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ABSTRACT

Text-driven video generation has advanced significantly due to developments in
diffusion models. Beyond the training and sampling phases, recent studies have
investigated noise priors of diffusion models, as improved noise priors yield better
generation results. One recent approach employs Fourier transform to manipu-
late noise, marking the initial exploration of frequency operations in this context.
However, it often generates videos that lack motion dynamics and imaging details.
In this work, we provide a comprehensive theoretical analysis of the variance de-
cay issue present in existing methods, contributing to the loss of details and mo-
tion dynamics. Recognizing the critical impact of noise distribution on generation
quality, we introduce FreqPrior, a novel noise initialization strategy that refines
noise in the frequency domain. Our method features a novel filtering technique
designed to address different frequency signals while maintaining the noise prior
distribution that closely approximates a standard Gaussian distribution. Addition-
ally, we propose a partial sampling process by perturbing the latent at an inter-
mediate timestep during finding the noise prior, significantly reducing inference
time without compromising quality. Extensive experiments on VBench demon-
strate that our method achieves the highest scores in both quality and semantic
assessments, resulting in the best overall total score. These results highlight the
superiority of our proposed noise prior.

1 INTRODUCTION

Benefiting from notable advancements of diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021b) alongside the expansion of large video datasets (Bain et al., 2021; Schuh-
mann et al., 2022), text-to-video generation has experienced remarkable progress (Ho et al., 2022a;
Wu et al., 2022a; Blattmann et al., 2023; Ge et al., 2023; Guo et al., 2024; Singer et al., 2023; Wang
et al., 2023; Chen et al., 2023). In ordinary videos, the content between successive frames often
shows high similarity, allowing the video to be considered as a sequence of images with motion
information. Leveraging this characteristic, the architecture of video diffusion models (Blattmann
et al., 2023; Wang et al., 2023; Hong et al., 2023; Guo et al., 2024) commonly incorporates tempo-
ral or motion layers into existing image diffusion models. In addition to model architecture, some
studies, inspired by the consistent patterns observed across video frames, investigate the relation-
ships within the initial noise prior. Consequently, alongside research focusing on the training and
sampling phases (Song et al., 2021a; Karras et al., 2022; Lu et al., 2022; Salimans & Ho, 2022;
Song et al., 2023), another important line of research in video diffusion models is to explore noise
initialization strategies, since improved noise prior can potentially yield better generation results.

Several efforts have been made to explore the noise prior, as the initial noise significantly impacts
the generated outcomes (Ge et al., 2023; Qiu et al., 2024; Chang et al., 2024; Gu et al., 2023; Mao
et al., 2024; Wu et al., 2024). PYoCo (Ge et al., 2023) discovers that the noise maps corresponding to
different frames, derived from a pre-trained image diffusion model, cluster in t-SNE space (Van der
Maaten & Hinton, 2008), indicating a strong correlation along the temporal dimension. Based on
this observation, it introduces two kinds of noise prior with correlations on the frame dimension.
However, this change in the noise prior requires massive fine-tuning on video datasets. FreeInit (Wu
et al., 2024) investigates the low-frequency signal leakage phenomenon in the initial noise, as also
demonstrated in the image domain (Lin et al., 2024), and finds that the denoising process is signif-
icantly influenced by the low-frequency components of initial noise. Leveraging these insights, it
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Gaussian

FreeInit

Ours

𝝈𝝈𝟐𝟐 decreasing

Figure 1: (Left) Generated video frames corresponding to Gaussian noise with different vari-
ance. As the variance, denoted as σ2, decreases from the normal level 1.002 to 0.962, the imag-
ing quality progressively deteriorates and background details gradually lost. (Right) Comparisons
of our method against the FreeInit and standard Gaussian noise. The frames generated using
FreeInit appear overly smooth and blurred in the area of the highlighted red box, whereas our method
preserves rich image details in the generated frames.

uses frequency filtering on the noise prior which can enhance the temporal consistency of gener-
ated videos. However, despite its efforts, the generated videos suffer from excessive smoothness,
limited motion dynamics, and a lack of details in certain regions. Moreover, additional iterations
are necessary to refine the noise, with a full sampling process conducted in each iteration, making
FreeInit (Wu et al., 2024) quite time-consuming.

To address this gap, we conduct a mathematical analysis and provide theoretical justification. Our
analysis identifies the variance decay issue existing in FreeInit (Wu et al., 2024). As depicted in
Figure 1, we investigate the significance of the distribution of the initial noise for diffusion models.
The impact of the variance on the quality of generated videos is evident. As σ decreases from
1 to 0.96, there is a progressive loss of details alongside a reduction in motion dynamics. The
frames generated by FreeInit (Wu et al., 2024) are overly smooth and lack details, as the refined
noise deviates from the standard Gaussian distribution, resulting in variance decay. Therefore, it is
critically important for diffusion models that the noise prior follows standard Gaussian distribution.

In this work, we introduce a novel noise prior called FreqPrior. At the core of our approach is the
noise refinement stage, where we propose a novel frequency filtering method designed for noise,
which essentially is random variables. During this stage, we retain the low-frequency signals while
enriching high-frequency signals in the frequency domain, thereby reducing the covariance error and
ensuring that the distribution of our refined noise approximates a standard Gaussian distribution. As
illustrated in Figure 1, our method does not suffer from the detail loss issue present in FreeInit (Wu
et al., 2024). Additionally, retaining low-frequency signals enhances semantic fidelity. Furthermore,
to obtain the noise prior, we adjust the diffusion process by perturbing the latent at an intermediate
step, resulting in significant time savings without compromising the quality of the generation results.
We conduct extensive experiments on Vbench (Huang et al., 2024b), a comprehensive benchmark, to
assess the quality of generated videos. The results demonstrate that our method effectively addresses
the issue of limited dynamics while improving the overall quality. Moreover, our approach outper-
forms the best on VBench, highlighting the superiority of our method. Additionally, our method
achieves a time-saving of nearly 23% compared to FreeInit (Wu et al., 2024).

In summary, our contributions are as follows: (i): We propose a novel frequency filtering method
designed to refine the noise, acquiring a better prior, termed FreqPrior. We provide a rigorous theo-
retical analysis of the distribution of our prior. Numerical experiments reveal the covariance error of
our method is negligible, implying that our prior closely approximates a Gaussian distribution. (ii):
we propose the partial sampling strategy in our framework when finding the prior, which perturbs
the latent at a middle timestep. It can save much time without compromising quality. (iii): Extensive
quantitative and qualitative experiments validate the effectiveness of FreqPrior. Specifically, our
approach improves both video quality and semantic quality, achieving the highest total score over
baselines on VBench (Huang et al., 2024b).
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2 RELATED WORK

Video generative models In the field of video generation, previous work has explored a range
of methods, including VAEs (Kingma & Welling, 2014; Hsieh et al., 2018; Bhagat et al., 2020),
GANs (Goodfellow et al., 2014; Vondrick et al., 2016; Saito et al., 2017; Tulyakov et al., 2018;
Wang et al., 2020a;b; Tian et al., 2021; Brooks et al., 2022; Skorokhodov et al., 2022), and auto-
regressive models (Wu et al., 2021; 2022a; Ge et al., 2022; Hong et al., 2023). Recently, diffusion
models (Ho et al., 2020; Song et al., 2021b; Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021)
have showcased great abilities in image synthesis (Rombach et al., 2022; Saharia et al., 2022; Nichol
et al., 2022), and pave the way towards video generation (Ho et al., 2022b; He et al., 2022; Voleti
et al., 2022). Many recent works (Ho et al., 2022a; Blattmann et al., 2023; Ge et al., 2023; Guo et al.,
2024; Singer et al., 2023; Wang et al., 2023; Chen et al., 2023) on video synthesis are text-to-video
diffusion models as text is a highly intuitive and informative instruction. Both ModelScope (Wang
et al., 2023; Luo et al., 2023) and VideoCrafter (Chen et al., 2023) are built upon on the UNet (Ron-
neberger et al., 2015) architecture. VideoCrafter adds a temporal transformer after a spatial trans-
former in each block, while in ModelScopoe each block comprises spatial and temporal convolution
layers, along with spatial and temporal attention layers. AnimateDiff (Guo et al., 2024) generates
videos by integrating Stable Diffusion (Rombach et al., 2022) with motion modules.

Noise prior for diffusion models Given inherent high correlations within video data, several stud-
ies (Ge et al., 2023; Qiu et al., 2024; Chang et al., 2024; Gu et al., 2023; Mao et al., 2024; Wu et al.,
2024) have delved into the realm of noise prior within diffusion models. Both FreeNoise (Qiu et al.,
2024) and VidRD (Gu et al., 2023) focus on initialization strategies for long video generation, with
FreeNoise employing a shuffle strategy to create noise sequences with long-range relationships,
while VidRD utilizes the latent feature of the initial video clip.

∫
-noise prior interprets noise as a

continuously integrated noise field rather than discrete pixel values (Chang et al., 2024). However, it
focuses on low-level features, making it more suitable for tasks such as video restoration and video
editing. Mao et al. (2024) identifies that some pixel blocks of initial noise correspond to certain
concepts, enabling semantic-level generation. Nevertheless, collecting these blocks for different
concepts is time-consuming, which limits its practical application. Motivated by correlations in
the noise maps corresponding to different frames, PYoCo (Ge et al., 2023) carefully designs mixed
noise prior and progressive noise prior. FreeInit (Wu et al., 2024) identifies signal leakage in the
low-frequency domain and uses Fourier transform to refine the noise, making the initial exploration
of frequency operations in the noise prior. However, noise is essentially different from signals, mak-
ing the classic frequency filtering method unsuitable. As a result, the generated videos lack motion
dynamics and imaging details due to the variance decay issue. To address these limitations, we
propose a novel prior to enhance the overall quality of generated videos.

3 METHOD

FreqPrior comprises three key stages: sampling process, diffusion process, and noise refinement,
as shown in Figure 2. To obtain a new noise prior, our method starts with Gaussian noise, which
then goes through these three stages sequentially, repeated several times, to result in a refined noise
prior. Once the new prior is established, it serves as the initial latent for video diffusion models to
generate a video. The sampling process in our framework is DDIM sampling (Song et al., 2021a).

3.1 DIFFUSION PROCESS

During the sampling process, the latent becomes clean. Unlike the conventional diffusion process
that typically diffuses the clean latent to timestep T , our approach perturbs the latent with the initial
noise ϵ once sampling reaches a specific intermediate timestep, denoted as t. The diffusion process
can be formulated as follows by leveraging the Markov property:

zinoise =

√
ᾱT

ᾱt
zit +

√
1− ᾱT

ᾱt
ϵ, (1)

where {ᾱj}Tj=0 are the notations corresponding to the diffusion scheduler (Ho et al., 2020), and i
represents the i-th iteration.
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Figure 2: The framework of FreqPrior. It consists of three stages: sampling process, diffusion
process, and and noise refinement. In the noise refinement stage, the noise is refined in three steps
including noise preparation, noise processing, and post-processing.

The rationale for conducting the diffusion process beforehand stems from the observation that when
t reaches about timestep 400, the latent zit has roughly taken shape and resembles the clean latent
zi0, indicating the latent already has recovered large low-frequency information. Consequently, this
modification yields nearly identical outcomes compared to diffusing a pure clean latent. This mod-
ification offers a notable advantage in terms of efficiency, as it significantly reduces the number of
required sampling steps while maintaining consistent results. Therefore, we achieve substantial time
savings without compromising the fidelity of our results.

3.2 NOISE REFINEMENT

The noise refinement stage focuses on processing different frequency components of the noise to
improve video generation quality. Low-frequency signals help the model generate videos with bet-
ter semantics, while high-frequency signals contribute to finer image details. Unlike conventional
filtering methods, which typically target signals like images, our approach processes noise, essen-
tially random variables, distinguishing it from traditional techniques. Therefore, we propose a novel
frequency filtering method designed to effectively handle noise, enhancing overall quality.

Step 1: Preparation of two sets of noise We begin by preparing two distinct sets of noise, each
serving a specific purpose: one to convey low-frequency information and the other to provide high-
frequency information. Initially, we independently sample from a standard Gaussian distribution
to obtain ηi1, ηi2, yi

1 and yi
2, where yi

1 and yi
2 correspond to high-frequency information. As for

low-frequency information, we combine zinoise with ηi1 and ηi2 to yield xi
1 and xi

2 as follows:

xi
1 =

1√
1 + cos2 θ

(
cos θ · zinoise + sin θ · ηi1

)
, ηi1 ∼ N (0, I),

xi
2 =

1√
1 + cos2 θ

(
cos θ · zinoise + sin θ · ηi2

)
, ηi2 ∼ N (0, I).

(2)

Here, ratio cos θ controls the proportion of zinoise contained within xi
1 and xi

2. It adds flexibility to
the framework, allowing us to control the amount of low-frequency information derived from zinoise.
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Algorithm 1 FreqPrior
Require:

T : total diffusion step; t: middle timestep; {α}Tt=0: scheduler. n: number of iterations.
1: Initialize zT = ϵ, where ϵ ∼ N (0, I).
2: ▷ Obtain the noise prior
3: for i = 0 to n do
4: zt ← Sampling(zT ) ▷ Partial sampling process
5: znoise =

√
ᾱT /ᾱt · zt +

√
1− ᾱT /ᾱt · ϵ ▷ Diffusion Process

6: zT ← NoiseRefine(znoise) ▷ Noise refinement
7: ▷ Generate a video from new noise prior
8: z0 ← Sampling(zT ) ▷ Sampling process
9: video← Decode(z0)

10: return video

Step 2: Retention of low-frequency signals while enriching high-frequency signals We apply
the Fourier transform to map the noise to the frequency domain:

x̃i
1 = F3D(xi

1), x̃i
2 = F3D(xi

2), ỹi
1 = F3D(yi

1), ỹi
2 = F3D(yi

2), (3)

where F3D represents the Fourier transform operation on temporal and spatial dimensions. We then
perform filtering with a low-pass filterM:

z̃i1 =M⊙ x̃i
1 + (1−M2)0.5 ⊙ ỹi

1, z̃i2 =M⊙ x̃i
2 + (1−M2)0.5 ⊙ ỹi

2. (4)

Since we are filtering Gaussian variables rather than real image signals, the conventional filtering
approach may not be suitable. Typically, a high-pass filter is set to (1 −M), we use (1 −M2)0.5

instead. This adjustment is inspired by a fact in probability: if u, v ∼ N (0, I) are independent,
then for m ∈ [0, 1], it holds that w = m · u + (1 − m2)0.5 · v is also standard Gaussian. In
traditional filtering operations, the sum of the low-pass and high-pass filters equals one. However,
in our approach, the sum of the squares of the low-pass and high-pass filters equals one. This
modification enriches the high-frequency signals, maintaining the balance between low-frequency
and high-frequency components. As a result, it mitigates the loss of details and motion dynamics,
leading to higher fidelity in the generated videos.

Step 3: Post-processing After filtering, the frequency features are mapped back into the latent
space, followed by post-processing to form the new noise prior zi+1

T . The process is as follows:

zi+1
T =

1√
2

(
ℜ
(
ziT,1

)
+ ℑ

(
ziT,1

)
+ ℜ

(
ziT,2

)
−ℑ

(
ziT,2

))
, ziT,{1,2} = F−1

3D (z̃i{1,2}). (5)

Unlike traditional methods that overlook the imaginary component, our approach recognizes the im-
portance of the information contained within these imaginary parts, which are crucial for preserving
the variance in the noise prior. Consequently, we retain both the real and imaginary components.
Specifically, we take both the positive real parts of ziT,1 and ziT,2, but for imaginary components,
we take the positive imaginary part of ziT,1 and the negative imaginary part of ziT,2. This is the
reason we prepare two sets of noise in Step 1. This symmetric formulation enhances the retention
of valuable information while effectively eliminating unnecessary and complex terms.

In summary, our framework comprises two phases: the first phase focuses on finding a new noise
prior, while the second phase generates a video based on that prior. The process of finding the
noise prior includes the sampling process, diffusion process, and noise refinement, as previously
discussed. Our framework is detailed in Algorithm 1.

3.3 ANALYSIS ON THE DISTRIBUTION OF DIFFERENT NOISE PRIOR

For the mixed noise prior proposed in PYoCo (Ge et al., 2023), it is constructed as follows:

zj =
1√
2
ϵj +

1√
2
ϵshare, ϵj , ϵshare ∼ N (0, I), (6)

5
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where zj and ϵj represent the j-th frame of latent z and Gaussian noise ϵ. The noise prior z has
correlations in the frame dimension, as each frame consists of shared noise ϵshared:

Cov(zi, zj) = 0.5I, i ̸= j. (7)

Therefore, considering only the frame dimension, the diagonal elements of the covariance matrix
are 1, and others are 0.5, which deviates standard Gaussian distribution. Similarly, the distribution
of progressive noise prior also deviates from standard Gaussian distribution.

To conduct a theoretical analysis for FreeInit (Wu et al., 2024) and our method, we first need to
determine the distribution of the refined noise. We begin with the following assumption:
Assumption 1. After the diffusion process, znoise follows a standard Gaussian distributionN (0, I).

We focus on the frame, height, and width dimensions, as other dimensions do not affect analysis.
The noise prior of FreeInit (Wu et al., 2024) has the following distribution (see Appendix B.1):

z ∼ N
(
0,P 2 + (I − P )

2
)
, P =

1

N
(AΛA+BΛB) , (8)

where z ∈ Rfhw is the vector form of the noise prior, N is the length of z, Λ is the diagonal matrix
corresponding to the low-pass filter M, and A and B represent real and imaginary parts of 3D
Fourier matrix as illustrated in Appendix A.2.

Similarly, the distribution of our method is as follows (see Appendix B.2):

z ∼ N
(
0, I − 2 cos2 θ

1 + cos2 θ
Q2

)
, Q =

1

N
(AΛB +BΛA) . (9)

To measure the deviations of two Gaussian distributions, we introduce the concept of covariance
error.
Definition 3.1 (Covariance error). For two Gaussian variables with the same expectations,
N (µ,Σ1) and N (µ,Σ2), the covariance error is defined as the Frobenius norm of the difference
between their covariance matrices: ||Σ1 −Σ2||F .

Under the condition of the same low-pass filterM, we can derive the relationship of the covariance
error of FreeInit and our method by using Equation 61 and Theorem C.1:

||I −ΣFreqPrior||F ≤
cos2 θ

1 + cos2 θ
||I −ΣFreeInit||F . (10)

This inequality indicates that 1 − ||I−ΣFreqPrior||F
||I−ΣFreeInit||F ≥

1
1+cos2 θ ≥ 50%. This demonstrates that the

refined noise produced by our method is closer to a standard Gaussian distribution. Our approach
can theoretically reduce the covariance error by at least 50% compared to FreeInit (Wu et al., 2024).
To further investigate the covariance error, we conduct numerical experiments with three different
shapes and two types of low-pass filters: the Butterworth filter and the Gaussian filter. All computa-
tions are performed with float64 precision.

Table 1: Numerical experiments on covariance error. We report the covariance errors for three
types of prior under various settings, including three different latent shapes and two different filters.
The mixed noise prior is independent of filters.

Prior (16, 20, 20) (16, 30, 30) (16, 40, 40)

Butterworth Gaussian Butterworth Gaussian Butterworth Gaussian

Mixed 154.9193 232.3790 309.8387
FreeInit 3.8230 8.5878 5.7001 12.8817 7.6026 17.1756

Ours 6.424× 10−29 6.686× 10−29 1.015× 10−26 9.254× 10−27 9.136× 10−28 1.076× 10−27

As illustrated in Table 1, our proposed noise prior exhibits the lowest covariance errors, which are
minimal and can be considered negligible. FreeInit shows some covariance errors, indicating the
presence of a variance decay issue. The covariance errors for the mixed noise prior are significantly
higher, suggesting that it deviates substantially from a standard Gaussian distribution. These numer-
ical experiments imply that our noise prior can be regarded as a standard Gaussian distribution.
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Table 2: Main results. For different types of noise prior, we provide the settings for finding the prior
and sampling steps for video generation. Evaluation metrics include quality score, semantic score,
and total score. Additionally, we report the inference time, which includes the time for finding the
noise prior and the time for generation.

Base model Noise prior Prior finding Generation Quality Semantic Total Inference time

VideoCrafter

Gaussian / 25 steps 69.50 54.92 66.58 27.73s
Mixed / 25 steps – – – –

Progressive / 25 steps – – – –

Gaussian / 3*25 steps 69.75 58.10 67.42 83.09s
FreeInit 2 full sampling 25 steps 70.62 58.97 68.29 83.18s

Ours 2 partial sampling 25 steps 70.63 61.33 68.77 63.67s

ModelScope

Gaussian / 50 steps 73.13 65.69 71.64 19.24s
Mixed / 50 steps – – – –

Progressive / 50 steps – – – –

Gaussian / 3*50 steps 73.25 66.31 71.87 57.72s
FreeInit 2 full sampling 50 steps 73.61 67.24 72.34 57.73s

Ours 2 partial sampling 50 steps 74.04 69.06 73.04 44.88s

AnimateDiff

Gaussian / 25 steps 79.56 69.03 77.45 23.34s
Mixed / 25 steps – – – –

Progressive / 25 steps – – – –

Gaussian / 3*25 steps 79.49 69.71 77.54 70.22s
FreeInit 2 full sampling 25 steps 79.58 68.85 77.43 70.45s

Ours 2 partial sampling 25 steps 80.05 70.37 78.11 54.05s

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines In our experiments, we establish the following baselines: Gaussian noise, mixed noise,
progressive noise, and FreeInit (Wu et al., 2024). Gaussian noise serves as the default prior for
diffusion models. The mixed noise prior and progressive noise prior are proposed by PYoCo (Ge
et al., 2023). FreeInit is the pioneering work that employs Fourier transform to create a new prior.

Implementations We conduct the experiments on three open-soruce text-to-video diffusion mod-
els: VideoCrafter (Chen et al., 2023), ModelScope (Wang et al., 2023), and AnimateDiff (Guo et al.,
2024). DDIM (Song et al., 2021a) is set to the default sampler, with the scheduler’s offset configured
to 1. Both FreeInit and our method require additional samplings to acquire the noise prior, with the
number of extra sampling iterations set to 2. To ensure fairness, we use a Butterworth Filter with a
normalized spatial-temporal cutoff frequency of 0.25 as the low-pass filter for both FreeInit and our
method. In our approach, the timestep t is set to 321, the ratio cos θ is set to 0.8 for ModelScope and
AnimateDiff, and 0.7 for VideoCrafter. All experiments are conducted on NVIDIA V100 GPUs.
For more details, please refer to Appendix D.

Evaluation To evaluate the performance of each noise prior, we use VBench (Huang et al., 2024b),
a comprehensive benchmark that closely aligns with human perception. VBench dissects evaluation
into specific, hierarchical, and disentangled dimensions, each featuring tailored prompts and evalu-
ation methods. Specifically, VBench assesses performance across two primary levels: quality score
and semantic score. The total score is calculated as the weighted average of the quality score and
semantic score. The scores range from 0 to 100, with a higher score indicating better performance
in the corresponding aspects. For each noise prior, we generate 4730 videos for VBench evaluation.
For more details, please refer to Appendix E.

4.2 MAIN RESULTS

Quantitative results As shown in Table 2, our method achieves the highest scores across all met-
rics, quality score, semantic score, and total score, on the three different base models, underscoring
the superiority of our proposed noise prior. Our approach enhances both the video fidelity and se-
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Mixed Progressive

Figure 3: Generation results using PYoCo prior. Both mixed noise prior and progressive noise
prior lead to crashes on pretrained video diffusion models.

mantic consistency of the generated videos. In contrast, the mixed noise prior and progressive noise
prior lead to crashes and failure in generating normal videos, as illustrated in Figure 3. This is due to
the significant gap between these types of prior and the standard Gaussian distribution, as these types
of prior introduce correlations in the frame dimension. The PYoCo method requires training a model
specifically on these types of prior and cannot be directly applied to pre-trained diffusion models,
which limits its practical applications. FreeInit and our method require two additional samplings
to acquire the noise prior, resulting in increased inference time. To investigate whether the perfor-
mance improvements are attributed to more denoising steps, we triple the steps during generation
for Gaussian noise. While tripling the steps for Gaussian noise provides a slight performance boost,
the improvements are modest, particularly on ModelScope and AnimateDiff, where the total score
increases by only 0.23 and 0.09, respectively. Although it shows a more significant improvement
of 0.84 on VideoCrafter, its total score still falls well short of both FreeInit and our proposed prior.
FreeInit generally enhances performance compared to Gaussian noise prior, it reduces the semantic
score and total score on AnimateDiff. The reason may be the negative effects of variance decay
surpass the positive effects of refinement on low-frequency signals. Our method does not have such
a variance decay issue. Overall, when compared to Gaussian noise with triple steps and FreeInit,
our method outperforms all metrics while requiring the least inference time, saving approximately
23%. The performance gains stem from the noise refinement stage, where we introduce a new fre-
quency filtering method targeted at the noise. The time savings arise from diffusing the latent at an
intermediate step, resulting in partial sampling that reduces several denoising steps.

Qualitative results Figure 4 presents a comparative visualization of the results. In the top left
case, our method produces video frames with superior fidelity, featuring backgrounds reminiscent
of a café, while the frames generated using Gaussian noise lack any background. FreeInit further
deteriorates the result compared to Gaussian noise, blurring the area within the red box into an
indistinct speck. The top right case demonstrates that the videos generated by our method exhibit
finer details and better semantics. In the middle left case, our results are aesthetically superior
in terms of color and brightness, while those produced by Gaussian noise appear relatively dim.
The middle right case highlights that both baselines fail to generate a guitar, whereas our method
successfully creates one that aligns closely with the provided text prompt. In the bottom left case,
the example generated by FreeInit resembles “a cat sleeping in a bowl” rather than “a cat eating
food out of a bowl.” In the bottom right case, the video generated from Gaussian noise is missing a
“person,” while FreeInit produces an unnatural representation, lacking motion dynamics. In contrast,
our method delivers the highest quality video, featuring a person walking forward. Overall, these
cases illustrate that our method outperforms these types of noise prior in both quality and semantics.

Table 3: Ablation study on the impact of ratio cos θ. We present total score across various values
of ratio cos θ. To eliminate the effects of timestep t, it is fixed to 0.

cos θ VideoCrafter ModelScope AnimateDiff
1.0 69.02 72.82 78.07
0.9 68.96 72.92 78.07
0.8 68.91 73.12 78.12
0.7 69.04 72.97 78.09

4.3 ABLATION STUDY

Influence of ratio cos θ The generation results are affected by two hyper-parameters, the ratio
cos θ in the noise refinement stage and the timestep t in the diffusion process. To investigate the
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a person drinking coffee in a cafe a person walking in the snowstorm

Gaussian

FreeInit

Ours

Gaussian 

FreeInit

Ours

Gaussian

a boat sailing smoothly on a calm lake
A happy fuzzy panda playing guitar nearby a 
campfire, snow mountain in the background

FreeInit

Ours

Gaussian

FreeInit

Ours

Gaussian

A cat eating food out of a bowl

FreeInit

Ours

Gaussian

FreeInit

Ours

a person walking in the snowstorm

Figure 4: Qualitative results and comparisons. The cases in the top row are generated using
AnimateDiff, while the middle row displays cases from ModelScope, and the bottom row shows
cases generated by VideoCrafter. For each case, we present the generation results from different
types of noise prior along with the corresponding prompt.
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Figure 5: Generation results on different values of cos θ. Though there are some changes in the
generated video frames as cos θ varies, they are quite similar.

effects of cos θ, we set timestep t to 0 to eliminate the influence of t. In Equation (2), both xi
1 and

xi
2 contribute to low-frequency signals of zi+1

T , the initial latent for the subsequent iteration. As
cos θ decreases, the proportion of zinoise in xi

1 and xi
2 diminishes, indicating a reduction in the low-

frequency components rooted in zinoise. cos θ governs the extent to which low-frequency signals
are retained, assuming the filter remains constant. Therefore, cos θ can not be small. We conducted
experiments with four different values of cos θ. As shown in Table 3, for AnimateDiff (Guo et al.,
2024) and ModelScope (Wang et al., 2023), Total Score initially increases, reaching its peak at
cos θ = 0.8, before declining. For VideoCrafter (Chen et al., 2023), Total Score get the highest
at cos θ = 0.7. Overall, the differences among different cos θ values are minor, indicating the
FreqPrior is robust and not sensitive to changes in cos θ. The visualization results presented in
Figure 5 demonstrate that while varying cos θ leads to some differences in the video frames, they
are still quite similar.

Figure 6: Ablation study on the impact of timestep t. Total Score is assessed accross different
diffusion timesteps t for three distinct text-to-video diffusion models. Overall, the timestep t has
little effect on the evaluated metric.

Influence of timestep t. Figure 6 shows that our method consistently outperforms Gaussian noise
prior and FreeInit (Wu et al., 2024) across varying timestep t. While there are some fluctuations, the
curve corresponding to our method on all three base models shows a slow declining trend, indicating
that as the timestep t increases, the quality of generated videos is likely to decrease. However, with
a larger timestep, fewer denoising steps are required in each sampling iteration to find the noise
prior. Consequently, it presents a trade-off between the generation quality and the inference time.
Considering both factors, we selected t = 321 for the final setting.

5 CONCLUSION

We introduce a new noise prior for text-to-video diffusion models, named FreqPrior. The key stage
in our framework lies in noise refinement, where we propose a novel frequency filtering method
specifically designed for Gaussian noise. By refining the noise, we obtain a better prior for video
diffusion models, thereby enhancing the quality of generation results. Although other types of noise
prior have been proposed to improve the performance of video diffusion models, their distributions
often deviate from a standard Gaussian distribution, leading to sub-optimal generation outcomes. In
practice, the covariance error between our prior and Gaussian noise approaches zero, indicating that
our noise prior closely approximates a Gaussian distribution. Extensive experiments demonstrate
the superiority of our method over existing noise prior.
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A PRELIMINARY

A.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020) are a class of generative models that recover the data corrupted
by the Gaussian noise through learning a reverse diffusion process. It iteratively denoises from
Gaussian noise, which corresponds to learning the reverse process of a fixed Markov Chain of length
T . The diffusion process is a Markov chain that gradually corrupts the data with Gaussian noise.
For the diffusion process given the variance schedule βt:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (11)

Using the Markov property, we can sample xt at an arbitrary time t from x0 in closed form. Let
α = 1− βt and ᾱt =

∏t
s=1 αs, we have

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (12)

By the Bayes’ rules, q(xt−1|xt, x0) can be expressed as follows:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI), (13)

where µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t =

1− ᾱt−1

1− ᾱt
βt. (14)

For the reverse process, it generates x0 from xT with prior xT = N (xT ; 0, I) and transitions:

pΘ(xt−1|xt) = N (xt−1;µΘ(xt, t),ΣΘ(xt, t)). (15)

In the equation, Θ are learnable parameters of models ϵΘ which are trained to minimize the variant
of the variational bound Ex,ϵ∼N (0,I),t

[
∥ϵ− ϵΘ (xt, t)∥2

]
.

A.2 FOURIER TRANSFORM

Discrete Fourier Transform (DFT) is one of the most important discrete transforms used in digital
signal processing including image processing. The discrete Fourier transform can be expressed as
the DFT matrix, denoted as F , defined as follows:

F =
(
ω
(m−1)·(n−1)
N

)
N×N

=


ω0·0
N ω0·1

N · · · ω
0·(N−1)
N

ω1·0
N ω1·1

N · · · ω
1·(N−1)
N

...
...

. . .
...

ω
(N−1)·0
N ω

(N−1)·1
N · · · ω

(N−1)·(N−1)
N

 (16)

where ωN = e−2πi/N is a primitive N -th root of unity. The inverse transform, denoted as F−1 can
be derived from F as its complex conjugate transpose, scaled by 1

N : F−1 = 1
NF ∗.

The DFT matrix F can be decomposed into its real and imaginary parts, represented respectively
by matrices A and B:

F = A+Bi, A = ℜ (F ) , B = ℑ (F ) . (17)

This decomposition simplifies the understanding of the structure and properties of the DFT matrix,
providing deeper insights. Using Euler’s formula, A and B can be explicitly expressed as:

A = (cos ((m− 1) (n− 1) θ))N×N , B = (sin ((m− 1) (n− 1) θ))N×N , (18)

where θ = − 2π
N . Notably, both A and B are real symmetric matrices.

Lemma A.1. For θ = − 2π
N where N is a positive integer, it holds that

∑N
k=1 sin (l (k − 1) θ) = 0

for any integer l.
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Proof. By applying Euler’s formula, we rewrite sin (l (k − 1) θ) as ℑ
(
ω
l(k−1)
N

)
, where ωN =

e−2πi/N . Then we have:
N∑

k=1

sin (l (k − 1) θ) =

N−1∑
k=0

ℑ
(
ωlk
N

)
= ℑ

(
N−1∑
k=0

ωlk
N

)
. (19)

The term
∑N−1

k=0 ωlk
N is the sum of geometric sequence. If ωl

N = 1, then
∑N−1

k=0 ωlk
N = N , yielding

ℑ
(∑N−1

k=0 ωlk
N

)
= 0.

Otherwise, if ωl
N ̸= 1, we have

∑N−1
k=0 ωlk

N =
(
1− ωlN

N

)
/
(
1− ωl

N

)
. Since ωN

N = 1, then∑N−1
k=0 ωlk

N = 0, and consequently ℑ
(∑N−1

k=0 ωlk
N

)
= 0.

In conclusion, we have shown that
∑N

k=1 sin (l (k − 1) θ) = 0 for any integer l.

This lemma offers foundational insights into the behavior of the sum of sinusoidal functions, Now,
we introduce a theorem regarding properties of the DFT matrix.
Theorem A.2. Given a DFT matrix F ∈ CN×N , with A and B representing its real and imaginary
parts respectively, it holds that AB = BA = 0 and A2 +B2 = NI .

Proof. Using the property of the inverse Fourier transform, we have

I = FF−1 =
1

N
FF ∗ =

1

N
(A+Bi) (A−Bi) =

1

N

(
A2 +B2 −ABi+BAi

)
. (20)

Comparing real parts and imaginary parts of both sides, we derive:

A2 +B2 = NI, BA = AB. (21)

Considering the matrix AB, we calculate the value of the element in the m-th row and n-th column:

(AB)mn =

N∑
k=1

cos ((m− 1) (k − 1) θ) sin ((k − 1) (n− 1) θ)

=
1

2

N∑
k=1

(sin ((m+ n− 2)(k − 1)θ)− sin ((m− n)(k − 1)θ)) = 0.

(22)

The last equation holds using Lemma A.1. The equation holds for each element of AB. Therefore
AB = BA = 0.

For the 3D Fourier transform, it can be represented as follows using the Kronecker product:

F3D = FT ⊗ FH ⊗ FW . (23)

The inverse transform is given by:

F−1
3D =

1

NTNHNW
F ∗
3D. (24)

Similarly, we decompose F3D into its real part A3D and imaginary part B3D:

F3D = (AT +BT i)⊗ (AH +BH i)⊗ (AW +BW i) ,

A3D = AT ⊗AH ⊗AW −AT ⊗BH ⊗BW −BT ⊗AH ⊗BW −BT ⊗BH ⊗AW ,

B3D = AT ⊗AH ⊗BW +AT ⊗BH ⊗AW +BT ⊗AH ⊗AW −BT ⊗BH ⊗BW .

(25)

By Theorem A.2 and the property or Kronecker product, it still holds that:

A2
3D +B2

3D = NTNHNW I, B3DA3D = A3DB3D = 0. (26)

It reveals that the 3D DFT matrix shares the same properties as the ordinary DFT matrix. For
convenience, we denote the DFT matrix, including multi-dimensional cases as F , with size denoted
as N . Employing mathematical induction, we can extend Theorem A.2 from one-dimensional case
to arbitrary finite dimensions:
Theorem A.3. Given a DFT matrix or multi-dimension DFT matrix F ∈ CN×N , with A and B
are its real part and imaginary part respectively, it holds that AB = BA = 0 and A2+B2 = NI .
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B NOISE DISTRIBUTION ANALYSIS

B.1 FREEINIT

FreeInit (Wu et al., 2024) uses conventional frequency filtering methods to manipulate noise, which
is the key step in the framework. This step can be formulated as follows:

zT = ℜ
(
F−1

3D (F3D (znoise)⊙M+ F3D (η)⊙ (1−M))
)
, (27)

where F3D is the Fourier transform applied to both spatial and temporal dimensions.M is a spatial-
temporal low-pass filter. znoise is noisy latent derived from corrupting the clean latent with initial
Gaussian noise to timestep T , while η is another Gaussian noise. For analysis, we focus solely on
the spatial and temporal dimensions, ignoring the batchsize and channel dimensions. Additionally,
we flatten the latent zT ∈ Rf×h×w into a vector z ∈ Rfhw. The equation 27 can be expressed in
matrix form as follows:

z = ℜ
(
F−1ΛxFx+ F−1ΛyFy

)
, (28)

where F is the DFT matrix of transform F3D, x and y are random vectors corresponding to znoise
and η, and Λx and Λy are diagonal matrices associated with low-pass filterM and high-pass filter
1−M. Therefore it holds that Λx+Λy = I . This equation can be simplified to the following form
using equation 17:

z =
1

N
(AΛxA+BΛxB)x+

1

N
(AΛyA+BΛyB)y, (29)

Under the Assumption 1, x = vec(znoise) ∼ N (0, I), where x and y are independent. Since z is
a linear combination of independent Gaussian random vectors, it follows that z is also Gaussian. To
derive the distribution of z, we only need to compute its expectation and covariance. The expectation
is straightforward and given by E[z] = 0. The covariance of z can be calculated as follows:

Cov (z) =
1

N2
(AΛxA+BΛxB)

2
+

1

N2
(AΛyA+BΛyB)

2
. (30)

To simplify the expression, we denote P = 1
N (AΛxA+BΛxB). Then the term AΛyA+BΛyB

can be expressed using P :

AΛyA+BΛyB = A(I −Λx)A+B(I −Λx)B

= A2 +B2 − (AΛxA+BΛxB) = NI −NP .
(31)

The last equation follows from A2+B2 = NI , as stated in Theorem A.3. Combining Equation (30)
and Equation (31), the covariance of z is given by:

Cov (z) = P 2 + (I − P )2. (32)

Consequently, we obtain the distribution of z as follows:

z ∼ N
(
0,P 2 + (I − P )

2
)
. (33)

Due to the property of the low-pass filterM where each element lies between 0 to 1, both Λx and
Λy are semi-definite diagonal matrices. Consequently, we can prove that both P and I − P are
semi-positive definite matrices. The covariance structure resembles a2+(1−a)2, which is less than
1 for a ∈ (0, 1). This indicates a difference between the distribution of z and the standard Gaussian
distribution. We explore this further in Appendix C.

B.2 FREQPRIOR

The noise refinement stage of our method consists of three distinct steps, which are elaborated on
in Section 3.2. To facilitate further analysis, we express these steps in matrix form. The first step,
noise preparation step, can be represented as:

x1 =
1√

1 + cos2 θ
(cos θ · x+ sin θ · η1) , x2 =

1√
1 + cos2 θ

(cos θ · x+ sin θ · η2) , (34)

where η1, η2 ∼ N (0, I) and are independent. Under Assumption 1, x ∼ N (0, I). Obviously,
x, η1, and η2 are independent. Both x1 and x2 are linear combinations of independent of Gaussian
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random vectors. Their expectation can be computed directly: E[x1] = E[x2] = 0. Next, we
calculate the covariance of these variables. Specifically, the covariances are given by:

Cov (x1) = Cov (x2) =
1

1 + cos2 θ
I, Cov(x1,x2) = Cov(x2,x1) =

cos2 θ

1 + cos2 θ
I. (35)

This implies that x1 and x2 are correlated, as they both share a component of x when cos θ ̸= 0.

The noise processing and post-processing steps can be expressed as follows:

z1 = F−1ΛxFx1 + F−1ΛyFy1, z2 = F−1ΛxFx2 + F−1ΛyFy2, (36)

z =
1√
2
(ℜ (z1) + ℑ (z1) + ℜ (z2)−ℑ (z2)) , (37)

where y1,y2 ∼ N (0, I) are independent. Regarding the filters, Λx and Λy are diagonal matrices
corresponding to the low-pass filterM and the high-pass filter (1−M)0.5.

The refined noise z can be expressed in a following form using equation 17:
√
2N · z = (AΛxA+BΛxB +AΛxB −BΛxA)x1

+ (AΛyA+BΛyB +AΛyB −BΛyA)y1

+ (AΛxA+BΛxB −AΛxB +BΛxA)x2

+ (AΛyA+BΛyB −AΛyB +BΛyA)y2.

(38)

From the mathematical form of this expression, it is evident that the matrices preceding these random
vectors share similar structures. To simplify this equation, we introduce the following notations:

Let : Cx = AΛxA+BΛxB, Dx = AΛxB −BΛxA,

Cy = AΛyA+BΛyB, Dy = AΛyB −BΛyA.
(39)

Since A and B are real symmetric matrices, and Λx and Λy are diagonal matrices, it is straight-
forward to prove that Cx and Cy are symmetric matrices, while Dx and Dy are skew-symmetric
matrices. Using these notations, Equation (38) can be simplified as follow:

√
2N · z = (Cx +Dx)x1 + (Cy +Dy)y1 + (Cx −Dx)x2 + (Cy −Dy)y2. (40)

In the analysis of
√
2N · z where z is a Gaussian-distributed vector, we need to calculate the ex-

pectation and covariance to determine its distribution. The expectation is given by E[z] = 0. The
covariance can be expressed as the sum of several covariance terms related to x1, x2, y1 and y2.
Specifically, the covariance of

√
2N · z can be expressed as follows:

Cov(
√
2N · z) = Cov ((Cx +Dx)x1) + Cov ((Cx −Dx)x2)

+ Cov ((Cy +Dy)y1) + Cov ((Cy −Dy)y2)

+ Cov ((Cx +Dx)x1, (Cx −Dx)x2)

+ Cov ((Cx −Dx)x2, (Cx +Dx)x1) .

(41)

The covariance of
√
2N · z consists of 6 terms, with first four terms representing the covariance of

each random vector. The last two terms are cross terms that arise due to the fact that x1 and x2 are
not independent. By solving these terms, We can derive the covariance of z.

First, we focus on the covariance terms related to y1 and y2:

Cov ((Cy +Dy)y1) + Cov ((Cy −Dy)y2)

= (Cy +Dy) Cov (y1) (Cy +Dy)
⊤
+ (Cy −Dy) Cov (y1) (Cy −Dy)

⊤

= (Cy +Dy) (Cy −Dy) + (Cy −Dy) (Cy +Dy) = 2
(
C2

y −D2
y

)
.

(42)

Similarly, we can infer Cov ((Cx +Dx)x1)+Cov ((Cx −Dx)x2) combined with Equation (35):

Cov ((Cx +Dx)x1) + Cov ((Cx −Dx)x2) =
2

1 + cos2 θ

(
C2

x −D2
x

)
. (43)
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Having computed the first four terms, we now turn our attention to the last two cross terms. With
Equation (35), we have:

Cov ((Cx +Dx)x1, (Cx −Dx)x2) + Cov ((Cx −Dx)x2, (Cx +Dx)x1)

= (Cx +Dx) Cov(x1,x2) (Cx −Dx)
⊤
+ (Cx −Dx) Cov(x2,x1) (Cx +Dx)

⊤

=
cos2 θ

1 + cos2 θ
(Cx +Dx)

2
+

cos2 θ

1 + cos2 θ
(Cx −Dx)

2
=

2 cos2 θ

1 + cos2 θ

(
C2

x +D2
x

)
.

(44)

Substituting the expression of the covariance related to x1, x2, y1 and y2 with Equa-
tions (42, 43, 44), we can express the covariance of

√
2N · z in the following form:

Cov
(√

2N · z
)
= 2

(
C2

x −D2
x +C2

y −D2
y

)
+

4 cos2 θ

1 + cos2 θ
D2

x. (45)

To further simplify this equation, we need to explore the properties of Cx, Cy , Dx and Dy . From
Theorem A.3, which establish AB = BA = 0 and A2 +B2 = NI . We can compute the squares
of matrices Cx and Dx as follows:

C2
x = AΛxA

2ΛxA+BΛxB
2ΛxB,

−D2
x = AΛxB

2ΛxA+BΛxA
2ΛxB.

(46)

Notice that the squares of Cx and Dx share a similar form, differing only in the middle matrix: one
is A2 and the other is B2. This observation inspires us to calculate C2

x −D2
x, especially since we

have established A2 +B2 = NI . Therefore, we can express it as follows:

C2
x −D2

x = AΛx

(
A2 +B2

)
ΛxA+BΛx

(
B2 +A2

)
ΛxB

= NAΛ2
xA+NBΛ2

xB,
(47)

Since Cy and Dy follow the same pattern with only the subscript replaced, it also holds that:

C2
y −D2

y = NAΛ2
yA+NBΛ2

yB. (48)

Make use of Λy =
(
I −Λ2

x

) 1
2 , we can conclude:

C2
x−D2

x+C2
y −D2

y = NA
(
Λ2

x +Λ2
y

)
A+NB

(
Λ2

x +Λ2
y

)
B = NA2+NB2 = N2I. (49)

Substituting with Equations (46) and (49), we can simplifies Equation (45) to express the covariance
of
√
2N · z as follows:

Cov
(√

2N · z
)
= 2N2I − 4 cos2 θ

1 + cos2 θ

(
AΛxB

2ΛxA+BΛxA
2ΛxB

)
, (50)

Inspired by the form of AΛxB
2ΛxA and BΛxA

2ΛxB which are the matrix multiplication of
AΛxB and BΛxA. We creatively construct a new matrix Q = 1

N (AΛxB +BΛxA). It is easy
to prove Q is a symmetric and semi-positive definite matrix. The square of Q is as follows:

Q2 =
1

N2

(
AΛxB

2ΛxA+BΛxA
2ΛxB

)
. (51)

By combining Equation (50) and Equation (51) and eliminating the constant
√
2N from both sides

of the equation, we can calculate the covariance of z:

Cov (z) = I − 2 cos2 θ

1 + cos2 θ
Q2. (52)

Finally, we derive the distribution of z as follows:

z ∼ N
(
0, I − 2 cos2 θ

1 + cos2 θ
Q2

)
. (53)

It is clear that the covariance of our refined noise is “smaller” than I . However, as AB = BA = 0
and the diagonal elements of Λx ranges from 0 to 1, it gives the intuition that Q is close to 0. We
make further analysis in Appendix C.
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C COVARIANCE ERROR ANALYSIS

Theorem C.1. Given two semi-positive definite matrices C and D satisfying C ⪰ D ⪰ 0, then
||C||F ≥ ||D||F where || · ||F is Frobenius Norm.

Proof. Since ||C −D||2F ≥ 0, then expanding it yields:

||C||2F + ||D||2F ≥ tr
(
C⊤D +D⊤C

)
= 2tr (CD) . (54)

The last equation holds because the C and D are symmetric matrices and tr(·) is invariant under
circular shifts. Then we can conclude:

||C||2F − ||D||2F ≥ 2tr (CD)− 2||D||2F = 2tr ((C −D)D) . (55)

Using Cholesky decomposition, for semi-definite matrix D, there exists matrix L such that D =
LL⊤. Then we can derive:

tr ((C −D)D) = tr
(
(C −D)LL⊤) = tr

(
L⊤ (C −D)L

)
. (56)

From the given condition C ⪰D, thus C−D ⪰ 0, thus L⊤ (C −D)L is semi-positive. Therefore
the trace of this matrix will be non-negative. Therefore ||C||F ≥ ||D||F .

From Equations (33) and (53), we know the covariance of refined noise for each method:

ΣFreeInit = P 2 + (I − P )2, ΣFreqPrior = I − 2 cos2 θ

1 + cos2 θ
Q2. (57)

Consider the same settings, including that the low-pass filters are identical, meaning Λx is fixed.
Since the filter Λx is diagonal with its diagonal elements in the range [0, 1], we have 0 ⪯ Λx ⪯ I .
Consequently, we obtain the following inequality for matrix P :

0 ⪯ P =
1

N
(AΛxA+BΛxB) ⪯ 1

N

(
A2 +B2

)
= I. (58)

Now consider the difference between ΣFreeInit and I:

I −ΣFreeInit = 2
(
P − P 2

)
⪰ 0. (59)

This inequality holds because 0 ⪯ P ⪯ I , which implies P 2 ⪯ P . This demonstrates that
ΣFreeInit is indeed “smaller” than I . To conduct a further analysis of ΣFreeInit and Σfreqinit, we
first establish the relationship between P and Q. Noticing that P and Q have similar forms, we can
derive the following results by leveraging these specific forms:

P 2 +Q2 =
1

N2

((
AΛxA

2ΛxA+BΛxB
2ΛxB

)
+
(
AΛxB

2ΛxA+BΛxA
2ΛxB

))
=

1

N

(
AΛ2

xA+BΛ2
xB
)
⪯ 1

N
(AΛxA+BΛxB) = P .

(60)

Combining Equations (59) and (60), we obtain:

I −ΣFreqPrior =
2 cos2 θ

1 + cos2 θ
Q2 ⪯ 2 cos2 θ

1 + cos2 θ

(
P − P 2

)
=

cos2 θ

1 + cos2 θ
(I −ΣFreeInit) . (61)

Then we can analyze the covariance errors (as defined in Definition 3.1) by applying Theorem C.1:

||I −ΣFreqPrior||F ≤
cos2 θ

1 + cos2 θ
||I −ΣFreeInit||F . (62)

In practice, for common continuous low-pass filters, such as Butterworth filters and Gaussian filters,
the corresponding function values monotonically decrease as the frequency increases. Given that
AB = BA and Q = 1

N (AΛB +BΛA), it follows that Q2 is intuitively close to a zero matrix,
making the covariance error nearly zero. This is further corroborated by our numerical experiments.
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D EXPERIMENTAL DETAILS

Three open-sourced text-to-video models are used as the base models for evaluation: They
are AnimateDiff (Guo et al., 2024), ModelScope (Wang et al., 2023; Luo et al., 2023), and
VideoCrafter (Chen et al., 2023).

• For AnimateDiff, we use mm-sd-v15 v2 motion module along with realisticVisionV20 v20
dreambooth LoRA 1, sampling 16 frames of at a resolution of 512 × 512 at 8 FPS with a
guidance scale of 7.5.

• For ModelScope, we utilize the modelscope-damo-text-to-video-synthesis version, sam-
pling 16 frames at a resolution of 256× 256 at 8 FPS, with a guidance scale of 9.

• For VideoCrafter, we employ the VideoCrafter-v1 base text-to-video model, sampling 16
frames at a resolution of 320× 320 at 10 FPS, with a guidance scale of 12.

E EVALUATION METRICS

We employ VBench (Huang et al., 2024b) for evaluation, a comprehensive benchmark designed
with tailored prompts and evaluation dimensions specifically aimed at assessing video generation
performance. A key feature of VBench is its incorporation of human preference annotations, ensur-
ing alignment with human perception. VBench uses a hierarchical and disentangled scoring system,
breaking the overall total score into two main components: quality score and semantic score. It
covers 16 evaluation dimensions, with 7 contributing to quality score and 9 contributing to seman-
tic score. Each dimension is assessed using a specially designed approach, ensuring precise and
meaningful evaluation of the generated videos. The assessments involve various off-the-shelf mod-
els (Caron et al., 2021; Ruiz et al., 2023; Radford et al., 2021; Li et al., 2023b; Teed & Deng, 2020;
LAION-AI, 2022; Ke et al., 2021; Wu et al., 2022b; Li et al., 2023a; Huang et al., 2023; 2024a;
Wang et al., 2024), and the score for each dimension is normalized on a 0 to 100 scale, based on
empirical minimum and maximum values.

• Quality score is calculated as the weighted average of seven dimensions: subject consis-
tency, background consistency, temporal flickering, motion smoothness, dynamic degree,
aesthetic quality, and imaging quality. The weight for aesthetic quality is set to 2, while
the other dimensions carry a weight of 1.

• semantic score is calculated as the weighted average of nine dimensions: object class, mul-
tiple objects, human action, color, spatial relationship, scene,appearance style, temporal
style, and overall consistency, with each dimension equally weighted 1.

After calculating quality score and semantic score, total score is calculated as follows:

Total =
wq

wq + ws
Quality +

ws

wq + ws
Semantic, (63)

where wq and ws are 4 and 1 respectively by default.

F VISUALIZATION RESULTS

More qualitative results. Additional qualitative results are presented in Figure 8. The videos
generated using our noise prior exhibit superior video quality, in terms of imaging details, aesthetic
aspects, and semantic coherence.

Visualization of the influence of timestep t. As illustrated in Figure 7, the first three rows of
frames, which correspond to different timesteps t, are almost the same. In the fourth case, there are
some differences in the representation of the grape stem, highlighted by a red box. The stem is absent
at the timestep of 321. At the timestep of 321, the stem is missing. The final case demonstrates more
notable differences; as the timestep t increases, the ice cream appears to melt, and the changes are
observable on the table. The visualizations suggest two key points: first, in most instances, the

1https://huggingface.co/ckpt/realistic-vision-v20/blob/main/realisticVisionV20 v20.safetensors
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Figure 7: Visualization results of the influence of timestep. We present five cases where other
settings are fixed to isolate the effects of varying timestep t. Overall, timestep t has minimal impact
on the generation outcomes. However, it does exert some influences on the imaging details occa-
sionally. For the fourth and fifth cases, the red boxes highlight the differences.

timestep t has minimal impact on the overall generation results; second, although the content and
layout of the video frames remain largely unchanged, the timestep can indeed influence the finer
imaging details. In general, the differences are quite minor, which means we can save much time by
diffusing the latent at intermediate timestep during the noise refinement stage without compromising
the quality of generation results.

G LIMITATIONS

While our method enhances consistency and smoothness in videos generated from Gaussian noise,
it can occasionally result in unnatural smoothness that does not align with the laws of physics.
Additionally, although our approach improves overall performance, it may alter the content layout of
video frames compared to Gaussian noise. For real images, low-frequency signals typically dictate
layouts; however, this is not always true for the noise prior in diffusion models. Our method refines
the Gaussian noise prior using a novel frequency filtering technique, which usually preserves the
structural similarity to the original Gaussian noise. Nonetheless, in some cases, the generated videos
can differ significantly. During filtering, high-frequency components from other Gaussian noise may
subtly change the structure of the Gaussian noise prior, resulting in variations in the content and
layouts of the generated videos.

H BROADER IMPACTS

This work aims to propose a novel prior by refining initial Gaussian noise to enhance the quality of
video generation. Text-to-video diffusion models hold the potential to revolutionize media creation
and usage. While these models offer vast creative opportunities, it is crucial to address the risks
of misinformation and harmful content. Before deploying these models in practice, it is essential
to thoroughly investigate their design, intended applications, safety aspects, associated risks, and
potential biases.
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An epic tornado attacking above a glowing city 
at night, the tornado is made of smoke

A beautiful coastal beach in spring, waves 
lapping on sand by Hokusai, in the style of Ukiyo
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Figure 8: More qualitative results.
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