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Abstract

Diffusion transformers (DiTs) struggle to generate images at resolutions higher than
their training resolutions. The primary obstacle is that the explicit positional encod-
ings (PE), such as RoPE, need extrapolating to unseen positions which degrades
performance when the inference resolution differs from training. In this paper, We
propose a Length-Extrapolatable Diffusion Transformer (LEDIT) to overcome this
limitation. LEDiT needs no explicit PEs, thereby avoiding PE extrapolation. The
key innovation of LEDIT lies in the use of causal attention. We demonstrate that
causal attention can implicitly encode global positional information and show that
such information facilitates extrapolation. We further introduce a locality enhance-
ment module, which captures fine-grained local information to complement the
global coarse-grained position information encoded by causal attention. Experi-
mental results on both conditional and text-to-image generation tasks demonstrate
that LEDiT supports up to 4x resolution scaling (e.g., from 256 x256 to 512x512),
achieving better image quality compared to the state-of-the-art length extrapolation
methods. We believe that LEDiT marks a departure from the standard RoPE-based
methods and offers a promising insight into length extrapolation. Project page:
https://shenzhang2145.github.io/ledit/

Figure 1: Selected arbitrary-resolution samples (5122, 512x256, 256x 512, 3842, 2562, 1282) from

LEDiT-XL/2 trained on ImageNet 256 x256 resolution. LEDIT can generate high-quality images
beyond the limitations of training resolution.
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Figure 2: Diffusion Transformer performs well at the training resolution. However, when extrapolated
to higher resolutions, DiT [31]], FiT 28|43}, and RIFLEx [50] suffer notable quality degradation. In

contrast, our LEDIT can generate reasonable and realistic higher-resolution images with fine-grained
details. The class label is 270 (white wolf).
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1 Introduction

Diffusion models have emerged as a powerful foundation technique in vision generation tasks.
The architecture of diffusion models has progressed from U-Net [36, [33] to transformer-based
designs [31}[T]]. Diffusion Transformers (DiTs) have become state-of-the-art generators [[11} 14} (48] [44]).
Despite their success, DiTs face critical limitations when generating images at resolutions beyond
those encountered during training 42]). As shown in Figure 2] DiTs trained on ImageNet []
256 %256 resolution produce high-quality samples at this scale, but struggle to generalize to higher
resolutions such as 512x512. Due to the expensive quadratic cost of self-attention and the scarcity of
large-scale, high-resolution datasets, models are typically trained at relatively small resolutions. In
practice, many real-world applications, such as high-definition film and computer graphics, require
higher-resolution images, presenting a significant length extrapolation challenge for current DiTs.

Many studies [33} 39} [32] 23] 28] highlight the importance of positional encoding (PE) in length
extrapolation. Rotary Positional Embeddings (RoPE) [39] and its variants, such as NTK-aware
scaling and YaRN have been developed to improve the extrapolation ability of language
transformers. In the vision domain, Flexible Vision Transformers (FiT) [28 43] integrate RoPE
into DiTs to support variable input resolutions. RIFLEx [50] reduced the intrinsic frequency of
ROPE to alleviate extrapolation issues. Despite these advances, performance still degrades notably
beyond the training resolution (see Figure 2). Since diffusion models are not trained for such
out-of-range positions, this leads to a distribution shift in positional indices and results in out-of-
distribution issues [8]. On the other hand, Recent studies [[13, 23] [5]] challenge the need of explicit
PE, showing that large language models (LLMs) without PE (NoPE) perform well in in-distribution
settings and even outperform explicit PEs in length extrapolation. The advantage of NoPE lies in
avoiding PE extrapolation, which reduces performance when inference resolution differs from training.
LookHere [12] removes the positional encoding and carefully designs various combinations of causal
masks, achieving notable success in image recognition. However, directly applying LookHere to
image generation tasks results in severe object duplication (see Figure[T3)) and fails to yield effective
length extrapolation. Therefore, it remains unclear whether DiTs can similarly benefit from NoPE
for resolution extrapolation. We ask: Can DiTs leverage NoPE to train at low resolutions and
generalize to higher resolutions?

In this paper, We propose a Length-Extrapolatable Diffusion Transformer (LEDIT), which removes
explicit PE and can generate high-quality images at arbitrary resolutions. A key architectural
modification is the adoption of causal attention. We demonstrate that causal attention can implicitly
encode positional information. Specifically, we provide both theoretical and empirical evidence that
token variance decreases when position increases, providing an implicit ordering (see Section[3.2).
We reveal that this implicit position ordering yields better extrapolation abilities than explicit PEs.
Furthermore, we introduce a negligible-cost multi-dilation convolution as a locality enhancement
module to improve local fine-grained details, complementing the global coarse-grained information
captured by causal attention.

We conduct extensive experiments on both conditional and text-to-image generation tasks to validate
the effectiveness of LEDiIT. Notably, LEDiT supports up to 4 x inference resolution scaling while
maintaining structural fidelity and fine-grained details, outperforming state-of-the-art extrapolation
methods. Moreover, LEDiT can generate images with arbitrary aspect ratios (e.g., 512x384 or
512x256) without any multi-aspect-ratio training techniques. We also show that fine-tuning LEDiT



from a pretrained DiT for only 100K steps yields strong extrapolation performance, highlighting its
potential for efficient integration into existing powerful DiTs. We hope our findings provide valuable
insights for future research on transformer length extrapolation.

2 Related Work

Diffusion Transformers. Building on the success of DiT [31} [1], subsequent works such as PixArt-
Alpha [4] and PixArt-Sigma [3] further extend diffusion transformers for higher-quality image
generation. Stable Diffusion 3 [[11] and Flux [25] substantially improve the performance of diffusion
transformers by scaling up parameters. Sana [46] focused on fast generation through deep compres-
sion autoencoding and linear attention Despite these advances, most DiTs struggle when inference
resolution differs from training, motivating our exploration of length extrapolation.

Length Extrapolation in Language. Since the introduction of the transformer [41], length
extrapolation has remained a significant challenge, with positional encoding playing a critical
role [33, 139, 132, 23| 29]. Absolute Positional Encoding (APE) [41] struggles to handle longer
sequences. To address this, ALiBi [33] modifies attention biases to facilitate length extrapolation.
Rotary Position Embedding (RoPE) [39] and its extrapolation refinements, including NTK-aware
scaling [2] and YaRN [32], further improve length generalization. Adaptive embedding schemes like
Data-Adaptive Positional Encoding (DAPE) [51] and Contextual Positional Encoding (CoPE) [13]
have also been explored. In contrast to explicit PEs, NoPE [} 23] demonstrates that language models
can implicitly encode positional information. We independently observe a similar phenomenon in
diffusion models. Importantly, compared to [5], our analysis provides a theoretical proof under more
relaxed assumptions, requiring only finite mean and variance and imposing weaker constraints on
weight matrices. Furthermore, we demonstrate that this implicit positional information benefits length
extrapolation in diffusion models, which is the main focus of this paper.

Length Extrapolation in Diffusion. Length extrapolation has been extensively studied in diffusion
U-Net architectures [16} 149} 10, 20} [14]], but remains largely unexplored in DiTs. RoPE-Mixed [17]]
employs rotation-based embeddings for variable image sizes. FiT [28] |43]] adopts RoPE, NTK-Aware,
and YaRN in 2D variants for resolution extrapolation. RIFLEx [50] analyzes the role of different
frequency components in RoPE and found that reducing the intrinsic frequency can boost length
extrapolation. LookHere [12] carefully designs various combinations of causal masks to provide
directional inductive biases. It conducts experiments to demonstrate the extrapolation capabilities
in classification tasks. However, directly adapting LookHere to image generation tasks results in
severe object duplication (see Figure [T5)). Therefore, a comprehensive strategy for high-resolution
extrapolation in diffusion transformers remains elusive. In this work, we address this gap by enabling
DiTs to generate high-fidelity images at arbitrary resolutions. There are some conceptual similarities
between LEDIT and LookHere. Both LEDiT and LookHere explore causal attention to enhance length
extrapolation. But there are key differences. LEDIT provides a theoretical framework that explains
why causal attention is capable of encoding positional information and enabling length extrapolation.
Moreover, LEDiIT combines simple causal attention with multi-dilation convolutions, effectively
mitigating object duplication (see Figure[I3]) and achieving better extrapolation performance.

3 Method

We first introduce some preliminaries about DiTs and causal attention. DiTs is primarily built upon
the ViT [9]]. Each DiT block contains a multi-head self-attention (MSA), followed by adaptive layer
normalization (AdaLN) and a feed-forward network (MLP). Residual connections are applied by

scaling oy and «). Given an input z € RHXWxC 'the computation of DiT block is as follows:
zp = Flatten(Patchify(x)) + Epos, (1
2, = MSA(adaLN(z,_1,t,¢)) + apz_1, 2)
z¢ = MLP(adaLL.N(z, ¢, ¢)) + o 2. 3)

Causal attention only allows the given position in a sequence to attend to the previous positions, not
to future positions. The causal attention map is:

.
A = softmax (?/% + M) , “)
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Figure 3: Comparison between DiT-Sin/Cos PE, DiT-RoPE, and our LEDiT. We omit AdaLN for the
sake of simplicity. DiT-Sin/Cos PE is the vanilla DiT [31], which incorporates Sinusoidal PE into the
transformer. DiT-RoPE introduces rotary position encoding by rotating the query and key in each
transformer block. In contrast, our LEDiT model does not require explicit position encoding. The
main difference lies in the incorporation of causal attention and convolution after patchification.

where Q € R™"¥% and K € R"*% are query and key, dy, is the dimension, and M € R™*" is a
mask matrix with definition as follows:

~ {0 if j <,
Mw_{—oo if § > . )

This ensures attention scores for future tokens are nearly zero after softmax, enforcing strict causality.

3.1 LEDiT Block

The overall architecture of LEDIT is illustrated in Figure Our LEDIT does not need explicit
PEs. The main modifications include the use of causal attention and a negligible-cost multi-dilation
convolution. We design LEDIT blocks to alternate between causal attention and self-attention. The
first LEDiT block uses self-attention, formulated as:

2, = MSA(adaLN(z,_1,t,¢)) + agze_1, (6)
z¢ = MLP(adaLLN(z, t,¢)) + aj2y. )
The subsequent LEDiT block uses causal attention, which can be written as:
zy,1 = MCA(adaLN(z, ¢, ¢)) + agq12e, 8)
ze41 = MLP(adaLN(zj, 1, ¢, ¢)) + oy 12941, 9

where MCA represents multi-head causal attention. We explore more LEDIT designs in Table [Id]

3.2 Why Causal Attention

Explicit PEs are widely used in transformers, but their performance degrades when extrapolating to
resolutions larger than those seen during training, as shown in Figure[5] To address this limitation,
we attempt to remove explicit PEs to avoid position encoding extrapolation. Prior work [23]] suggests
that causal attention enables better length extrapolation without PEs in LLM. Motivated by this,
we introduce causal attention to diffusion models and further demonstrate that causal attention (i)
implicitly encodes positional information to tokens, and (ii) that such implicit positional encodings
facilitate length extrapolation.
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Figure 4: Var(y;;) distributions across various timestep (T) and DiT layers (L). Left: variance
distribution at the training resolution (256 x256). Right: variance distribution beyond the training
resolution (512x512). Best viewed when zoomed in.

Causal attention implicitly encodes positional information. we formally establish that, under spe-
cific assumptions, the variance of causal attention output encodes positional information. Specifically,
we prove the following theorem:

Theorem 3.1. For a Transformer architecture with Causal Attention, assume that the value V' is i.i.d.
with mean py and variance o%.. Then, the variance of the causal attention output Y at position i
and dimention [ is given by:

2,  i-1

Var(Y;;) = . 10

a(Yo) = oV i (10)

When i is large, we can approximate ﬁ ~ H%’ leading to the reasonable approximation
C
Var(Y;;) =~ 11
ar( zl) i n 1 ) ( )

where the constant C' = 20% + pi%,.
Please refer to Appendix [A]for the complete proof. This Sin/Cos PE RoPE Cavsal

theorem reveals that, if the conditions are met, the variance
is inversely proportional to the position 7 at a rate of H%
We further conduct experiments to verify whether applying
causal attention in DiT can assign different variances to
different positions.

256X256
(In-distribution)

We train a DiT-XL/2 that replaces all self-attention with
causal attention and use it to verify the theorem. Given
an input sequence z € R™*%  causal attention takes z
and outputs y = (Y1, ..., yn) € R"*% We approximate
Var(y;;) using the variance of y;. As shown in the left
figures of Figure [ Var(y;;) is inversely proportional to
the position % across various timestep and layers. This indicates the existence of causal attention in
DiT that meets the conditions of the theorem. Intuitively, a smaller Var(y;) indicates that its elements
are more concentrated. During training, the neural network can learn to leverage this concentration to
determine token position, thereby implicitly encoding positional ordering. We also observe variance
distribution in the later denoising stage differs from the theorem. To evaluate the impact of this
phenomenon, we conduct experiments with switching from causal attention to self-attention at
different timesteps. Our findings show that positional information is primarily acquired in the early
denoising stage, and the causal attention with variance deviation in the later denoising stage has
minor effects on extrapolation. See Section [C|for the discussion.

Figure 5: Explicit PEs degrade in ex-
trapolation, while causal attention con-
sistently outputs coherent coarse-grained
structures. The class label is 17 (jay).

The implicit positional information facilitates length extrapolation. As shown in the right figures
of Figure[d when extrapolating to higher resolutions, the variance remains inversely proportional to
the position, consistent with the in-distribution variance distribution. This preservation of implicit
positional ordering enables the model to generalize across larger resolutions, as illustrated in Figure[5]
When scaling the resolution by 4 x, models with explicit positional encodings exhibit severe structural
degradation, while models with causal attention continue to generate structurally coherent objects.
In addition to providing implicit positional information to tokens, causal attention also acts as
a learnable, global receptive-field mechanism, which differs from static positional encodings. It
can make predictions based on previous tokens and learn the dependencies between tokens from
large-scale data, which may also enhance the model’s ability to extrapolate to higher resolution.



(a) One-Dimension

Figure 6: Comparison of causal attention scan variants. We use variant (d) as our default.

Causal scan variants. We introduce four causal attention scan variants, as depicted in Figure [6]
(a) represents the traditional 1D scan used in PixelCNN [40], where each position attends only to
preceding tokens in a flattened sequence. To leverage the spatial characteristics of images, we also
consider scanning along both the height and width dimensions and propose (b)—(d). We ablate the
performance of these variants in Table[Tb] Variant[d|is set as our default.

3.3 Locality Enhancement

Although causal attention provides tokens with Input Token
global implicit positional ordering, when i is e
large, the variance between adjacent tokens be-
comes indistinguishable (see Figure d)), prevent-
ing accurate position information and leading
to blurry images, see Figures [5 and [I8a] To
distinguish the relative relationships between
neighborhood tokens, we need to enhance the
local perception abilities of the neural network.
Specifically, we introduce convolution as a lo-

Input Token

cality enhancement module. Previous work [45]] <L LEDiT
replaced the gkv-projector with convolution or Block
integrated convolution into the MLP [47, 146 l_ l l

in each transformer block, which significantly :1(255 ;‘;Sze ;‘;Sze

increased the model’s computational cost. We
find that adding a convolution after patchifica- Training Pipeline
tion is sufficient, while only increasing ignor-
able overhead. This can be written by slightly
modifying Equation (T)):

Inference Pipeline

Figure 7: LEDIT pipeline.

zo = Flatten(C3 11,1 (Patchify(x))), (12)

where Cy, ,, 5,4 denotes a convolution filter with kernel size k, padding p, stride s, and dilation d. Zero
padding is applied, which enables convolution to leak local positional information [21}47].

Multi-dilation training strategy. Although the generated higher-resolution images are visually
compelling, they often encounter duplicated object artifacts due to the fixed receptive fields of
convolutional kernels [[16]]. To mitigate this problem, we adopt a multi-dilation training strategy,
wherein dilation and padding are randomly adjusted during training (see Figure[7). For a standard
convolution filter C3 11,1, we set a probability p to expand both its dilation rate and padding size to 2,
transforming it into C3 o 1 2. During inference, we empirically find that fixing dilation and padding
as 1 is sufficient. This strategy trains shared-parameter convolutions with varying receptive fields and
empirically improves extrapolation abilities.

4 Experiments

4.1 Experiment Settings

Model Architecture. For conditional generation on ImageNet 6], we use a patch size p = 2 and
follow DiT-XL [31] to set the same layers, hidden size, and attention heads for the XLarge model,
denoted by LEDiT-XL/2. For text-to-image generation on COCO [26], We use MMDiT [L1] and set
the hidden dimension as 768 and the model depth as 24, following the design in REPA [48]], denoted
as LEMMDIiT. We use the CLIP [34] text encoder to compute text captions.



Table 1: Ablations using LEDiT-XL/2 on 256256 ImageNet. We report FID and IS scores. For
each ablation, we load the pretrained DiT weights and fine-tune LEDiT-XL/2 for 100K iterations.
Default settings are marked in gray . See Fi gurefor visualization.

(a) Components ablations. Causal
attention and convolution are effec-
tive in length extrapolation.

(b) Casual scan variants.
2D casual scan variants out-
perform 1D variants.

case FID| ING scan FIDJ ISt

NoPE 37895 3.79 (a) 6249 7825
+ Cau. 286.01 6.96 (b) 89.77 50.10
+ Con. 13091 28.66 () 43.17 116.03
+ Cau. + Con. 35.86 139.91 (d 3586 13991

(d) Block design. The alternating
order works better than the sequen-

(e) Multi-dilation probabil-
ity. LEDIT with a small prob-

(c) Multi-dilation strategy.
LEDIiT benefits from multi-
dilation strategy.

case FID| ISt
w/o multi-dila ~ 39.20 127.84
w/ multi-dila 35.86 139.91

(f) Dilation rate. (2,3) means
randomly selecting 2 or 3 as

tial order. ability works better. the rate during training.
order FID] ISt prob  FIDJ ISt dilation FID] ISt
CArLn +SAL, 3681 139.88 0 39.20 127.84 1 39.20 127.84
SArp +CAL,  48.65 103.14 0.1 3586 13991 2 35.86 13991
(CA,SA), 36.05 143.26 02 3799 13585 (2,3) 37.24 136.23
(SA,CA), ), 35.86 139.91 0.5 3756 133.07

Training Details. The experiments are trained on ImageNet [6] with 256x256 and 512x512
resolutions, and on COCO [26] with 256x 256 resolution. On ImageNet, We (i) train the randomly
initialized LEDIT for 400K steps or (ii) fine-tune LEDIT for 100K steps. We set the batch size as 256.
On COCO, We follow REPA [48] and train LEMMDIT for 200K steps with a batch size of 192. We
use 8 x NVIDIA V100 GPUs as default training hardware.

Evaluation Metrics. We primarily use Fréchet Incep- Nort + Cousl “Conv
tion Distance (FID) [18], the standard metric for evaluat- ’ |
ing generative models. We additionally report Inception
Score [37]], sFID [30], and Precision/Recall [24] as sec-
ondary metrics. Without further elaboration, on ImageNet,
we generate S0K samples using 250 DDPM sampling
steps with a classifier-free guidance (CFG) scale of 1.5.
On COCO, we generate 40,504 images (one per caption)
using 50 ODE sampling steps with CFG=2.0. For fair
comparison, all values reported in this paper are obtained
by exporting samples and using ADM’s TensorFlow eval-
uation suite [[7]].

Figure 8: Visualization of the ablation
study. The first row illustrates the ab-
lations of the components proposed in
this paper, while the second row displays
the ablations of the causal scan vari-
ants. The models are trained on 256 x
256 ImageNet and generate images with
512x512 resolution. See Figure [I8]for
more visualization.

Evaluation Resolution. Compared to previous work [28]
143, this paper tests at more extreme resolutions. When
trained on ImageNet 256 x256, we compare the extrap-
olation performance of LEDiT with other methods
[50] at 384 x384 (2.25x%), 448x448 (about 3x),
and 512x512 (4x) resolutions. When trained on Ima-
geNet 512x512, we compare LEDIT with other methods
at 768 x768 (2.25x), 896x896 (about 3x), and 1024x 1024 (4 ) resolutions. Additionally, we
assess performance at different aspect ratios, specifically 512x384 (3:2) and 384 x512 (2:3). On
COCO, extrapolation is evaluated at 512x512 (4 x). All token lengths are much longer than those
seen during training. Following the widely adopted practice in transformers, we apply attention
scaling [22] for length extrapolation.

4.2 LEDIT Ablations

In this section, we ablate LEDiT design settings on 256 x256 ImageNet. We use LEDiT-XL/2 to
ensure that our method works at scale. We evaluate performance by loading DiT pretrained weights



Table 2: Comparison of state-of-the-art extrapolation methods and LEDIT trained on 256x256
ImageNet at various resolutions beyond the training image size. We set CFG=1.5. * indicates training
from scratch. T indicates additional architecture refinement.

384x384 448x448 512x512
Model
FID| sFID] ISt Prec.t Rec.t FID) sFID) ISt Prec.t Rec.t FID) sFID] ISt Prec.t Rec.t
DiT-Sin/Cos PE* 11410 16250 1491 0.18 0.27 18842 19158 4.19 0.06 0.11 21622 188.69 2.70 0.10 0.04

DiT-VisionNTK* 45.81 80.42  99.92 0.48 042 12488 113.88 37.79 0.22 0.39 17468 13923  16.28 0.10 0.30
DiT-VisionYaRN* 2345 5325 13846  0.63 0.35 64.93 88.59  70.04 0.36 0.34  109.00 109.88  38.38 0.21 0.30

DiT-RIFLEx* 18.47 6436 156.34  0.66 0.38 49.29 92.25 81.78 0.42 0.35 119.57 107.32  29.44 0.17 0.30
LEDiT* 15.98 30.94 13825 0.75 0.31 29.84 48.06 103.05  0.61 0.25 56.02 65.99 63.26 0.43 0.21
LED;T* 12.07 3047 18815  0.80 0.31 20.91 4837 15257  0.69 0.25 34.29 64.10 110.04  0.56 0.22
DiT-Sin/Cos PE 87.03  116.67 44.93 0.31 0.31 16823 14545 15.25 0.12 023 213.77 168.51 7.98 0.06 0.13
DiT-VisionNTK 71.23 80.69 67.42 0.33 0.51 184.29 12299 16.94 0.10 0.41 24656 14499 8.82 0.04 0.17
DiT-VisionYaRN 13.51 3535 24442 0.1 0.39 28.23 50.81 170.22  0.56 0.35 49.86 64.63  109.34  0.42 0.35
DiT-RIFLEx 57.88 77.27 75.88 0.37 0.55 186.76 129.17 17.13 0.09 041 25192 163.77 10.39 0.04 0.12
FiTv2-VisionNTK 38.43 47.09  107.89 045 0.54  179.01 117.12 1820 0.08 042 257.63 171.10 6.72 0.01 0.21
FiTv2-VisionYaRN 2323 35.13 15793  0.55 0.48 71.94 64.72 64.49 0.29 0.51 155.80 118.21  20.76 0.11 0.27
LEDiT 9.34 25.02 281.09 0.78 0.39 17.62 3943 21490  0.66 0.34 33.25 5436 138.01 0.52 0.31

and fine-tuning for 100K iterations. we set CFG=1.5, generate 10K images at 512x512 resolution,
and report FID-10K and IS-10K.

Components ablations. Table [l a| shows the influence of each component of LEDiT. Removing
PE (NoPE) degrades DiT severely. Both causal attention and convolution can significantly enhance
extrapolation performance. Combining these two components decreases the FID from 378.95 to 35.86
and increases the IS from 3.79 to 139.91, yielding the optimal performance. Figure [§]illustrates the
impact of causal attention and convolution. DiT with NoPE generates noise-like images, indicating
that without PE, DiT cannot capture token positional information. Incorporating causal attention
yields structurally coherent objects but insufficient high-frequency details, since causal attention
provides a global ordering but struggles with local distinctions (see Section [3.3). Conversely,
introducing convolution provides adequate high-frequency details, but leads to duplicated objects
due to the lack of a global receptive field. When both are combined, the generated images exhibit
realistic object structures as well as fine-grained details. Therefore, we use both causal attention and
convolution as the default setting.

Causal scan variants. Table [Ib|presents a quantitative comparison of different scan variants. Except
for variant (b), 2D scan variants (c) and (d) outperform the 1D variant (a) in both FID and IS.
Figure B] shows that variants (c) and (d) produce more coherent object structures and finer details than
variant (a). Although variant (b) is also a 2D scan, it leads to blurred images, resulting in lower FID
and sFID scores. We adopt variant (d) as our default.

Multi-dilation strategy. As shown in Figure when adapting to multiple receptive fields, the
multi-dilation strategy enhances LEDiT’s performance and significantly mitigates object duplication.
Table[Ic|shows that LEDiT with the multi-dilation strategy achieves better FID and IS scores. We
adopt the multi-dilation strategy as the default setting.

Block design. Table|Id|compares different orders of causal and self-attention blocks. The first two
rows use sequential blocks, whereas the last two employ an alternating arrangement. Both orders
achieve strong performance, but sequential order exhibits higher variance while alternating orders are
more stable. We thus use the alternating order with self-attention preceding causal attention as our
default.

Multi-dilation probability. Table [Ie| shows the result of different multi-dilation probabilities p,
where p = 0 disables the strategy. As p increases, FID initially decreases and then rises. At p = 0.5,
the receptive field alternates equally between 3x3 and 5x5. The experimental results show that
frequent conv parameter changes during training slow convergence and introduce instability, leading
to worse performance, while smaller p mitigates object duplication and ensures stable training. So
we adopt p = 0.1 as the default setting.

Dilation rate. We also evaluate different dilation rates r to accommodate multiple receptive fields
(Table([Lf). For instance, r = (2, 3) means there is a p/2 probability of choosing 7 = 2 or 7 = 3. It
can be seen that both = 2 and r = (2, 3) can improve performance, but r = (2, 3) is less effective
than r» = 2, likely due to the increased complexity of handling multiple dilation values. Nevertheless,
successfully adapting convolution to multiple receptive fields may further benefit extrapolation. In
this paper, we retain » = 1 by default.
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Figure 9: Qualitative comparison with other methods. The resolution and class label are located to the
left of the image. We use the model trained on 256256 ImageNet to generate images at 512x512
resolution, and the model trained on 512512 ImageNet to generate images at 1024 x 1024 resolution.
We set CFG=4.0. Best viewed when zoomed in. See Figurerlzl and Figure@for more comparison.

4.3 Main Results

256 %256 ImageNet. In Figure[9] we present a qualitative comparison between LEDIT and other
methods. Vanilla DiT (DiT-Sin/Cos PE) suffers from severe image quality degradation. When
combined with VisionNTK, VisionYaRN, or RIFLEx, DiT generates images with detailed textures
but introduces unrealistic object structures. FiT produces images with severely degraded quality. In
contrast, LEDIT produces images with realistic object structures and rich details. The quantitative
comparison is reported in Table[2] LEDIT substantially outperforms previous extrapolation methods.
At a resolution of 384x384, LEDIT reduces the previous best FID-50K of 13.51 (achieved by
DiT-VisionYaRN) to 9.34. As the resolution increases, LEDiIT further widens the performance gap,
lowering the best previous score from 49.86 to 33.25 at 512x512. When trained from scratch, LEDiT
also achieves significantly better FID and sFID scores compared to its counterparts, demonstrating the
effectiveness of LEDIT in both fine-tuning and training-from-scratch scenarios. We further find that
minor architectural refinement during training from scratch can significantly improve extrapolation
performance (see Section|[F). We present the comparison with LookHere in Section[J]} We report the
result of 512x512 ImageNet in Section

Arbitrary Aspect Ratio Extension. Table 3: Comparison of state-of-the-art extrapolation meth-
Beyond generating square images, we ods and our LEDiT trained on 256 X256 ImageNet at arbi-
evaluate the generalization abilities trary aspect ratios. We set CFG=1.5.

of LEDIT across different aspect ra-

tios. Unlike FiT m @]’ we do Model Resolution  FID|  sFID| ISt Prec.t Rec.
not app]y multip]e aspect ratio train- D%T—S%n(Cos PE 15374 14466 1652  0.13 027
ing techniques. Instead, we directly =~ Dil-VisionNTK 17971 11781 1588 = 0.09 0.36
. . DiT-VisionYaRN ¢\, oo, 2569 4622 17619 058  0.36

use the LEDIT-XL/2 model trained  pimRriFLEx 16338 11722 2036 0.11 044
on the center-cropped 256x256 Im-  FiTv2-VisionNTK 17744 11456 17.14 008 040
ageNet dataset. This highlights the F1Tv.2-V1s1onYaRN 56.04 51.05 81.96 0.35 047
del’s inherent livation abili LEDIT 2029 3852 19169 0.63 035
model s inherent generalizaion abill- - pitgin/Cos PE 15821 139.80 1698  0.14 026
ties. The quantitative results, reported  DiT-VisionNTK 15070  110.67 2588 0.4 041
in Table EL demonstrate LEDIiT’s su- D¥T-V1510nYaRN 384%512 22.02 48.72  202.03 0.61 0.35
ioritv. Tt achieves the best FID  DITRIFLEx 14384 11693 2742 014 045
periorty. FiTv2-VisionNTK 17744 11456 1714 008 040
scores, with 20.29 and 18.82 at res-  FiTv2-VisionYaRN 4967 5707 9929 039 041
olutions of 512x384 and 384x512,  LEDIT 18.82 4264 20538 0.64 036

respectively, notably outperforming

VisionNTK, VisionYaRN, and RIFLEx. These results confirm that LEDiT can generate high-
quality images across diverse aspect ratios even without various aspect ratio training techniques.
See Figure 20| for the qualitative comparison.

Text-to-image generation. We further evaluate the performance of our method on the text-to-image
generation task. Table 4] shows that LEMMDIT perform favorably compared to state-of-the-art
extrapolation methods. Specifically, LEMMDIT achieves an FID of 29.89 and an sFID of 39.98,
representing a substantial reduction compared to Vanilla MMDIiT and RoPE-based variants. The
CLIP Score [34] shows that LEDIT consistently outperforms other methods in terms of semantic
coherence. In Figure 2T} we present a qualitative comparison between LEMMDIT and other methods.



Vanilla MMDIT produces images with severe quality degradation. VisionNTK generates images
with fine details but suffers from object duplication. VisionYaRN and RIFLEX yield more plausible
object structures but lose fine-grained details. In contrast, LEDiT generates images with reasonable
structures and rich details.

5 Conclusion

In this paper, we introduce a novel Table 4: Text-to-image comparison of state-of-the-art extrap-
Diffusion  Transformer, named olation methods and our LEMMDIT trained on 256 x256
Length-Extrapolatable Diffusion COCO. The inference resolution is 512x512. We set
Transformer (LEDiT). LEDIiT does CFG=2.0.

not require explicit positional encod-

ings such as RoPE. By combining Model FID, sFID| ISt Prec.t Rect CLIPT
causal attention and a locality MMDIT 16072 15638 9.09 007  0.09 22.94

: : MMDIT-ViNTK 7856 112.85 1941 0.9 030 2491
enhancement module, LEDIT can im MMDIT-ViYaRN ~ 163.88 9339 1035 0.1 030 23.37
plicitly encode positional information,  yvpiTRIFLEx 3458 5258 2175 040 036 27.14
which facilitates length extrapolation. LEMMDIT 29.89 3998 2411 044 031 27.82

Conditional and text-to-image gen-
eration shows that LEDiT supports up to 4 x inference resolution scaling. Compared to previous
extrapolation methods, we can generate images with more coherent object structures and richer
details. We hope that LEDiT’s principled departure from explicit positional encoding paradigms
will not only advance the frontier of length extrapolation, but also inspire new perspectives on the
foundational design space of transformer architecture.
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A  Proof of Theorem 3.1]

Assumptions. In Theorem3.1] we demonstrate that Causal Attention introduces a position-dependent
variance in attention outputs, allowing the Transformer to encode positional information implicitly.

To facilitate the subsequent derivations, we introduce the following assumptions:

.
Stochastic Initialization Assumption: We assume that the attention scores S = %
k

pendently and identically distributed (i.i.d.). Analogously, the value V' is assumed to be i.i.d. with
E[V] = py and Var(V) = 0.

Mutual Independence: We assume that the attention scores {S;;} and the value V' are mutually
independent.

are inde-

Proof. Consider a sequence of length n. For 1 < 4, j < n, the causal attention matrix A;; is defined

by
exp(Sij) P> j
Aij = Z;‘/:l exp(Sij/) ’ - 13)
0, 1 <j.
Zij . .
Let Z;; = exp(S;;) and W;; = ﬁ Given the assumption on .S, the elements {.S;;} are
j'=141j’
assumed to be i.i.d., where
dy
1
Sij = T Z QimKjm. (14)

m=1
Then the attention output at position ¢ in dimension [ is Y;; = Z;zl W;; V1. The variance of (Y;;)
is:

Var(Va) = Var( 30 WigVir) = 3 Var(W; Vi), (15)
j=1 j=1

since W;; and Vj; are independent for each 4, j,I. Furthermore, Var(W;;Vy) = E[W3]oy +
w3, Var(W;;). Hence,

i

Var(Yy) = Y (E[WZ] 0% + i, Var(Wy;)). (16)
j=1
Because Z;; are i.i.d. and positive, we have 23:1 Wi = @ =1, hence E[W;;] = 1/i.
> j'=1 Zijr
i i ; ; g — _Zi Zii
Besides, the normalized vector(W;1, Wia, ..., W;;) (Z}/=1 7S 7 can be
approximated by a Dirichlet(1, ..., 1) distribution. This approximation is conceptually aligned with

the analytic framework proposed by Hobbhahn [19]], which establishes a mapping from a distribution
over logits to a Dirichlet distribution on the corresponding softmax outputs. Reasonably, whenever
the exponentials {exp(.S;;)} do not differ too sharply and remain roughly exchangeable, this leads
to the2 ]11niforr2n-symmetric Dirichlet scenario. In practice, it provides a convenient closed-form
EWE] = sy

Gt
Then Var(W;) = E[W7] — (E[W;;])* = ﬁ — —. Substituting into the sum, one obtains
2 2 1 2 i—1
Var(Yy) = (72 2[7_%): 2 2 (a7
ar(Ya) ; vy TGy R T v i 4
As 7 increases, we can approximate ﬁ ~ Z.%, leading to the reasonable approximation
C
Var(Yy) ~ —, 18
ar(Ya) ~ - 1 (18)
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where the constant C' = 202, + 13,

B Justification of Mutual Independence Assumption

We observe that the correlation between the attention matrix and the value vectors is low during
the early stages of denoising. This empirical observation supports the validity of independence
assumption. As discussed in the main paper, our analysis primarily focuses on the early stage, where
we show that causal attention mainly encodes positional information.

The input sequence x = [z, ...,Z,] can be approximated as i.i.d. Gaussian noise in the early
denoising stage. Each x; is an independent Gaussian vector. The queries and keys are computed as:
qi = z;Wy, k; = x;W}, Since the z; are i.i.d., the sets g; are also i.i.d. after linear transformation, the
same as k;. The attention score is: S;; = qI k;. Because the k; are i.i.d., the set S;; forj = 1,..n
are identically distributed random variables. After applying softmax A = Softmax(.S), the attention
matrix A;; approaches a uniform distribution, and E[A4;;] = 1/n. From this perspective, the attention
matrix and the value have low correlation: changes in the value vectors do not significantly affect the
attention matrix, resulting in low correlation. We conduct a toy experiment with a sequence length of
256 and a head hidden dimension of 72, consistent with the DiT-XL/2 configuration. We randomly
initialized W, Wy, W,,, generated random Gaussian noise =, and computed the correlation coefficient
between the attention scores S and the values V' over 1000 trials. The average correlation coefficient
was 0.03, indicating very low correlation. This provides theoretical support for our assumption.

In practice, we also observe several layers show low correlation between the attention matrix and
the value vectors during the early denoising stages of a trained diffusion transformer. As shown
in Figure |10} we report the correlation coefficients between the attention matrix and the value vectors
across different timesteps and layers. The correlation remains low in the early stages of denoising.
While the correlation gradually increases in later stages—where the independence assumption no
longer holds—we have demonstrated in the main paper that causal attention primarily encodes
positional information during the early denoising steps. Therefore, this does not affect the validity of
our justification.

= Layer 0

e
1%
by

=== Layer 14
Layer 22

Correlation
s & = o o
= B RN W
= @S a 3

S
=
b

o
H
\

999 0
Timestep

Figure 10: Correlation across timestep.

C Variance Distribution Across Timesteps

As shown in Figure[TT] we present the variance distribution of causal attention outputs across different
timesteps and layers. During the early stages of denoising, the variance distribution mainly follows
our proposed theorem. In the late denoising stage, especially 7" < 100, the variance distribution
deviates from the theorem and becomes irregular. We attribute this to the higher independence among
values V in the early stages, which aligns with the theorem’s assumptions. In the later stages, the
increasing correlation between tokens (position and semantic relationships) violates the assumptions.
This raises a question: What is the potential impact of variance deviation in later denoising steps
on image quality? To further investigate this, we conduct additional experiments. Specifically, we
introduce a switching threshold 7” in the denoising process. Given that the denoising timestep T
decreases from 1000 to 0, we design the attention mechanism as follows: when T' > T’, we use
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causal attention; when T' < T, we switch to self-attention. In this setup, a smaller 7" corresponds to
switching later in the denoising process.

We choose different values 7" to train an LEDiT-XL/2 on 256 x 256 ImageNet and use it to generate
512x512 images. As shown in Figure [I2] we find a clear trend: the later the switch, namely the
smaller the 7", the better the generated image quality. Notably, when 7" = 100, the generated
images are comparable to those of LEDiT with full causal attention (7" = 0). This suggests that the
positional information is primarily acquired in the early phase, and the causal attention with variance
deviation in the later steps (7' < 100) has minor effects on the resolution extrapolation ability.
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Figure 11: Variance distribution across different timesteps and layers.
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Figure 12: Switching threshold ablations. The resolution is 512x512. We set CFG=4.0. Variance
deviation in the later steps (7' < 100) has minor effects on the resolution extrapolation ability.
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The variance distribution under the "Mask Lower-right Corner" order is consistent with our main
findings. As this is a 2D scan variant, the variance is expected to decrease progressively along the
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Table 5: Positional index regression.

1D Position Regression 2D Position Regression
Method
Training Loss  Test Error  Training Loss ~ Test Error
DiT-NoPE 5091.24 5265.85 12.57 13.30
DiT-Cau. Atten. 97.42 112.08 1.20 1.36

height or width axis. Figure[T3|demonstrates that the 2D causal scan variants still exhibit the existence
of causal attention in DiT that satisfies the conditions outlined in our theorem.
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Figure 13: Variance distribution of Variant@

E Positional Index Regression

We further conduct positional index regression experiment to verify that causal attention can encode
positional information. Specifically, we trained an MLP to predict the position index of each token
using the outputs of causal attention from a well-trained DiT as input. We conducted experiments on
both 1D and 2D position regression tasks on ImageNet-256 x 256 to validate the effectiveness.

For 1D causal attention, the MLP predicts the 1D position index of each token (e.g., 1, 2, ... 256). For
2D causal attention, the MLP predicts the 2D position index (e.g., 1,1, 1,2,...,16,16) for each token.
The MLP is trained using L2 loss.

We performed these experiments using DiT with 1D causal attention (variant (a) in the main paper)
and DiT with 2D causal attention (variant (d)), and compared the results with DiT-NoPE, which
cannot encode positional information. If the causal attention variants outperform DiT-NoPE, it
demonstrates that the outputs of causal attention contain implicit positional information.

During inference, we generated images using both DiT with causal attention and DiT-NoPE. At
each of the 250 denoising steps, the MLP predicts the positional index from the features output
by causal attention. We generated 100 images, resulting in 2,500 tests in total. We report the L2
loss between the predicted and ground truth position indices. Since the MLP is trained to predict
positional indices, it cannot generalize to unseen positional indices when extrapolating to higher
resolutions. Therefore, we perform inference with the MLP at the training resolution. Nevertheless,
the significant performance gap compared to NoPE provides strong evidence that causal attention can
implicitly encode positional information. As shown in the table below, causal attention demonstrates
a significant advantage over NoPE in both training loss and test error. This indicates that the position
regressor can effectively learn positional information from the outputs of causal attention, providing
further evidence that causal attention can implicitly encode positional information.

F Architecture Refinement

We observe that minor architectural modifications to LEDiT during training from scratch can signifi-
cantly improve extrapolation performance, as detailed in Table[6] (i) Adding a layer normalization
after convolution stabilizes training and enhances extrapolation. (ii) Using only a single causal layer
achieves strong extrapolation, slightly outperforming the 14-layer setting. (iii) The multi-dilation
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strategy reduces sFID but leads to a slight increase in FID. This finding contrasts with the fine-tuning
scenario in Table[Ic] We hypothesize that, during training from scratch, the dilation perturbations
may hinder convergence, whereas in the fine-tuning setting, where the model is already well-trained,
dilation has less impact on convergence. A promising future direction is to adopt a progressive
multi-dilation strategy, which we leave for future work.

Table 6: Ablation study on architecture refinement. The inference resoluton is 512x512. The models
are trained on 256 <256 ImageNet, and we report results with 10K samples.

Causal Layers Conv Post Norm  Multi-dilation FID] sFID] ISt Prec. Rec.t

14 v 59.32 7835 62.13 0.42 0.36
14 v v 4045 7298 10424  0.56 0.39
14 v 39.84 80.41 10426 0.55 0.38
1 v 36.79 7698 112.82 0.56 0.39

G In-distribution Comparison

In the main paper, we compared the results of various methods at resolutions higher than the training
resolution. In this section, we compare the performance of LEDiT-XL/2 and LEMMDIT at the
training resolution. Tables[7]and [§] shows the result of LEDiT-XL/2 on ImageNet and LEMMDIiT on
COCO. The FID of LEDiT and LEMMDiT increases slightly at 256x256. Although both LEDiT
(with causal attention) and DiT (with standard self-attention) have approximately the same number of
parameters, their computational complexities differ substantially. For an input sequence of length
L and hidden dimension d, the self-attention mechanism computes attention scores for all possible
pairs, resulting in a per-layer computational complexity of O(L?d). In contrast, causal attention
restricts each position to attend only to previous positions (including itself), leading to a reduced
number of attention computations. Specifically, the total number of attention weights is reduced
from L? to L(L + 1)/2, and the corresponding computational complexity becomes O(L?d/2). This

halves the theoretical compute cost compared to self-attention, i.e., % = 2. While this
reduction improves efficiency theoretically, it may also limit the model’s ability to capture long-range
dependencies, which can explain the slight performance gap between LEDiT and DiT. Nevertheless,
as illustrated in Figure [[4] LEDIT still produces high-fidelity samples, demonstrating that causal

attention still achieves competitive generative quality despite its lower computational complexity.

Table 7: Comparison of performance on 256 x256 resolution. The models are trained on 256256
ImageNet. We set CFG=1.5. We report results with SOK samples.

Model Resolution FID] sFID| ISt Prec.t Rec.t
DiT-Sin/Cos PE 227 460 27824 0.83 0.57
DiT-RoPE 233 458 27202 0.83 0.58
DiT-Learnable PE 256x256 238  4.69 275.05 0.82 0.58
DiT-LH-180 254 494 24847 0.82 0.57
LEDiT 238 458 268.66 0.83 0.58
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Figure 14: 256x256 samples generated from our LEDiT-XL/2 trained on ImageNet 256x256
resolution with CFG = 4.0.

Table 8: Comparison of performance on 256 x256 resolution. The models are trained on 256256
COCO. We set CFG=2. We report results with 40,504 samples.

Model Resolution FID] sFID| ISt  Prec.f Rec.t
MMDIT 6.32 11.77 30.01 0.65 0.49
MMDIiT-RoPE 256x256 539 11.68 3232  0.67 0.50
LEMMDIT 6.35 11.61 3154 0.65 0.48

H 512x512 ImageNet

We fine-tune a new LEDiT-XL/2 model on 512x512 ImageNet for 100K iterations using the same
hyperparameters as the 256 x256 model. The qualitative comparison among vanilla DiT, VisionNTK,
VisionYaRN, and LEDiT is shown in FigureEl As resolution increases from 512x512 to 1024 <1024,
vanilla DiT exhibits further quality degradation, with significant noise artifacts. FiTv2-VisionNTK
generates images with duplicated objects, while FiTv2-VisionYaRN produces blurry images with
severe high-frequency detail loss. DiT-VisionNTK, VisionYaRN, RIFLEx generate higher-quality
images but exhibit object duplication in local structures. In contrast, LEDiT maintains more realistic
structures and finer details. The quantitative results are reported in Table[9] Due to the heavy quadratic
computational burden, we generate 10K images for evaluation. LEDiT consistently achieves superior
metric scores across all resolution settings. For instance, at a resolution of 768 x 768, LEDiT improves
the previous best FID of 28.94 (achieved by DiT-VisionNTK) to 21.75.

Table 9: Comparison of state-of-the-art extrapolation methods and our LEDiT trained on 512x512
ImageNet at various resolutions beyond the training image size. We set CFG=1.5.

Model 768x768 896x 896 1024x 1024
odel

FID| sFIDJ, ISt Prec.t Rec.t FID| sFIDJ, ISt Prec.t Rec.t FID| sFID| IS Prec. Rec.t
DiT-Sin/Cos PE 159.52 187.92  7.76 0.12 024 22993 217770 3.27 0.03 0.08  281.57 240.17 2.16 0.01 0.03
DiT-VisionNTK 2894 9637 14235  0.67 0.53 6441 13997 6452 048 047 10931 170.58 2531  0.29 0.39
DiT-VisionYaRN 2946 6137 16132  0.66 0.53 6558 9148 8321  0.50 0.51  104.62 118.03 43.04 035 0.47

DiT-RIFLEx 31.10 80.71 13401  0.66 0.49 64.84 11561 6290 048 047 11484 15290 23.87 0.27 0.36
FiTv2-VisionNTK ~ 251.73  195.83 3.44 0.02 0.12  309.13 230.84 254 0.01 0.01 34976  240.17 243 0.01 0.01
FiTv2-VisionYaRN  51.13 64.48 70.40 0.49 0.62 21572 17575 633 0.06 041 32726 217.01 291 0.01 0.08
LEDIiT 21.75  49.81 176.26  0.71 052 4864 7325 97.54 0.56 050 9111 108.70 48.13  0.40 0.44

I Comparison with Learnable Positional Embeddings
Learnable positional embeddings have been widely adopted in the original ViT [9] and Swin Trans-

former [27]. We replace the Sin/Cos PE in DiT with learnable positional embeddings to conduct
a comparison with our method. For length extrapolation, we interpolate the learnable positional
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embeddings to higher resolutions to ensure compatibility. We report the in-distribution performance
in Table[7]and the out-of-distribution performance in Table[I0} At the training resolution, Learnable
PE and LEDiT exhibit nearly comparable performance. When extrapolating to 512x512, we observe
a significant drop for Learnable PE. This is likely because the interpolated positional embeddings at
new spatial locations are not seen during training, leading to degradation.

Table 10: Comparison with learnable positional embeddings on 512x512 resolution. The models are
trained on 256 <256 ImageNet, and we report results with 10K samples.

Model FID| sFIDJ ISt Prec.t Rec.t
DiT-Learnable PE 208.45 13938 5.23 0.02 0.02
LEDiT 3586 6797 13991 0.52 0.51

J Comparison with LookHere

LookHere-180 LEDIT

Class Label 140

Class Label 217

Figure 15: Comparison with LookHere at 512x512 resolution. The models are trained on 256 x256
ImageNet. We set CFG=4.0. * indicates training from scratch. Best viewed when zoomed in.

Both LEDIT and LookHere [[12]] explore causal attention to enhance length extrapolation. LookHere
carefully designs various combinations of causal masks to provide directional inductive biases. It intro-
duces AliBi [33] to penalize attention scores and demonstrates extrapolation improvement. LookHere
conduct extensive experiments to demonstrate the extrapolation capabilities in classification.

However, we clarify that there are key differences. We provide a rigorous theoretical framework
that explains why causal attention is capable of encoding positional information and enabling
length extrapolation. This not only facilitates effective image generation with robust extrapolation
capabilities, but also offers valuable insights into the underlying mechanisms of length extrapolation.
In contrast, LookHere does not investigate the reasons behind causal attention’s ability to encode
positional information; it merely states that attention with 2D masks can "limit the distribution shift
that attention heads face when extrapolating”.

We directly adapt LookHere to image generation tasks and find it does not yield effective length
extrapolation. We select LookHere-180—the best-performing variant—as the representative method
and compare its performance with LEDiT. We (i) train the randomly initialized LookHere/LEDiT
for 400K steps or (ii) fine-tune LookHere/LEDIT for 100K steps. Quantitative results are presented
in Table[T1] In the fine-tuning scenario, LEDIT outperforms LookHere. In the training-from-scratch
scenario, LookHere achieves a lower sFID, while LEDiT achieves a lower FID. Specifically, sFID
leverages intermediate spatial features from the Inception network, capturing fine-grained image
details, whereas FID is computed using the spatially-pooled layer, reflecting more global structures.
We interpret that the lower sFID of LookHere indicates fine-grained image details, while the lower
FID of LEDIT suggests more coherent object structures. As shown in Figure[I3] when extrapolated
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to 512x512 resolution, samples generated by LookHere preserve fine image details but suffer from
severe object duplication, whereas those generated by LEDiT exhibit more coherent structures,
indicating that LEDiT shows better extrapolation performance. We believe a promising direction
is to integrate LookHere and LEDiT, aiming to generate images with both high-quality details and
coherent object structures.

Table 11: Comparison with LookHere on 512 x512 resolution. The models are trained on 256256
ImageNet. We set CFG=1.5. We report results with 10K samples. * indicates training from scratch.

Model FID| sFID] ISt Prec.t Rec.t
DiT-LH-180 66.93 83.09 82.39 0.39 0.36
LEDiT 3586 67.97 13991 0.52 0.51
DiT-LH-180* 4197 7142 11144 0.56 0.33
LEDiT* 36.79 7698 112.82 0.56 0.39

K 16x Length Extrapolation

We evaluate LEDIT trained on ImageNet-256x256 and extrapolated to 1024 x 1024 resolution (a
16 x length extrapolation). As shown in Table (12} LEDiT outperforms other methods. However, the
high FID suggests that aggressive resolution extrapolation remains challenging and warrants further
exploration.

Table 12: Comparison with other method on 1024 x 1024 resolution. The models are trained on
256256 ImageNet, and we report results with 10K samples.

Model FID] sFID] ISt Prec.t Rec.t

DiT-Sin/Cos PE 281.57 240.17 2.16 0.01 0.02
DiT-Learnable PE 284.07 230.15 2.41 0.08 0.01
DiT-VisionNTK 333.01 24423 1.96 0.22 0.00
DiT-VisionYaRN 228.41 199.62 7.60 0.03 0.09
DiT-RIFLEx 33530 21446 4.86 0.01 0.12
FiTv2-VisionNTK  342.54 260.28 2.75 0.01 0.00
FiTv2-VisionYaRN  338.12 241.12 293 0.01 0.00
LEDiT 21297 169.88 10.14 0.05 0.14

L FID over Fine-tuning Steps

We plot FID over fine-tuning steps from 25K to 200K at both training resolution (256x256) and
beyond (512x512), as shown in Figure[16] At 256x256 resolution, FID generally decreases with
more fine-tuning steps. At 512x512, performance plateaus around 50K steps, then gradually increases
with further fine-tuning. We chose 100K steps to balance performance at in-distribution and out-of-
distribution.

M Ablation Study on Attention Scaling

Following the widely adopted practice in length extrapolation, we also apply attention scal-
ing [22]. Figure|17|shows the ablation of attention scaling. Without attention scaling, LEDIT can still
generate reasonable images. Attention scaling primarily improves image quality and mitigates local
structural issues (e.g., the dog’s mouth).
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Figure 16: FID-10K over fine-tuning steps of LEDIT at the training resolution (256 x256) and beyond
the training resolution (512x512).
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Figure 17: Attention scaling ablation. The resolution is 512x512 generated by LEDiT-XL/2 trained
on ImageNet-256x256. We set CFG=4.0.

N Ablation Study on CFG

Following prior work, FiT, we set CFG=1.5. Additionally, we test model performance across
various CFGs, where CFG=1 indicates no classifier-free guidance. As shown in Tab]e@ LEDiT
outperforms VisionNTK, VisionYaRN and RIFLEx across different CFGs, demonstrating LEDiT’s
robust extrapolation capability.

Table 13: Ablation study on CFGs. The models are trained on 256 x256 ImageNet. The inference
resolution is 512x512 and we report results with 10K samples.

CFG=1.0 CFG=15 CFG=2.0
FID| sFIDJ) ISt Prec.t Rec.t FID| sFID| NG Prec.t Rec.t FID) sFID] ISt Prec. Rec.t

DiT-VisionNTK 279.14 17327  6.17 0.02 0.16  251.85 153.40 8.73 0.04 026 21399 13439 11.89 0.06 0.27
DiT-VisionYaRN 12573 123.19 3278  0.19 0.48 53.75 76.62 107.75 041 0.53 27.12 5404 21185  0.61 0.46
DiT-RIFLEx 30235 197.81  7.98 0.03 0.11 256.1 172.54  10.54 0.04 0.18 21430 149.61 13.48 0.05 0.21
FiTv2-VisionNTK 301.94  214.17 355 0.00 0.08 26540 198.17 6.58 0.01 0.03  205.64 150.89 9.22 0.03 0.23
FiTv2-VisionYaRN  246.06 180.58  8.43 0.04 029  163.27 13945 2042 0.12 0.35 97.49 95.19 46.50 0.22 0.52
LEDIiT 86.90 107.87 4519 0.26 0.54 35.86 67.97 13991 0.52 0.51 20.51 4571 25096  0.69 0.44

Model

O More Training Steps

In this section, we use LEDiT without architecture refinement. We further extended the training
from scratch to 600K and 1000K steps, as presented in Table[T4] LEDIT consistently outperforms
VisionNTK, VisionYaRN and RIFLEXx, and we do not observe FID saturation.
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Table 14: Comparison of state-of-the-art extrapolation methods when training from scratch on
256 x256 ImageNet. We extend the training steps to 600K and 1000K. The inference resolution is
512x512. We report results with 10K samples.

Model Training Steps (K) FID]  sFID| ISt Prec.t Rec.t
DiT-Sin/Cos PE 600 24422 19322 274 0.19 0.04
DiT-VisionNTK 600 183.16 146.21 16.18 0.09 0.33
DiT-VisionYaRN 600 118.44 12336 36.68 0.20 0.43
DiT-RIFLEx 600 13227 12926 2594 0.15 0.40
LEDIiT 600 56.34 7214 7410 0.44 0.38
DiT-VisionNTK 1000 190.65 151.52 14.19  0.09 0.35
DiT-VisionYaRN 1000 131.03 127.05 32.13 0.17 0.44
DiT-RIFLEx 1000 16042 11745 2137 0.11 0.40
LEDiT 1000 5429 7453 7935 045 0.42

P Performance on Smaller Models

We conduct experiments on smaller models, namely DiT-B and DiT-S, under the same training
settings as LEDIiT-XL/2. As shown in Table[I5] LEDIT consistently outperforms state-of-the-art
extrapolation methods across all evaluation metrics in DiT-B, and shows substantial improvements in
key metrics in DiT-S, with comparable FID to DiT-RoPE-NTK. It delivers stable performance gains
across DiT-S, DiT-B, and DiT-XL, demonstrating robustness and scalability. These results highlight
LEDIT’s strong length extrapolation capabilities and generalizability to different model scales.

Table 15: Comparison of performance on 512x512 resolution using DiT-B and DiT-S. The models
are trained on 256256 ImageNet for 400K steps, and we report results with 10K samples.

Model FID| sFID| IST  Prec.t Rec.t

DiT-S-Sin/Cos PE 25320 186.79 2.36 0.02 0.01
DiT-S-VisionNTK ~ 121.42 19759 11.61 0.12 0.23
DiT-S-VisionYaRN  161.41 129.67 1340 0.11 0.20
DiT-S-RIFLEx 313.10 19236 6.34 0.02 0.20
LEDIiT-S 12471 97.76 18.57 0.16 0.22
DiT-B-Sin/Cos PE ~ 214.05 188.24  3.27 0.02 0.07
DiT-B-VisionNTK ~ 164.51 193.89 6.98 0.09 0.24
DiT-B-VisionYaRN  126.52 132.84 21.37 0.18 0.31
DiT-B-RIFLEx 43349 22540 4.00 0.01 0.09
LEDiT-B 86.63 8493 3521 0.29 0.30

Q More Ablation Visualization

We present all visualizations of the ablation study in Figure[T§]

R More Qualitative Visualization

We present more comparison results with DiT-Sin/Cos PE, DiT-VisionNTK, DiT-VisionYaRN, DiT-
REFLEX, FiTv2-VisionNTK, and FiTv2-VisionYaRN to demonstrate the effectiveness of LEDiT, as
shown in Figure[19] Figure 20] and Figure 21} LEDIT outperforms other methods in both fidelity and
local details.

S Additional Samples

We present more samples generated by LEDiT-XL/2 in Figure 22| and Figure
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T Limitations and Future Work

Constrained by limited resources, we train LEDiT only on the ImageNet and COCO datasets. We did
not test how LEDIT will perform on a larger-scale dataset such as LAION-5B [38]]. The generative
capabilities of LEDIT when training with higher resolutions have not been explored. Subsequent
research can focus on how to integrate LEDiT into modern powerful diffusion models or LLMs to
achieve more amazing outcomes. Moreover, other learnable modules capable of capturing positional
information, similar to causal attention, should be explored to further enhance the performance of
length extrapolation.

U Broader Impacts

Our diffusion-based approach can advance generative modeling, enabling applications in image
synthesis, data augmentation, and scientific discovery, which may benefit research and industry. At
the same time, our method could be misused for generating misleading or harmful content, such
as deepfakes or synthetic data for malicious purposes. We discuss these risks and suggest possible
mitigation strategies.

NoPE + Causal + Conv + Causal + Conv

e = S [3

(a) Component ablations.
W/O Multi-Dila ‘W/ Multi-Dila
<l ; S 25

(c) Multi-dilation strategy. (d) Block design.

Dilation =2

(e) Multi-dilation probability. (f) Dilation rate.

Figure 18: Ablation visualization of Table We set CFG=4.0. Best viewed when zoomed in.
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Figure 19: More qualitative comparison with other methods. The resolution and class label are
located to the left of the image. We use the model trained on 256 X256 ImageNet to generate images
with resolutions less than or equal to 512x512, and the model trained on 512x512 ImageNet to
generate images with resolutions greater than 512x512 and less than or equal to 1024 x 1024. We set
CFG=4.0. Best viewed when zoomed in.

DiT-Sin/Cos PE DiT-VisionNTK DiT-VisionYaRN DiT-RIFLEx FiTv2-VisionNTK  FiTv2-VisionYaRN LEDIiT
= "

512x384
Class Label 344

384x512
Class Label 335

Figure 20: More qualitative comparison with other methods on generating non-square images. The
resolution and class label are located to the left of the image. We use the model trained on 256 X256
ImageNet to generate images at 512x384 and 384 x512 resolutions. We set CFG=4.0. Best viewed
when zoomed in.
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plate sittin.

A purple and
orange bus is
traveling down
the road.
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bench at the edge
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A train that is
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Figure 21: Qualitative comparison with other methods on text-to-image task. The prompts are located
to the left of the image. We use the model trained on 256 x256 COCO to generate images at 512x512.
We set CFG=6.0. Best viewed when zoomed in.

s

Figure 22: More arbitrary-resolution samples (5122, 512x384, 384x512, 512x256, 256x512, 3842,
2562, 128 x256). Generated from our LEDiT-XL/2 trained on ImageNet 256 x 256 resolution. We set
CFG =4.0.
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Figure 23: More arbitrary-resolution samples ( 10242, 1024 x 768, 768 x 1024, 1024 x512, 512x 1024,
7682, 5122, 256x512). Generated from our LEDiT-XL/2 trained on ImageNet 512 x512 resolution.
We set CFG =4.0.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The contributions are accurately reflected in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section[T]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section [A]for the proof of Theorem3.1]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The experiment setup information is introduced in Section .1}
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We release the source code in the supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment setup information is introduced in Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The hardware resource is introduced in Section 4.1
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section [U]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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