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Abstract

AI agents today are mostly siloed — they either retrieve and reason over vast
amount of digital information and knowledge obtained online; or interact with the
physical world through embodied perception, planning and action — but rarely both.
This separation limits their ability to solve tasks that require integrated physical and
digital intelligence, such as cooking from online recipes, navigating with dynamic
map data, or interpreting real-world landmarks using web knowledge. We introduce
EMBODIED WEB AGENTS, a novel paradigm for AI agents that fluidly bridge
embodiment and web-scale reasoning. To operationalize this concept, we first
develop the EMBODIED WEB AGENTS task environments, a unified simulation
platform that tightly integrates realistic 3D indoor and outdoor environments with
functional web interfaces. Building upon this platform, we construct and release the
EMBODIED WEB AGENTS Benchmark, which encompasses a diverse suite of tasks
including cooking, navigation, shopping, tourism, and geolocation — all requiring
coordinated reasoning across physical and digital realms for systematic assessment
of cross-domain intelligence. Experimental results reveal significant performance
gaps between state-of-the-art AI systems and human capabilities, establishing both
challenges and opportunities at the intersection of embodied cognition and web-
scale knowledge access. All datasets, codes and websites are publicly available at
our project page https://embodied-web-agent.github.io/.

1 Introduction

Recently, we have seen the proliferation of web agents capable of retrieving information online [Shi
et al., 2017, Yao et al., 2022, Deng et al., 2023, Zhou et al., 2023, Koh et al., 2024] — yet they remain
confined to screens disembodied from the real world. Meanwhile, their physical counterparts —
robots and embodied systems — navigate the world but with limited access to the Internet. What if
the boundary between the digital and physical realms were shattered? What if web agents stepped
out of the browser, with keys to perceive and act in the real 3D physical world, while physical robots
autonomously tapped into the encyclopedic knowledge of the web? As illustrated in Figure 1, such
agents would not only assess the ingredients in your kitchen, search for matching recipes online,
shop for missing items, and cook your favorite dish for you; but also traverse historical landmarks,
interpret architectural styles using both their own perception and Wikipedia, leave personalized
reviews, and perhaps even return with a souvenir in hand. We, as humans, don’t compartmentalize
our intelligence into "physical-only" and "digital-only" modules — we fluidly move between realms.
What if contemporary AI agents could likewise achieve the best of both worlds?

Building such agents goes far beyond a mere combination of isolated web and embodied systems; it
presents a set of deeply intertwined challenges. The first is the perceptual grounding problem: how
can an agent link abstract digital instructions (e.g., "cook potato and egg until golden brown" as in
Figure 1 (b)) with the high-dimensional data streams of the physical world (e.g., visually recognizing
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Figure 1: Illustrative examples of our EMBODIED WEB AGENTS conceptual paradigm, tasks and
environments. Blue boxes and arrows indicate web interaction / switching to the web respectively.
Orange boxes and arrows indicates acting in / switching to the embodied environment. We omit most
intermediate actions due to the large number of interaction steps.

the transition of potatoes and eggs to a golden state through a series of embodied observations)?
Addressing this requires embodied perception, where agents actively interpret their surroundings
through movement, interaction, and multimodal sensing — continually acquiring feedback from
their environment and aligning these observations with digital instructions. The second challenge is
cross-domain planning: how should an agent decide when to shift between physical actions and digital
information retrieval, particularly when information from one domain contradicts or supplements the
other? For instance, the online map may suggest a path to visit Rockefeller Center, but real-world
observation may reveal that the center is closed due to a protest, demanding a dynamic reevaluation
of the agent’s plan. To navigate seamlessly between domains, agents must maintain a coherent and
persistent representation that bridges physical and digital contexts — recalling physical experiences
when operating online, and retrieving digital knowledge when acting in the world. Despite all these
challenges, there remains a surprising lack of research targeting this level of integrated intelligence —
both in terms of conceptual frameworks and benchmark development. As a result, progress in each
domain often unfolds in isolation, with limited cross-pollination between the two paradigms.

To this end, we introduce EMBODIED WEB AGENTS as a new conceptual paradigm of AI systems
that unify physical embodiment with web-scale knowledge access — capable of perceiving and
acting in the real world while reasoning over dynamic, unstructured information from the web. To
operationalize this concept, we first develop the EMBODIED WEB AGENTS task environments, a
unified simulation platform that integrates realistic 3D environments with interactive web interfaces.
This platform combines (1) indoor settings from AI2-THOR, (2) outdoor navigation in Google Earth,
and (3) web interfaces including Wikipedia, online stores, recipe websites, map services etc., enabling
agents to interact seamlessly with both physical and digital spaces. Building upon this environment,
we construct the EMBODIED WEB AGENTS Benchmark, which encompasses approximately 1.5k
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tasks across multiple domains, including: (1) cooking tasks where agents match physical ingredients
with online recipes; (2) navigation combining online maps with physical wayfinding; (3) shopping
requiring coordination between in-store actions and online options; (4) tourism connecting physical
landmarks with web information; and (5) geolocation determining position through embodied
exploration and online research. Together, these tasks systematically test an agent’s ability to bridge
embodied perception, action, and web-based reasoning across varied contexts.

We conduct comprehensive experiments on our proposed EMBODIED WEB AGENTS benchmark
using several state-of-the-art LLM agent baselines, including GPT, Gemini, Qwen, and Intern models.
Experimental results show that current LLM agents are far from satisfactory compared to human
performances. A detailed breakdown and analysis of error types and their percentage contributions to
task failures also reveal that current models predominantly struggle with cross-domain integration,
not isolated capabilities. For instance, these models encounter problems such as being trapped in a
single environment and unable to switch to the other domain, or the misalignment of web instructions
and embodied actions. This further strengthens our position that embodied web agency presents
unique challenges that cannot be studied through isolated physical or digital agents alone, as the key
difficulties emerge precisely at the intersection where these domains are intertwined.

The key contributions of this paper can be summarized as follows.

• We introduce EMBODIED WEB AGENTS as a new conceptual paradigm for AI systems that
integrate embodiment with web-scale information access — formalizing a class of agents
capable of acting in the physical world while reasoning over unstructured digital content.

• We develop the EMBODIED WEB AGENTS task environments, a unified simulation platform
that tightly integrates realistic 3D environments with interactive web interfaces, enabling
agents to perform cross-domain tasks involving perception, action, and retrieval.

• We construct and release the EMBODIED WEB AGENTS Benchmark, which encompasses
a diverse suite of tasks across multiple domains including navigation, shopping, traveling,
cooking and geolocation.

• We conduct in-depth empirical analysis of state-of-the-art LLM agents on our benchmark,
revealing that our benchmark poses rigorous challenges for current LLM agents, and opens
up a challenging new direction and testbed for future agents with integrated intelligence.

2 Related Works

Web Agent Benchmarks Web agents are designed to navigate and interact with web environments
to complete tasks following user instruction. Initial web agent evaluation benchmarks such as
MiniWoB [Shi et al., 2017] and MiniWoB++ [Liu et al., 2018] introduce a suite of diverse web
navigation tasks on synthetic webpages. More recent benchmarks emphasize greater realism and task
diversity. WebShop [Yao et al., 2022] simulates an e-commerce platform with numbers of products to
evaluate agents’ ability to search and make purchases, while Mind2Web [Deng et al., 2023] provides
a diverse collection of open-ended tasks across hundreds of real websites to assess general web
navigation and interaction capabilities. Similarly, benchmarks like WebArena [Zhou et al., 2023],
WebVoyager [He et al., 2024], WebLINX [Lù et al., 2024], and VisualWebArena [Koh et al., 2024]
feature fully functional websites spanning multiple domains, enabling the evaluation of agents on
long-horizon tasks in realistic, diverse environments. OVEN [Hu et al., 2023] challenges models to
link images to specific Wikipedia entities given text queries. Beyond pursuing more realistic test
environments, WorkArena [Drouin et al., 2024] requires agents to interact with enterprise software
and perform tasks demanding higher expertise and comprehension. In this work, we explore a distinct
yet important scenario where web browsing is integrated into the physical embodied world.

Embodied Environments and Benchmarks Recent developments in environments and benchmarks
have accelerated the research on embodied AI. Simulation platforms, such as AI2-THOR [Kolve
et al., 2017], Habitat [Manolis Savva* et al., 2019] and iGibson [Shen et al., 2021, Li et al., 2022],
enable agents to perform diverse interactive tasks in realistic indoor environments. Benchmarks like
ALFRED [Shridhar et al., 2020] and BEHAVIOR [Srivastava et al., 2021] provide a diverse suite
of indoor tasks for embodied agents, requiring instruction understanding, long-horizon planning
and manipulation in a closed environment. Additionally, Embodied Agent Inferface [Li et al.,
2024] formalizes decision processes for LLM-based embodied agents and introduces fine-grained
evaluation metrics for indoor embodied tasks. Efforts have also been made to extend the applicability
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Figure 2: An Exemplar Pipeline of completing a task in our EMBODIED WEB AGENTS dataset.
Blue boxes indicate web interaction. Orange boxes indicate embodied interaction. Boxes with
gradient colors indicate switching from one environment to the other.

of embodied agents to outdoor environments. A series of outdoor navigation benchmarks, such as
StreetLearn [Mirowski et al., 2018], TouchDown [Chen et al., 2019, Mehta et al., 2020], RUN [Paz-
Argaman and Tsarfaty, 2019], have been introduced to evaluate the ability of embodied agents
on vision-language navigation and spatial description resolution in urban street environments. Du
and Varshney [2016], Du et al. [2019] create immersive systems that integrate geo-tagged social
media with 3D street-level environments to enhance virtual and augmented reality experiences for
storytelling, tourism, and cultural exploration. Yang et al. [2024] V-IRL is a platform for training and
testing AI agents in realistic virtual environments to develop real-world skills. More outdoor related
tasks such as geolocation prediction [Haas et al., 2023] and map understanding [Xing et al., 2025]
has also been proposed recently. In this work, we design a new benchmark encompassing a diverse
set of embodied tasks within both indoor and outdoor environments. Different from previous works,
our benchmark focuses on embodied tasks that require web access and interaction to be completed, a
realistic scenario that is challenging and neglected in existing benchmarks.

Cross-Modal Agent Systems Cross-modal agent systems integrating vision, language and other
modalities have been explored in both web and embodied environments. In web-based settings, He
et al. [2024] builds a web agent powered by a large multimodal model that interacts with real-world
websites following user instructions. Lin et al. [2024] develops ShowUI, an efficient vision-laguage-
action model for GUI agent. For embodied tasks, multimodal foundation models such as Gato [Reed
et al., 2022], PaLM-E [Driess et al., 2023] and 3D-LLM [Hong et al., 2023] have been developed to
provide generalist policies in real world. In this work, we explore a new dimension for modal fusion
in embodied agents, by integrating both embodied and web actions into one unified framework, to
enable agents to perform more complex and diverse tasks with real-world applications.

3 The EMBODIED WEB AGENT Task Environments

Inspired by Zhou et al. [2023], our environments are formalized as E = ⟨S,A,O, T ⟩, where S is
the combined physical-digital state space, A is the action space spanning both domains, and O is the
observation space comprising embodied input oet and web perception owt . The deterministic transition
function T : S ×A → S governs state evolution as agents select actions based on task specification,
observations, and history. Task completion is measured by reward function r(aT1 , s

T
1 ) evaluating

whether actions successfully fulfill intents like cooking dishes or reaching destinations.

Our task environments can be categorized into three parts: outdoor environment (3.1), indoor
environment (3.2) and web environment (3.3). We show an example of interacting with and switching
among the environments in Figure 2, as well as the action spaces of all environments in Table 1.
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Action Explanation
INDOOR ENVIRONMENT ACTIONS

Agent Movement
Teleport [obj] Teleport agent to a specific object
MoveAhead/Back/Left/Right Move agent in a cardinal direction

Object Interaction
PickupObject / PutObject [obj] Pick up or put held object

Object State Changes
OpenObject / CloseObject [obj] Open or close an object
SliceObject [obj] Slice an object
CookObject [obj] Cook an object

Environment Switching
switch_environment [msg] Switch between web/embodied

OUTDOOR ENVIRONMENT ACTIONS
Forward / Left / Right Move agent in outdoor environment

WEB ENVIRONMENT ACTIONS
Page Operation Actions

click [id] Click on an element with specific id
type [id] [content] [pr] Type content into field
scroll [direction] Scroll page up or down
hover [id] / press [key_comb] Hover or simulate key press

Tab Management & URL Navigation Actions
new_tab / close_tab / tab_focus Open, close or focus on a tab
goto [url] / go_back / forward Navigate to URL or go back/forward

Table 1: Action Spaces for All Environments

Figure 3: Importance of Different
Capabilities Across Tasks

Figure 4: Environments for Tasks

3.1 Outdoor Environment

The outdoor environment is constructed by leveraging the Google Street View and Google Earth
API, which provides real-world, street-level observations captured by Google’s panoramic cameras.
To build the outdoor environment, we select four cities (i.e., New York, Boston, Philadelphia, and
Pittsburgh) with visually and structurally complex street layouts. Unlike synthetic or simulation-
based environments, the visual data provided by Google is inherently more natural, noisy, and
diverse, offering a more challenging and representative benchmark. Through API calls, we retrieve
observations associated with specific geographic coordinates. These include panoramic images or
standard-perspective images in cardinal directions. Alongside visual data, we also obtain: the GPS
coordinates of each point, the heading / directional metadata between connected points, and the
connectivity (adjacency) information across locations. With these elements, we construct a navigation
graph that underlies the outdoor environment. Formally, this environment can be described as an
undirected graph G = (V,E), where each node v ∈ V represents a specific GPS coordinate, each
edge e ∈ E encodes a connection between two coordinates, including heading and distance, and each
node is associated with four directional visual observations (north, east, south, west), represented
as standard field-of-view images. Agents interact with the outdoor environment by observing these
visual inputs, accessing the neighboring node set, and using heading information to reason about
spatial transitions. Given navigation instructions (e.g., derived from web-based directions), the agent
must determine which neighbor to move to at each step in order to reach a specified goal location,
completing the navigation task through step-by-step decision making. This design closely mirrors
real-world settings and introduces challenges that go beyond those posed by synthetic simulators.
Compared to environments with simplified or rendered visuals, our outdoor environment demands
stronger generalization and robustness from embodied agents, making it a more practical and realistic
testbed for evaluating agent systems in open-world scenarios.

3.2 Indoor Environment

The indoor task environment utilizes AI2-THOR [Kolve et al., 2017], a photorealistic 3D indoor
simulation platform. The environment provides highly accurate and interactive kitchen scenes
containing fresh ingredients, cooking equipment, storage containers, and kitchen appliances. Agents
can observe ingredient states, manipulate objects, and monitor cooking progress through visual
perception. Objects are tracked with properties and states, including boolean flags (e.g., isSliced,
isCooked), location information (e.g., parentReceptacles), and more, all of which dynamically
update as agents execute physical actions like chopping or mixing, instructed by online recipes. A
specialized state evaluator compares the current kitchen state against ideal target states, measuring
task completion by checking whether objects have achieved desired states and spatial arrangements.
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3.3 Web Environment

The web environment consists of five functional websites, each supporting different aspects of agent
interaction across both indoor and outdoor scenarios. The websites are implemented with a React.js
frontend structured using modular components and state management, and a FastAPI backend that
exposes asynchronous RESTful APIs for data serving and user interaction. The homepage serves
as the central navigation hub, linking to all other task-specific websites and maintaining contextual
continuity across interactions. The recipe website we built allows users to browse, search, and filter
cooking recipes based on ingredients, dietary preferences, or cuisine types. The shopping website
built from scratch enables management of a shopping cart, ingredient lookup, and simulated checkout
processes. It facilitates task flows involving item selection, inventory reasoning, and purchasing. We
also adapt several websites from the WebArena benchmark [Zhou et al., 2023]. The OpenStreetMap
site offers an interactive map for location search, address lookup, and exploration of geographic
entities. The Wikipedia site presents richly interlinked encyclopedic content for information-seeking,
entity linking, and multi-hop reasoning across documents. These websites are modified slightly to
ensure smooth integration with the homepage. All websites are public and can be reached. More
details can be found in our project page https://embodied-web-agent.github.io/. We also
include more details and screenshots of the web environment in the Supplementary Material.

4 The EMBODIED WEB AGENTS Benchmark Construction

In this section, we describe how we construct our EMBODIED WEB AGENTS benchmark. We will
cover 5 domains of tasks: Navigation, Shopping, Traveling, Cooking and Geolocation. We show
examples of the tasks in Figure 1, and a full pipeline of completing a task in Figure 2. Figure 3
summarizes the required level of each capability for successful task completion across domains, and
Figure 4 shows which environments are utilized in different tasks.

Navigation Building upon the Outdoor Environment described in § 3.1, our navigation tasks evaluate
an agent’s spatial reasoning ability to reach destinations based on web-sourced directions. We use the
OpenStreetMap website in § 3.3 to ensure reproducibility and consistent web interaction. To create
diverse navigation scenarios, we prompt GPT-4o-mini to generate geographic coordinates across the
aforementioned cities. These coordinates serve as either the start or end points of a task, and the
graph structure centered around each point can be developed using our outdoor environment. During
the prompting process, we also generate initial task instructions tied to the obtained coordinates.
After identifying start or end points, we locate the corresponding counterparts using node adjacency
relationships in the outdoor graph, forming a path within the environment. For evaluation purposes,
we compute the shortest path using Dijkstra’s algorithm as our ground-truth trajectory.

Navigation tasks require bidirectional interaction between web and embodied domains. The agent
must input origin and destination into the map website to obtain directions, then ground these
instructions in the embodied environment through turning actions and movements. Our benchmark
includes 144 navigation tasks, each requiring both web interaction and embodied navigation. Since
VLM-generated locations may have connectivity issues or misalignments with actual map data, we
conduct human verification for all tasks to ensure their correctness and validity.

Shopping In real life, when buying products, we typically compare prices online, decide where
to purchase based on pricing and store location information, place an order online, and then visit
a physical store for pickup. Our shopping tasks evaluate the agent’s ability to handle both online
shopping and embodied environment interactions. The agent must place orders through our self-
hosted shopping website dicussed in § 3.3, obtain store locations, and navigate in the outdoor
environment to the correct store for pickup using the directions by OpenStreetMap; alternatively, it
may also first navigate to a store and then place the order online.

In our benchmark, we simulate four stores located in distinct areas of Manhattan, New York. Our
website lists a variety of items with product names, images, prices, and store information including
distance and store name. The agent needs to weigh both the price of the item and the store’s location
to make an optimal decision, ultimately grounding web information into the embodied environment
and navigating to the store for the selected item. To generate diverse scenarios, we design multiple
templates with different items and user intents, which are listed in detail in our Supplementary
Material. We also test the agent’s ability to retrieve information across multiple browser tabs—e.g.,
requiring the agent to complete a purchase, return to the homepage, switch to a map website, and
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search for directions before embodied navigation. Some complex tasks require multiple rounds of web
interaction and physical navigation within a single shopping scenario, testing agents’ multi-source
integration and sequential planning abilities. In total, our dataset contains 216 shopping tasks.

Traveling Inspired by how people consult web resources while traveling to navigate the physical
world more effectively, we include traveling as a primary benchmark task. Using our custom-built
outdoor environment and a pipeline similar to navigation tasks, we prompt a VLM to generate
starting points, destinations, and initial task instructions, which we then refine into detailed, context-
appropriate versions. Unlike pure navigation tasks that focus on following map directions and
resolving map-reality inconsistencies, traveling tasks emphasize richer interaction between web
resources and the embodied environment. For instance, when an agent encounters a significant
landmark during navigation, as shown in Figure 1 (a) when it runs into a Gothic building, it may
query Wikipedia to retrieve relevant information about that location. The agent is also expected to
explore different architectural styles or historical landmarks, and ground Wikipedia descriptions
to physical observations (e.g., grounding the text descriptions of appearances of a Gothic building
to the actual observation of the building). Web interactions in traveling tasks extend beyond map
reading to include diverse informative sites, creating scenarios with multiple intertwined interactions
between digital and physical domains. Our benchmark includes 110 traveling tasks, each requiring
fluid movement between embodied navigation and web-based information retrieval.

Cooking As described in § 3.2, we use AI2-THOR as our indoor environment. To generate embodied
cooking tasks for execution, we begin by identifying all ingredients available in the AI2-THOR
kitchen scenes. We then manually search online for recipes that include these ingredients. Since
online recipes are often noisy and may not align with the constraints of the AI2-THOR environment,
we use Claude to refine them. Claude is guided by a predefined set of allowable agent actions in
AI2-THOR environment to ensure the resulting recipes are executable. To increase task difficulty,
we introduce confounders for most of the recipes by including pairs of recipes with the same name
but differing in difficulty level, dietary type, ingredients used, or required cooking equipment. The
users can filter out recipes based on these constraints by filter bars below the search bar (as in our
self-hosted websites discussed in § 3.3). The next step is to curate a set of tasks based on collected
recipes. For each scene, we retrieve recipes that match the available ingredients. The task instruction
asks the agent to cook the corresponding dish. When a confounder exists for a given recipe, we
introduce additional constraints — e.g., “Diet type is vegetarian,” “Use a tomato,” — to disambiguate
between recipe variants. If an ingredient does not exist in the scene, the agent is expected to go online
to shop for it. The cooking tasks evaluate the agent’s capability to perform long-trajectory planning
in the indoor environment, and continuously check if the states match with the web instruction in the
process. Our benchmark contains in total 911 cooking tasks. An exemplar task is in Figure 1 (b).

Geolocation Geolocation is a classic computer vision task Hays and Efros [2008], where models
predict geographic coordinates of given images. Instead of treating it purely as a conventional vision
problem, we reinterpret it based on its inherent characteristics as an embodied geolocation task.
Inspired by the design of GeoGuessr, we move away from the single-image input setting and treat
the model as an agent situated in an embodied environment. The agent is allowed to explore the
outdoor environment we construct and ultimately output its estimated location. During exploration,
the agent interprets storefront texts, visual cues, and street-view observations while accessing web
information when needed to supplement its observations. The agent explores these environments
freely, performing web interactions when additional information is needed. The task concludes
when the agent has either 1) explored all possible positions or 2) collected sufficient information to
confidently predict its location. This framework unifies embodied navigation, web-based reasoning,
and visual grounding into a cohesive geolocation task. Our data collection is adapted from Huang
et al. [2025], focusing on examples from existing geolocation datasets where models typically fail.
We select coordinates where we hypothesize web information may improve prediction accuracy, then
construct environments centered on these points using Google API. Geolocation evaluates the visual
grounding ability of agents. An example is shown in Figure 1 (c). We collect 142 such data.

5 Experiments

In this section, we first introduce baseline LLM agents (§ 5.1) and evaluation metrics (§ 5.2) we
use for experiments. We then perform result analysis (§ 5.3) on our EMBODIED WEB AGENTS
benchmark. We group the results of Navigation, Shopping and Traveling together as they are all
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related to outdoor planning. Please refer to the Supplementary Material for more experimental results,
experimental setup, LLM prompts, qualitative examples and error cases, as well as more analyses.

5.1 Baseline LLM Agents
We evaluate four LLMs as our baseline agents: GPT-4o-mini, Gemini 2.0 Flash, Qwen-VL-Plus,
and InternVL-2.5-latest. GPT-4o-mini is OpenAI’s state-of-the-art multimodal model with strong
performance in visual reasoning and real-time interaction. Gemini 2.0 Flash, by Google DeepMind, is
optimized for speed and efficiency while maintaining robust vision-language capabilities. Qwen-VL-
Plus, from Alibaba’s Qwen Team, offers fine-grained image-text understanding. InternVL-2.5-latest,
developed by Shanghai AI Lab, excels in spatial and semantic reasoning.

5.2 Evaluation Metrics
To comprehensively assess agent performance across physical and digital domains, we employ four
evaluation metrics for outdoor planning and cooking: Overall Accuracy measures the success of
complete cross-domain task execution, requiring both successful web task completion (reaching
the terminal web state) and fulfillment in the embodied environment, representing holistic task
completion that necessitates seamless integration of both domains; Web-only Accuracy evaluates the
ability to successfully complete the web portion of a task, such as reaching the final step of a recipe,
isolating digital domain independent of physical execution; Embodied-only Accuracy assesses an
agent’s ability to achieve all required physical state conditions in the embodied environment, such as
properly slicing ingredients, or navigating to a desired place, measuring physical domain proficiency;
and Overall Completion Rate represents the proportion of task progress achieved, indicating how
much of the required state conditions have been fulfilled relative to the total task objectives.

5.3 Result Analysis

Task / Metric GPT Gemini Qwen Intern Human

O
ut

do
or

Ta
sk

s

Navigation

Overall Accuracy 34.72 30.56 15.97 13.19 90.28
Overall Completion Rate 52.08 48.96 36.81 26.04 91.32

Web-only Accuracy 69.44 67.36 57.64 38.89 92.36
Embodied-only Accuracy 48.61 46.53 31.25 23.61 90.97

Shopping

Overall Accuracy 25.46 23.61 13.89 10.65 92.59
Overall Completion Rate 31.94 30.56 18.52 14.35 93.52

Web-only Accuracy 39.35 37.50 23.15 17.13 93.06
Embodied-only Accuracy 34.26 32.41 17.59 12.96 93.98

Traveling

Overall Accuracy 30.91 25.45 11.82 9.09 91.82
Overall Completion Rate 50.91 48.18 34.55 20.91 93.64

Web-only Accuracy 57.27 53.64 41.82 25.45 94.55
Embodied-only Accuracy 47.27 44.55 29.09 19.09 92.73

Table 2: Model Performance Across Different Outdoor Tasks. There is a huge performance gap
between LLM agents’ performances and human performances.

Metric Vision Text HumanGPT Gemini Qwen Intern GPT Gemini Qwen Intern
Overall Acc 5.4 4.1 0.6 0.0 6.4 5.8 1.5 0.4 77.08

Completion Rate 40.26 35.62 15.91 9.73 39.16 38.92 17.20 10.02 85.37
Web Acc 59.71 47.74 28.65 10.64 57.08 62.23 35.89 15.58 100

Embodied Acc 8.7 6.1 2.2 0.9 10.5 8.2 4.1 1.3 77.08

Table 3: Model Performance for Cooking Task. The models achieve inferior overall accuracies.

Outdoor Planning For outdoor planning, we use GPT-4o-mini alongside Gemini 2.0 Flash, Qwen-
VL-Plus, and InternVL-2.5-latest to evaluate performance across navigation, shopping, and traveling
tasks (Table 2). For web observation, we follow the setting of VisualWebArena. We observe
that: 1) GPT-4o-mini consistently leads across all metrics, with the highest accuracy in navigation
(34.72%), shopping (25.46%), and traveling (30.91%), though still well below human performance.
Gemini follows closely behind, while Qwen and Intern lag behind. 2) Web-only accuracy exceeds

8



embodied-only accuracy for all outdoor tasks, suggesting models handle digital information more
effectively than physical navigation. 3) Generally, completion rates are satisfactory, while overall
accuracies are very low across all tasks. This indicates models can execute parts of complex tasks but
struggle with consistent cross-domain reasoning over longer sequences. 4) From task perspective,
shopping and traveling involve richer interactions between the embodied environment and the web
than navigation, and each task spans longer steps. As a result, the overall accuracy for shopping and
traveling is noticeably lower than for navigation. This highlights the difficulty of cross-environment
tasks, particularly those that are lengthy and involve multiple steps, for current models.

Cooking For cooking, we implement two distinct approaches: vision-based and text-based. Our
vision-based implementation draws inspiration from VisualWebArena, utilizing screenshot images
of websites enhanced with Set-of-Marks (SoM) annotations that highlight interactive elements. For
embodied observations, we provide first-person visual perspectives from the agent’s viewpoint within
the AI2-THOR environment. The text-based implementation follows WebArena’s methodology,
representing web content through accessibility trees that capture the semantic structure of websites
in textual form. For embodied observations, we extract structured scene graphs directly from AI2-
THOR, providing explicit object relationships and states. We use Qwen-PLUS and InternLM-latest
for Qwen and Intern models without vision.

Table 3 presents performance metrics for various models on the cooking task, comparing vision-
based and text-based approaches against human performance. A substantial performance gap exists
between AI models and humans, with the best model (text-based GPT-4o-mini) achieving only 6.4%
overall accuracy compared to humans’ 77.08%. Text-based models using structured scene graphs
consistently outperform their vision-based counterparts using first-person views, suggesting current
models struggle to ground visual observations effectively in cooking contexts. GPT-4o-mini and
Gemini-2.0-Flash demonstrate substantially stronger performance than Qwen-VL-Plus/Qwen-PLUS
and InternVL/InternLM across both modalities. Notably, similar to outdoor performances, all models
perform significantly better on web-only tasks compared to embodied-only tasks, revealing that
while current models can navigate recipe websites effectively, they struggle with physical execution
requiring object manipulation and state tracking. Despite low overall accuracy, models achieve
moderate completion rates, indicating partial task success but failure in full cross-domain integration.

Geolocation For geolocation tasks, we benchmark against FairLocator [Huang et al., 2025], a study
analyzing VLM performance on GeoGuessr using Google Street View images. As shown in Table
4, the embodied web agent, capable of active exploration and web information access, significantly
outperforms the passive baseline, particularly in identifying finer-grained locations like cities and
streets. We observe consistent improvements across all models when moving from the baseline to
embodied setting, suggesting the performance gains are model-agnostic. Interestingly, we also find
that even when the retrieved Wikipedia search results are noisy or uninformative, the act of querying
itself often helps the agent reason more confidently. This indicates that formulating search queries
may serve as a form of self-supervision. This substantial improvement underscores the potential of
integrating embodied and web domains to enhance performance across numerous real-world tasks,
warranting further investigation.

Setting / Model Continent Country City Street All

G
eo

lo
ca

tio
n FairLocator

GPT-4o-mini 90.85 81.69 73.24 1.41 1.41
Gemini-2.0-Flash 93.66 85.92 78.17 0.70 0.70
Qwen-VL-Plus 76.06 58.45 45.07 0.70 0.00

InternVL2.5-Latest 77.46 62.68 52.11 1.41 1.41
Embodied Web Agent

GPT-4o-mini 97.18 90.85 85.21 3.52 3.52
Gemini-2.0-Flash 97.18 94.37 85.21 4.23 4.23
Qwen-VL-Plus 80.28 69.01 49.30 0.00 0.00

InternVL2.5-Latest 93.62 77.30 57.45 2.13 1.42

Table 4: Model performance for geolocation task. All models performed much better when
predicting after interactively exploring the environment and querying the web than just using static
images.
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5.4 Error Analysis

0 5 10 15 20 25 30
Percentage (%)

Not navigating to interactable objects
Repeated embodied actions

Embodied action parsing error
Interacting with non-existing objects

Repeated web actions
Stuck in page loop

Web action parsing error
Stuck in embodied environment

Switching without action
Stuck in web environment

Instruction-action misalignment
Instruction-visual misalignment

5.2%

4.5%

3.7%

1.2%

4.3%

3.1%

0.6%

23.7%

16.7%

13.2%

11.8%

1.2%

Error Analysis in Embodied Web Agents

Embodied Errors
Web Errors
Cross-Domain Errors

Figure 5: Error Analysis for Cooking Tasks. We can
see that the majority of errors are cross-domain errors.

Figure 5 presents a detailed breakdown
of error types and their percentages that
contribute to task failures in cooking tasks
when using GPT-4o. Our analysis reveals
that the primary challenges in embodied
web agents lie not in isolated capabilities,
but in their integration. While embod-
ied errors (14.6%) and web errors (8.0%)
occur, cross-domain errors (66.6%) over-
whelmingly dominate the failure landscape
— confirming that the critical bottleneck
emerges at the intersection where physi-
cal and digital domains meet. The most
prevalent failure pattern involves agents be-
coming trapped in single-domain cycles.
In 23.6% of failures, agents get stuck in
the embodied environment, repeatedly ex-
ecuting irrelevant physical actions without
returning to the web for the next step. Similarly, in 13.2% of cases, agents remain fixed in web
environments, endlessly clicking "next" through recipe pages without initiating cooking actions. In
addition, agents often switch between environments without meaningful action (16.7%) or suffer
from instruction-action misalignments (11.8%), such as slicing lettuce when a recipe instructs "slice
the apple". Web interaction failures manifest as agents getting stuck in page loops (3.1%) or per-
forming identical actions repeatedly (4.3%). In the embodied domain, agents fail to navigate to
interactable objects (5.2%) or execute repeated actions (4.5%). These isolated domain errors are
far less frequent than cross-domain integration failures, explaining why LLM agents achieve only
6.4% overall accuracy despite moderate performance on single-domain tasks. This confirms that
embodied web agency presents unique challenges requiring focused research on mechanisms that
bridge physical and digital reasoning.

6 Conclusion

In this paper, we introduced EMBODIED WEB AGENTS, a new paradigm for AI research that
bridges the artificial divide between physical and digital intelligence. Through our comprehensive
benchmark spanning cooking, navigation, shopping, tourism, and geolocation tasks, we demonstrate
that current AI systems face significant challenges in fluidly integrating embodied perception with
web-based information retrieval. These findings establish a foundation for future research in integrated
intelligence systems, highlighting the need for developing AI agents that can seamlessly traverse
physical and digital worlds. A limitation is our reliance on simulated agents, which may not fully
capture the complexity and unpredictability of physical-digital interactions of real robots.

Broader Impact

Our EMBODIED WEB AGENTS research presents both opportunities and challenges for society. On
the positive side, agents that bridge physical and digital domains could enhance accessibility for
individuals with mobility limitations, support contextualized learning environments, and improve
emergency response through integrated information access. However, several risks warrant atten-
tion. First, these agents may exhibit "dual-domain hallucination," where errors propagate across
physical and digital realms, compounding misinformation. Second, systems that connect physical
environments with web platforms introduce novel privacy concerns beyond those in either domain
alone.

To mitigate these concerns, our benchmark provides transparent evaluation protocols that can identify
cross-domain errors. We designed our environments as simulations that don’t interact with real-
world systems, limiting immediate risks while providing valuable research insights. By releasing
our benchmark to the research community, we aim to encourage the development of more robust
embodied web agents with improved error detection mechanisms before deployment in real-world
settings.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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by formal proofs provided in appendix or supplemental material.
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of the paper (regardless of whether the code and data are provided or not)?
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We provide the whole dataset and codes in the submitted supplemental material.
We will release our code and data publicly as well.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we specify them in the Experiments section as well as in the Supplemen-
tary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we report the average accuracies across multiple runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: We experiment with LLM APIs. Thus, no local compute / memory recorded.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, it conforms with the Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we discuss them in Broader Impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we credit them in the references. We mention the licenses in the Supple-
mentary Material.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide detailed documentation in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We add the instructions for acquiring human performance in the Supplementary
Material.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not research with human subjects. We only acquired human perfor-
mance for comparison.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We discussed LLM usage in the Baselines LLM Agents subsection of the
Experiments section, as well as in the Supplementary Material.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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