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Abstract

Multimodal VAEs are a promising class of multimodal generative models that1

constructs a tractable posterior over the latent space given all modalities. Daun-2

hawer et al. [2022] show that the generative quality of each modality drops as3

we increase the number of modalities. In this work, we take another direction to4

address the generative quality of multimodal VAEs by jointly modeling the latent5

space of unimodal VAEs using energy-based models (EBMs). The role of EBM6

is to enforce multimodal coherence by learning the correlation among the latent7

variables. Therefore, our model enjoys the high generative quality of unimodal8

VAEs while maintaining coherence across different modalities.9

1 Introduction10

The real-world data often has multiple modalities such as image, text, and audio, which makes11

learning from multiple modalities an important task. Recently, promising results have been achieved12

by multimodal generative models [Ramesh et al., 2021, Saharia et al., 2022]. However, these13

models are often only generative in one modality while conditioning on the rest. On the other hand,14

mutimodal VAEs are a class of multimodal generative models that are able to generate multiple15

modalities jointly. To train multimodal VAEs we have to construct a joint posterior over the latent16

space z: q(z|X), where X is the set of modalities. To ensure the tractability of the inference network q,17

prior work has proposed using a product of experts (q(z|X) =
∏

i q(z|Xi))[Wu and Goodman, 2018],18

mixture of experts (q(z|X) =
∑

i q(z|Xi)[Shi et al., 2019], or in the generalized form, mixture of19

the product of experts (MoPoE) [Sutter et al., 2021].20

These models rely on modality subsampling during training to have a better performance on inference21

with missing modality at the test time. Subsampling of the modalities, as pointed out by Daunhawer22

et al. [2022], results in a generative discrepancy among modalities. We also observe that conditioning23

on more modalities often reduces the quality of the generated modality, which happens as a result of24

using the product of experts for combining the modalities. Product of experts constructs a sharper25

distribution by adding more components. The sharper the distribution is, the more confident it26

becomes on the agreeing mode (increases coherence). On the other hand, the resulting distribution27

becomes very picked and loses its generative quality.28

To overcome these issues, instead of constructing a joint posterior, we try to explicitly model the joint29

latent space of individual VAEs: pθ(z1, z2, · · · , zn). The joint latent model learns the correlation30

among the individual latent space without constructing a joint posterior for all modalities. Therefore,31

it can ensure prediction coherence while maintaining the generative quality. However, as expected,32

as we increase the number of modalities, the joint latent model becomes more complicated, which33

requires an appropriate factorization that is a subject of our future work. Nevertheless, conditioning34

on more modalities results in more accurate marginal distributions, thus increasing the generative35

quality.36

Under review at the NeurIPS 2022 Workshop on Score-Based Methods. Do not distribute.



2 EB-MVAE37

EBMs have been successfully used for modeling text [Deng et al., 2020] and image [Du and Mordatch,38

2019, Song and Ermon, 2019] in the original data space. They also have been used to improve the39

performance of VAEs by modeling the latent space [Aneja et al., 2021, Pang et al., 2020]. In40

general, deep neural networks are effective in capturing the interaction of the variables, thus making41

the EBMs a successful model for joint modeling – EBMs parameterize the energy function of a42

Gibbs distribution over all variables using deep neural networks. We utilize this power to jointly43

model the latent space of different modalities: pθ(z1, z2, · · · , zn) ∝ exp(Eθ(z1, z2, · · · , zn). We44

cannot directly train the parameters θ using methods such as maximum likelihood, but several45

alternatives training algorithms have been proposed, including contrastive divergence [Hinton, 2002]46

and score-matching [Hyvärinen and Dayan, 2005]. In this work, we use score matching as we found47

it more stable and accurate for our setting. In score matching, we directly train the vector field,48

S(z) = −∇zE(z), by minimizing49

Ep(x)Eq(z1|x1)Eq(z2|x2) · · ·Eq(zn|xn)

[
tr(∇zSθ(z)) +

1

2
||Sθ(z)||22

]
, (1)

where q(zi|xi) is the unimodal posterior over ith modality and is trained by optimizing the individual50

ELBO for that modality. We assume all of the modalities are present during training time for51

optimizing eq. 1 and we leave training with missing modality for future work. On inference time, any52

of the modalities can be missing.53

Conditional generation: We assume at the inference time we have two groups of observed modalities54

(indexed by o) and unobserved modalities (indexed by u). We define the conditional posterior55

distribution for unobserved modalities as:56

q(zu|zo,xo) =

[∏
i∈o

q(zi|xi)

]
pθ(zu|zo) (2)

Sampling from q(zu|zo,xo) requires samples from unimodal posteriors of given modalities following57

by sampling from pθ(zu|zo). Knowing that pθ(zu|zo) ∝ exp(−Eθ(zu, zo)), we sample from58

pθ(zu|zo) using Langevin dynamics [Welling and Teh, 2011]:59

zt+1 = zt − λ2

2
∇zE(zt, zo) + λN (0, I). (3)

3 Experiments60

We compare EB-MVAE with different multimodal VAEs, including PoE [Wu and Goodman, 2018],61

MoE [Shi et al., 2019], and MoPoE [Sutter et al., 2021] using PolyMNIST dataset [Sutter et al.,62

2021]. This dataset consists of five different modalities created by changing the background images63

of an MNIST dataset. The encoder and decoder architecture of all methods are the same. We train64

the encoders and decoders using β-VAE [Higgins et al., 2016] with β-scheduling. We construct our65

energy-based model (EBM) by defining a multi-layer perceptron (MLP) over all five modalities. We66

assume all modalities are present during training. To train the EBM, we generate the samples from67

the posterior of each modality and minimize eq. 1.68

Both EBM and VAEs are trained using Adam optimizer [Kingma and Ba, 2014] with a constant69

learning rate of 0.001. The VAEs are trained for 300 epochs with β = 0.1. We run Langevin70

dynamics for 40 steps to generate samples from the EBM.71

We compare all methods on both prediction coherence and generative quality. We measure the72

coherence by evaluating the accuracy of the predicted modality based on the digits associated with73

the observed modalities. We also measure the generative quality of each modality using the FID74

score.75

To evaluate our method, we first generate samples from the unconditional posterior for both EB-76

MVAE and MoPoE. For EB-MVAE since no modality has been observed, the posterior in eq. 277

becomes equal to the joint distribution over all unimodal latent space (pθ(zu)). EB-MVAE has78

difficulty generating high quality images for modality 1 and modality 5. The main reason is that79
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(a) Dataset (b) MoPoE (c) EB-MVAE

Figure 1: a) Samples from training data. Each column belongs to one modality (from left to right
we name it as modality 1 to 5). b) Unconditional samples from MoPoE (no modality is observed).
Each column shows the samples for the corresponding modality. c) Unconditional samples from
EB-MVAE.

Figure 2: Left: Conditional coherence measured using prediction accuracy. Right: Conditional
generative quality measured using FID score. The target modality in the first row is modality 5 and in
the second row is modality 3.

fitting a joint model to data becomes more difficult as we increase the number of variables (modalities)80

and also the digits in these two modalities are more obscured by the background. The unimodal VAE81

tries to learn the background pattern as well as the digits and that propagates to the joint EBM model.82

MoPoE, on the other hand, tries to learn a common latent space for all modalities, thus emphasizes83

more on the common digit rather than the background information.84

However, we still can expect that we get better conditional performance as we observe more modalities.85

To confirm this, we increase the number of observed modalities from 1 to 4 and report the accuracy86

and FID score for modality 3 and 5 in Figure 2. For a multimodal generative model, as we condition87
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on more modalities, we expect improvement in both prediction accuracy (coherent cross generation)88

and generative quality (synergy) [Shi et al., 2019]. Among PoE, MoE, and MoPoE, only MoE89

loosely follow the expected patterns, while MoPoE and PoE only respect coherent cross generation90

pattern and violates expected synergy pattern. EB-MVAE, on the other hand, shows better accuracy91

as we conditioned on more modality and at the same time its generative quality improves. This92

behavior is describable via its joint latent model. As we condition on more modality the marginal93

distribution gets closer to the target unimodal distribution. It is worth noting that the PoE, MoE, and94

MoPoE either have high quality generative capability (PoE) or high coherence (MoE and MoPoE),95

while EB-MVAE has no fundamental limitation (because of its joint modeling of the latent space of96

individual modalities) to have both properties. For predicting modality 3 given the rest of modalities,97

EB-MVAE has the best accuracy and generative quality among the methods.98

We also qualitatively compare the conditional posterior of modality 3 given the rest of the modalities99

for EB-MVAE and MoPoE. In Figure 3 we draw one generated output using one sample from100

q(z3|z1, z2, z4, z5, x1, x2, x4, x5) for five different assignments to x1, x2, x4, x5 (that has the same101

digits) at each row. We also show the generated samples using unimodal posterior q(z|xi) for different102

data points with the same digits (each row). EB-MVAE samples have more variety than MoPoE103

samples and better capture the background, and the generative quality of samples is closer to those of104

unimodal VAE. This is evidence that the common latent space is more restricted than the joint model105

of unimodal latent spaces, which results in lower generative quality.106

(a) Unimodal-VAE (b) MoPoE (c) EB-MVAE

Figure 3: Samples from predicted modality 3. a) Sample from the unimodal VAE using posterior
distribution. b) Samples from EB-MVAE conditioned on modalities 1,2,4,5. c) Samples from MoPoE
conditioned on modalities 1,2,4,5.

4 Conclusion107

Multimodal VAEs are an important tool for modeling multimodal data. In this paper, we provide108

a different multimodal posterior using energy-based models. Our proposed method learns the109

correlation of latent spaces of unimodal VAEs using a joint model in contrast to the traditional110

multimodal VAE construction that learns a common latent space for all modalities. We show that our111

method (EB-MVAE) can generate high quality and coherent samples.112
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