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Abstract

Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine-
tuning (PEFT) of generative models, valued for its simplicity and effectiveness.
Despite recent enhancements, LoRA still suffers from a fundamental limitation:
overfitting when the bottleneck is widened. It performs best at ranks 32–64, yet its
accuracy stagnates or declines at higher ranks, still falling short of full fine-tuning
(FFT) performance. We identify the root cause as LoRA’s structural bottleneck,
which introduces gradient entanglement to the unrelated input channels and distorts
gradient propagation. To address this, we introduce a novel structure, Granular
Low-Rank Adaptation (GraLoRA) that partitions weight matrices into sub-blocks,
each with its own low-rank adapter. With negligible computational or storage cost,
GraLoRA overcomes LoRA’s limitations, effectively increases the representational
capacity, and more closely approximates FFT behavior. Experiments on code
generation, commonsense reasoning, mathematical reasoning, general language
understanding, and image generation benchmarks show that GraLoRA consistently
outperforms LoRA and other baselines, achieving up to +8.5% absolute gain in
Pass@1 on HumanEval+. These improvements hold across model sizes and rank
settings, making GraLoRA a scalable and robust solution for PEFT.

1 Introduction

Task-specific fine-tuning enables a wide range of applications and significantly improves the quality
and effectiveness of generative models. However, the massive scale of these models poses substantial
challenges for practical deployment. To address these limitations, Parameter-Efficient Fine-Tuning
(PEFT) methods have emerged as a cost-effective alternative [12, 32]. Among them, Low-Rank
Adaptation (LoRA) [13] has gained particular attention for its simplicity and effectiveness, introducing
trainable low-rank matrices while keeping the pre-trained model weights frozen. Although the
imposed rank-r bottleneck may lead to slight performance degradation compared to full fine-tuning
(FFT), its efficiency has led to widespread adoption in practice.

To maximize the benefits of LoRA, various studies have proposed techniques such as improved
initialization [4, 21, 23, 29] and structural refinements [10, 15, 16, 17] to enhance fine-tuning quality.
While these efforts have advanced performance, a substantial quality gap remains compared to FFT,
largely due to the inherent upper bound on the rank. Although using a higher rank, within hardware
limits, appears to be a natural solution, unfortunately, current implementations of LoRA and its
variants do not support such flexibility. Simply increasing the rank often leads to degraded accuracy
in many scenarios.

In this paper, we present a theoretical analysis identifying the root cause of the rank limitation in
LoRA. Our analysis reveals a fundamental issue in LoRA’s structure, channel dominance in the
gradient, where a small subset of outlier channels disproportionately influences the update direction.
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Figure 1: Illustration of LoRA architecture and GraLoRA architecture. GraLoRA consists of k2 small
adapter pairs, where each input and output dimension is k times smaller than the original LoRA.

This dominance suppresses contributions from other channels, leading to under-utilization of the
available rank and degraded performance in tasks that require nuanced or distributed representations.

To overcome these expressivity bottlenecks, we propose Granular Low-Rank Adaptation (GraLoRA),
a novel architectural extension of LoRA. As shown in Figure 1, GraLoRA divides the weight matrix
into multiple sub-blocks and applies independent LoRA modules to each, enabling fine-grained
updates. This design enhances the model’s capacity to capture complex, localized, or multi-faceted
patterns, effectively mitigating the channel dominance issue and improving performance—especially
at higher ranks.

Extensive experiments show that GraLoRA consistently outperforms vanilla LoRA across a range of
NLP benchmarks, particularly in scenarios with high input heterogeneity or task complexity. These
results position GraLoRA as a principled and practical advancement in the PEFT landscape.

2 Details and Limitations of LoRA

2.1 Introduction to LoRA

LoRA is one of the most widely adopted strategies for PEFT. Given a pre-trained weight matrix
W0 ∈ RM×N , where M and N represent the input and output channel dimension, respectively,
LoRA keeps W0 frozen and introduces a trainable low-rank update defined as:

R = sBA⊤, A ∈ RN×r, B ∈ RM×r, s =
α

r
. (1)

Here, rank r and α are user-defined hyperparameters. Then, for a given input X ∈ RN×T , the
output of the LoRA-adapted layer is Y = W0X + RX ∈ RM×T , where T denotes the batch or
token dimension. This low-rank decomposition allows the model to adapt using significantly fewer
trainable parameters and reduced memory overhead.

While FFT updates the entire weight matrix, LoRA only updates the decomposed low-rank matrices
A and B. Note that we assume s = 1 for simplicity, the gradient of the loss with respect to R is:

∇RL =
∂L

∂R
=

∂L

∂Y
X⊤ ∈ RM×N (2)

From this, the gradients with respect to the LoRA parameters B and A are given by:

∂L

∂B
=

∂L

∂Y
X⊤A,

∂L

∂A⊤ = B⊤ ∂L

∂Y
X⊤. (3)
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Figure 2: Gradient dynamics of FFT and LoRA in the presence of an outlier input channel. The
red channel in input X denotes the outlier. While FFT localizes the gradient impact, LoRA’s entire
gradient update becomes disproportionately influenced by the single outlier.

These result in the following reconstructed update in the fused weight space:

∇̃RL =
∂L

∂B
A⊤ +B

∂L

∂A⊤ =
∂L

∂Y
X⊤AA⊤ +BB⊤ ∂L

∂Y
X⊤. (4)

This expression reveals how the structure of LoRA introduces non-trivial interactions between the
gradients and the input, particularly through the rank-r matrices.

2.2 Why Does LoRA Suffer from a Larger Rank?

When fine-tuning with a large LoRA rank (e.g., r > 64), it is often observed that accuracy degrades
compared to using a moderate rank. This counterintuitive behavior arises from the distinct gradient
dynamics of LoRA, which differ significantly from those of FFT.

LoRA’s structural design makes its gradients inherently sensitive to the entire input space, as illustrated
in Figure 2. In particular, we observe that outlier channels, input channels with abnormally high
activations, can disproportionately dominate the gradient signal.

In FFT, the effect of such outliers is typically localized, affecting only a single column of the weight
matrix W that directly interacts with the outlier channel. In contrast, LoRA’s low-rank constraint
causes the entire gradient of the adapter matrix B, denoted ∂L/∂B, to be influenced by these
outliers. This results in distorted weight updates in the fused weight space, where the gradient signal
from outlier channels overwhelms the contributions from other inputs. Consequently, LoRA fails to
accurately replicate the gradient dynamics of FFT, limiting its ability to match FFT-level performance.

We observe that in certain layers, most notably the down-projection matrix of Layer 1 in
LLaMA3.1–8B, input activations exhibit severe channel-wise imbalance (Figure 3 (a)). As shown in
Figure 4, these outlier channels disproportionately impact the adapter’s gradient updates. Figure 3
further illustrates that the gap between LoRA and FFT gradient updates widens as the LoRA rank
increases.

These findings reveal a fundamental misalignment between LoRA updates and the gradient landscape
shaped by FFT. The entangled influence of input channels caused by the low-rank projection limits
LoRA’s ability to selectively learn from salient features, particularly under skewed input statistics.
While the negative impact of outliers has been well recognized in the context of quantization [31] [18],
their influence on LoRA’s behavior has not been systematically studied until now.
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Figure 3: (a) Mean input channel values for the down-projection matrices across layers in
LLaMA3.1–8B. A pronounced outlier exists in Layer 1, channel 198 and 2427. (b) Gradient deviation
between LoRA and FFT increases with rank, showing LoRA’s susceptibility to input outliers. (c)
GraLoRA gradient results at rank 128. GraLoRA noticeably reduces gradient deviation between FFT.

Figure 4: Gradient distribution in Layer 1 down-projection matrix. LoRA gradients show poor
alignment with FFT, outlier channel increases the overall gradient scale, while less emphasizing the
corresponding outlier channel.

3 Method

3.1 GraLoRA: Granular Low-Rank Adaptation

Motivated by observation in previous section, we propose GraLoRA, a fine-grained and modular
extension of LoRA. As illustrated in Figure 1, GraLoRA addresses the limitations of standard LoRA
by partitioning the weight matrix into a grid of k× k independent blocks, each equipped with its own
local low-rank adapter. Here, k is a hyperparameter that determines the number of splits along the
input and output dimensions. When k = 1, GraLoRA reduces to the vanilla LoRA formulation.

Specifically, the weight update R ∈ RM×N is expressed as the concatenation of block-wise updates:

RGraLoRA =

B1,1A
⊤
1,1 · · · B1,kA

⊤
1,k

...
. . .

...
Bk,1A

⊤
k,1 · · · Bk,kA

⊤
k,k

 , Ai,j ∈ R
N
k × r

k , Bi,j ∈ R
M
k × r

k (5)

This block-wise reparameterization provides localized control over each spatial subregion of the
parameter space. As detailed in Section 3.4, GraLoRA incurs the same parameter count and com-
putational overhead as standard LoRA when using the same rank. However, it introduces two key
advantages; (1) Enhanced Expressivity and (2) Robustness to Input Outliers. By enabling in-
dependent adaptation across k2 subspaces, GraLoRA supports more fine-grained and specialized
feature learning. In addition, Localized gradient updates ensure that only the adapters associated with
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Figure 5: Regularized form of GraLoRA as multiplication of sparse two matrices, AGraLoRA and
BGraLoRA.

the affected input regions receive large gradients, thereby reducing global gradient distortion and
preserving inter-channel signal balance.

3.2 Expression Power Analysis

While the weight update of GraLoRA was expressed as concatenation of block-wise updates in ( 5), it
can also be regularized as the form of multiplication of two matrices as in the vanilla LoRA. The sparse
matrix AGraLoRA ∈ RN×kr can be constructed as Figure 5 (a), where Ai,j for i, j ∈ {n ∈ N | n ≤ k}
is located in position (i+ (j − 1)× k, j) of AGraLoRA. Other elements are masked out, thus the total
number of parameter becomes N × r.

Then, BGraLoRA ∈ RN×kr is constructed as Figure 5 (b), where matrix Bi,j for i, j ∈ {n ∈ N |
n ≤ k} is located in position (i, j + (i− 1)× k) of BGraLoRA, Similarly, other composition of the
matrix is masked, therefore the total number of parameter becomes M × r. Then the weight update
of GraLoRA can be expressed as W = W0 +RGraLoRA = W0 +BGraLoRAA

⊤
GraLoRA.

Assuming that all columns of [Bi,1, · · · , Bi,k] are linearly independent, the rank of BGraLoRA becomes
R (BGraLoRA) = kr. Similarly, if all columns of [A1,j , · · · , Ak,j ] are linearly independent, the rank
of AGraLoRA is R (AGraLoRA) = kr. Applying Sylvester’s rank inequality to derive the lower bound
and the matrix product theorem for the upper bound, we obtain:

R(BGraLoRA) +R(A⊤
GraLoRA)− kr ≤ R(BGraLoRAA

⊤
GraLoRA) ≤ min(R(BGraLoRA),R(A⊤

GraLoRA)) (6)

Thus, the effective rank of RGraLoRA becomes kr, which is k times higher than that of the vanilla
LoRA method—effectively enhancing the model’s expressive capacity. The rank analysis of fine-
tuned LoRA and GraLoRA, summarized in Table 5 in Appendix, demonstrates that GraLoRA linearly
scales the representational power of the adaptation matrix in practical settings.

3.3 Gradient Dynamics Under Outlier Activation

GraLoRA effectively localizes the influence of outlier channels to a limited subset of adapter blocks.
Because each block processes only a specific slice of the input, only the k adapter pairs intersecting
with the outlier channel are exposed to amplified gradients. In contrast, the remaining k2−k adapters
maintain gradient magnitudes close to baseline levels. This selective gradient propagation resembles
the behavior of FFT, where only weights directly connected to active inputs are significantly updated.

GraLoRA’s impact on gradient dynamics can be observed by comparing gradient distributions of the
down-projection matrix in Layer 1 with standard LoRA. As illustrated in the Figure 3 (c) and Figure 6,
GraLoRA reduces the gradient deviation and limits the influence of outlier channels, overcoming the
limitations of standard LoRA with larger ranks.

3.4 Tradeoff Analysis

As discussed, GraLoRA provides several advantages over standard LoRA. However, these benefits
do not come without cost. In this section, we provide deeper analysis on the overhead introduced by
GraLoRA.

Computation Overhead Analysis: First, we analyze the expected computational cost of LoRA in
terms of FLOPs. To take advantage of the low-rank structure, LoRA computes the projection in two
sequential steps. The first computes A⊤X ∈ Rr×T , followed by the reconstruction B(A⊤X) ∈
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Figure 6: Comparison of gradient distributions under outlier activation. In GraLoRA, only the blocks
interacting with the outlier exhibit elevated gradients, mitigating global distortion and aligning with
FFT behavior.

RM×T . These steps require 2NrT and 2rMT FLOPs, respectively, resulting in a total complexity
of O (r(M +N)T ) .

Similarly, GraLoRA divides the computation into two steps involving k2 adapter blocks. In the first
step, the projection computes A⊤

i,jXj ∈ R r
k×T for each of the k2 blocks, incurring a total cost of

2·Nk · rk ·T ·k2 = 2NrT. In the second step, each intermediate output is processed by its corresponding
Bi,j , producing Bi,j(A

⊤
i,jXj) ∈ RM

k ×T . This step adds another 2 · r
k · M

k · T · k2 = 2rMT. FLOPs
to the total cost. Hence, the overall computational cost of GraLoRA remains O (r(M +N)T ),
maintaining efficiency comparable to vanilla LoRA while significantly enhancing expressive power.
A detailed analysis of computational overhead is provided in Appendix C.

Table 1: Maximal allocated memory during training LLaMA3.1–8B model with batch size 1. Input
length was set to 1024 and memory allocated for weight was removed for direct comparison.

LoRA GraLoRA (k=2) GraLoRA (k=4) GraLoRA (k=8)

Vanilla Backward (GB) 10.0 10.1 10.2 10.4

Gradient Checkpointing (GB) 2.6 2.6 2.6 2.6

Memory Overhead Analysis: As with classical LoRA, GraLoRA can be merged into the original
weight matrix at inference time. Therefore, our analysis focuses on the memory overhead incurred
during training. Although the number of parameters and FLOPs are identical to those of LoRA,
the intermediate latent representation A⊤

GraLoRAX becomes k times larger than the corresponding
A⊤X in standard LoRA. This expanded latent space allows for greater information preservation,
which can be beneficial. However, it also leads to increased memory consumption during training
time. Fortunately, the rank r is typically much smaller than the input and output dimensions, thus
the additional memory required remains marginal—even for large k, as demonstrated in Table 1.
Moreover, by applying recent techniques such as gradient checkpointing, the memory overhead from
the expanded latent space can be effectively hidden, making the impact negligible in practice.

Selection of k While GraLoRA increases the total rank from r to kr, each individual block, rep-
resented as Bi,jA

⊤
i,j ∈ RM

k ×N
k , is constrained to a reduced rank of r

k . As a result, increasing k
beyond a certain threshold can degrade performance due to limited expressiveness within each block.
This effect is especially pronounced when the overall rank r is small. Empirically, we observed that
maintaining a minimum block expressiveness of approximately r/k2 ≈ 8 yields stable performance
across various configurations. Based on this observation, we adopted k = 2 for ranks 16 and 32, and
k = 4 for ranks 64 and 128 in our experiments. Detailed k-sweep results can be found in Section 4.7.

3.5 Hybrid GraLoRA

On the other hand, for smaller ranks—typically rank 16 or below—using k = 2 may still lead to
performance degradation or yield only marginal gains. To address this limitation, we introduce
a hybrid approach that combines the strengths of LoRA and GraLoRA. This method retains the
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Figure 7: Hybrid GraLoRA architecture when GraLoRA k = 2. LoRA parameter becomes shared
across small GraLoRA adapters in the same row or same column.

fine-grained input handling and increased total rank offered by GraLoRA, while preserving the
expressive power of larger block units through LoRA. Since LoRA shares the same parameters across
both rows and columns, it can be naturally integrated with GraLoRA in a concatenated form, which
we refer to as Hybrid GraLoRA (see Figure 7). Empirically, we found that allocating up to 1

2 of
the total rank to the LoRA component mitigated the limitations of GraLoRA in low-rank scenarios
(γ <= 16), while fully allocating the rank to GraLoRA better performed in high-rank circumstances.

4 Experiments

In order to validate the superiority of the proposed idea, we conduct an extensive analysis on
large-scale dataset with the state-of-the art LLMs. We evaluate GraLoRA across five challenging
domains: code generation, commonsense reasoning, mathematical reasoning, general language
understanding, and personalized image generation. Our experiments are designed to assess
whether the proposed granular adaptation mechanism improves performance across varying model
sizes, LoRA ranks, and tasks that require nuanced reasoning and high representational fidelity.

4.1 Experimental Setup

Code Generation. We fine-tuned LLaMA3.1–8B ( [9]) with 4 A100 80G GPU on the Magicoder-
Evol-Instruct-110k [30] train dataset, a curated and decontaminated subset of WizardCoder [20],
comprising high-quality instruction–response pairs for programming tasks. Evaluation was conducted
on the Humaneval+ test dataset following He et al. [10], which samples 50 completions per problem
using a temperature of 0.2. We report Pass@1, Pass@5, and Pass@10 accuracy following standard
protocol via BigCode Evaluation Harness [1].

Commonsense Reasoning We fine-tuned LLaMA3.2–3B, LLaMA3.1–70B, Qwen-2.5-1.5B, and
Qwen-2.5-7B ( [33]) across 8 commonsense tasks: BoolQ [6], PIQA [3], SIQA [27], HellaSwag [35],
WinoGrande [26], ARC-Challenge, ARC-Easy [7], and OpenBookQA [22]. We followed the training
pipeline proposed by LLM-Adapters [14]. Training was performed on 2 H100 80G GPUs for 1.5-8B
models, and on 8 A100 80G GPUs for the 70B model. LLaMA3.1–70B, Qwen-2.5-1.5B, and
Qwen-2.5-7B were trained with rank 64, using the optimal configurations proposed by Biderman
et al. [2]. LLaMA3.2–3B was trained with rank 32, following the settings of Ponkshe et al. [25] to
ensure a fair comparison with results reported in the original paper.

Mathematical Reasoning We fine-tuned LLaMA3.2–3B on MetaMathQA [34] train dataset using 4
H100 80G GPUs. Evaluation was done on MATH [11] dataset, following the evaluation procedure
and settings from He et al. [10].

General Language Understanding We trained and evaluated RoBERTa-base [19], an encoder-
only architecture model, on the GLUE [28] benchmark composed of eight sub-tasks. Following
the protocol from prior works ( [17] [8]), we excluded MNLI and QQP—two time-intensive
tasks—which also meant we did not apply the MNLI-based tricks for MRPC, RTE, and STS-B
(as used in the original LoRA paper). Accordingly, we retrained LoRA on these tasks without this
optimization and report updated results. All trainings were done on a single H100 80G GPU.
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Table 2: Pass@1, Pass@5, and Pass@10 results on LLaMA3.1–8B using LoRA, MoRA, RaSA, and
GraLoRA across different ranks. Best results per group are in bold. * indicates Hybrid GraLoRA.

Rank Method Training Time Relative Time Pass@1 Pass@5 Pass@10

16

LoRA 6.2h 1.00× 56.1% 65.3% 68.1%
MoRA 8.8h 1.42× 53.6% 62.2% 64.5%
RaSA 6.7h 1.08× 53.7% 64.4% 66.7%

GraLoRA* 6.7h 1.08× 58.0% 67.1% 70.1%

32

LoRA 6.5h 1.00× 58.4% 68.0% 69.9%
MoRA 9.1h 1.40× 58.3% 66.7% 69.0%
RaSA 6.8h 1.05× 57.2% 67.9% 70.5%

GraLoRA 6.9h 1.06× 58.9% 67.0% 69.0%

64

LoRA 6.7h 1.00× 58.1% 66.4% 68.5%
MoRA 9.7h 1.45× 57.2% 66.4% 69.2%
RaSA 6.9h 1.03× 56.6% 65.4% 67.9%

GraLoRA 7.2h 1.07× 60.5% 71.2% 72.6%

128

LoRA 7.0h 1.00× 55.8% 64.8% 68.6%
MoRA 9.9h 1.41× 52.8% 62.3% 65.3%
RaSA 7.6h 1.09× 57.5% 65.5% 67.5%

GraLoRA 7.7h 1.10× 64.3% 71.7% 73.7%

Personalized Image Generation We fine-tuned SDXL [24] following the official training setup from
Huggingface diffusers repository, using the Naruto-Blip-Captions [5] dataset on a single H100 80G
GPU. The dataset was split 90% for training and 10% for evaluation. The quality was measured
through CLIP similarity and DINOv2 similarity scores.

Training Details We conducted experiments on five open-sourced LLMs—LLaMA3.1–8B,
LLaMA3.1–70B, LLaMA3.2–3B, Qwen-2.5-1.5B, and Qwen-2.5-7B—covering diverse architecture
and sclaes across code generation, commonsense reasoning, and mathematical reasoning tasks. Fol-
lowing common practice ( [16, 17]), we used pre-trained models rather than instruction-tuned models.
All PEFT methods were applied to the linear modules in both the attention ( Wq,Wk,Wv,Wo )and
the feed-forward networks (Wup,Wdown,Wgate). We adopted alpaca-chat instruction template for
training and evaluation. We compared GraLoRA to three representative PEFT methods: LoRA,
MoRA [16] and RaSA [10]. We have also handled RoBERTa-base and SDXL, to show the robust-
ness and scalability of our method across differnt models and tasks. Hyperparameters for GraLoRA
followed those introduced in Kopiczko et al. [17], except for learning rate, which was reduced by
a factor of 5–10, as VeRA uses a learning rate approximately 10 times larger than LoRA. Detailed
training parameters can be found in Appendix E.

4.2 Results on Code Generation

As shown in Table 2, GraLoRA outperformed LoRA, MoRA, and RaSA across all tested ranks for
Pass@1 accuracy. At rank 64, GraLoRA achieved an absolute improvement of +2.4% in Pass@1,
+4.8% in Pass@5, and +4.1% in Pass@10 over LoRA. At rank 128, the gains were even more
pronounced, with increases of +8.5% in Pass@1, +6.9% in Pass@5, and +5.1% in Pass@10. Notably,
while other methods struggled to fully utilize the increasing rank capacity—often reaching perfor-
mance plateaus at lower ranks—GraLoRA maintained a consistent upward trajectory, effectively
overcoming the limitations of LoRA.

Even in low-rank settings (e.g., rank 16), where expressive capacity is typically constrained, the
hybrid variant of GraLoRA demonstrated superior performance. These improvements highlight
GraLoRA’s enhanced capability to preserve diverse gradient signals and resist suppression from
dominant outliers. The strong results on the HumanEval+ benchmark further underscore the benefits
of fine-grained adaptation in tackling complex, high-precision code generation tasks.

4.3 Results on Commonsense Reasoning

As shown in Table 3, GraLoRA outperformed other methods across a wide range of models and tasks.
Notably, GraLoRA demonstrated superior performance across models of varying scales, achieving a
1.1% improvement in average accuracy on both Qwen2.5-1.5B and LLaMA3.1-70B. It also yielded a
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Table 3: Commonsense reasoning accuracy across models and tasks. Bold indicates the best per-
formance per column. HS means HellaSwag, and WG WinoGrande. † indicates values reported by
Ponkshe et al. [25]

Model Method BoolQ PIQA SIQA HS WG ARC-c ARC-e OBQA Avg.

Qwen2.5-1.5B

LoRA 66.5% 84.0% 74.9% 83.6% 73.7% 75.2% 88.1% 83.4% 78.7%
MoRA 65.9% 82.2% 74.7% 82.6% 73.4% 72.6% 86.5% 82.8% 77.6%
RaSA 67.5% 83.7% 75.7% 85.3% 72.9% 76.4% 89.8% 83.8% 79.4%
GraLoRA 67.2% 84.2% 75.9% 85.7% 73.8% 77.5% 89.9% 84.4% 79.8%

Qwen2.5-7B

LoRA† 72.3% 88.2% 79.2% 92.9% 84.7% 84.0% 93.6% 89.6% 85.6%
MoRA 69.9% 85.3% 78.5% 83.7% 81.4% 77.5% 88.6% 85.0% 81.2%
RaSA 72.0% 88.5% 78.9% 93.6% 81.8% 86.1% 94.2% 90.2% 85.7%
GraLoRA 73.4% 89.7% 79.0% 93.0% 84.0% 86.9% 94.5% 90.6% 86.4%

LLaMA3.2–3B

LoRA 70.0% 85.2% 79.1% 90.7% 82.2% 74.3% 86.9% 81.9% 81.3%
MoRA 72.4% 86.1% 80.1% 92.3% 84.8% 76.8% 88.8% 84.8% 83.3%
RaSA 73.1% 87.5% 81.1% 93.7% 85.3% 78.9% 88.9% 83.6% 84.0%
GraLoRA 74.1% 86.5% 80.8% 93.8% 87.5% 79.9% 89.5% 84.8% 84.6%

LLaMA3.1–70B LoRA 81.7% 93.4% 82.2% 97.5% 93.1% 90.2% 96.5% 95.6% 91.3%
GraLoRA 83.1% 94.7% 83.6% 97.9% 93.8% 92.3% 97.8% 96.2% 92.4%

Table 4: MATH dataset accuracy results on Qwen2.5-1.5B using LoRA and GraLoRA across different
ranks. Best results per group are in bold.

Rank Method Training Time Relative Time Accuracy

64 LoRA 5.3h 1.00× 23.6%
GraLoRA 6.2h 1.17× 25.7%

128 LoRA 5.5h 1.00× 24.7%
GraLoRA 6.6h 1.20× 28.9%

0.9% gain on the widely used mid-sized model, Qwen2.5-7B. Moreover, GraLoRA achieved a 3.3%
improvement on LLaMA3.2-3B, surpassing a broad range of baselines as presented in Table 6.

Furthermore, GraLoRA achieved the best results on 26 out of 32 tasks, consistently outperforming
alternatives across benchmarks. These results support our analysis in Section 3.3, showing that
GraLoRA’s localized updates enhance alignment with FFT and promote robust generalization in
multi-aspect reasoning tasks.

4.4 Results on Mathematical Reasoning

In mathematical reasoning task, regarded as one of the most challenging benchmarks, GraLoRA
consistently outperformed LoRA across all configurations. Notably, in the high rank setting of
r = 128, GraLoRA achieved a 4.2% improvement in accuracy (Table 4), mirroring the performance
trends observed in the code generation experiments. These results further highlight the robustness
of GraLoRA, demonstrating its capability to fully exploit the advantages enabled by increased rank
capacity, thereby overcoming the inherent expressiveness constraints of previous PEFT methods.

4.5 Results on General Language Understanding

GraLoRA demonstrates strong performance even in the low-rank regime, outperforming all baselines
in terms of average score. The Hybrid GraLoRA variant achieves the most robust results, attaining
the best performance on four out of six tasks, while both the original and hybrid versions consistently
surpass all other baselines, as shown in Table 7. Compared with LoRA, the best GraLoRA config-
uration yields a 1.8% improvement in average accuracy, with gains observed across all sub-tasks.
These findings indicate that GraLoRA maintains high effectiveness even under constrained parameter
budgets and generalizes well to non-LLM architectures.

4.6 Results on Personalized Image Generation

In the image generation task, GraLoRA consistently outperformed LoRA in both CLIP and DINOv2
similarity metrics, achieving 0.5% and 2.1% improvements, respectively (Table 8). These results
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Figure 8: (a) GraLoRA k sweep results and (b) Hybrid GraLoRA Ratio sweep results for
LLaMA3.1–8B on code generation task. Ratio 0 implies default GraLoRA and ratio 1 vanilla
LoRA in (b).

further demonstrate the generality and effectiveness of GraLoRA beyond language models, extending
its applicability to vision–language and generative architectures such as diffusion models.

4.7 Ablation Study

GraLoRA k Sweep We evaluated the impact of varying k on code generation accuracy. As shown
in Figure 8 (a), k = 2 yielded the best performance at rank 32, while k = 4 was optimal at rank 128.
These results are consistent with the theoretical prediction that a smaller k is preferable for lower
ranks, as reduced sub-block rank can be particularly detrimental when the overall rank is limited.

Hybrid GraLoRA Ratio Sweep We assessed performance across different LoRA-to-GraLoRA
rank allocation ratios for the Hybrid GraLoRA configuration (Figure 8 (b)). At rank 16, partially
allocating the rank to LoRA led optimal accuracy. However, for larger ranks, allocating rank to
LoRA resulted in degraded performance. This suggests that Hybrid GraLoRA is advantageous in
low-rank regimes, where the sub-block rank of GraLoRA alone may be insufficient. In contrast,
under higher-rank settings where GraLoRA’s sub-blocks are expressive enough, introducing LoRA
components may lead to gradient entanglement, thereby hindering effective learning.

5 Conclusion

In this work, we introduced GraLoRA, a novel PEFT method that extends LoRA with granular, block-
wise decomposition. Motivated by a rigorous analysis of LoRA’s gradient behavior, we identified that
input outliers can dominate the low-rank update, suppressing meaningful contributions from other
input channels and misaligning with the localized gradient propagation observed in FFT.

GraLoRA addresses this limitation by dividing the adaptation space into k2 independently trained
low-rank adapters, enabling spatially localized and context-aware updates. Our theoretical analysis
shows that this design increases expressivity by a factor of k, without additional parameters or
computational cost. Moreover, under outlier activations, GraLoRA effectively mitigates the global
gradient distortion seen in vanilla LoRA and better preserves inter-channel balance. Empirically,
GraLoRA consistently outperforms standard LoRA and strong baselines such as RaSA across diverse
tasks and model scales. On the code generation benchmark HumanEval+, it achieves up to +8.5%
absolute gain in Pass1. GraLoRA also delivers significant improvements across other 4 additional
tasks, highlighting its robustness and scalability across heterogeneous architectures and model sizes.

Future Work. While GraLoRA improves gradient locality and expressive power, its current design
assumes uniform partitioning. Future extensions may explore adaptive or learned partitioning
schemes, sparsity-aware block activation, or task-driven dynamic rank allocation. Additionally,
applying GraLoRA to vision transformers, multimodal architectures, or continual learning setups
may further highlight its potential for robust and efficient model adaptation.

Overall, GraLoRA represents a principled and practical step forward in the design of PEFT methods,
bridging the gap between global low-rank reparameterization and local, fine-grained adaptation.
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A Rank Analysis in Real-World Scenarios

Table 5: Average rank size in each projection layer across LoRA and GraLoRA variants. Rank r was
set to 128 in all methods.

q_proj k_proj v_proj o_proj up_proj down_proj gate_proj
LoRA 128 128 128 128 128 128 128

GraLoRA (k=2) 256 256 256 256 256 256 256
GraLoRA (k=4) 512 512 512 512 512 512 512
GraLoRA (k=8) 1024 1016 1022 1024 1024 1024 1024

As shown in Table 5, GraLoRA denoted linearly increasing ranks as the k increased. The observation
aligns with our theoretical analysis that increasing GraLoRA k leads to higher expression power by
increasing the latent space from r to kr.

B Gradient Distribution of LoRA and GraLoRA

Figure 9: Comparison of gradient distributions under outlier activation for rank 32, 64, and 128 in
LLaMA3.1-8B Layer 1 down-projection matrix.

Figure 9 displays gradient distributions of LoRA and GraLoRA for varying ranks. In GraLoRA, only
the blocks interacting with the outlier exhibit elevated gradients, structurally solving the gradient
entanglement discovered in vanilla LoRA. This enables to mitigate global distortion and align with
FFT behavior in all ranks.
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C Precise Analysis on Computation Overhead

Figure 10: Computation workflow in GraLoRA is composed of 3 steps: two sub-block matrix
multiplications and a following matrix addition.

In the previous “Computation Overhead Analysis” section 3.4 we compared the computation of
LoRA and GraLoRA with the big O notation on the two major matrix multiplication steps. In this
section we further examine the exact computation requirement and compare their efficiency.

LoRA FLOPs LoRA performs the projection in two sequential steps to leverage its low-rank structure.
In the first step, the computation of A⊤X ∈ Rr×T requires (2N − 1)rT FLOPs. In the second step,
the reconstruction B(A⊤X) ∈ RM×T incurs (2r − 1)MT FLOPs. Therefore, the total FLOPs for
LoRA is:

LoRAFLOPs = (2N − 1)rT + (2r − 1)MT

= 2r(M +N)T − (r +M)T.

GraLoRA FLOPs In practice, GraLoRA computations can be divided into three stages, involving
k2 adapter blocks: two matrix multiplications followed by a matrix addition as shown in Figure 10.

In the first stage (projection), each adapter block computes A⊤
i,jXj ∈ R r

k×T , which requires(
2n
k − 1

)
r
kT FLOPs. Since there are k2 such blocks, the total FLOPs for this step is (2n− k)rT .

In the second stage (reconstruction), each adapter block performs Bi,j(A
⊤
i,jXj) ∈ Rm

k ×T , which
costs

(
2 r
k − 1

)
m
k T FLOPs. With k2 blocks, the total becomes (2r − k)mT .

The final stage involves aggregating the outputs across k projections for each row:

k∑
j=1

Bi,j(A
⊤
i,jXj) ∈ R

m
k ×T ,

which requires
(
m
k × T

)
(k − 1) = mT (k−1)

k FLOPs per row. Across k rows, the total cost becomes
(k − 1)mT .

Combining all three stages, the total FLOPs for GraLoRA is:

GraLoRAFLOPs = (2n− k)rT + (2r − k)mT + (k − 1)mT

= 2r(m+ n)T − k(r +m)T + (k − 1)mT

= 2r(m+ n)T − krT −mT.

This can also be expressed as:

GraLoRAFLOPs = LoRAFLOPs − (k − 1)rT,

demonstrating that GraLoRA introduces reduced computation compared to LoRA.
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D Additional Experiment Results

D.1 Results on Commonsense Reasoning with extensive baseline comparison

Table 6: Commonsense reasoning accuracy across models and tasks. All values are percentages; bold
indicates the best performance per row. HS means HellaSwag, and WG WinoGrande. † indicates
values reported by Ponkshe et al. [25]

Method Rank #Parmas BoolQ PIQA SIQA HS WG ARC-c ARC-e OBQA Avg.

Full-FT† - 3.21B 70.4% 85.6% 80.5% 91.9% 85.0% 75.3% 88.5% 81.9% 82.4%

LoRA-XS† 96 1.81M 67.3% 83.4% 78.7% 89.0% 82.1% 72.6% 85.2% 78.9% 79.6%
LoRA-SB† 96 1.81M 70.3% 84.8% 80.2% 91.6% 84.6% 74.7% 87.9% 81.2% 81.9%

LoRA† 32 48.63M 70.0% 85.2% 79.1% 90.7% 82.2% 74.3% 86.9% 81.9% 81.3%
MELoRA 32 48.63M 71.3% 85.0% 78.6% 93.0% 79.7% 73.7% 85.5% 79.0% 80.7%
rsLoRA† 32 48.63M 69.8% 85.1% 78.9% 90.5% 82.0% 74.2% 86.7% 81.7% 81.1%
PiSSA† 32 48.63M 70.1% 85.4% 79.4% 90.9% 82.7% 74.6% 87.2% 81.8% 81.5%
DoRA† 32 49.40M 70.4% 85.6% 79.7% 90.8% 82.9% 74.9% 87.6% 82.0% 81.7%
BOFT 32 48.48M 72.3% 84.6% 79.1% 91.3% 84.5% 73.7% 87.8% 80.6% 81.7%
LoRA-Pro† 32 48.63M 71.3% 85.8% 79.4% 90.9% 83.4% 75.3% 87.2% 81.7% 81.9%
MoRA 32 48.63M 72.4% 86.1% 80.1% 92.3% 84.8% 76.8% 88.8% 84.8% 83.3%
RaSA 32 48.63M 73.1% 87.5% 81.1% 93.7% 85.3% 78.9% 88.9% 83.6% 84.0%
GraLoRA 32 48.63M 74.1% 86.5% 80.8% 93.8% 87.5% 79.9% 89.5% 84.8% 84.6%

D.2 Results on General Language Understanding (GLUE)

Table 7: GLUE dataset accuracy results on RoBERTa-base across different tasks. Best results per
task are in bold.

Method #Params SST-2 (%) MRPC (%) CoLA (%) QNLI (%) RTE (%) STS-B (%) Avg (%)

Full-FT 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
LoRA 0.3M 95.1 86.5 63.4 93.3 76.2 90.6 84.2
VeRA 0.043M 94.6 89.5 65.6 91.8 78.7 90.7 85.2
FourierFT 0.024M 94.2 90.0 63.8 92.2 79.1 90.8 85.0
GraLoRA 0.3M 95.2 89.7 65.3 93.0 80.9 91.1 85.8
Hybrid GraLoRA 0.3M 95.2 90.2 64.1 93.4 79.8 91.2 85.6
Best GraLoRA 0.3M 95.2 90.2 65.3 93.4 80.9 91.2 86.0

D.3 Results on Personalized Image Generation

Table 8: SDXL fine-tuning results personalized image generation.

Method CLIP Similarity DINOv2 Similarity

LoRA 91.4% 79.2%
GraLoRA 91.9% 81.3%

E Experiment Details

Baseline Methods. We compared GraLoRA with three main baseline methods. Key idea for each
method is as follows:

• LoRA freezes pretrained model weights and injects trainable low-rank matrices into selected
layers, allowing efficient fine-tuning with significantly fewer parameters, approximating
weight updates as a product of two small matrices.

• MoRA employs a single square matrix instead of low-rank matrices to achieve high-rank
updating while maintaining the same number of trainable parameters.

• RaSA enhances LoRA by sharing partial low-rank components across layers while keeping
layer-specific updates.
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Table 9: Hyperparameters for Code Generation, Commonsense Reasoning, Mathematical Reasoning,
and Personalized Image Generation tasks.

Task Model Method Rank LR Batch size Epochs Optimizer

Code
Generation LLaMA3.1–8B

LoRA

{16, 32, 64, 128} 2e-4 192 2 LionWMoRA
RaSA

GraLoRA

Commonsense
Reasoning

Qwen-2.5-1.5B

LoRA

64 2e-4 192 2 LionWMoRA
RaSA

GraLoRA

Qwen-2.5-7B

LoRA

64 4e-4 192 2 LionWMoRA
RaSA

GraLoRA

LLaMA3.2–3B

BOFT

32

4e-4

192 2 AdamW
MeLORA 4e-4

MoRA 2e-4
RaSA 4e-4

GraLoRA 4e-4

LLaMA3.1–70B LoRA 64 3e-4 192 1 LionWGraLoRA

Mathematical
Reasoning Qwen-2.5-1.5B

LoRA 64 2e-4 192 4 AdamWGraLoRA

LoRA 128 4e-4 192 4 AdamWGraLoRA

Personalized
Image Generation SDXL LoRA 128 1e-4 1 2 AdamWGraLoRA

Table 10: Detailed hyperparameter settings for each sub-tasks in General Language Understanding.
Model Task Method Rank LR Head-LR Batch size Epochs Optimizer

RoBERTa-base

SST-2 GraLoRA 8 4e-4 4e-3 128 60 AdamWHybrid GraLoRA 4e-4

MRPC GraLoRA 8 4e-4 4e-4 128 30 AdamWHybrid GraLoRA 2e-4

CoLA GraLoRA 8 5e-4 5e-3 128 80 AdamWHybrid GraLoRA 8e-4 8e-4 256

QNLI GraLoRA 8 5e-4 2e-3 128 25 AdamWHybrid GraLoRA

RTE GraLoRA 8 2e-4 2e-4 128 160 AdamWHybrid GraLoRA

STS-B GraLoRA 8 1e-3 1e-2 128 80 AdamWHybrid GraLoRA

We fixed LoRA α = 2r which is known to be generally applicable in different models with different
ranks [2]. Detailed hyperparameter settings for our experiments are denoted in Table 9.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we strongly denote our main claims in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes, we discuss the limitations of our method and evaluate it’s impact in the
"Tradeoff Analysis" section. We further examine how to overcome the limitation in "Hybrid
GraLoRA" section and it’s practical result in "Results on Code Generation" section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we do provide complete and correct proof for each theoretical result in
the "Expression Power Analysis" section.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: Yes, we do disclose information needed to reproduce the results in "Experiment
Setup" section and in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we do provide open access to code with sufficient instructions as supple-
mental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we specify all the training and test details necessary to understand the
results in "Experimental Setup" section and in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: No, error bars are not reported because it would be too computationally
expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: Yes, we do provide sufficient information on the computer resources in
"Tradeoff Analysis" section and in "Experiments" section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, our research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We propose a generic method for optimizing efficient training of neural
networks. It is not directly related to social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method solely works for fine-tuning a pretrained model, thus the paper
poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the assets used in the paper are properly cited in "Experiments" section
and in overall writings.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method development does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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