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Abstract
Large language models (LLMs) have attracted considerable atten-
tion in various fields for their cost-effective solutions to diverse
challenges, especially with advancements in instruction tuning and
quantization. E-commerce, with its complex tasks and extensive
product-user interactions, presents a promising application area for
LLMs. However, the domain-specific concepts and knowledge inher-
ent in e-commerce pose significant challenges for adapting general
LLMs. To address this issue, we developed EC-Guide1, a compre-
hensive e-commerce guide for instruction tuning and quantization
of LLMs. We also heuristically integrated Chain-of-Thought (CoT)
during inference to enhance arithmetic performance. Our approach
achieved the 2nd place in Track 2 and 5th place in Track 5 at the
Amazon KDD Cup’24. Additionally, our solution is model-agnostic,
enabling effective scalability across larger systems.

CCS Concepts
• Computing methodologies → Natural language processing;
• Applied computing→ Electronic commerce.

Keywords
Online shopping, large language models
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1 Introduction
Current techniques struggle to understand the nuances of specific
shopping terms, customer behaviors, preferences, and the diverse
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1https://github.com/fzp0424/EC-Guide-KDDUP-2024
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array of products and languages [13]. With the advent of large lan-
guage models (LLMs), there is a growing belief in their capability
to tackle these challenges. To this end, the organizers of Amazon
KDD Cup’24 introduced ShopBench, a benchmark designed to sim-
ulate the complexities of online shopping. It includes 57 tasks and
approximately 20,000 questions sourced from real-world Amazon
shopping data. The competition includes 5 Tracks:

• Shopping Concept Understanding: Decoding complex shop-
ping concepts and terminologies.

• Shopping Knowledge Reasoning: Making informed deci-
sions based on shopping knowledge.

• User Behavior Alignment: Understanding dynamic cus-
tomer behavior.

• Multilingual Abilities: Shopping across languages.
• All-Around: Solving all questions with a single solution.

Our team “ZJU-AI4H” finally achieved 2nd place in Track 2 and 5th
place in Track 5. Our solution for both Tracks can be summarized as
three key steps: dataset construction, instruction tuning, and post
training quantization. Especially, we noticed that Chain-of-Thought
(CoT) [9] can significantly boost the arithmetic performance.

2 Related Works
As a data-driven technology, LLMs exhibit exceptional performance,
promoting the development of numerous datasets. GSM8K [1] fo-
cuses on grade school mathematics requiring multi-step reasoning.
ECInstruct [13] introduces diverse e-commerce subtasks to guide
the instruction tuning of general LLMs. Amazon-M2 [8] is amultilin-
gual product recommendation dataset enhancing the understanding
of user preferences. Additionally, other datasets [3, 11, 12, 14–17]
provide varied formats for evaluating LLMs. To further explore e-
commerce applications, we developed EC-Guide, a comprehensive
guide for instruction tuning and quantization.

Apart from the rapid development of datasets, researchers are in-
creasingly focusing on training and inference techniques. LoRA [7]
significantly reduces fine-tuning costs by freezing LLM’s weights
and injecting a learnable matrix. QLoRA [2] further reduces costs
by introducing quantization techniques. GPTQ [4] is a one-shot
weight quantization for LLMs by leveraging approximate second-
order information to compress models down to lower bits (like
4-bit) per weight with minimal impact on performance. CoT [9] en-
hances the reasoning ability of LLMs through appropriate prompts
without additional training. Based on these methods, we adapted
general LLM to specific domains through instruction tuning and
deployed by quantization and CoT within limited resources.

1
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Figure 1: Illustration of our solution. We first construct our EC-Guide (74k examples for 24 sub-tasks across 5 types) dataset
from multiple sources [8, 13]. Then we finetune Yi-1.5-34B [19] with QLoRA [2] and quantize it with GPTQ [4].

3 Methodology
We first constructed our instruction tuning dataset, EC-Guide, by
mining existing datasets [8, 13], and utilizing ChatGPT2 for data
generation. We also expanded the official development dataset to
enhance evaluation. Through instruction tuning, we embedded
knowledge specifically relevant to e-commerce tasks into existing
LLMs. However, in Round 2, solutions had access to 4×NVIDIA T4
(16GB) GPUs3, making it impractical to directly deploy powerful
LLMs like Yi-1.5-34B [19] or Qwen2-72B [18] without quantization.
During inference, we applied CoT to further boost LLM calculation
performance. Details are as follows.

3.1 Dataset Construction
Due to the lack of large-scale training datasets for the Amazon
KDD Cup’24, we employed paraphrasing and extending existing
datasets [8, 13] to develop EC-Guide, encompassing 74k examples
across five task types: Generation, Multiple Choice Question, Re-
trieval, Ranking, and Named Entity Recognition. Statistic details
are shown in Table 1. Furthermore, we expanded the official de-
velopment dataset from 96 to 506 examples by strategies such as
option reordering and segment sampling from our EC-Guide, which
significantly enhances the robustness of the development dataset
to effectively evaluate our model.

3.1.1 Generation. In the generation task, each question is paired
with a specific instruction, and the model is to generate text that
precisely follows these instructions. There are multiple types of gen-
eration questions, including elaboration, extraction, summarization
and translation.

For the elaboration set, we introduced the following subtasks:
1. Product Elaboration (PE): We utilized the “Attribute Value Ex-
traction” from ECInstruct [13] to collect type-related attributes,
then filtered to obtain 479 entities, and used ChatGPT to gener-
ate detailed descriptions for each entity. 2. Product Question and
Answer (PQA): We selected samples from McAuley and Yang [11]
with only one answer, filtered them based on answer length, and

2https://openai.com/chatgpt/
3https://www.nvidia.cn/data-center/tesla-t4/

Table 1: Statistics of EC-Guide.

Task type Sub-tasks # of examples Source

Generation

Product Elaboration (PE) 479 [13]
Product Question and Answer (PQA) 6,834 [11]
Category Recognition (CR) 1,000 [10]
Explaining Pair Fashion (EPF) 3,000 [17]
Explaining Bought Together (EBT) 2,315 [3]
Extract Review Keyphrase (ERK) 1,000 [13]
Extract Product Keyphrase (EPK) 3,000 [17]
Product Keyword Summarization (PKS) 1,296 [6, 13, 14]
Review Title Summarization (RTS) 1,455 [6, 12]
Multilingual Translation (MT) 2,997 [5, 8]

Multiple Choice Question

Select Product based on Attribute (SPA) 520 [13]
Select Attribute based on Product (SAP) 1,385 [6]
Product Relation Prediction (PRP) 1,499 [13]
Query Product Relation Prediction (QPRP) 2,150 [14]
Query Product Relation Judgement (QPRJ) 501 [13]
Sentiment Analysis (SA) 3,500 [12, 13]
Product Keyword Summarization (PKS) 271 [14]
Multilingual Description Matching (MDM) 500 [6]
Arithmetic and Commonsense Reasoning (ACR) 7,184 [1, 16]

Retrieval

Inferring Potential Purchases (IPP) 10,774 [8, 13]
Retrieving Review Snippets (RRS) 810 [6]
Retrieving Review Aspects (RRA) 1,000 [6]
Category Recognition (CR) 7,500 [10]
Product Recognition (PR) 2,297 [10]

Ranking Query Product Ranking (QPR) 4,008 [14]

Named Entity Recognition Named Entity Recognition (NER) 7,429 [6, 13, 15]

ALL - 74,704 -

finally obtained 6,834 QA pairs. 3. Category Recognition (CR): We
extracted product-category relationships from McAuley et al. [10],
and sampled 1,000 entries to prompt the model to recognize cate-
gories from product titles. 4. Explaining Pairwise Fashion (EPF): We
modified prompts from the PFE dataset [17] and filtered based on
response length, yielding 3,000 instances to evaluate whether the
mentioned clothes matched. 5. Explaining Bought Together (EBT):
We directly integrated 2,315 entries from IntentionQA [3] to assess
the reasons for buying two products together.

For the extraction set, we introduced two subtasks: extracting
review keyphrases (ERK) and extracting product keyphrases (EPK),
which focus on extracting keyphrases related to aspects or features
from reviews and products, respectively. ERK is based on the “Sen-
timent Analysis” of ECInstruct [13], where we used ChatGPT to
extract aspect-keyphrase pairs from reviews and obtained 1,000

2
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samples. EPK is sourced from the PFE dataset [17], where we fil-
tered out data items with overly short descriptions and extracted
feature-keyphrase pairs, yielding 3,000 cases.

The summarization set includes two subtasks: 1. Product Key-
word Summarization (PKS) involves summarizing keywords list
to encapsulate product information. We sampled product infor-
mation from existing datasets [6, 13, 14], and used ChatGPT for
annotation to produce 1,296 entries. 2. Review Title Summarization
(RTS) aims to create concise titles for reviews. We filtered previous
dataset [6, 12] to obtain 1,455 cases.

For our translation set, we employed ChatGPT to translate prod-
uct titles between English and several other languages, including
Spanish, German, Italian, Japanese, and French. We also translated
from other languages into English, resulting in a total of 2,000 trans-
lation pairs. Additionally, we utilized samples from Flores [5] to
enhance our translation tasks, resulting in 997 additional pairs.

3.1.2 Multiple Choice Question. Multiple choice question, widely
used for their objective assessment, require selecting the correct
answer from the choices list identified by Arabic numerals. Specifi-
cally, we include the following subtasks: 1. Select Product based on
Attribute (SPA): We sampled attributes from the “Attribute Value
Extraction” of ECInstruct [13], and generated product options, re-
sulting in 520 data entries. 2. Select Attribute based on Product
(SAP): Using product titles extracted from Amazon Reviews [6], we
generated multiple choice questions about attributes with ChatGPT,
yielding 1,385 data entries. 3. Product Relation Prediction (PRP): We
extracted 1,499 cases from “Product Relation Prediction” and “Prod-
uct Matching” in ECInstruct [13]. The former predicts potential
purchase or browsing intentions between two products, while the
latter judges whether two products are the same. 4. Query Product
Relation Prediction (QPRP): Based on relationships between queries
or products in the Shopping Queries Dataset [14], we constructed
2,150 cases. 5. Query Product Relation Judgement (QPRJ): Sampled
from “Product Substitute Indentification” of ECInstruct [13], QPRJ
includes 501 examples. 6. Sentiment Analysis (SA): We directly
extracted 3,500 data entries from “Sentiment Analysis” of ECIn-
struct [13] and Women’s Clothing E-Commerce Reviews [12]. 7.
Product Keyword Summarization (PKS): Using a method similar to
PKS in Section 3.1.1, we obtained 271 cases. 8. Multilingual Descrip-
tion Matching (MDM): MDM comprises 300 cases, aiming to match
product titles with the correct features in multiple languages. We
filtered products from Amazon Reviews [6] and translated their
features into various languages (English, Spanish, German, Ital-
ian, Japanese, and French) with ChatGPT. And then we sampled
three features from other products to form the options for each final
question. 9. Arithmetic and Commonsense Reasoning (ACR): We ob-
tained 7,184 items fromGSM8K [1] and CommonsenseQA [16]. And
we annotated the rationale with ChatGPT for CommonsenseQA.

3.1.3 Retrieval. In this task, the model’s objective is to retrieve
answers from a list of candidate items to meet specific requirements.
The subtasks are as follows: 1. Inferring Potential Purchases (IPP):
There are two main categories multi-to-one and one-to-multi in
IPP. For the multi-to-one, which predicts the next purchase item
based on multiple items in the purchase history, we filtered cases
from the “Sequential Recommendation” in ECInstruct [13] to obtain
3,950 cases. For the one-to-multi, which predicts multiple potential

purchase items based on a single purchased item, we mined the
data from Amazon-M2 [8], resulting in a total of 6,824 cases. 2. Re-
trieving Review Snippets (RRS): We sampled Amazon Reviews [6]
to obtain 3,000 products and their corresponding reviews. Then
we generated multiple aspect-snippet pairs from the reviews with
ChatGPT. Finally, considering the proportion of positive and neg-
ative reviews, we created a total of 810 data entries. 3. Retrieving
Review Aspects (RRA): Using the same data source as RRS, we ran-
domly combined reviews and aspects to obtain 1,000 data entries.
4. Category Recognition (CR): Similar to the CR in Section 3.1.1,
we constructed retrieval lists by randomly sampling categories,
resulting in 7,500 data items. 5. Product Recognition (PR): Using
the data from CR, we reversed the product-category table to create
a category-product dictionary, resulting in 2,297 data entries.

3.1.4 Ranking. In this task, the model’s goal is to reorganize items
in the candidate list based on how well they meet the requirements.
We utilized the Shopping Queries Dataset [14], which assesses the
relevance between the queries and products using ESCI judgments
(Exact, Substitute, Complement, Irrelevant). Furthermore, leverag-
ing themultilingual source dataset, our ranking instances comprises
2,064 queries in English, 790 in Japanese, and 1,184 in Spanish.

3.1.5 Named Entity Recognition. Named Entity Recognition (NER)
is an important benchmark for evaluating LLMs and is prevalent
across various domains. In this task, we extracted 1,446 entries from
“Attribute Value Extraction” of ECInstruct [13], 1,099 entries from
Amazon Reviews [6], and 4,884 entries from Rif’at et al. [15].

3.2 Instruction Tuning
Instruction tuning enhances the model’s ability to generate contex-
tually appropriate answers based on the given instruction, which
allows the model to understand and execute tasks specified in the
instructions. During training, the objective is to optimize the model
𝜋𝜃 using a curated datasetD𝐼𝑇 = {𝑥 (𝑖 ) , 𝑦 (𝑖 ) }𝑁

𝑖=1 by minimizing the
negative log-likelihood of the output 𝑦:

L(𝜃 ;D𝐼𝑇 ) = −E(𝑥,𝑦)∼D𝐼𝑇
[log𝜋𝜃 (𝑦 | 𝑥)] (1)

Before tuning, we organized raw data in [Instruction, Input, Output],
concatenated them, and applied chat template to form D𝐼𝑇 .

Deploying models with larger parameters necessitates effective
compression methods, such as model quantization, to accelerate
inference and save memory. Quantization involves converting high-
precision parameters to lower-precision formats without altering
the model’s parameters or architecture.

3.3 Post Training Quantization
It is widely accepted that larger scale generally leads to greater
model capabilities [18, 19]. However, LLMs typically store parame-
ters in high-precision floating-point formats, demanding significant
computational resources for inference. Deploying larger models
necessitates effective compression methods, such as quantization,
to accelerate inference and save memory. Therefore, we utilize
GPTQ [4], which is a training-free quantization for LLMs to achieve
high accuracy and efficiency. We detailed the memory of weights
loaded in Table 2. In particular, we equally sample training exam-
ples based on task types from our training set, ultimately allocate

3
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Table 2: Results of various models under the same training
settings. The loading weights are averaged across 4 GPU.

Model PTQ
(dataset)

Loading
Weights

Track 2 Track 5

Dev Round 2 Dev Round 2

Qwen2-7B \ 3.55 GB 0.6562 0.6706 0.7092 0.7224
Yi-1.5-9B \ 4.45 GB 0.7031 0.6628 0.7153 0.7048
GLM-4-9B \ 6.65 GB 0.7187 0.6875 0.7299 0.7163

Yi-1.5-34B
INT4 (C4) 4.55 GB 0.6562 - 0.7017 -
INT4 (Ours) 4.55 GB 0.7500 0.7452 0.7403 0.7323

\ 16.04 GB 0.7968 - 0.7583 -

Table 3: Results of submission with Yi-1.5-34B.

Model Training Set (ratio, # of cases) Track 2 Track 5

Yi-1.5-34B
(INT4)

𝜆1: 𝜆2: 𝜆3: 𝜆4: 𝜆5 = 0.31: 0.23: 0.30: 0.05: 0.10, 74704 0.7487 0.7462
𝜆1: 𝜆2: 𝜆3: 𝜆4: 𝜆5 = 0.33: 0.40: 0.17: 0.02: 0.08, 15764 0.7834 0.7386
𝜆1: 𝜆2: 𝜆3: 𝜆4: 𝜆5 = 0.46: 0.24: 0.14: 0.04: 0.12, 15043 0.7440 0.7402

1,846 examples for quantization. Additionally, we also compare our
quantization with samples from the external data source like C44
as shown in Table 2.

3.4 Chain-of-Thought (CoT) Reasoning
After instruction tuning and quantization on the elaborately de-
signed EC-Guide, we introduced CoT [9] in the inference only for
multiple choice questions involving calculations. Specifically, we
employed a heuristic strategy to determine if a question belong
to arithmetic-based by counting the number of digits. We then
prefixed the prompt with “Let’s think step by step.”, stimulating
the model to generate a rationale that leads to the correct answer.
Notably, we observed that applying CoT to Track 2 in Round 1
increased the score from 0.7417 to 0.7908 with the same model.

4 Experiments
We finetuned all models on 4×A40 GPUs or 8×RTX3090 GPUs with
QLoRA.We deployed LLMs by vllm5, which utilizes PagedAttention
to manage attention keys and values, to accelerate inference.

Table 2 demonstrates the performance of different models with
the same training setting. Notably, Yi-1.5-34B achieved the high-
est scores across both Track 2 and 5 in both development and
official test set. We also observed that models quantized using out-
of-domain datasets C4 exhibited significant performance drops
compared to those using in-domain sampled data. Table 3 presents
our ablation study, which highlights the influence of different ratios
of task types in training set, and suggests that smaller training sets
sometimes outperform larger ones in specific scenarios. This obser-
vation leads us to hypothesize about the existence of a performance
trade-off among different tasks.

5 Conclusion
The Amazon KDD Cup’24 competition presents a unique challenge
by focusing on the application of LLMs in E-commerce across mul-
tiple tasks. Our solution for addressing Tracks 2 and 5 involves

4https://huggingface.co/datasets/allenai/c4
5https://github.com/vllm-project/vllm

a comprehensive pipeline encompassing dataset construction, in-
struction tuning and post-training quantization. The core of our
strategy is EC-Guide specifically tailored for E-commerce scenarios.
Notably, we heuristically integrated CoT reasoning to enhance the
arithmetic capabilities of LLMs, resulting in improved performance
in both Tracks.
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