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ABSTRACT

The rising interest in leveraging higher-order interactions present in complex systems
has led to a surge in more expressive models exploiting high-order structures in the data,
especially in topological deep learning (TDL), which designs neural networks on high-
order domains such as simplicial complexes. However, progress in this field is hindered
by the scarcity of datasets for benchmarking these architectures. To address this gap, we
introduce MANTRA, the first large-scale, diverse, and intrinsically high-order dataset for
benchmarking high-order models, comprising over 43,000 and 249,000 triangulations of
surfaces and three-dimensional manifolds, respectively. With MANTRA, we assess several
graph- and simplicial complex-based models on three topological classification tasks. We
demonstrate that while simplicial complex-based neural networks generally outperform
their graph-based counterparts in capturing simple topological invariants, they also struggle,
suggesting a rethink of TDL. Thus, MANTRA serves as a benchmark for assessing and
advancing topological methods, leading the way for more effective high-order models.

1 INTRODUCTION

Success in machine learning is commonly measured by a model’s ability to solve tasks on benchmark datasets.
While researchers typically devote a large amount of time to build their models, less time is devoted to data
and its curation. As a consequence, graph learning is facing some issues in terms of reproducibility and
wrong assumptions, which serve as obstructions to progress. An example of this was recently observed while
analyzing long-range features: additional hyperparameter tuning resolves performance differences between
message-passing (MP) graph neural networks on one side and graph transformers on the other (Tonshoff
et al., 2023). In a similar vein, earlier work pointed out the relevance of strong baselines, highlighting the fact
that structural information is not exploited equally by all models (Errica et al., 2020). Recently, new analyses
even showed that for some benchmark datasets, as well as their associated tasks, graph information may be
detrimental for the overall predictive performance (Bechler-Speicher et al., 2024).

These troubling trends concerning data are accompanied by increased interest in leveraging higher-order
structures in data, with new models, usually called fopological models, extending graph-learning concepts to
simplicial complexes, i.e., generalizations of graphs that incorporate higher-order relations, going beyond the
dyadic relations captured by graphs (Alain et al., 2024; Bodnar et al., 2021b; Maggs et al., 2024; Ramamurthy
et al., 2023; Roell & Rieck, 2024; Yang et al., 2024). Some topological models already incorporate state-of-
the-art mechanisms for learning such as message-passing (Gilmer et al., 2017) or transformer layers (Ballester
et al., 2024), but adapted to high-order domains, sometimes outperforming their original counterparts in
graph datasets. However, as pointed out in a recent position paper (Papamarkou et al., 2024), there is a dire
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Figure 1: Geometric realizations of some manifold triangulations included in MANTRA. The precise
coordinates of vertices in Euclidean space are not geometrically significant; what matters is the topology of
the resulting polyhedra. Hence, MANTRA is a purely combinatorial dataset.

need for “higher-order datasets,” i.e., datasets that contain non-trivial higher-order structures. Indeed, the
scarcity of such datasets impedes the development of reliable benchmarks for assessing (i) the utility of
higher-order structures present in data, and (ii) the performance of the new models that leverage them, thus
potentially eroding trust in topological models among the broader deep learning community. Some of the
current available “high-order datasets” belong to the realm of networks and complex systems, such as the
ones presented in Benson et al. (2018). However, these datasets are annotated by nature, and it is not clear
that current graph neural networks or algorithms cannot extract the information contained on the annotations
of the high-order structures of the networks (cliques) by using uniquely annotations on the vertices and the
edges. To the best of our knowledge, the only publicly-available purely high-order dataset is the “Torus”
dataset proposed in Eitan et al. (2024), which consists of a small number of unions of tori triangulations.
However, due to the nature of the dataset, the only varying topological property among the samples is the
number of connected components of each union, making hard to assess the true capacity of the models to
learn and exploit higher-order structures. The lack of higher-order datasets is also remarked upon in a recent
benchmarking paper for topological models (Telyatnikov et al., 2024), which restricted itself to existing graph
datasets that were subjected to a variety of topological liftings, i.e., methods for endowing graph datasets
with higher-order structures (Bernardez et al., 2024; Jonsson, 2007). However, it remains unclear whether
standard graph neural network architectures can also learn and take advantage of the information provided by
the topological liftings, as they are solely based on the graph structure.

Contributions. To address this problem, we present MANTRA, manifold triangulations assemblage, which
constitutes the first instance of a large, diverse, and intrinsically high-order dataset, comprising triangulations
of combinatorial 2-manifolds and 3-manifolds. Along with the data, we provide a list of potential tasks, as
well as a preliminary assessment of the performance of existing methods, both graph-based and high-order-
based, on the dataset. We focus on a subset of tasks concerned with the classification of simplicial complexes
according to some topological labels, where we can interpret the success of a model as its effectiveness in
extracting high-order topological information. However, these tasks are by no means exhaustive, and the
generality offered by MANTRA encourages the emergence of more demanding tasks. Some of these tasks,
such as the prediction or approximation of the Betti numbers from topological data, have been previously
studied in learning (Paul & Chalup, 2019) and non-learning (Apers et al., 2023) contexts. A noteworthy aspect
of MANTRA is the conspicuous absence of any intrinsic vertex or edge features such as coordinates or signals.
We argue that this absence renders tasks more topological, as models can only rely on topology, instead of
non-topological information contained in features. Moreover, as manifold triangulations are directly related
to the topological structure of the underlying manifold, we study to which extent higher-order models are
invariant to triangulation transformations that preserve the topological structure of the associated manifold.
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2 DATASET SPECIFICATION

MANTRA contains 43,138 and 249,015 simplicial complexes corresponding to triangulations of closed
connected two- and three-dimensional manifolds, respectively, with varying number of vertices extracted
originally from the Frank H. Lutz’s triangulation collection (Lutz). Manifolds have many applications: the
configuration space of a robotic arm can be seen as a manifold (e.g., a torus or hyperbolic space, see Jaquier
et al. (2022)); 3D shapes in geometry processing are triangulated manifolds (Crane, 2018); physical fields
in climate forecasting naturally live on a sphere (Bonev et al., 2023), and the manifold hypothesis argues
that high-dimensional data often lies in lower-dimensional manifolds (Fefferman et al., 2016). Throughout
the text, we use the term surface to refer to a two-dimensional manifold. A triangulation of a manifold
M is a pair consisting of a simplicial complex K and a homeomorphism between M and the geometric
realization of K. For brevity, we use the term triangulation to refer exclusively to the simplicial complex K.
See Appendix A.3 for precise definitions and further information.

Triangulations of surfaces and 3-manifolds encode high-order topological
Table 1: Number of triangula- information that cannot be inferred solely from their underlying graphs.
tions by manifold dimension and Indeed, there exist non-homeomorphic surfaces with identical graph struc-
number of vertices of the trian- tures. Specifically, for n > 7, the complete graph with n vertices trian-
gulation, including total sum of gulates both, a connected sum of tori and a connected sum of projective

triangulations per dimension. planes, which are non-homeomorphic (Lawrencenko & Negami, 1999).
- - Figure 1 contains examples of geometric realizations of MANTRA tri-

Dimension angulations. Table 1 contains the distribution of triangulations in terms

# vertices 7 3 of their number of vertices. Each triangulation contains a set of labels
based on its dimension. Common labels are the number of vertices of

4 1 0 the triangulation, the first three Betti numbers Sy, 81, 52, and torsion

5 1 1 in homology with integer coefficients. Definitions of these concepts are

6 3 2 given in Appendix A.2. For surfaces, labels also contain orientability and

7 9 0] genus. For triangulations of a Klein bottle K, a real projective plane RP?,

g 43 39 a 2-dimensional sphere S2, or a torus 72, the homeomorphism type is

655 1,297 included explicitly as a surface label. For 3-manifolds, labels additionally

10 42,426 249,015 specify the top Betti number (33 and the homeomorphism type, which
Total 43,138 250,359 can be a 3-sphere 5%, a product 5* x S' of a 2-sphere and a circle, or a
Mbbius-like S2-bundle along S*, denoted by S? X S'. An exploration of
the distributions of labels is made in Appendix A.5S.

We make the dataset available in two formats: the raw version and the PyTorch Geometric processed version at
the GitHub repository https://anonymous.4open.science/r/mantra-D60C. The raw version
is available as a pair of compressed files 2_manifolds. json.gz and 3_manifolds. json.gz con-
taining each of them a JSON list with the triangulations of the corresponding dimension. Each object of the
JSON list contains a set of the following fields, depending on the dimension of the associated triangulation:

» id (required, str): This attribute refers to the original ID of the triangulation as used by Lutz when
compiling the triangulations. This facilitates comparisons to the original dataset if necessary.

e triangulation (list of 1ist of int): A doubly-nested list of the facets of the triangulation.

* n_vertices (int): The number of vertices in the triangulation.

* name (str): Homeomorphism type of the triangulation. Possible values are '', 'Klein
bottle', '"RP"2"', 'S"2", 'T"2" for surfaces, where '' indicates that the explicit home-
omorphism type is not available. For three-dimensional manifolds, possible values are 'S"2
twist S$71','S"2 x S71','S"3"',

* betti_numbers (1ist of int): A list of the Betti numbers of the triangulation, computed using
R =7, i.e., integer coefficients.
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* torsion_coefficients (required, 1ist of str): A list of the torsion subgroups of the
triangulation. Possible values are ' ', 'Z_2 "', where an empty string ' ' indicates that no torsion is
present in that dimension.

* genus (int): For surfaces, contains the genus of the triangulation.

* orientable (bool): For surfaces, specifies if the triangulation is orientable or not.

The PyTorch Geometric (Fey & Lenssen, 2019, PyG) version is available as a Python package that can be
installed using the command pip install mantra-dataset. Package documentation is available at
https://anonymous.4open.science/r/mantra-D60C. Each example of the dataset is imple-
mented as a PyG Data object, containing the same attributes as JSON objects in the raw version. The main
difference with the data in the raw version is that numerical values are stored as PyTorch tensors. Both formats,
raw and processed, are versioned using the Semantic Versioning 2.0.0 convention (Preston-Werner) and will
be made available via Zenodo, thus ensuring reproducibility and clear tracking of the dataset evolution. To
decouple software implementation from actual data, we allow to load any dataset version from the PyTorch
Geometric package, regardless of the installed version.

3 EXPERIMENTS

TL;DR: We assess nine state-of-the-art neural networks, including both graph-based and simplicial
complex-based architectures, on various topological prediction tasks such as Betti number estimation,
homeomorphism type classification, and orientability detection. Our experiments confirm that simplicial
complex-based neural networks almost always achieve better results than graph-based ones in extracting
the topological invariants mentioned above. However, we also find that the performance of the assessed
models may be suboptimal for being called topological models. In particular, we discover that all
model performances significantly deteriorates when applying barycentric subdivisions to the original
test datasets, suggesting that the tested models are unable to learn topologically invariant functions.

Sections 3.1 and 3.2 presents the comprehensive experimental design for MANTRA, outlining the key
scientific questions addressed. Section 3.3 provides a detailed analysis of the experimental results.

3.1 MAIN EXPERIMENTS

In this section, we demonstrate MANTRA'’s effectiveness as a comprehensive benchmark for higher-order
models. Leveraging the extensive set of labels and triangulations available, our experiments are designed to
address the following critical research questions:

Q1 To what extent are higher-order models needed to perform inference tasks on high-order domains
like simplicial complexes? Are graph-based models enough to successfully capture the full set of
combinatorial properties present in the data?

Q2 Do current neural networks, both graph- and simplicial complex-based, capture topological properties in
data? Are they able to predict basic topological invariants such as Betti numbers of simplicial complexes?

Q3 How invariant are state-of-the-art models to transformations that preserve topological properties of data?

The difference between Q1 and Q2, Q3 is subtle. Combinatorial information is related to the structure of the
data, in our case, simplicial complexes, while topological information is related to properties that are invariant
under fopological transformations of the data. For example, in prediction tasks involving molecules, we expect
combinatorial information to be more relevant than topological features, since the structure of a molecule

The code for the experiments can be found in the repository https://anonymous.4open.science/r/
mantra-benchmarks-2500/README . md.
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is crucial in predicting properties of the molecule. Of course, both types of information are intertwined: to
properly compute topological properties of data, we need to consider its combinatorial structure, as explained
in Appendices A.2 and A.3. To answer the above questions, we benchmarked nine models: five graph-based
models from the PyTorch Geometric library (Fey & Lenssen, 2019), using only zero- and one-dimensional
simplices of complexes, and four simplicial complex-based models from the TopoModelX library (Hajij et al.,
2023), using the full set of simplicial complexes in different tasks per manifold dimension:

T1 Predicting the Betti numbers (; for triangulated surfaces and 3-dimensional manifolds.
T2 Predicting the homeomorphism type of triangulated surfaces.
T3 Predicting orientability of triangulated surfaces.

To address the high proportion of surfaces without explicitly assigned homeomorphism type, we duplicated
the experiments on both the full set of surfaces and the subset of surfaces with known type. Throughout
the paper, we denote by 2-M9, 2-M9, . and 3-MP the full set of surfaces, the set of surfaces with known
homeomorphism type, and the full set of 3-manifolds, respectively.

Models. The graph-based models benchmarked are the Multi-Layer Perceptron (MLP), the Graph Con-
volutional Network (Kipf & Welling, 2016, GCN), the Graph Attention Network (Veli¢kovi¢ et al., 2017,
GAT), the Graph Transformer (Shi et al., 2020, TransfConv), and the Topology Adaptive Graph Convolutional
Network (Du et al., 2017, TAG), while the simplicial complex-based benchmarked models are the Simpli-
cial Attention Network (Giusti et al., 2022, SAN), and three convolution-based simplicial neural networks
introduced in Yang et al. (2022), Yang & Isufi (2023), and Wu et al. (2024), denoted by SCCN, SCCNN, and
SCN, respectively. These last ones, SCCN, SCCNN, and SCN, were the simplicial complex-based networks
benchmarked in Telyatnikov et al. (2024). Note that except for the MLP model and the graph and cellular
transformers, the models implement the (high-order) message-passing paradigm (Papillon et al., 2024). More
information about the models can be found in Appendix B.

Features. All nine models assume that simplicial complexes are equipped with feature vectors on top of a
subset of the simplices. The feature vectors for graph-based models are either: (1) scalars randomly generated,
(2) degrees of each vertex, (3) degree one-hot encodings of each vertex. For simplicial complex-based
models, the feature vectors are either: (1) eight-dimensional vectors generated randomly, (2) number of
upper-adjacent neighbors (upper-connectivity index) of each simplex of dimensions lower than the dimension
of the simplicial complex and number of lower-adjacent neighbors (lower-connectivity index) for simplices
of the same dimension as the simplicial complex. By definition, two simplices are upper-adjacent, and both
are upper-adjacent neighbors of the other, if they share a coface of one dimension higher. Similarly, two
simplices are lower-adjacent if they share a face of one dimension lower.

Training details. In total, our experiments span 184 training results across various tasks, feature generation,
and models. To ensure fairness, all configurations use the same learning rate of 0.01 and the same number of
epochs of 6; we observe that graph-based models already overfit after a single epoch, though. Hyperparameters
for graph-based models were mostly extracted from the default examples from PyTorch Geometric, while
hyperparameters for simplicial-complex based models were set to values similar to the ones from the
TopoBenchmarkX paper (Telyatnikov et al., 2024). Hyperparameter details can be found in Appendix C.
To mitigate the effects of training randomness, we re-ran each experiment five times and considered both
the best and the mean (together with standard deviation) performance obtained across these runs for each
model and initialisation of features. Due to the high imbalance in the datasets for most labels, we performed
stratified train/validation/test splits for each task individually, with 60/20/20 percentage of the data for each
split, respectively. Splits were generated using the same random seed for each run, ensuring that the same
splits are used across all configurations. All models were trained using the Adam optimizer.
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Loss and metric functions. Each task (T1, T2, T3) was treated as a classification task during testing. We
report the area under the ROC curve (AUROC) (Bradley, 1997) as performance metric, which is standard
for imbalanced classification problems, on all tasks except for predicting 3y, where we report accuracy due
to the fact that we only have the label 1, as all our triangulations correspond to connected manifolds. For
both the homeomorphism type and orientability tasks, we train the models using the standard cross-entropy
loss for classification problems. We also experimented with weighting the cross-entropy loss to penalize
mispredictions in under-represented classes more heavily, but we did not obtain improvements. To avoid
increasing the computational complexity of our experiments, we chose not to implement more involved
methods for handling the class imbalances and leave this issue for future work. For Betti number prediction,
we approached training as a multivariate regression task, since Betti numbers can theoretically be arbitrarily
large. Our loss function in this case was the mean squared error, and the Betti number prediction was obtained
by rounding the model outputs to the nearest integer.

3.2 BARYCENTRIC SUBDIVISION EXPERIMENTS

The previous experiments try to answer Q1 and Q2: if performances are good for simplicial complex-based
models, but not for graph-based ones, then we can conclude that higher-order models are needed to perform
inference tasks on domains with high-order and topological information. By contrast, if performances are
good for graph-based models then we can conclude that graph models are enough to capture the full set of
combinatorial and topological features present in MANTRA’s dataset, questioning the need for higher-order
models. However, Q3 is more subtle. Although it is closely related to Q2, Q3 emphasizes the invariance of
the models to transformations that preserve the topological properties of the input data, a desirable property
for TDL models known as remeshing symmetry (Papamarkou et al., 2024). For example, if a model is
well-trained with a dataset containing only triangulations up to a certain number of vertices, we can expect the
model to perform correct predictions in new examples that also have at most the maximum number of vertices
seen in the training dataset. However, what happens if we try to predict from a refinement of a manifold
triangulation? For instance, barycentric subdivisions increase the (combinatorial) distances between the
original vertices in a triangulation, and this can be harmful for networks relying on the MP algorithm, since
distances determine how many layers are needed to propagate information from one vertex to another. In
fact, Horn et al. (2022) showed that MP-based graph neural networks with a small number of layers struggled
to obtain good performances on synthetic datasets where the number of cycles and connected components
played a crucial role.

To answer Q3, we performed an additional evaluation of the models trained on surface tasks with known
homeomorphism type for the experiments described in Section 3.1. Particularly, for each task, we evaluated
the performance of the trained models on a dataset obtained by performing one barycentric subdivision on
each triangulation in the original test dataset, and then we compared the performances of the models on both
datasets, original and subdivided. Throughout the text, we denote the subdivided test dataset as 2—/\/1%,. We
did not analyze barycentric subdivisions of 3-dimensional manifolds due to computational constraints.

3.3 ANALYSIS

Our analysis reports aggregated results and focuses primarily on the comparison between graph-based models
(9) and simplicial complex-based models (7). Comprehensive results are available in Appendix D. Table 2
presents the mean and standard deviation of the maximum performance achieved by each combination of
feature vector initialization and model type across the 5 runs of each task for both graph-based (G) and
simplicial complex-based (7)) model families, including performances on the barycentric subdivisions of
the test triangulations for each experiment run in the set of surfaces with known homeomorphism type,
as described in Section 3.2. Notably, our experiments suggest that high-order MP-based models are not
invariant relative to topological transformations and therefore cannot be considered topological in the strictest
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Table 2: Predictive performance of graph- and simplicial complex-based models on surface and 3-manifold
tasks. Results for the full set of surfaces (2-M?), for the set of surfaces with known homeomorphism type
(2-MY,), and for the full set of three-manifolds (3-M?) are reported. Additionally, performance metrics
for the barycentric subdivision of the test set on the models trained on 2-MY ie. 2-M},, are included;
see Section 3.2 for details. For each family of models, G (graph-based) and 7 (simplicial complex-based),
we report the mean and standard deviation of the maximum performance achieved across five runs by each
combination of feature vector initialization and model contained in the family. The tasks reported are
prediction of 3y, 51, B2, B3, prediction of the homeomorphism type, and prediction of orientability. For
all tasks except for prediction of 5y, we report the AUROC metric. For 5y, we report accuracy. Metrics
are multiplied by 100 and rounded to the second decimal for a better visualization. Best average result
among both families for each task is in bold. Note that the reported averages and standard deviations are not
calculated from individual model performances across different random seeds. Instead, for each model, we
selected its best performance achieved across all seeds for each experiment. Then, we aggregated these best
performances within each category—graph-based and simplicial complex-based models—to compute the
averages and standard deviations reported in the table.

Accuracy (1) AUROC (1)
Dataset ?:I‘I’l‘fg By 8, B, By H"me‘;‘y‘;‘;"ph‘sm Orientability
oa0 G 100005 000 5006% 009 5000 0.00 4665+ 050 5000+ 0.00
- T 49673869 69.25+14.86  64.11+10.23 68.01+1237 5689+ 5.70
oo G 100005 000 2143x 001 5000 0.00 5055+ 078 5000+ 0.00
My 7T 201843181 2529+ 301 5269+ 1.26 69.15+ 886 5215+ 141
o O 471954941 21532 007 5000 0.00 4932+ 405 5010+ 036
My T 6011068 2404+ 202 5139+ 131 5749+ 651  50.62% 0.65
a0 O 100005 000 2408% 000 1207 000 1547+ 0.00
- T 5547+4596 3005+ 6.61 13.63% 2.63 1856+ 3.74

sense of the term. Weaknesses in the MP-based models are not a recent phenomenon, as highlighted by
oversmoothing (Li et al., 2018) and oversquashing (Alon & Yahav, 2021; Topping et al., 2022), and the MP
paradigm has required numerous fixes since its existence (inlcuding, but not limited to, virtual nodes, feature
augmentation, and graph lifting). More recently, Eitan et al. (2024) argued that, in many cases, higher-order
MP-based models cannot distinguish combinatorial objects based on simple topological properties, and has
devised another MP variant to compensate for this.

Graph-based (G) vs. simplicial complex-based (7) models. Table 2 together with the full results of
Appendix D show that simplicial complex-based models consistently obtain better performances predicting
non-trivial topological properties of triangulated manifolds, meaning (31, 32, (3, orientability, and homeo-
morphism type. Counterintuitively, we note that graph models always correctly detect the connectivity of
triangulations in 2-M?©, 2- MY, and 3-dimensional manifolds, thus predicting 3y exactly, while topological
models consistently fail to predict connectivity, except for the SCCN architecture in our experiments. The
fact that high-order message passing networks cannot accurately predict connectivity was also found, and
theoretically proved, in (Eitan et al., 2024, Proposition 4.3). Moreover, although simplicial complex-based
models obtain better results overall, these are far (!) from being highly accurate, with averages below 70
for all tasks and with a high performance variance across the models. Nonetheless, the best performances
obtained by specific simplicial complex-based models, as described in the full results of Appendix D, are
promising, achieving excellent AUROC results in some tasks, such as homeomorphism type prediction for
the full set of surfaces, where the SCCN model obtained an AUROC of 89 for its best run, and Betti number
prediction on the full set of surfaces, where SCCN and SCN obtained AUROCS of 96 and 80 respectively for
predicting the first and second Betti numbers. Overall, the results suggest that higher-order models are indeed
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necessary to capture topological and high-order characteristics of data, although several current models are
not yet able to do so effectively, partially answering questions Q1 and Q2. Such results were expected, given
that one-dimensional structures are insufficient, in principle, to fully characterize the topology of two- or
three-dimensional triangulated manifolds, as stated at the beginning of Section 2. However, it is plausible
that graph-based networks can accurately classify approximately 50% of homeomorphism types of surfaces,
since the underlying graph of a triangulation determines the Euler characteristic, which in turn defines the
homeomorphism type up to orientability (see Appendix A.4).

Orientability. Predicting orientability turns out to be the most difficult task for simplicial complex-based
models, and generally difficult for graph-based models. Recall that orientability can be determined from the
Betti numbers 85 and (3 for surfaces and 3-manifolds, respectively. One could then argue that predicting
these two Betti numbers is precisely as difficult as predicting orientability as a binary classification problem.
However, we observed that the simplicial complex-based models are able to predict 35 with a higher accuracy
than orientability, while for graph-based models both metrics are on a par. Our hypothesis is that, forcing
to learn the whole set of Betti numbers at the same time encourages simplicial complex models to learn
topological properties contained in the triangulations, while predicting orientability as a binary classification
problem does not. If this hypothesis is true, graph-based models might not be able to effectively capture subtle
topological information contained in data, due to the similar results predicting S5 and S5 and orientability,
supporting the claim that higher-order models are needed to leverage high-order information. Both the results
and our hypothesis encourage the use of auxiliary learning tasks (Liu et al., 2019) for high-order models by
forcing the network to predict the whole set of topological labels together with the real target, as this seems to
help a model learn how to efficiently use the topological information contained in the input data. We consider
this a promising direction for future work, either to generate topological regularization terms or to propose
new forms of unsupervised pre-training procedures for higher-order models, as many MANTRA labels can
be computed directly from the input simplicial complex using deterministic algorithms.

Barycentric subdivisions. Table 2 shows that the performance of all models dramatically decreases
when subdividing the triangulations of the test dataset, clearly indicating that the models are not learning
the invariance of topological properties with respect to transformations that leave topological properties
invariant. This is a crucial property that any model dealing with topological domains should have, as real
data is often highly variable in terms of combinatorial information and representation, but not in terms of
their topology. This phenomenon is particularly evident in mesh datasets, where combinatorial structure
varies with resolution. In fact, Papamarkou et al. (2024) pose the capacity of TDL models to capture this
invariance, denoted remeshing symmetry, as one of the reasons for using topological deep learning models.
Our preliminary experimental results challenge this claim, opening the door to a new line of research based
on the invariance of input transformations that leave topological properties of the input data unaltered.

Limitations. Although our results challenge the efficiency of state-of-the-art high-order models to predict
topological properties of data and open the door to exciting new research avenues, they must be interpreted
with care. For example, we mostly tested message-passing networks in our experiments, leaving aside
interesting proposals such as topological transformers (Ballester et al., 2024), high-order state-space mod-
els (Montagna et al., 2024), cellular or combinatorial complex networks (Bodnar et al., 2021a; Hajij et al.,
2023), topological Gaussian processes (Alain et al., 2024; Yang et al., 2024) or equivariant high-order neural
networks (Battiloro et al., 2024). Due to computational limitations, training procedures were limited to 6
epochs, model hyperparameters were not necessarily selected optimally, and barycentric subdivisions experi-
ments were limited to one subdivision. A significant computational bottleneck arose from the TopoModelX
implementations of simplicial complex-based models, which processed data between ~ 5 and ~ 24 times
slower, depending on the dataset and pairs of models, than their graph counterparts as observed in Table 7,
highlighting the need for more efficient implementations of TDL methods. Despite these limitations, we
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believe that each of the three stated questions should be investigated individually, with a broader set of
experiments and ablations to be fully answered.

In MANTRA, triangulations are restricted to two- and three- dimensional complexes up to 10 vertices,
which can limit the transference of findings in our dataset to datasets with significantly higher number of
vertices per sample, such as fine-grained mesh datasets. While extending the dataset beyond 10 vertices
is theoretically possible, it poses substantial storage and computational challenges due to the exponential
growth in possible triangulations—for example, over 11 million surfaces for triangulations of 11 vertices
and to the unavailabity of complete enumerations of triangulations for more than 13 vertices, potentially
leading to incomplete datasets and skewed label distributions. Additionally, focusing solely on two- and
three-dimensional manifolds excludes higher-dimensional triangulations and data, which remain active areas
of research. Nevertheless, MANTRA provides a valuable benchmark for testing high-order models on the
most common types of higher-order structured data, this is, graphs, surfaces, and volumes.

4 CONCLUSION

We proposed MANTRA, a higher-order dataset of manifold triangulations that is (i) diverse, containing triangu-
lations of surfaces and three-dimensional manifolds with different topological invariants and homeomorphism
types, (ii) large, with over 43,000 triangulations of surfaces and 249,000 triangulations of three-dimensional
manifolds, and (iii) naturally higher-order, as the triangulations are directly related to the topological structure
of the underlying manifold. Using MANTRA, we observed that existing models, both graph-based and
higher-order-based, struggle to learn topological properties of triangulations, such as the orientability of
two-dimensional manifolds, which was the hardest topological property to predict for surface triangulations,
suggesting that new approaches are needed to leverage higher-order structure associated with the topological
information in the dataset. However, we also saw that current high-order models outperform graph-based
models in our benchmarks, substantiating the promises of this new trend of higher-order machine-learning
models. Regarding invariance, we observed that barycentric subdivision deeply affects the performance of the
models, suggesting that current state-of-the-art models are not invariant to transformations that preserve the
topological structure of data, opening an interesting research direction for future work. This is potentially
related to the usage of the message-passing paradigm, which is known to be sensitive to distances between
simplices in simplicial complexes. Another interesting research direction for barycentric subdivisions is their
application as inputs to graph neural networks. The induced graph of a barycentric subdivision represents
each simplex of the original complex as a vertex, with edges encoding face relationships on the original
complex. This structure provides an effective representation of simplicial complexes for graph-based neu-
ral architectures, potentially facilitating the processing of higher-order topological information. We hope
that MANTRA will serve as a benchmark for the development of new models leveraging higher-order and
topological structures in data, and as a reference for the development of new higher-order datasets.

REPRODUCIBILITY

We make the dataset and benchmark code available at

https://anonymous.4open.science/r/mantra-D60C/mantra/
https://anonymous.4open.science/r/mantra-benchmarks-2500/README . md.

These repositories contain (i) the raw and processed datasets, (ii) and the benchmark code to reproduce
the results found in this paper. The dataset and associated Python package are versioned using Semantic
Versioning 2.0.0, ensuring reproducibility and clear tracking of dataset evolution. Additionally, the Python
package allows the retrieval of any version of the dataset, decoupling data loading implementation and
actual data. Detailed hyperparameter settings can be found in Appendix C of the paper. Step by step


https://anonymous.4open.science/r/mantra-D60C/mantra/
https://anonymous.4open.science/r/mantra-benchmarks-2500/README.md
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instructions on how to set up and execute the benchmark experiments are attached in the README file of the
repository. Docker images and workflow, together with package dependencies are included to ensure a unique
environment across different machine configurations. Finally, random seeds were used to split the datasets in
each run.
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A APPENDIX

A.1 SIMPLICIAL COMPLEXES

A simplicial complex K is a family of non-empty finite sets such that, if o € K and 7 C o, then 7 € K. Each
o € Kis called a simplex of K, and o is called a d-dimensional face or a d-face of K if its cardinality is d + 1.
The 0-faces of K are called vertices and the 1-faces are called edges. We denote by K¢ the set of d-faces
of K, and define the dimension of K as the largest d for which K% is non-empty. A simplicial complex of
dimension 1 is called a graph.

A geometric realization of a simplicial complex K is the union of a collection of affine simplices A, in a
Euclidean space R™ for some n > 1, one for each simplex o € K, where ¢ is mapped bijectively to the
vertices of A, and two affine simplices A, and A share a face corresponding to o N 7 whenever this
intersection is non-empty. Any two geometric realizations of a simplicial complex K are homeomorphic
through a face-preserving map.

The barycentric subdivision of a simplicial complex K is the simplicial complex Sd(K) obtained by setting
its d-dimensional faces to be sequences of strict inclusions oy C o1 C -+ C g4 of simplices of K. It then
follows that K and Sd(K) have homeomorphic geometric realizations (Nanda, 2022, Proposition 1.13).

A.2 SIMPLICIAL HOMOLOGY AND BETTI NUMBERS

Simplicial homology of a simplicial complex K equipped with an order on its set of vertices is defined as
follows (Munkres, 1984, § 34). Let R be any commutative ring with unit (including the ring of integers Z or
any field). The chain complex of K with coefficients in R is a sequence of R-modules (C),(K)),cz whose
elements are formal sums of n-simplices of K with coefficients in R, i.e.,

Cn(K) = {deKn 4,0 | a5 € R},
linked by boundary homomorphisms 0,,: C,,(K) — C,,_1(K) for all n € Z, given by

On (ZJGKH aaU) = deKn as0n(0), On(o) = Z?:o (_1)i(‘7 N {Ui})v

if vy, ..., v, are the ordered vertices of 0. The main property of the boundary homomorphisms is that
Op, 0 Op41 = 0 for all n, implying that Im(9,,41) C Ker(9,) for all n. This yields homology R-modules,
defined as quotients H,,(K) = Ker(9,,)/Im(0,,+1) for all n.

If K is a finite simplicial complex and R = Z, then H,,(K) is a finitely generated abelian group and therefore
it decomposes as a direct sum

Hy(K) 22 ©Zg, © - © Zy,,

where (3, is the n-th Betti number of K, while ¢, ..., ¢; are prime powers. The sum Z,, ® - -- @ Z,, is the
torsion subgroup of H,,(K). Examples of Betti numbers are provided in Figure 2. The n-th Betti number
of a simplicial complex K counts the number of linearly independent n-dimensional cavities in a geometric
realization of K. In low dimensions, fy is equal to the number of connected components, and /3; counts the
number of linearly independent loops that are not boundaries of any 2-dimensional region.

A.3 TRIANGULATED MANIFOLDS

An n-dimensional manifold is a second-countable Hausdorff topological space M such that every point of
M is contained in some open set, called a chart, equipped with a homeomorphism into an open subset of a
Euclidean space R™ (Munkres, 1984, § 36). This definition does not include manifolds with boundary, which
are not considered in this article. A manifold is called closed if its underlying topological space is compact.
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Figure 2: From left to right, four simplicial complexes K;, Ko, K3, and K4 with their respective Betti numbers
Bo, B1, and B2. Here K is a solid tetrahedron with 5y = 1, 81 = 0, and By = 0, since K; has only one
connected component, no unfilled cycles, and no empty cavity enclosed by 2-faces; K5 is a hollow tetrahedron
with Bg = 1, 51 = 0, and 52 = 1 (the difference with K; is that the triangles of K5 enclose a cavity); K3 is
the underlying graph, with 5y = 1, 51 = 3, and 82 = 0, since there is no cavity and there are three linearly
independent cycles; K4 consists of four vertices and has Sy = 4, 81 = 0, and S5 = 0, since there are four
connected components and no cycles nor cavities.

A collection of charts covering a manifold M is an atlas of M. A manifold M is called orientable if it admits
an atlas with compatible orientations in its charts. For a closed n-dimensional manifold M, orientability is
determined by its n-th Betti number 3,,, which is nonzero if and only if M is orientable.

A triangulation of a manifold M is a simplicial complex whose geometric realization is homeomorphic to M.
Radé (1925) proved that every surface admits a triangulation (which can be chosen to be finite if the surface
is compact), and that any two such triangulations admit a common refinement. Moise (1952) proved that the
same facts are true for 3-dimensional manifolds. For dimensions greater than 3, however, there are examples
of manifolds that cannot be triangulated.

A.4 CLASSIFICATION

Closed connected surfaces can be classified, up to homeomorphism, as given by the following list: (i) the
two-dimensional sphere S?; (ii) a connected sum of tori 72; (iii) a connected sum of projective planes R.P2.
The genus of a surface M is defined as zero if M = S? and equal to g if M is a connected sum of g tori or g
projective planes. Thus the homeomorphism type of M is determined by its orientability and genus.

The Euler characteristic of a finite triangulation of a manifold M is the alternating sum of the numbers
of simplices of each dimension. It does not depend on the choice of a triangulation, and it is equal to the
alternating sum of the Betti numbers of M (Hatcher, 2002). The Euler characteristic of a closed connected
surface M of genus g is equal to 2 — 2g if M is orientable and 2 — g if M is not orientable.

The underlying graph of a finite triangulation of a closed surface M determines the Euler characteristic
v — e + t. This is due to the fact that, in any triangulation of M, each edge bounds precisely two triangles,
so 3t = 2e. Therefore, the underlying graph of a triangulation of a closed surface M determines the
homeomorphism type of M up to orientability. As shown in Lawrencenko & Negami (1999), the torus and
the Klein bottle admit triangulations with the same underlying graph.

For manifolds of dimension greater than 2, classification up to homeomorphism is so far unfeasible. In
dimension 3, the geometrization theorem (Morgan & Tian, 2007) describes all possible geometries of prime
components of closed 3-manifolds. The Euler characteristic does not carry any information about the
homeomorphism type in dimension 3, since if M is any odd-dimensional closed manifold then x (M) = 0
by Poincaré duality (Hatcher, 2002, 3.37). However, the underlying graph of a finite triangulation of a
closed 3-manifold determines the number ¢ of triangles and the number f of 3-faces, since 4f = 2t and
v—e+t— f=0.
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Table 3: Distribution of Betti numbers 3; for triangulations of manifolds. Percentages are rounded to the
nearest integer, and are computed for each pair of manifold dimension (2 or 3) and Betti number. Manif. dim.
stands for manifold dimension.

Manif. dim. 0 1 2 3 4 5 6

5 2 - 43,138 - - - - -
0 (100%)

3 - 250,359 - - - - -
(100%)

5 2 1,670 4,655 14,146 13,694 7,917 1,022 34

1 4%) (11%) (33%) (32%) (18%) (%) (0%)

3 249225 1,134 0 0 0 0 0

(100%) 0%) (0%) (0%) (O%) 0%) (0%)

5 2 39,718 3,420 - - - - -
2 (92%) (8%)

3 249,841 518 - - - - -

(100%)  (0%)

Ps

(SN \S)

616 249,743 - - - - -
(0%) (100%)

Table 4: Distribution of torsion subgroups for triangulations of manifolds. Percentages are rounded to the
nearest integer, and are computed for each pair of manifold dimension and homological degree. Manif. dim.
stands for manifold dimension.

Hy H, H, Hj
Manif. dim. 0 Lo 0 Zo 0 0
2 43,138 39,718 3,420 0 43,138 -
(100%)  (92%) (8%) 0%) (100%)
3 250,359 0 250,359 616 249,743 250,359

(100%)  (0%) (100%) (0%) (100%) (100%)

A.5 DISTRIBUTION OF LABELS

Tables 3, 4, 5, and 6 contain statistical information about the distribution of labels in the dataset.

Table 5: Distribution of genus for triangulations of surfaces. Percentages are rounded to the nearest integer.
Manif. dim. stands for manifold dimension.

Manif. dim. 0 1 2 3 4 5 6 7

2 306 3,593 5,520 11,937 13,604 7,052 1,022 14
(1%) (8%) (13%) (28%) (32%) (16%) (%) (0%)

18



Under review as a conference paper at ICLR 2025

Table 6: Distribution of homeomorphism types for triangulations of manifolds. Percentages are rounded to the
nearest integer, and are computed for each manifold dimension. Manif. dim. stands for manifold dimension.
Surfaces classified as “Other” do not have explicitly homeomorphism type assigned.

Manif. dim. S%2 RP? T2 K 53 S22 x St 8§2%xSt  Other
2 612 2,728 4,458 9,310 - - - 69,168
A% (%) (%) (11%) (80%)

3 - - - - 249,225 518 616 0

(100%)  (0%) 0%)  (0%)

B MODEL DETAILS
We provide a brief description of the models used in the experiments.

Message passing neural networks. Most of the models used in the literature for graphs and high-order
structures such as simplicial or cell complexes are based on the message-passing paradigm. For graph
and simplicial complexes, these models pass messages between neighboring nodes or simplices in the
graph or complex, updating their features based on the features of their neighbors. Let K be a simplicial
complex or a graph seen as a simplicial complex with simplicial features given by a family of maps {F; }{im K
where F;: K; — R%. A message-passing layer updates the features of a simplex o using the following
steps (Papillon et al., 2024):

1. Selection of neighborhoods: Given a simplex o, we first start by defining sets of neighboring
simplices {N;(c)}; where the neighborhoods are defined depending on the context. For example,
adjacent or incident simplices are two types of neighborhoods that can be defined in an arbitrary
simplicial complex. Usually, neighborhoods are defined in the same way for the same dimension of
simplices, and each set of neighboring simplices contain simplices of the same dimension.

2. Message computation: For each set of neighboring simplices N(x);, we compute messages
{m,_,,}; from the features of the simplices in \V;(z) and the features of o, this is
m; o = M/\/’(z) (Fdim T (T)a Fdim o (U)a @)7
where O are the learnable parameters of the layer.

3. Intra-aggregation: The messages are aggregated to obtain a single message for each neighborhood
N;(x), this is
Mps (z) = Agg_/\/,;(:[;)({mT—HT}TENL'(JE))a
where Aggy, ) 1S an permutation invariant aggregation function, for example, a sum, mean, or any
other function that aggregates the messages.

4. Inter-aggregation: The aggregated messages for the neighborhoods are then aggregated together to
obtain a single message for the simplex o, this is

m, = Agg, ({my; @) }i),
where Agg_ is a permutation invariant aggregation function again.

5. Update: The message m, is used to update the features of the simplex o, this is

Fdimn(U) - Update(F(linln(U)7 me, @)
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For graphs, GCN (Kipf & Welling, 2016), GAT (Velickovié et al., 2017), and TransfConv(Shi et al., 2020) are
examples of message-passing networks. In the case of GCN and GAT, adjacency with self-loops is used as
neighborhood sets for nodes, whereas TransfConv uses concatenated adjacencies up to a order k, meaning
that we consider as neighbors of a vertex all the other vertices of the graph at a distance of at most k from the
vertex. In the case of GAT, the fundamental difference lie in the message computation, where the message
from a simplex 7 to a simplex o depends on a concept of attention, which is computed using the features of 7
and o and a learnable parameter O.

In the case of simplicial complexes, SAN (Giusti et al., 2022) and SCN (Wu et al., 2024) use (upper and
lower) high-order Laplacians to define neighborhoods, SCCN (Yang et al., 2022) uses (co)adjacency and
incidence structures, and SCCNN (Yang & Isufi, 2023) uses all together.

Non-message passing neural networks Although the message-passing paradigm is predominant in the lit-
erature, there are other state-of-the-art models that do not follow this paradigm, such as transformers (Ballester
et al., 2024), state-space topological models (Montagna et al., 2024), or TDA-based networks (Horn et al.,
2022). In our case, we only select graph and cellular transformers and multi-layer perceptrons (MLP)
for comparison. Graph and cellular transformers are based on the original transformer’s decoder architec-
ture (Vaswani et al., 2017). Original transformer architectures are permutation-invariant networks that use
positional encoding to break the symmetry of the input data by means of localizing the position of each
element in the input sequence. In the case of graph and cellular transformers, which do not always have a
linear structure as text, positional encodings encode the position of the different simplices in the simplicial
complex using the combinatorial structure of the complex. Famous positional encodings for graphs are built
using eigenvectors of the graph Laplacian and random walks (Miiller et al., 2024). For simplicial transformers,
preliminary positional encodings are based also on eigenvectors of combinatorial Laplacians, random walks,
and graph positional encodings for barycentric subdivisions of the simplicial complexes.

C HYPERPARAMETER DETAILS

¢ GAT — Activation last layer: Identity
— Hidden channels: 64

Number of heads: 4

Hidden layers: 4

Readout: Mean

Dropout last linear layer: 0.5

Activation last layer: Identity

¢ GCN

— Hidden channels: 64
Hidden layers: 4
Readout: Mean o TransfConv
Dropout last linear layer: 0.5
Activation last layer: Identity
 MLP

Hidden neurons: 64

Hidden layers: 4

Readout: Mean

Dropout last linear layer: 0.0

* TAG

Hidden channels: 64
Hidden layers: 4

Readout: Mean

Dropout last linear layer: 0.5

Activation last layer: Identity

Hidden channels: 64
Hidden layers: 4
Readout: Mean

Dropout last linear layer: 0.5

Activation last layer: Identity
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* SAN — Readout: Sum of sums per dimension
— Hidden channels: 64 « SCCNN
— Hidden layers: 1 — Hidden channels: 64
— n-filters : 2

Hidden layers: 2

Order harmonic : 5 Order of convolutions: 1

Epsilon harmonic : le-1
Readout: Sum of sums per dimension

Order of simplicial complexes: 1

Readout: Sum of sums per dimension

* SCCN
— Hidden channels: 64 * SCN
— Hidden layers: 2 — Hidden channels per dimension: Same
— Maximum rank : 2 as mput
— Aggregation activation function : sig- — Hidden layers: 2
moid — Readout: Sum of sums per dimension

More information on the meaning of specific hyperparameters can be found in the PyTorch geometric and
TopoModelX implementations.

D ADDITIONAL EXPERIMENTAL DETAILS

Table 7: Mean and standard deviation of training iterations processed per second (1), as measured by PyTorch
Lightning (Falcon & The PyTorch Lightning team, 2019), across all experiments for each model and dataset.

Model
Dataset MLP GAT TRANSCONV TAG GCN

2 - M° 972+ 454 941+ 4.02 931+ 3.79 941+ 353 945+ 3.79
2-MY% 1239£1322 11.33£10.60 11.71+£10.72 11.46+10.66 12.10+11.43
3-M° 859+ 540 812+ 3.83 7.57+ 3.34 7.63+ 386 8.18%x 4.27

SAN SCN SCCN SCCNN

2—-M° 0.65+ 097 0.83+ 2.63 0.85+ 3.06 073+ 1.93
2 - MY 121+ 293 1.72+ 6.99 1.89+ 7.90 1.67+ 5.79
3-—M° 035+ 024 039+ 047 0.38+ 0.40 039+ 0.76

Table 7 reports the mean and standard deviation of training iterations processed per second for each model and
dataset. Table 8 compares the predictive performance of models across different feature vector initialization
methods for the three surface tasks, Betti numbers, homeomorphism type, and orientability prediction, on the
full set of surfaces. Tables 9 to 22 report the full set of experimental results.

Feature vector initialization analysis We observe different behaviours for the two families of models,
graph-based and simplicial complex-based. For the graph models, random initialization works slightly
better or equal than the degree features. On the other hand, for the simplicial complex models, upper-
and lower-connectivity index initializations consistently outperform their random counterparts on average.
Degrees and upper-connectivity indices for vertices coincide for both families of models, suggesting that
high-order connectivity indices contain more useful information than their dimension zero counterpart to
predict topological properties, supporting the need for models that leverage high-order information of the input.
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Table 8: Predictive performance of graph- and simplicial complex-based models on the tasks for the full
set of surfaces. Results aggregated by the feature vector initialization type and family of models. For each
initialization type, random and degree/indices, and family of models, G (graph-based) and 7 (simplicial
complex-based), we report the mean and standard deviation of the maximum performance achieved across the
5 runs by each combination of model contained in the family initialized with the corresponding initialization
type. The tasks reported are the prediction of 3y, 31, B2, the prediction of the homeomorphism type, and
the prediction of orientability. For all tasks except for the prediction of 3y, we report the AUROC metric.
For Sy, we report accuracy. Homeo. type and acc. stand for homeomorphism type and accuracy, respectively.
Metrics are multiplied by 100 and rounded to the second decimal for a better visualization. Best average
result between random and degree/connectivity index initialization is in bold for each family and task.

Target (Metric) Transform Family Performances
BO (ACC.) 51, /82 (AUROC) Random g 100-00i0.00 50.18i0,07 50-00i0.00
T 47.95430.62 67.404+12.69 56.5642 32
Degree/Indices g 100.009.00 50.00+0.00 50.00-40.00
T 51.38414528 T1.1141653 71.66494s
Homeo. type (AUROC) Random g 47.1940.40
Degree/Indices g 46.3840.17
T 68.03114.18
Orientability (AUROC) Random g 50.00+0.00
T 54.07+1.63
Degree/Indices g 50.00+0.00
T 59-72:t6.81

Having signal contained in features can make sense if the task in question requires additional information.
For example, molecules are more than just combinatorial or topological objects: the types of atoms and the
nature of bonds are important for predicting their properties. However, in purely topological tasks, such
as predicting topological invariants, the need to enforce topological information into features raises the
question: do MP-based models correctly capture topological properties in the first place? Still, standard
deviations in the aggregated data for simplicial complex-based models is large, and better ablation is needed
to fully understand the differences in initializations and the expressivity of high-order indices in the context
of topological prediction tasks.
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Table 9: Full results for the orientability prediction task on the full set of surfaces. Performances are reported
as mean = std(max), where mean and std represent the average and standard deviation of performance across
five experimental runs with different seeds, respectively, and max denotes the highest performance achieved
in any single run. Performances with best averages are highlighted in bold.

AUROC

Model Type Model Degree/Indices transform  Degree/Indices transform Onehot Random Node Features
GAT 0.50 + 0.00 (0.50) 0.50 £ 0.00 (0.50) 0.50 £ 0.00 (0.50)
GCN 0.50 £ 0.00 (0.50) 0.50 £ 0.00 (0.50) 0.50 £ 0.00 (0.50)
Graph MLP 0.50 £ 0.00 (0.50) 0.50 £ 0.00 (0.50) 0.50 £ 0.00 (0.50)
TAG 0.50 £ 0.00 (0.50) 0.50 £ 0.00 (0.50) 0.50 £ 0.00 (0.50)
TRANSFCONV 0.50 £ 0.00 (0.50) 0.50 £ 0.00 (0.50) 0.50 £ 0.00 (0.50)
SAN 0.52 £ 0.03 (0.55) 0.51 £ 0.02 (0.54)
Topological SCCN 0.55 £ 0.01 (0.55) 0.54 £+ 0.01 (0.55)
polog SCCNN 0.55 +0.09 (0.71) 0.53 + 0.02 (0.56)
SCN 0.53 £0.04 (0.57) 0.50 £ 0.01 (0.51)

Table 10: Full results for the orientability prediction task on the set of surfaces with homeomorphism type
assigned. Performances are reported as mean =+ std(max), where mean and std represent the average and
standard deviation of performance across five experimental runs with different seeds, respectively, and max
denotes the highest performance achieved in any single run. Performances with best averages are highlighted
in bold.

AUROC

Model Type Model Degree/Indices transform  Degree transform Onehot Random Node Features
GAT 0.50 & 0.00 (0.50) 0.50 & 0.00 (0.50) 0.50 + 0.00 (0.50)
GCN 0.50 & 0.00 (0.50) 0.50 & 0.00 (0.50) 0.50 + 0.00 (0.50)
Graph MLP 0.50 & 0.00 (0.50) 0.50 & 0.00 (0.50) 0.50 + 0.00 (0.50)
TAG 0.50 & 0.00 (0.50) 0.50 & 0.00 (0.50) 0.50 + 0.00 (0.50)
TRANSFCONV 0.50 & 0.00 (0.50) 0.50 & 0.00 (0.50) 0.50 = 0.00 (0.50)
SAN 0.50 £ 0.02 (0.52) 0.51 £ 0.02 (0.54)
Topological SCCN 0.54 +0.01 (0.54) 0.50 £ 0.01 (0.51)
polog SCCNN 0.50 % 0.01 (0.50) 0.50 + 0.01 (0.51)
SCN 0.51 £ 0.02 (0.54) 0.51 £ 0.01 (0.52)
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Table 11: Full results for the orientability prediction task on the full set of surfaces using one barycentric
subdivision on the test set. Performances are reported as mean = std(max), where mean and std represent the
average and standard deviation of performance across five experimental runs with different seeds, respectively,
and max denotes the highest performance achieved in any single run. Performances with best averages are

highlighted in bold.
AUROC
Model Type Model Degree/Indices transform  Degree transform Onehot Random Node Features
GAT 0.50 + 0.00 (0.50) 0.50 & 0.00 (0.50) 0.50 + 0.00 (0.50)
GCN 0.50 + 0.00 (0.50) 0.50 & 0.00 (0.50) 0.50 + 0.00 (0.50)
Graph MLP 0.50 £ 0.00 (0.50) 0.50 & 0.00 (0.50) 0.50 + 0.00 (0.50)
TAG 0.50 £ 0.00 (0.50) 0.50 +0.01 (0.51) 0.50 + 0.00 (0.50)
TRANSFCONV  0.50 + 0.01 (0.50) 0.50 £ 0.00 (0.50) 0.50 £ 0.00 (0.50)
SAN 0.50 + 0.00 (0.50) 0.50 £+ 0.01 (0.51)
Topological SCCN 0.50 = 0.00 (0.50) 0.51 +0.01 (0.52)
polog SCCNN 0.50 & 0.00 (0.50) 0.50 & 0.01 (0.51)
SCN 0.50 = 0.00 (0.50) 0.50 + 0.00 (0.51)

Table 12: Full results for the homeomorphism type prediction task on the full set of surfaces. Performances
are reported as mean + std(max), where mean and std represent the average and standard deviation of
performance across five experimental runs with different seeds, respectively, and max denotes the highest
performance achieved in any single run. Performances with best averages are highlighted in bold.

AUROC

Model Type Model Degree/Indices transform  Degree transform Onehot Random Node Features
GAT 0.46 & 0.00 (0.47) 0.46 £ 0.00 (0.46) 0.47 £0.01 (0.48)
GCN 0.46 £ 0.00 (0.46) 0.46 £ 0.00 (0.46) 0.47 £0.01 (0.48)
Graph MLP 0.46 £ 0.00 (0.46) 0.46 £ 0.00 (0.46) 0.46 £ 0.01 (0.47)
TAG 0.46 £ 0.00 (0.46) 0.46 £ 0.00 (0.47) 0.46 £ 0.01 (0.47)
TRANSFCONV 0.46 £ 0.00 (0.46) 0.46 £ 0.00 (0.47) 0.46 £ 0.01 (0.47)
SAN 0.54 4+ 0.10 (0.66) 0.67 £0.16 (0.82)
Tovological SCEN 0.85 + 0.08 (0.89) 0.66 = 0.03 (0.71)
polog SCCNN 0.54 %+ 0.10 (0.68) 0.61 =+ 0.02 (0.64)
SCN 0.37 +£0.12 (0.49) 0.50 £ 0.04 (0.55)

24



Under review as a conference paper at ICLR 2025

Table 13: Full results for the homeomorphism type prediction task on the set of surfaces with homeomorphism
type assigned. Performances are reported as mean =+ std(max), where mean and std represent the average and
standard deviation of performance across five experimental runs with different seeds, respectively, and max
denotes the highest performance achieved in any single run. Performances with best averages are highlighted
in bold.

AUROC

Model Type Model Degree/Indices transform  Degree transform Onehot Random Node Features
GAT 0.48 +0.00 (0.49) 0.49 +0.00 (0.49) 0.48 +0.00 (0.49)
GCN 0.49 £+ 0.00 (0.49) 0.48 +0.01 (0.49) 0.50 + 0.02 (0.53)
Graph MLP 0.49 £ 0.00 (0.49) 0.49 £+ 0.00 (0.49) 0.48 +0.01 (0.49)
TAG 0.49 £ 0.00 (0.49) 0.49 +0.00 (0.49) 0.49 +0.01 (0.51)
TRANSFCONV 0.49 £ 0.00 (0.49) 0.49 £ 0.00 (0.49) 0.49 +0.01 (0.51)
SAN 0.49 £ 0.10 (0.65) 0.59 £+ 0.10 (0.70)
Topological SCCN 0.80 £+ 0.00 (0.80) 0.65 £+ 0.05 (0.70)
polog SCCNN 0.59 + 0.10 (0.73) 0.52 + 0.02 (0.55)
SCN 0.53 +0.11 (0.68) 0.49 +0.06 (0.57)

Table 14: Full results for the homeomorphism type prediction task on the set of surfaces with homeomorphism
type assigned using one barycentric subdivision on the test set. Performances are reported as mean 4 std(max),
where mean and std represent the average and standard deviation of performance across five experimental
runs with different seeds, respectively, and max denotes the highest performance achieved in any single run.
Performances with best averages are highlighted in bold.

AUROC

Model Type Model Degree/Indices transform  Degree transform Onehot Random Node Features
GAT 0.41 £+ 0.03 (0.46) 0.53 &+ 0.02 (0.56) 0.50 +0.01 (0.51)
GCN 0.42 £+ 0.04 (0.46) 0.51 £ 0.04 (0.55) 0.50 £ 0.01 (0.52)
Graph MLP 0.43 £ 0.04 (0.47) 0.49 £ 0.06 (0.54) 0.50 £ 0.01 (0.52)
TAG 0.42 £+ 0.04 (0.46) 0.50 £ 0.03 (0.54) 0.43 £ 0.01 (0.45)
TRANSFCONV  0.45 4+ 0.03 (0.47) 0.42 £ 0.03 (0.46) 0.41 £ 0.01 (0.42)
SAN 0.49 £ 0.02 (0.50) 0.53 +0.04 (0.58)
Topological SCCN 0.67 +0.04 (0.72) 0.53 +0.04 (0.58)
polog SCCNN 0.51 +0.01 (0.53) 0.51 + 0.01 (0.52)
SCN 0.51 £ 0.07 (0.62) 0.49 + 0.04 (0.55)
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