30]: contains transactions made by credit cards over the course of two days, some
being frauds. The task is to identify the frauds and we use the specific feature, amount, as
the selection score. Since it contains only 492 samples of class 1, we set the null proportion
at 0.9 instead.

• Promotion [36]: contains employee’s past and current performance and the final promotions.
The task is to predict whether a potential promotee at checkpoint in the test set will be
promoted or not after the evaluation process. We use the specific feature, average score in
current training evaluations, as the selection score.

D Additional comparing methods

We discuss two additional comparing methods which are nicely suggested by the reviewers.

Self-consistent/compliant adjustment (SCA) Using the marginal p-values in 1, one can directly
achieve FDR control under any data-dependent selection simply by taking the largest self-consistent
rejection set, i.e. the largest subsetR s.t. pi ≤ α′R/K for each i ∈ R ⊆ Ŝu, where α′ is the largest
value that satisfies π0α

′ (1 + log (1/ (π0α
′))) ≤ α where π0 = |C0| /|C| is the null proportion. This

is a direct consequence of Theorem 3 of [51] and the PRDS property of conformal p-values from [8].

We analyze the comparison between our approach and the baseline method from two perspectives.
From the theoretical point of view, we have observed that the power loss associated with utilizing
a selective conformal p-value is usually less than that incurred by the FDR-Linking method. To
illustrate this, assume π0 = 0.7 and α = 0.1 as in the simulation setting of quantile selection, then we
derive α′ ≈ 0.025. The AMT method adjusts the marginal p-value after selection by multiplying the
selection proportion θ̂ = 1/0.7. This is equivalent to employing the BH procedure on the marginal
p-value with α = 0.07, which evidently yields greater power than SCA. Additionally, AMT does not
make full use of the information from the selection procedure. In contrast, our proposed method uses
a smaller p-value than AMT, which suggests more power increase.

In terms of empirical performance, as demonstrated in both cases from our paper, the SCA method
suffers from a power loss, confirming our theoretical analysis.

Table 3: Comparisons of empirical FDR (%) and Power (%) with target FDR level α = 10% by 500
repetitions.

QUAN MEAN

FDR POWER FDR POWER

CASE A SCA 3.59 88.7 2.85 84.7

SCPV 9.83 93.9 9.90 93.9

AMT 6.23 92.1 8.28 92.6

CASE B SCA 3.79 75.7 3.38 66.4

SCPV 9.82 84.9 9.79 81.1

AMT 8.71 77.0 5.81 79.5

InfoSCOP Gazin et al. [23] propose a novel method named InfoSCOP, which is closely related to
our approach under the joint-exchangeable selection rule. Below, we provide a detailed discussion of
their method. The primary objective of InfoSCOP is to select informative prediction sets with false
coverage rate (FCR) control, although it is not specifically designed for multiple testing.

Their focus is on an informative selective prediction set procedure, denoted as Ŝ infou ⊂ U , where each
prediction set Cj is I-informative for every j ∈ Ŝ infou ⊂ U . If a prediction set Cα

j is I-informative,
then all the prediction sets it contains are also I-informative, and it is right-continuous for the
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coverage level. By leveraging the property of I-informative selection, they link the FCR control
problem with BH procedure, and verify that the FCR control can also imply the following FDR
control:

E

[∑
j∈Ŝinfo

u
1{Yj ̸∈ ∪C∈IC}

1 ∨ Ŝ infou

]
.

InfoSCOP’s procedure to achieve FCR control consists of two main parts. The first part transforms
the informative selection procedure into a specific BH procedure. Let p = {pj}j∈U denote the set of
p-values over test set. These p-values are inverted into I-adjusted p-values by

qj = min{α ∈ (0, 1] : Cα
j (p)}.

The BH procedure is then applied to the q = {qj}j∈U to obtain a selection set BH(q). The second
part involves using the adjusted approach from Benjamini and Yekutieli [12] to construct prediction
sets for each selected individual, at the level of α|BH(q)|/m, thereby providing FCR guarantee. To
mitigate power loss from this adjustment process, they employ the method from Bao et al. [3] to
select an initial subset S0 ⊂ U which reduces the number of units and allows for a larger adjusted
level of α|BH|/|S0| to construct prediction sets. To maintain their theoretical guarantee, they require
the initial selection to be joint-exchangeable, which connects to our setting.

The FCR guarantee of InfoSCOP can directly imply FDR control on a data-dependent selection set by
ensuring that the "informative prediction set" is informative with respect to the null hypothesis being
tested. In this way, InfoSCOP implements an FDR control procedure after selection by applying the
BH procedure to selective conformal p-values, which closely aligns with the core approach of our
work.

For strongly stable selections, our method can be simplified and degenerate into a form similar to
InfoSCOP. But the assumption in InfoSCOP is not satisfied by the quantile selection rule based solely
on test data. Thus, their theoretical results are not applicable in such cases, while our framework
bridges this theoretical gap.

And our approach covers a wider range of selection rules. For instance, when dealing with weakly
stable rules, we employ conditional calibration on adaptive p-values to ensure rigorous FDR guar-
antees. The table below compares the performance of our approach with InfoSCOP under mean
selection rule. The InfoSCOP shows reasonable empirical performance, which is similar to ours.
Therefore, it is possible that InfoSCOP may still work under mean selection, making it an interesting
topic for theoretical investigation, which remains unexplored in InfoSCOP. In contrast, we provide
FDR control guarantee under a variety of selection scenarios.

Table 4: Comparisons of empirical FDR (%) and Power (%) with target FDR level α = 10% by 500
repetitions.

CASE A CASE B

FDR POWER FDR POWER

INFOSCOP 9.85 94.0 9.80 78.4

SCPV 9.86 93.4 9.80 78.1

In conclusion, our approach and InfoSCOP are designed for different goals, resulting in different
analytical frameworks. Ours is specifically designed to address the multiple testing problem across
various selection rules. From the perspective of conditional calibration, our method is unified, where
the BH procedure for strongly stable selection can be seen as a special case. As a comparison,
InfoSCOP is an excellent work for selecting an informative set with FCR control, but it is not
primarily designed for multiple testing after data-dependent selection. Their FDR guarantee is an
extension of FCR control, which limits their method’s applicability to different selection rules.
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Table 5: Comparisons of empirical FDR (%) and Power (%) under different scenarios and thresholds
with target FDR α = 10% and noise strength σ = 0.5. The sample sizes of the labeled set and the
test set are fixed as n = m = 1200.

CONSTANT EXCH TEST
FDR POWER FDR POWER FDR POWER

RANDOM FOREST
SCPV 9.81 95.27 9.78 95.23 9.80 95.23
OMT 19.07 98.87 19.07 98.87 19.07 98.87

AMT(BH) 6.14 92.41 6.11 92.35 6.14 92.36
AMT(BY) 0.73 79.20 0.72 79.15 0.71 79.13

SVM
SCPV 9.82 85.84 9.83 85.88 9.85 85.89
OMT 15.05 95.21 15.05 96.21 15.04 96.18

AMT(BH) 7.79 79.66 7.81 79.69 7.80 79.65
AMT(BY) 1.28 38.82 1.29 38.90 1.28 38.87

NEURALNET
SCPV 9.73 88.62 9.72 88.14 9.74 88.35
OMT 7.89 64.44 7.90 64.39 7.90 64.45

AMT(BH) 6.15 19.44 6.19 19.46 6.20 19.49
AMT(BY) 0.04 0.14 0.05 0.17 0.04 0.14

E Additional empirical results

E.1 The effect of the learning models

In Table 5, we present the results of FDR and power under three machine learning methods. The data
is generated based on the settings specified in case A. The neural network (Neuralnet) with a single
hidden layer and 5 hidden neurons is implemented by using the R package neuralnet. And the
linear output units are used. Here, we fix the noise strength σ = 0.5. It can be seen that our method
controls FDR at the expected level and it also provides satisfactory testing power. In contrast, the
FDR values obtained from AMT tend to be overly conservative, leading to a notable deflation of
its power. In the first two settings, the OMT methods are inadequate in effectively controlling FDR.
While they can successfully control FDR in the last setting, they often suffer from a loss of statistical
power.

E.2 A real data application with clustering

Diabetes is a chronic disease that affects a large and growing number of people worldwide [65].
As such, identifying potential diabetes patients using risk factors and machine learning tools is an
attractive approach for early intervention and preventive measures. To this end, we applied our method
to the Diabetes Health Indicators Dataset [38] provided by the Behavioral Risk Factor Surveillance
System (BRFSS) in the United States. Through this analysis, we are able to effectively identify
high-risk individuals while also providing uncertainty quantification measures.

In the dataset, the response variable is denoted as Yj which takes the value of 0 or 1, indicating
whether the j-th person suffers from diabetes. The dataset also includes patient-related information
consisting of 21 features, such as BMI (Body Mass Index), cholesterol level, and other health risk
indicators. These covariates provide additional information about each individual that can be used to
analyze and predict the likelihood of diabetes. Our goal is identifying those diabetes patients with
controlled FDR α = 20%, i.e.

H0,j : Yj = 0 v.s. H1,j : Yj = 1.

The data is processed as follows: a total of n = 2, 000 labeled data points and m = 2, 000 test data
points are randomly sampled from the dataset. The prediction model µ̂ is constructed by random
forest using another 2, 000 i.i.d. training data. Based on prior knowledge, we understand that
individuals with obesity are at a higher risk of suffering from type II diabetes [54]. Therefore, our
focus is directed towards making inferences specifically on individuals with a high BMI. Denote the
selected subset Ŝu = {j ∈ U : Tj > τ}. Several selection rules are considered. Constant: Ti is the
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BMI of i-th individual. τ = 30. Exch: Ti is the BMI of i-th individual and the τ is the 70%-quantile
of {Tj : j ∈ C ∪ U}. Quan: Ti is the BMI of i-th individual. τ is the 70%-quantile of {Tj : j ∈ U}.
Table 6 depicts the results of our proposed SCPV and other compared benchmarks using the thresholds
mentioned above. Our method and adjusted methods successfully achieve valid FDR control using
all of these selection rules. However, adjusted methods select fewer individuals, leading to powerless
results. Meanwhile, the OMT fails to control FDR for most settings.

Table 6: Comparisons of empirical FDR (%) and Power (%) with target FDR level α = 20% by 500
repetitions.

CONSTANT EXCH QUAN

FDR POWER FDR POWER FDR POWER

SCPV 19.99 63.99 20.01 72.43 20.03 72.26

OMT 23.88 82.99 23.14 87.55 23.18 87.44

AMT(BH) 13.21 23.52 8.58 12.54 8.66 12.93

AMT(BY) 0.03 0.05 0.02 0.05 0.02 0.04

Besides, the dataset is potentially composed of different groups, and it is important to identify
individuals while controlling the FDR for each group. This allows us to make more accurate
assessments and informed decisions specific to each group. To address this, we employ a clustering
algorithm, specifically K-means, to divide the dataset (which uses both labeled and test data but
lacks response information) into two distinct groups. Our primary objective is to draw inferences
within each individual group. The clustering process results in two groups that exhibit significant
disparities in terms of the “MentalHealth” covariate. Consequently, we refer to the group with a lower
“MentalHealth” index as Group A, while the other group is denoted as Group B.

Regarding the results for the two clustered groups in Table 7, we observe that our method exhibits
stringent FDR control. The OMT lacks power for Group A and yields an inflated FDR level for
Group B. As for these adjusted multiple testing methods, they deliver more conservative rejection
results. To conclude, our method is powerful to provide subgroup FDR control for adaptively chosen
groups.

Table 7: Comparisons of empirical FDR (%) and Power (%) with target FDR level α = 20% by 500
repetitions.

GROUP A GROUP B
FDR POWER FDR POWER

SCPV 16.35 12.75 19.79 77.05
OMT 4.58 1.43 24.04 95.60

AMT(BH) 1.84 0.38 11.54 23.96
AMT(BY) 0.00 0.00 0.17 0.16

E.3 A real data application with deep learning method

Breast cancer is the most common form of cancer in women, with infiltrating ductal carcinoma (IDC)
being the most common form of breast cancer. Accurately identifying and classifying subtypes of
breast cancer is an important clinical task, and utilizing deep learning methods for identification can
effectively save time and reduce errors. Our dataset consists of complete whole slide images of breast
cancer (BCa) specimens scanned at 40 times magnification. Our method can effectively identify
individuals who may be at risk of breast cancer, while also measuring the uncertainty of the deep
learning model.

In this dataset, the label is denoted as Y, with Y taking values of 0 and 1, representing whether the j-th
image is a slice from a breast cancer specimen. Our goal is identifying those breast cancer patients
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with controlled FDR α = 10%, i.e.

H0,j : Yj = 0 v.s. H1,j : Yj = 1.

The data is processed as follows: a total of n = 800 labeled data points and m = 800 test data points
are randomly sampled from the dataset. The prediction model µ̂ is constructed by a convolutional
Neural Network with 10 layers using another 2000 i.i.d. training data. This network consists of a
total of 10 layers, including 4 convolutional layers and 3 max pooling layers.

Ti represents a score used to assess the risk of breast cancer, such as the probability of developing
breast cancer predicted by a model. Our goal is to identify individuals in the high-risk group who
are more likely to develop the disease. Denote the selected subset Ŝu = {j ∈ U : Tj > τ}. Several
selection rules are considered. Constant: Ti represents the predicted probability of the i-th individual
obtained using model µ̂. τ = 0.2. Exch: Ti represents the predicted probability of the i-th individual
obtained using model µ̂ and the τ is the 30%-quantile of {Tj : j ∈ C ∪ U}. Quan: Ti represents
the predicted probability of the i-th individual obtained using model µ̂. τ is the 30%-quantile of
{Tj : j ∈ U}.
Table 8 displays the outcomes obtained by our proposed SCPV method and other benchmark ap-
proaches when employing the specified thresholds. Our method and adjusted methods successfully
achieve valid FDR control under these criteria. However, adjusted methods select fewer individuals,
resulting in powerless results. Meanwhile, the OMT proves inadequate in controlling FDR for most
settings.

Table 8: Comparisons of empirical FDR (%) and Power (%) with target FDR level α = 10% by 100
repetitions.

CONSTANT EXCH QUAN

FDR POWER FDR POWER FDR POWER

SCPV 9.88 72.9 9.71 74.0 9.75 74.1

OMT 14.1 80.3 16.9 88.3 17.0 88.7

AMT(BH) 9.24 71.4 9.24 73.3 9.24 73.6

AMT(BY) 0.479 9.43 0.479 9.71 0.479 9.80

F Technical proofs

F.1 Revisit of notations

The index set of the labeled set and test set are C and U . For any subset S ⊆ C ∪ U , we use DS
to denote the data {i ∈ S : (Xi, Yi)}. The selected test set and calibration set are Ŝu and Ŝc. The
null labeled set and test set are denoted as C0 = {i ∈ C : Yi ̸∈ A} and U0 = {j ∈ U : Yj ̸∈ A}.
Equivalently, {Yi}

F.2 Auxiliary Lemmas

We introduce some auxiliary lemmas. The first one is the quantile inflation lemmas which is common
in conformal inference literature [46, 3] and we omit its proof.
Lemma F.1. Let x(⌈nt⌉) is the ⌈nt⌉-smallest value in {xi ∈ R : i ∈ [n]}. Then for any t ∈ (0, 1), it
holds that

1

n

n∑
i=1

1(xi ≤ x(⌈nt⌉)) ≤ t.

If all values in {xi : i ∈ [n]} are distinct, it also holds that

1

n

n∑
i=1

1(xi ≤ x(⌈nt⌉)) ≥ t− 1

n
,
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The next lemma is the key of our theoretical results, which characterizes the properties of the
constructed p-values. The proof is deferred to Appendix F.4.
Lemma F.2. If the data are i.i.d. and the selection rule SDc,Du

is strongly stable, we have that

(a)R(j→0) defined in (9) is measurable with respect to Φj defined in 7.

(b) For any j ∈ U ,it holds that for any random variable t ∈ R that is measurable with respect to the
unordered set Φj , we have

P
(
pj ≤ t | j ∈ Ŝu, Yj ̸∈ A,Φj

)
≤ t.

F.3 Proof of Theorem 3.2

Proof. We begin by establishing the validity of the selective conformal p-values. Consider the
quantity

Φj = (D∗
C∪{j},DU\{j}), (7)

which consists of two components: DU\{j}, the test data with the j-th sample excluded, and
D∗

C∪{j} := [Zi; i ∈ C ∪ {j}], whose elements are taking values on {Zi}i∈C ∪ {Zj} but without
their indexes. According to Lemma F.2(b), we have

P
(
pj ≤ t | j ∈ Ŝu, Yj ̸∈ A

)
= E

[
E
[
1{pj ≤ t} | j ∈ Ŝu, Yj ̸∈ A,Φj

]]
≤ t

Next, we proceed to verify the control of FDR. This involves examining the previously defined
defined p-values

pj =
1 +

∑
i∈Ŝc∩C0

1 {Vi < Vj}
1 + |Ŝc ∩ C0|

, for j ∈ Ŝu.

For any j ∈ Ŝu, define a set of slightly modified p-values

p
(j)
ℓ =

∑
i∈Ŝc∩C0

1 {Vi < Vℓ}+ 1 {Vj < Vℓ}
1 + |Ŝc ∩ C0|

, ∀ℓ ̸= j, ℓ ∈ Ŝu. (8)

These p-values are only used in our analysis. Also defineR
(
{aj : j ∈ Ŝu}

)
⊆ Ŝu as the rejection

(indices) set obtained by the BH procedure, from p-values taking on the values in {aj : j ∈ Ŝu}.
In the sequel, we will compareR to

R
(
{p(j)l : ℓ ̸= j, ℓ ∈ Ŝu} ∪ {pj}

)
on the event {Yj ̸∈ A, j ∈ R}. For the remaining p-values, since the scores have no ties, we consider
two cases:

(i) If Vj ≤ Vℓ, then

p
(j)
ℓ =

1 +
∑

i∈Ŝc∩C0
1 {Vi < Vℓ}

|Ŝc ∩ C0|+ 1
= pℓ.

(ii) If Vj > Vℓ, then pℓ ≤ pj . Since j ∈ R, the BH procedure implies ℓ ∈ R. By definition, we have

p
(j)
ℓ ≤

1 +
∑

i∈Ŝc∩C0
1 {Vi < Vℓ}

1 + |Ŝc ∩ C0|
≤

1 +
∑

i∈Ŝc∩C0
1 {Vi < Vℓ}

1 + |Ŝc ∩ C0|
= pj .

To summarize, suppose we are to replace pℓ by p
(j)
ℓ for all ℓ ̸= j, ℓ ∈ Ŝu. Then on the event

{Yj ̸∈ A, j ∈ R}, such a replacement does not change any of those pℓ ≥ pj ; also, all those pℓ ≤ pj
including pj itself (they are rejected inR ) are still no greater than pj after the replacement. Thus,
by the step-up nature of the BH procedure, such a replacement does not change the rejection set,
meaning that

R = R
(
{pj : j ∈ Ŝu}

)
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= R
(
{p(j)l : ℓ ̸= j, ℓ ∈ Ŝu} ∪ {pj}

)
=: R(j)

on the event {Yj ̸∈ A, j ∈ R}. Let Rj = 1{j ∈ R}, then a leave-one-out analysis of the FDR
implies

FDR = E

[∑
j∈Ŝu

1 {Yj ̸∈ A}Rj

1 ∨
∑

j∈Ŝu
Rj

]

(i)
=
∑
j∈U

E

|Ŝu|∑
k=1

1

k
1{|R| = k}1 {Yj ̸∈ A}1

{
pj ≤ αk/|Ŝu|

}
1{j ∈ Ŝu}


(ii)
=
∑
j∈U

E

|Ŝu|∑
k=1

1

k
1

{∣∣∣R(j)
∣∣∣ = k

}
1 {Yj ̸∈ A}1

{
j ∈ R(j)

}
1{j ∈ Ŝu}

 .

The (i) use the property of the BH procedure, and (ii) comes from the facts stated just above. By the
step-up nature of the BH procedure, we know that on the event

{
j ∈ R(j)

}
, sending pj to zero does

not change the rejection set, i.e., we have

R(j) = R
(
{p(j)l : ℓ ̸= j, ℓ ∈ Ŝu} ∪ {0}

)
=: R(j→0). (9)

Thus

FDR =
∑
j∈U

E

|Ŝu|∑
k=1

1

k
1

{∣∣∣R(j→0)
∣∣∣ = k

}
1

{
pj ≤ α|R(j→0)|/|Ŝu|

}
1 {Yj ̸∈ A}1{j ∈ Ŝu}


(10)

=
∑
j∈U

E

1
{
pj ≤ α

∣∣R(j→0)
∣∣ /|Ŝu|}1 {Yj ̸∈ A}1{j ∈ Ŝu}

1 ∨
∣∣R(j→0)

∣∣
 (11)

By Lemma F.2(a), it holds that

E

1
{
pj ≤ α

∣∣R(j→0)
∣∣ /|Ŝu|}1 {Yj ̸∈ A}1{j ∈ Ŝu}

1 ∨
∣∣R(j→0)

∣∣ | Φj


=

1

1 ∨
∣∣R(j→0)

∣∣E [1{pj ≤ α
∣∣∣R(j→0)

∣∣∣ /|Ŝu|}1 {Yj ̸∈ A}1{j ∈ Ŝu} | Φj

]
=

1

1 ∨
∣∣R(j→0)

∣∣P(pj ≤ α
∣∣∣R(j→0)

∣∣∣ /|Ŝu| | j ∈ Ŝu, Yj ̸∈ A,
[
{Vi}i∈C∪{j}

])
P
(
j ∈ Ŝu, Yj ̸∈ A | Φj

)
and

∣∣R(j→0)
∣∣ /|Ŝu| is measurable with respect to the unordered set Φj . Then use Lemma F.2(b), we

have

P
(
pj ≤ α

∣∣∣R(j→0)
∣∣∣ /|Ŝu| | j ∈ Ŝu, Yj ̸∈ A,Φj

)
≤ α

∣∣∣R(j→0)
∣∣∣ /|Ŝu|.

Through summing over j ∈ U , together with tower’s rule, this gives

FDR ≤
∑
j∈U

αE

[
1{j ∈ Ŝu, Yj ̸∈ A}

|Ŝu|

]
= αE

[
|Ŝu ∩ U0|
|Ŝu|

]
≤ α

which concludes the proof.

F.4 Proof of Lemma F.2

Proof. We note that the following proof is conditioned on the event {Yj ̸∈ A}. Define

Ŝc0,+j = {i ∈ C ∪ {j} : SDc,Du
(Xj) = 1, yi ̸∈ A} .
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Then Ŝc ∩ C0 ∪ {j} = Ŝc0,+j and |Ŝc ∩ C0|+ 1 = |Ŝc0,+j | hold under the event j ∈ Ŝu and Yj ̸∈ A.
For any j satisfying Yj ̸∈ A, define the event

AC∪{j}(z) = {[Zi∈C∪{j}] = [z1, · · · , zn, zn+1]}. (12)

Denote the corresponding unordered conformal scores by [v1, · · · , vn+1] under AC∪{j}(z). Since
SDc,Du

is strongly stable, then given DU\j and under AC∪{j}(z) we have

SDc,Du(xi) = SDc∪{Zj},Du\{Zj}(xi) = S[z1,··· ,zn,zn+1],Du\{Zj}(xi)

for i = 1, · · · , n+ 1. It means that the following unordered set[
{Vi}i∈Ŝc0,+j

]
| AC∪{j}(z) =

[
{vi : Sz,Du\{Zj}(xi) = 1, yi ̸∈ A}i=1,··· ,n+1

]
is known and only depend on z and the data DU\j . Besides,

|Ŝc0,+j | | AC∪{j}(z) = |
{
i ∈ {1, · · · , n+ 1} : Sz,Du\{Zj}(xi) = 1, yi ̸∈ A

}
|

is also known. Note that by definition (8),
{
p
(j)
ℓ

}
ℓ ̸=j

is invariant after permuting {Vi}i∈Ŝc∩C0
∪{Vj}.

We know that the modified p-value

p
(j)
ℓ | AC∪{j}(z) =

∑
i∈Ŝc0,+j

1{vi < Vℓ}

|Ŝc0,+j |
, ∀ℓ ̸= j, ℓ ∈ Ŝu.

is fixed condition on AC∪{j}(z). Also note thatR(j→0) only depends on
{
p
(ℓ)
j

}
ℓ ̸=j

, and this implies

thatR(j→0) is known under AC∪{j}(z). Through marginalizing over AC∪{j}(z), we obtain that p(j)ℓ

is measurable with respect to Φj . SinceR(j→0) is only depend on p
(j)
ℓ for ℓ ̸= j, ℓ ∈ Ŝu, the first

part of Lemma F.2 can be readily demonstrated.

For the second part, we know it holds that

{pj ≤ t} = {Vj ≤ VŜc∩C0

(⌈t(|Ŝc∩C0|+1)⌉)
} = {Vj ≤ VŜc∩C0∪{j}

(⌈t(|Ŝc∩C0|+1)⌉)
}

= {Vj ≤ V|Ŝc0,+j(τ̂)|
(⌈t|Ŝc0,+j(τ̂)|⌉)

}

by the construction of pj and Lemma F.1. And then we have

P
(
pj ≤ t, Yj ̸∈ A | j ∈ Ŝu,Φj

)
=P
(
Vj ≤ VŜc∩C0∪{j}

(⌈t(|Ŝc∩C0|+1)⌉)
, Yj ̸∈ A | SDc,Du

(Xj) = 1,Φj

)
≤t+E

 1

|Ŝc ∩ C0|+ 1

∑
k∈Ŝc∩C0

1

{
Vj ≤ VŜc∩C0∪{j}

(⌈t(|Ŝc∩C0|+1)⌉)
, Yj ̸∈ A

}
−1
{
Vk ≤ VŜc∩C0∪{j}

(⌈t(|Ŝc∩C0|+1)⌉)
, Yj ̸∈ A

}
| SDc,Du(Xj) = 1,Φj

]
=t+

∑
k∈C

E

[
1

|Ŝc ∩ C0|+ 1
1

{
Vj ≤ VŜc∩C0∪{j}

(⌈t(|Ŝc∩C0|+1)⌉)
, Yj ̸∈ A,SDc,Du

(Xk) = 1, Yk ̸∈ A
}

− 1

|Ŝc ∩ C0|+ 1
1

{
Vk ≤ VŜc∩C0∪{j}

(⌈t(|Ŝc∩C0|+1)⌉)
, Yj ̸∈ A,SDc,Du

(Xk) = 1, Yk ̸∈ A
}
| SDc,Du

(Xj) = 1,Φj

]

=t+
∑
k∈C

1

P(SDc,Du
(Xj) = 1)

E

[
1

|Ŝc0,+j |
1

{
Vj ≤ VŜc0,+j

(⌈t(|Ŝc0,+j |)⌉)
,SDc,Du

(Xj) = 1, Yj ̸∈ A,SDc,Du
(Xk) = 1, Yk ̸∈ A

}

− 1

|Ŝc0,+j |
1

{
Vk ≤ VŜc0,+j

(⌈t(|Ŝc0,+j |)⌉)
,SDc,Du

(Xj) = 1, Yj ̸∈ A,SDc,Du
(Xk) = 1, Yk ̸∈ A

}
| Φj

]
(13)
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For ease of presentation, we write
|Ŝc0,+j | | AC∪{j}(z) = Sc0,+j(z;DU\j),

VŜc0,+j

(⌈t(|Ŝc0,+j |)⌉)
| AC∪{j}(z) = V(z;DU\j).

For any unordered set z, we define the following unordered set
Ω(z) =

(
(i1, i2) ⊆ [n+ 1] : vi1 ≤ V(z;DU\j),Sz,Du\{Zj}(xi1) = 1, yi1 ̸∈ A,Sz,Du\{Zj}(xi2) = 1, yi2 ̸∈ A

)
which is σ(DU\j)-measurable and independent of AC∪{j}(z). Using the exchangeability of
(Zi)i∈C∪U , we can guarantee

E

[
Sc0,+j(z;DU\j)

|Ŝc0,+j |
1

{
Vj ≤ VŜc0,+j

(⌈t(|Ŝc0,+j |)⌉)
,SDc,Du

(Xj) = 1, Yj ̸∈ A,SDc,Du
(Xk) = 1, Yk ̸∈ A

}
| AC∪{j}(z)

]
=E

[
1
{
Vj ≤ V(z;DU\j),Sz,Du\{Zj}(Xj) = 1, Yj ̸∈ A,Sz,Du\{Zj}(Xk) = 1, Yk ̸∈ A

}
| AC∪{j}(z)

]
=

∑
(i1,i2)⊆Ω(z)

P
{
Zj = zi1 , Zk = zi2 | AC∪{j}(z)

}
=

∑
(i1,i2)⊆Ω(z)

P
{
Zj = zi2 , Zk = zi1 | AC∪{j}(z)

}
=E

[
1
{
Vk ≤ V(z;DU\j),Sz,Du\{Zj}(Xk) = 1, Yk ̸∈ A,Sz,Du\{Zj}(Xj) = 1, Yj ̸∈ A

}
| AC∪{j}(z)

]
Through marginalizing over AC∪{j}(z), it follows that

E

[
1

|Ŝc0,+j)|
1

{
Vj ≤ VŜc0,+j

(⌈t(|Ŝc0,+j |)⌉)
,Sz,Du\{Zj}(Xj) = 1, Yj ̸∈ A,Sz,Du\{Zj}(Xk) = 1, Yk ̸∈ A

}
| Φj

]

=E

[
1

|Ŝc0,+j |
1

{
Vk ≤ VŜc0,+j

(⌈t(|Ŝc0,+j |)⌉)
,Sz,Du\{Zj}(Xj) = 1, Yj ̸∈ A,Sz,Du\{Zj}(Xk) = 1, Yk ̸∈ A

}
| Φj

]
Plug into (13), we can verify the second part of Lemma F.2 immediately.

F.5 Proof of Proposition 3.4

Proof. The results are direct if we let Dk = Dc ∪ {Zj} and Dl = Du \ {Zj} as a specific partition
of Dc ∪ Du. By the definition of joint-exchangeable selection, we have

SDc,Du(Xi) = SDk,Dl
(Xi) = SDc∪{Zj},Du\{Zj}(Xi),

for any i ∈ C ∪ U and j ∈ U . Thus the proof is completed.

F.6 Proof of Proposition 3.5

Proof. Let {T(r) : r ∈ [m]} be order statistics of {Tn+1, · · · , Tj−1, Tj , Tj+1, · · · , Tn+m} and
{T j→−∞

(r) : r ∈ [m]} be order statistics of {Tn+1, · · · , Tj−1,−∞, Tj+1, · · · , Tn+m}. By definition,

τtopK(Tn+1, · · · , Tj−1, Tj , Tj+1, · · · , Tn+m) = T(K+1)

and
τtopK(Tn+1, · · · , Tj−1,−∞, Tj+1, · · · , Tn+m) = T j→−∞

(K+1) .

Note that for j ∈ Ŝu, we have T(K+1) > Tj . Because T(r) = T j→−∞
(r) for all order statistics with

T(r) ≥ Tj , we have T(K+1) = T j→−∞
(K+1) as well.

Therefore, we replace Zj = z for any j ∈ Ŝu, where z is a fixed value such that the corresponding
selection score Tj (determined by the covariates Xj) is−∞. Here we address that the top-K selection
does not the specific scale of the selection scores. Hence the we can scale the selection scores into
the range of (0, 1), and denote z as the value such that Tj = 0.

As the threshold τtopK keeps unchanged after replacing Zj as z, we have
SDc,Du(Xi) = SDc,Du\{Zj}∪{z}(Xi)

for any j ∈ Ŝu and i ∈ C ∪ U .
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F.7 Proof of Proposition 3.7

Proof. For simplicity, we suppose that the selection rule produces a selection threshold τ({Tk}k∈U )

which is dependent on test data only. The selected test set is denoted as Ŝu = {j ∈ U : Tj ≤
τ({Tk}k∈U )}. And the calibration set is picked up the by

Ŝc(j) = {i ∈ C : Ti ≤ τ({Tk}k∈U\{j}})} for j ∈ Ŝu.

We note that the proof is similar for all type of weakly stable selection rule. Given Du\{j}, we know
that τ({Tk}k∈U\{j}}) is fixed. Therefore, for j ∈ Ŝu, i.e. Tj ≤ τ({Tk}k∈U\{j}}) , it holds that
{Zi ∈ Dc : Ti ≤ τ({Tk}k∈U\{j}})} = {Zi : i ∈ Ŝc(j)} and Zj are exchangeable. Consequently,
for j ∈ U0 and j ∈ Ŝu, it follows that {Zi : i ∈ Ŝc(j)∩ C0} and Zj are exchangeable, which implies
{Vi : i ∈ Ŝc(j) ∩ C0} and Vj are also exchangeable.

By the definition of padaptj and the similar procedure for proving Lemma F.2 in Appendix F.4, it is
direct that Pr(padaptj ≤ t | j ∈ Ŝu, j ∈ U0) ≤ t.

F.8 Proof of Theorem B.1

Proof. Our proof follows the same strategy as [22, 34]. Recall the final rejection set by conditional
calibration can be formulated by

R = {j ∈ R+ : ϵj ≤
R

R̂j

},

where R = |R|, R̂j is the rejection number by BH procedure applied to {padapt,(j)l : ℓ ̸= j, ℓ ∈
Ŝu} ∪ {0} and

R+ = {j ∈ Ŝu : padaptj ≤ αR̂j

|Ŝu|
}.

Define ϵ−j as all ϵi variables for i ∈ R+ \ {j} and R∗ = R(ϵj ← 0) denote the hypothetical total
number of rejections obtained by fixing ϵj = 0 prior to applying conditional calibration procedure.
Then, the FDR can be written as

FDR =
∑
j∈U

E

1{j ∈ R+}1{ϵj ≤ R
R̂j
}1{Yj ̸∈ A}

1 ∨R


(i)
=
∑
j∈U

E

1{j ∈ R+}1{ϵj ≤ R∗

R̂j
}1{Yj ̸∈ A}

1 ∨R∗


=
∑
j∈U

E

E
1{j ∈ R+}1{ϵj ≤ R∗

R̂j
}1{Yj ̸∈ A}

1 ∨R∗

 | ϵ−j ,Dc ∪ Du


(ii)
=
∑
j∈U

E

[
1{j ∈ R+}1{Yj ̸∈ A}

1 ∨ R̂j

]

=
∑
j∈U

E

1{j ∈ Ŝu}1{padaptj ≤ αR̂j

|Ŝu|
}1{Yj ̸∈ A}

1 ∨ R̂j


(iii)
=
∑
j∈U

E

E
[
1{j ∈ Ŝu}1{padaptj ≤ αR̂j

|Ŝu|
}1{Yj ̸∈ A} | Φj

]
1 ∨ R̂j


(vi)

≤
∑
j∈U

E

[
αR̂j

|Ŝu|
1{j ∈ Ŝu}1{Yj ̸∈ A}

1 ∨ R̂j

]
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= α
∑
j∈U

E

[
1{j ∈ Ŝu}1{Yj ̸∈ A}

|Ŝu|

]

= αE

[
|Ŝu ∩ U0|
|Ŝu|

]
.

Equality (i) holds sinceR = R∗ for j ∈ Ŝu, as the pruning procedure can be seen as a special BH
procedure, which is not influence by replacing a rejected p-value with 0. Equality (ii) is true because
ϵj is independent of ϵ−j given all the data Dc ∪ Du, andR∗ is measurable to ϵ−j ,Dc ∪ Du, where
ϵj has no influence onR∗ by the assignment (ϵj ← 0). Equality (iii) holds as R̂j is measurable with
respect to Φj by the design of padapt,(j)l . And inequality (iv) comes from the Proposition 3.7, since
the weak stability implies |Ŝu| = |{i ∈ U : Ti < τ({Tk}k∈U\{j}})}| is measurable with respect to
Φj and j ∈ Ŝu. Thus the proof is completed.
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Justification: : See Sect. 1.1, we summarize our main contributions. The experimental
results in Sect. 4 and Appendix F validate the theoretical results in Sect. 3.
Guidelines:
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made in the paper.
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the paper has limitations, but those are not discussed in the paper.
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of the paper (regardless of whether the code and data are provided or not)?
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
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to reproduce that algorithm.
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the architecture clearly and fully.
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In the case of closed-source models, it may be that access to the model is limited in
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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