LEDiT: Your Length-Extrapolatable Diffusion Transformer without Positional Encoding

Abstract

Diffusion transformers (DiTs) struggle to generate images at resolutions higher than their training resolutions. The primary obstacle is that the explicit positional encodings (PE), such as RoPE, need extrapolating to unseen positions which degrades performance when the inference resolution differs from training. In this paper, We propose a Length-Extrapolatable Diffusion Transformer (LEDiT) to overcome this limitation. LEDiT needs no explicit PEs, thereby avoiding PE extrapolation. The key innovation of LEDiT lies in the use of causal attention. We demonstrate that causal attention can implicitly encode global positional information and show that such information facilitates extrapolation. We further introduce a locality enhancement module, which captures fine-grained local information to complement the global coarse-grained position information encoded by causal attention. Experimental results on both conditional and text-to-image generation tasks demonstrate that LEDiT supports up to $4\times$ resolution scaling (e.g., from 256×256 to 512×512), achieving better image quality compared to the state-of-the-art length extrapolation methods. We believe that LEDiT marks a departure from the standard RoPE-based methods and offers a promising insight into length extrapolation. Project page: https://shenzhang2145.github.io/ledit/

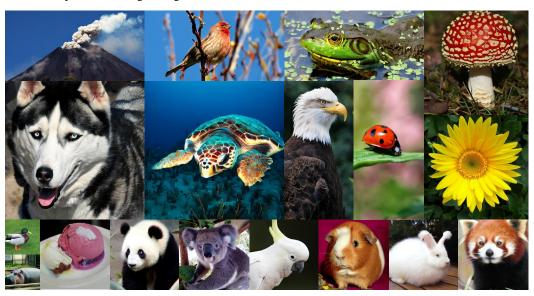


Figure 1: Selected arbitrary-resolution samples $(512^2, 512 \times 256, 256 \times 512, 384^2, 256^2, 128^2)$ from LEDiT-XL/2 trained on ImageNet 256×256 resolution. LEDiT can generate high-quality images beyond the limitations of training resolution.

^{*}Corresponding author.

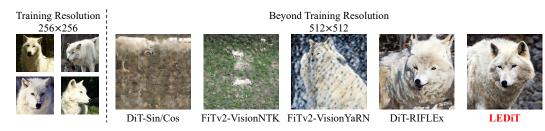


Figure 2: Diffusion Transformer performs well at the training resolution. However, when extrapolated to higher resolutions, DiT [31], FiT [28, 43], and RIFLEx [50] suffer notable quality degradation. In contrast, our LEDiT can generate reasonable and realistic higher-resolution images with fine-grained details. The class label is 270 (white wolf).

1 Introduction

Diffusion models have emerged as a powerful foundation technique in vision generation tasks. The architecture of diffusion models has progressed from U-Net [36, 35] to transformer-based designs [31, 1]. Diffusion Transformers (DiTs) have become state-of-the-art generators [11, 4, 48, 44]. Despite their success, DiTs face critical limitations when generating images at resolutions beyond those encountered during training [28, 42]. As shown in Figure 2, DiTs trained on ImageNet [6] 256×256 resolution produce high-quality samples at this scale, but struggle to generalize to higher resolutions such as 512×512 . Due to the expensive quadratic cost of self-attention and the scarcity of large-scale, high-resolution datasets, models are typically trained at relatively small resolutions. In practice, many real-world applications, such as high-definition film and computer graphics, require higher-resolution images, presenting a significant length extrapolation challenge for current DiTs.

Many studies [33, 39, 32, 23, 28] highlight the importance of positional encoding (PE) in length extrapolation. Rotary Positional Embeddings (RoPE) [39] and its variants, such as NTK-aware scaling [2] and YaRN [32] have been developed to improve the extrapolation ability of language transformers. In the vision domain, Flexible Vision Transformers (FiT) [28, 43] integrate RoPE into DiTs to support variable input resolutions. RIFLEx [50] reduced the intrinsic frequency of RoPE to alleviate extrapolation issues. Despite these advances, performance still degrades notably beyond the training resolution (see Figure 2). Since diffusion models are not trained for such out-of-range positions, this leads to a distribution shift in positional indices and results in out-ofdistribution issues [8]. On the other hand, Recent studies [15, 23, 5] challenge the need of explicit PE, showing that large language models (LLMs) without PE (NoPE) perform well in in-distribution settings and even outperform explicit PEs in length extrapolation. The advantage of NoPE lies in avoiding PE extrapolation, which reduces performance when inference resolution differs from training. LookHere [12] removes the positional encoding and carefully designs various combinations of causal masks, achieving notable success in image recognition. However, directly applying LookHere to image generation tasks results in severe object duplication (see Figure 15) and fails to yield effective length extrapolation. Therefore, it remains unclear whether DiTs can similarly benefit from NoPE for resolution extrapolation. We ask: Can DiTs leverage NoPE to train at low resolutions and generalize to higher resolutions?

In this paper, We propose a **Length-Extrapolatable Diffusion Transformer** (LEDiT), which removes explicit PE and can generate high-quality images at arbitrary resolutions. A key architectural modification is the adoption of causal attention. We demonstrate that causal attention can implicitly encode positional information. Specifically, we provide both theoretical and empirical evidence that token variance decreases when position increases, providing an implicit ordering (see Section 3.2). We reveal that this implicit position ordering yields better extrapolation abilities than explicit PEs. Furthermore, we introduce a negligible-cost multi-dilation convolution as a locality enhancement module to improve local fine-grained details, complementing the global coarse-grained information captured by causal attention.

We conduct extensive experiments on both conditional and text-to-image generation tasks to validate the effectiveness of LEDiT. Notably, LEDiT supports up to $4\times$ inference resolution scaling while maintaining structural fidelity and fine-grained details, outperforming state-of-the-art extrapolation methods. Moreover, LEDiT can generate images with arbitrary aspect ratios (e.g., 512×384 or 512×256) without any multi-aspect-ratio training techniques. We also show that fine-tuning LEDiT

from a pretrained DiT for only 100K steps yields strong extrapolation performance, highlighting its potential for efficient integration into existing powerful DiTs. We hope our findings provide valuable insights for future research on transformer length extrapolation.

2 Related Work

Diffusion Transformers. Building on the success of DiT [31, 1], subsequent works such as PixArt-Alpha [4] and PixArt-Sigma [3] further extend diffusion transformers for higher-quality image generation. Stable Diffusion 3 [11] and Flux [25] substantially improve the performance of diffusion transformers by scaling up parameters. Sana [46] focused on fast generation through deep compression autoencoding and linear attention Despite these advances, most DiTs struggle when inference resolution differs from training, motivating our exploration of length extrapolation.

Length Extrapolation in Language. Since the introduction of the transformer [41], length extrapolation has remained a significant challenge, with positional encoding playing a critical role [33, 39, 32, 23, 29]. Absolute Positional Encoding (APE) [41] struggles to handle longer sequences. To address this, ALiBi [33] modifies attention biases to facilitate length extrapolation. Rotary Position Embedding (RoPE) [39] and its extrapolation refinements, including NTK-aware scaling [2] and YaRN [32], further improve length generalization. Adaptive embedding schemes like Data-Adaptive Positional Encoding (DAPE) [51] and Contextual Positional Encoding (CoPE) [13] have also been explored. In contrast to explicit PEs, NoPE [5, 23] demonstrates that language models can implicitly encode positional information. We independently observe a similar phenomenon in diffusion models. Importantly, compared to [5], our analysis provides a theoretical proof under more relaxed assumptions, requiring only finite mean and variance and imposing weaker constraints on weight matrices. Furthermore, we demonstrate that this implicit positional information benefits length extrapolation in diffusion models, which is the main focus of this paper.

Length Extrapolation in Diffusion. Length extrapolation has been extensively studied in diffusion U-Net architectures [16, 49, 10, 20, 14], but remains largely unexplored in DiTs. RoPE-Mixed [17] employs rotation-based embeddings for variable image sizes. FiT [28, 43] adopts RoPE, NTK-Aware, and YaRN in 2D variants for resolution extrapolation. RIFLEx [50] analyzes the role of different frequency components in RoPE and found that reducing the intrinsic frequency can boost length extrapolation. LookHere [12] carefully designs various combinations of causal masks to provide directional inductive biases. It conducts experiments to demonstrate the extrapolation capabilities in classification tasks. However, directly adapting LookHere to image generation tasks results in severe object duplication (see Figure 15). Therefore, a comprehensive strategy for high-resolution extrapolation in diffusion transformers remains elusive. In this work, we address this gap by enabling DiTs to generate high-fidelity images at arbitrary resolutions. There are some conceptual similarities between LEDiT and LookHere. Both LEDiT and LookHere explore causal attention to enhance length extrapolation. But there are key differences. LEDiT provides a theoretical framework that explains why causal attention is capable of encoding positional information and enabling length extrapolation. Moreover, LEDiT combines simple causal attention with multi-dilation convolutions, effectively mitigating object duplication (see Figure 15) and achieving better extrapolation performance.

3 Method

We first introduce some preliminaries about DiTs and causal attention. DiTs is primarily built upon the ViT [9]. Each DiT block contains a multi-head self-attention (MSA), followed by adaptive layer normalization (AdaLN) and a feed-forward network (MLP). Residual connections are applied by scaling α_ℓ and α'_ℓ . Given an input $x \in \mathbb{R}^{H \times W \times C}$, the computation of DiT block is as follows:

$$z_0 = \text{Flatten}(\text{Patchify}(x)) + E_{\text{pos}},$$
 (1)

$$z'_{\ell} = \text{MSA}(\text{adaLN}(z_{\ell-1}, t, c)) + \alpha_{\ell} z_{\ell-1}, \tag{2}$$

$$z_{\ell} = \text{MLP}(\text{adaLN}(z_{\ell}', t, c)) + \alpha_{\ell}' z_{\ell}'. \tag{3}$$

Causal attention only allows the given position in a sequence to attend to the previous positions, not to future positions. The causal attention map is:

$$A = \operatorname{softmax} \left(\frac{QK^{\top}}{\sqrt{d_k}} + M \right), \tag{4}$$

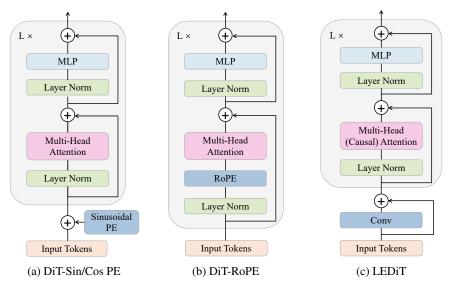


Figure 3: Comparison between DiT-Sin/Cos PE, DiT-RoPE, and our LEDiT. We omit AdaLN for the sake of simplicity. DiT-Sin/Cos PE is the vanilla DiT [31], which incorporates Sinusoidal PE into the transformer. DiT-RoPE introduces rotary position encoding by rotating the query and key in each transformer block. In contrast, our LEDiT model does not require explicit position encoding. The main difference lies in the incorporation of causal attention and convolution after patchification.

where $Q \in \mathbb{R}^{n \times d_k}$ and $K \in \mathbb{R}^{n \times d_k}$ are query and key, d_k is the dimension, and $M \in \mathbb{R}^{n \times n}$ is a mask matrix with definition as follows:

$$M_{i,j} = \begin{cases} 0 & \text{if } j \le i, \\ -\infty & \text{if } j > i. \end{cases}$$
 (5)

This ensures attention scores for future tokens are nearly zero after softmax, enforcing strict causality.

3.1 LEDiT Block

The overall architecture of LEDiT is illustrated in Figure 3c. Our LEDiT does not need explicit PEs. The main modifications include the use of causal attention and a negligible-cost multi-dilation convolution. We design LEDiT blocks to alternate between causal attention and self-attention. The first LEDiT block uses self-attention, formulated as:

$$z'_{\ell} = MSA(adaLN(z_{\ell-1}, t, c)) + \alpha_{\ell} z_{\ell-1}, \tag{6}$$

$$z_{\ell} = \text{MLP}(\text{adaLN}(z_{\ell}', t, c)) + \alpha_{\ell}' z_{\ell}'. \tag{7}$$

The subsequent LEDiT block uses causal attention, which can be written as:

$$z'_{\ell+1} = \text{MCA}(\text{adaLN}(z_{\ell}, t, c)) + \alpha_{\ell+1} z_{\ell}, \tag{8}$$

$$z_{\ell+1} = \text{MLP}(\text{adaLN}(z'_{\ell+1}, t, c)) + \alpha'_{\ell+1} z'_{\ell+1},$$
 (9)

where MCA represents multi-head causal attention. We explore more LEDiT designs in Table 1d.

3.2 Why Causal Attention

Explicit PEs are widely used in transformers, but their performance degrades when extrapolating to resolutions larger than those seen during training, as shown in Figure 5. To address this limitation, we attempt to remove explicit PEs to avoid position encoding extrapolation. Prior work [23] suggests that causal attention enables better length extrapolation without PEs in LLM. Motivated by this, we introduce causal attention to diffusion models and further demonstrate that causal attention (i) implicitly encodes positional information to tokens, and (ii) that such implicit positional encodings facilitate length extrapolation.

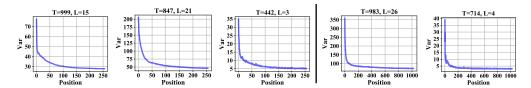


Figure 4: $Var(y_{il})$ distributions across various timestep (T) and DiT layers (L). Left: variance distribution at the training resolution (256×256). Right: variance distribution beyond the training resolution (512×512). Best viewed when zoomed in.

Causal attention implicitly encodes positional information. we formally establish that, under specific assumptions, the variance of causal attention output encodes positional information. Specifically, we prove the following theorem:

Theorem 3.1. For a Transformer architecture with Causal Attention, assume that the value V is i.i.d. with mean μ_V and variance σ_V^2 . Then, the variance of the causal attention output Y_{il} at position i and dimention l is given by:

$$Var(Y_{il}) = \frac{2}{i+1} \sigma_V^2 + \frac{i-1}{i(i+1)} \mu_V^2.$$
 (10)

When i is large, we can approximate $\frac{i-1}{i(i+1)} \approx \frac{1}{i+1}$, leading to the reasonable approximation

$$\operatorname{Var}(Y_{il}) \approx \frac{C}{i+1},$$
 (11)

where the constant $C = 2\sigma_V^2 + \mu_V^2$.

Please refer to Appendix A for the complete proof. This theorem reveals that, if the conditions are met, the variance is inversely proportional to the position i at a rate of $\frac{1}{i+1}$. We further conduct experiments to verify whether applying causal attention in DiT can assign different variances to different positions.

We train a DiT-XL/2 that replaces all self-attention with causal attention and use it to verify the theorem. Given an input sequence $z \in \mathbb{R}^{n \times d_k}$, causal attention takes z and outputs $y = (y_1, ..., y_n) \in \mathbb{R}^{n \times d_k}$. We approximate $\text{Var}(y_{il})$ using the variance of y_i . As shown in the left figures of Figure 4, $\text{Var}(y_{il})$ is inversely proportional to

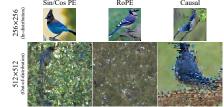


Figure 5: Explicit PEs degrade in extrapolation, while causal attention consistently outputs coherent coarse-grained structures. The class label is 17 (jay).

the position i across various timestep and layers. This indicates the existence of causal attention in DiT that meets the conditions of the theorem. Intuitively, a smaller $Var(y_i)$ indicates that its elements are more concentrated. During training, the neural network can learn to leverage this concentration to determine token position, thereby implicitly encoding positional ordering. We also observe variance distribution in the later denoising stage differs from the theorem. To evaluate the impact of this phenomenon, we conduct experiments with switching from causal attention to self-attention at different timesteps. Our findings show that positional information is primarily acquired in the early denoising stage, and the causal attention with variance deviation in the later denoising stage has minor effects on extrapolation. See Section C for the discussion.

The implicit positional information facilitates length extrapolation. As shown in the right figures of Figure 4, when extrapolating to higher resolutions, the variance remains inversely proportional to the position, consistent with the in-distribution variance distribution. This preservation of implicit positional ordering enables the model to generalize across larger resolutions, as illustrated in Figure 5. When scaling the resolution by $4\times$, models with explicit positional encodings exhibit severe structural degradation, while models with causal attention continue to generate structurally coherent objects. In addition to providing implicit positional information to tokens, causal attention also acts as a learnable, global receptive-field mechanism, which differs from static positional encodings. It can make predictions based on previous tokens and learn the dependencies between tokens from large-scale data, which may also enhance the model's ability to extrapolate to higher resolution.

(a) One-Dimension

(b) Mask Lower-right

(c) Unmask Neighborhood (d) Mask Lower-right Corner

Figure 6: Comparison of causal attention scan variants. We use variant (d) as our default.

Causal scan variants. We introduce four causal attention scan variants, as depicted in Figure 6 (a) represents the traditional 1D scan used in PixelCNN [40], where each position attends only to preceding tokens in a flattened sequence. To leverage the spatial characteristics of images, we also consider scanning along both the height and width dimensions and propose (b)–(d). We ablate the performance of these variants in Table 1b. Variant d is set as our default.

3.3 Locality Enhancement

Although causal attention provides tokens with global implicit positional ordering, when i is large, the variance between adjacent tokens becomes indistinguishable (see Figure 4), preventing accurate position information and leading to blurry images, see Figures 5 and 18a. To distinguish the relative relationships between neighborhood tokens, we need to enhance the local perception abilities of the neural network. Specifically, we introduce convolution as a locality enhancement module. Previous work [45] replaced the gky-projector with convolution or integrated convolution into the MLP [47, 46] in each transformer block, which significantly increased the model's computational cost. We find that adding a convolution after patchification is sufficient, while only increasing ignorable overhead. This can be written by slightly modifying Equation (1):

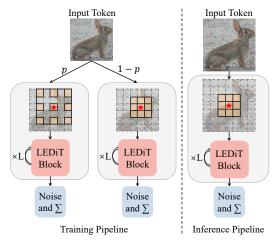


Figure 7: LEDiT pipeline.

$$z_0 = \text{Flatten}(C_{3,1,1,1}(\text{Patchify}(x))), \tag{12}$$

where $C_{k,p,s,d}$ denotes a convolution filter with kernel size k, padding p, stride s, and dilation d. Zero padding is applied, which enables convolution to leak local positional information [21, 47].

Multi-dilation training strategy. Although the generated higher-resolution images are visually compelling, they often encounter duplicated object artifacts due to the fixed receptive fields of convolutional kernels [16]. To mitigate this problem, we adopt a multi-dilation training strategy, wherein dilation and padding are randomly adjusted during training (see Figure 7). For a standard convolution filter $C_{3,1,1,1}$, we set a probability p to expand both its dilation rate and padding size to 2, transforming it into $C_{3,2,1,2}$. During inference, we empirically find that fixing dilation and padding as 1 is sufficient. This strategy trains shared-parameter convolutions with varying receptive fields and empirically improves extrapolation abilities.

4 Experiments

4.1 Experiment Settings

Model Architecture. For conditional generation on ImageNet [6], we use a patch size p=2 and follow DiT-XL [31] to set the same layers, hidden size, and attention heads for the XLarge model, denoted by LEDiT-XL/2. For text-to-image generation on COCO [26], We use MMDiT [11] and set the hidden dimension as 768 and the model depth as 24, following the design in REPA [48], denoted as LEMMDiT. We use the CLIP [34] text encoder to compute text captions.

Table 1: Ablations using LEDiT-XL/2 on 256×256 ImageNet. We report FID and IS scores. For each ablation, we load the pretrained DiT weights and fine-tune LEDiT-XL/2 for 100K iterations. Default settings are marked in gray . See Figure 18 for visualization.

(a) **Components ablations.** Causal attention and convolution are effective in length extrapolation.

case	FID↓	IS↑
NoPE	378.95	3.79
+ Cau.	286.01	6.96
+ Con.	130.91	28.66
+ Cau. + Con.	35.86	139.91

(d) **Block design**. The alternating order works better than the sequential order.

order	FID↓	IS↑
$CA_{L/2} + SA_{L/2}$	36.81	139.88
$SA_{L/2} + CA_{L/2}$	48.65	103.14
$(CA,SA)_{L/2}$	36.05	143.26
$(SA,CA)_{L/2}$	35.86	139.91

(b) Casual scan variants.2D casual scan variants outperform 1D variants.

scan	FID↓	IS↑
(a)	62.49	78.25
(b)	89.77	50.10
(c)	43.17	116.03
(d)	35.86	139.91

(e) **Multi-dilation probability**. LEDiT with a small probability works better.

prob	FID↓	IS↑
0	39.20	127.84
0.1	35.86	139.91
0.2	37.99	135.85
0.5	37.56	133.07

(c) **Multi-dilation strategy.** LEDiT benefits from multi-dilation strategy.

case	FID↓	IS↑
w/o multi-dila	39.20	127.84
w/ multi-dila	35.86	139.91

(f) **Dilation rate**. (2,3) means randomly selecting 2 or 3 as the rate during training.

dilation	FID↓	IS↑
1	39.20	127.84
2	35.86	139.91
(2,3)	37.24	136.23

Training Details. The experiments are trained on ImageNet [6] with 256×256 and 512×512 resolutions, and on COCO [26] with 256×256 resolution. On ImageNet, We (i) train the randomly initialized LEDiT for 400K steps or (ii) fine-tune LEDiT for 100K steps. We set the batch size as 256. On COCO, We follow REPA [48] and train LEMMDiT for 200K steps with a batch size of 192. We use $8 \times \text{NVIDIA V} 100 \text{ GPUs}$ as default training hardware.

Evaluation Metrics. We primarily use Fréchet Inception Distance (FID) [18], the standard metric for evaluating generative models. We additionally report Inception Score [37], sFID [30], and Precision/Recall [24] as secondary metrics. Without further elaboration, on ImageNet, we generate 50K samples using 250 DDPM sampling steps with a classifier-free guidance (CFG) scale of 1.5. On COCO, we generate 40,504 images (one per caption) using 50 ODE sampling steps with CFG=2.0. For fair comparison, all values reported in this paper are obtained by exporting samples and using ADM's TensorFlow evaluation suite [7].

Evaluation Resolution. Compared to previous work [28, 43], this paper tests at more extreme resolutions. When trained on ImageNet 256×256 , we compare the extrapolation performance of LEDiT with other methods [31, 28, 43, 50] at 384×384 (2.25×), 448×448 (about 3×), and 512×512 (4×) resolutions. When trained on ImageNet 512×512 , we compare LEDiT with other methods

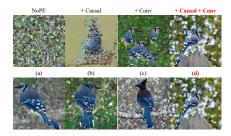


Figure 8: Visualization of the ablation study. The first row illustrates the ablations of the components proposed in this paper, while the second row displays the ablations of the causal scan variants. The models are trained on 256×256 ImageNet and generate images with 512×512 resolution. See Figure 18 for more visualization.

at 768×768 (2.25×), 896×896 (about 3×), and 1024×1024 (4×) resolutions. Additionally, we assess performance at different aspect ratios, specifically 512×384 (3:2) and 384×512 (2:3). On COCO, extrapolation is evaluated at 512×512 (4×). All token lengths are much longer than those seen during training. Following the widely adopted practice in transformers, we apply attention scaling [22] for length extrapolation.

4.2 LEDiT Ablations

In this section, we ablate LEDiT design settings on 256×256 ImageNet. We use LEDiT-XL/2 to ensure that our method works at scale. We evaluate performance by loading DiT pretrained weights

Table 2: Comparison of state-of-the-art extrapolation methods and LEDiT trained on 256×256 ImageNet at various resolutions beyond the training image size. We set CFG=1.5. * indicates training from scratch. † indicates additional architecture refinement.

Model			384×384					448×448					512×512		
Model	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
DiT-Sin/Cos PE*	114.10	162.50	14.91	0.18	0.27	188.42	191.58	4.19	0.06	0.11	216.22	188.69	2.70	0.10	0.04
DiT-VisionNTK*	45.81	80.42	99.92	0.48	0.42	124.88	113.88	37.79	0.22	0.39	174.68	139.23	16.28	0.10	0.30
DiT-VisionYaRN*	23.45	53.25	138.46	0.63	0.35	64.93	88.59	70.04	0.36	0.34	109.00	109.88	38.38	0.21	0.30
DiT-RIFLEx*	18.47	64.36	156.34	0.66	0.38	49.29	92.25	81.78	0.42	0.35	119.57	107.32	29.44	0.17	0.30
LEDiT*	15.98	30.94	138.25	0.75	0.31	29.84	48.06	103.05	0.61	0.25	56.02	65.99	63.26	0.43	0.21
LEDiT*†	12.07	30.47	188.15	0.80	0.31	20.91	48.37	152.57	0.69	0.25	34.29	64.10	110.04	0.56	0.22
DiT-Sin/Cos PE	87.03	116.67	44.93	0.31	0.31	168.23	145.45	15.25	0.12	0.23	213.77	168.51	7.98	0.06	0.13
DiT-VisionNTK	71.23	80.69	67.42	0.33	0.51	184.29	122.99	16.94	0.10	0.41	246.56	144.99	8.82	0.04	0.17
DiT-VisionYaRN	13.51	35.35	244.42	0.71	0.39	28.23	50.81	170.22	0.56	0.35	49.86	64.63	109.34	0.42	0.35
DiT-RIFLEx	57.88	77.27	75.88	0.37	0.55	186.76	129.17	17.13	0.09	0.41	251.92	163.77	10.39	0.04	0.12
FiTv2-VisionNTK	38.43	47.09	107.89	0.45	0.54	179.01	117.12	18.20	0.08	0.42	257.63	171.10	6.72	0.01	0.21
FiTv2-VisionYaRN	23.23	35.13	157.93	0.55	0.48	71.94	64.72	64.49	0.29	0.51	155.80	118.21	20.76	0.11	0.27
LEDiT	9.34	25.02	281.09	0.78	0.39	17.62	39.43	214.90	0.66	0.34	33.25	54.36	138.01	0.52	0.31

and fine-tuning for 100K iterations. we set CFG=1.5, generate 10K images at 512×512 resolution, and report FID-10K and IS-10K.

Components ablations. Table 1a shows the influence of each component of LEDiT. Removing PE (NoPE) degrades DiT severely. Both causal attention and convolution can significantly enhance extrapolation performance. Combining these two components decreases the FID from 378.95 to 35.86 and increases the IS from 3.79 to 139.91, yielding the optimal performance. Figure 8 illustrates the impact of causal attention and convolution. DiT with NoPE generates noise-like images, indicating that without PE, DiT cannot capture token positional information. Incorporating causal attention yields structurally coherent objects but insufficient high-frequency details, since causal attention provides a global ordering but struggles with local distinctions (see Section 3.3). Conversely, introducing convolution provides adequate high-frequency details, but leads to duplicated objects due to the lack of a global receptive field. When both are combined, the generated images exhibit realistic object structures as well as fine-grained details. Therefore, we use both causal attention and convolution as the default setting.

Causal scan variants. Table 1b presents a quantitative comparison of different scan variants. Except for variant (b), 2D scan variants (c) and (d) outperform the 1D variant (a) in both FID and IS. Figure 8 shows that variants (c) and (d) produce more coherent object structures and finer details than variant (a). Although variant (b) is also a 2D scan, it leads to blurred images, resulting in lower FID and sFID scores. We adopt variant (d) as our default.

Multi-dilation strategy. As shown in Figure 18c, when adapting to multiple receptive fields, the multi-dilation strategy enhances LEDiT's performance and significantly mitigates object duplication. Table 1c shows that LEDiT with the multi-dilation strategy achieves better FID and IS scores. We adopt the multi-dilation strategy as the default setting.

Block design. Table 1d compares different orders of causal and self-attention blocks. The first two rows use sequential blocks, whereas the last two employ an alternating arrangement. Both orders achieve strong performance, but sequential order exhibits higher variance while alternating orders are more stable. We thus use the alternating order with self-attention preceding causal attention as our default.

Multi-dilation probability. Table 1e shows the result of different multi-dilation probabilities p, where p=0 disables the strategy. As p increases, FID initially decreases and then rises. At p=0.5, the receptive field alternates equally between 3×3 and 5×5 . The experimental results show that frequent conv parameter changes during training slow convergence and introduce instability, leading to worse performance, while smaller p mitigates object duplication and ensures stable training. So we adopt p=0.1 as the default setting.

Dilation rate. We also evaluate different dilation rates r to accommodate multiple receptive fields (Table 1f). For instance, r=(2,3) means there is a p/2 probability of choosing r=2 or r=3. It can be seen that both r=2 and r=(2,3) can improve performance, but r=(2,3) is less effective than r=2, likely due to the increased complexity of handling multiple dilation values. Nevertheless, successfully adapting convolution to multiple receptive fields may further benefit extrapolation. In this paper, we retain r=1 by default.

Figure 9: Qualitative comparison with other methods. The resolution and class label are located to the left of the image. We use the model trained on 256×256 ImageNet to generate images at 512×512 resolution, and the model trained on 512×512 ImageNet to generate images at 1024×1024 resolution. We set CFG=4.0. Best viewed when zoomed in. See Figure 19 and Figure 20 for more comparison.

4.3 Main Results

256×256 ImageNet. In Figure 9, we present a qualitative comparison between LEDiT and other methods. Vanilla DiT (DiT-Sin/Cos PE) suffers from severe image quality degradation. When combined with VisionNTK, VisionYaRN, or RIFLEx, DiT generates images with detailed textures but introduces unrealistic object structures. FiT produces images with severely degraded quality. In contrast, LEDiT produces images with realistic object structures and rich details. The quantitative comparison is reported in Table 2. LEDiT substantially outperforms previous extrapolation methods. At a resolution of 384×384, LEDiT reduces the previous best FID-50K of 13.51 (achieved by DiT-VisionYaRN) to 9.34. As the resolution increases, LEDiT further widens the performance gap, lowering the best previous score from 49.86 to 33.25 at 512×512. When trained from scratch, LEDiT also achieves significantly better FID and sFID scores compared to its counterparts, demonstrating the effectiveness of LEDiT in both fine-tuning and training-from-scratch scenarios. We further find that minor architectural refinement during training from scratch can significantly improve extrapolation performance (see Section F). We present the comparison with LookHere in Section J. We report the result of 512×512 ImageNet in Section H.

Beyond generating square images, we evaluate the generalization abilities of LEDiT across different aspect ratios. Unlike FiT [28, 43], we do not apply multiple aspect ratio training techniques. Instead, we directly use the LEDiT-XL/2 model trained on the center-cropped 256×256 ImageNet dataset. This highlights the model's inherent generalization abilities. The quantitative results, reported in Table 3, demonstrate LEDiT's superiority. It achieves the best FID scores, with 20.29 and 18.82 at resolutions of 512×384 and 384×512 , respectively, notably outperforming

Arbitrary Aspect Ratio Extension. Table 3: Comparison of state-of-the-art extrapolation methods and our LEDiT trained on 256×256 ImageNet at arbitrary aspect ratios. We set CFG=1.5.

Model	Resolution	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
DiT-Sin/Cos PE		153.74	144.66	16.52	0.13	0.27
DiT-VisionNTK		179.71	117.81	15.88	0.09	0.36
DiT-VisionYaRN	512×384	25.69	46.22	176.19	0.58	0.36
DiT-RIFLEx	312×364	163.38	117.22	20.36	0.11	0.44
FiTv2-VisionNTK		177.44	114.56	17.14	0.08	0.40
FiTv2-VisionYaRN		56.04	51.05	81.96	0.35	0.47
LEDiT		20.29	38.52	191.69	0.63	0.35
DiT-Sin/Cos PE		158.21	139.80	16.98	0.14	0.26
DiT-VisionNTK		150.70	110.67	25.88	0.14	0.41
DiT-VisionYaRN	384×512	22.02	48.72	202.03	0.61	0.35
DiT-RIFLEx	364×312	143.84	116.93	27.42	0.14	0.45
FiTv2-VisionNTK		177.44	114.56	17.14	0.08	0.40
FiTv2-VisionYaRN		49.67	57.07	99.29	0.39	0.41
LEDiT		18.82	42.64	205.38	0.64	0.36

VisionNTK, VisionYaRN, and RIFLEx. These results confirm that LEDiT can generate high-quality images across diverse aspect ratios even without various aspect ratio training techniques. See Figure 20 for the qualitative comparison.

Text-to-image generation. We further evaluate the performance of our method on the text-to-image generation task. Table 4 shows that LEMMDiT perform favorably compared to state-of-the-art extrapolation methods. Specifically, LEMMDiT achieves an FID of 29.89 and an sFID of 39.98, representing a substantial reduction compared to Vanilla MMDiT and RoPE-based variants. The CLIP Score [34] shows that LEDiT consistently outperforms other methods in terms of semantic coherence. In Figure 21, we present a qualitative comparison between LEMMDiT and other methods.

Vanilla MMDiT produces images with severe quality degradation. VisionNTK generates images with fine details but suffers from object duplication. VisionYaRN and RIFLEx yield more plausible object structures but lose fine-grained details. In contrast, LEDiT generates images with reasonable structures and rich details.

5 Conclusion

In this paper, we introduce a novel Diffusion Transformer, named Length-Extrapolatable Diffusion Transformer (LEDiT). LEDiT does not require explicit positional encodings such as RoPE. By combining causal attention and a locality enhancement module, LEDiT can implicitly encode positional information, which facilitates length extrapolation. Conditional and text-to-image gen-

In this paper, we introduce a novel Diffusion Transformer, named Length-Extrapolatable Diffusion Transformer (LEDiT). LEDiT does Table 4: Text-to-image comparison of state-of-the-art extrapolation methods and our LEMMDiT trained on 256×256 COCO. The inference resolution is 512×512. We set Transformer (LEDiT). LEDiT does

Model	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑	CLIP↑
MMDiT	160.72	156.38	9.09	0.07	0.09	22.94
MMDiT-ViNTK	78.56	112.85	19.41	0.19	0.30	24.91
MMDiT-ViYaRN	163.88	93.39	10.35	0.11	0.30	23.37
MMDiT-RIFLEx	34.58	52.58	21.75	0.40	0.36	27.14
LEMMDiT	29.89	39.98	24.11	0.44	0.31	27.82

eration shows that LEDiT supports up to $4\times$ inference resolution scaling. Compared to previous extrapolation methods, we can generate images with more coherent object structures and richer details. We hope that LEDiT's principled departure from explicit positional encoding paradigms will not only advance the frontier of length extrapolation, but also inspire new perspectives on the foundational design space of transformer architecture.

References

- [1] Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth words: A vit backbone for diffusion models. In *CVPR*, pages 22669–22679, 2023.
- [2] bloc97. Ntk-aware scaled rope allows llama models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation. https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/, 2023.
- [3] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-σ: Weak-to-strong training of diffusion transformer for 4k text-to-image generation. In *ECCV*, pages 74–91. Springer, 2024.
- [4] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis. In *ICLR*, 2024.
- [5] Ta-Chung Chi, Ting-Han Fan, Li-Wei Chen, Alexander I Rudnicky, and Peter J Ramadge. Latent positional information is in the self-attention variance of transformer language models without positional embeddings. In *ACL*, 2023.
- [6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *CVPR*, pages 248–255, 2009.
- [7] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In *NeurIPS*, pages 8780–8794, 2021.
- [8] Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. In *ICML*, 2024.
- [9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2021.

- [10] Ruoyi Du, Dongliang Chang, Timothy Hospedales, Yi-Zhe Song, and Zhanyu Ma. Demofusion: Democratising high-resolution image generation with no \$\$\$. In CVPR, pages 6159–6168, 2024.
- [11] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *ICML*, 2024.
- [12] Anthony Fuller, Daniel Kyrollos, Yousef Yassin, and James Green. Lookhere: Vision transformers with directed attention generalize and extrapolate. In *NeurIPS*, 2024.
- [13] Olga Golovneva, Tianlu Wang, Jason Weston, and Sainbayar Sukhbaatar. Contextual position encoding: Learning to count what's important. arXiv preprint arXiv:2405.18719, 2024.
- [14] Lanqing Guo, Yingqing He, Haoxin Chen, Menghan Xia, Xiaodong Cun, Yufei Wang, Siyu Huang, Yong Zhang, Xintao Wang, Qifeng Chen, et al. Make a cheap scaling: A self-cascade diffusion model for higher-resolution adaptation. In ECCV, 2024.
- [15] Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without positional encodings still learn positional information. In EMNLP, 2022.
- [16] Yingqing He, Shaoshu Yang, Haoxin Chen, Xiaodong Cun, Menghan Xia, Yong Zhang, Xintao Wang, Ran He, Qifeng Chen, and Ying Shan. Scalecrafter: Tuning-free higher-resolution visual generation with diffusion models. In *ICLR*, 2024.
- [17] Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision transformer. In ECCV, pages 289–305. Springer, 2024.
- [18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*, 2017.
- [19] Marius Hobbhahn, Agustinus Kristiadi, and Philipp Hennig. Fast predictive uncertainty for classification with bayesian deep networks. In *UAI*, 2022.
- [20] Linjiang Huang, Rongyao Fang, Aiping Zhang, Guanglu Song, Si Liu, Yu Liu, and Hongsheng Li. Fouriscale: A frequency perspective on training-free high-resolution image synthesis. In ECCV, 2024.
- [21] Md Amirul Islam, Sen Jia, and Neil DB Bruce. How much position information do convolutional neural networks encode? In ICLR, 2020.
- [22] Zhiyu Jin, Xuli Shen, Bin Li, and Xiangyang Xue. Training-free diffusion model adaptation for variable-sized text-to-image synthesis. In *NeurIPS*, 2023.
- [23] Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy. The impact of positional encoding on length generalization in transformers. In *NeurIPS*, 2023.
- [24] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved precision and recall metric for assessing generative models. In *NeurIPS*, 2019.
- [25] Black Forest Labs. Flux: Efficient latent space modeling for image generation. https://github.com/black-forest-labs/flux, 2024.
- [26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, pages 740–755, 2014.
- [27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *ICCV*, pages 10012–10022, 2021.
- [28] Zeyu Lu, Zidong Wang, Di Huang, Chengyue Wu, Xihui Liu, Wanli Ouyang, and Lei Bai. Fit: Flexible vision transformer for diffusion model. In *ICML*, 2024.

- [29] Xin Men, Mingyu Xu, Bingning Wang, Qingyu Zhang, Hongyu Lin, Xianpei Han, and Weipeng Chen. Base of rope bounds context length. arXiv preprint arXiv:2405.14591, 2024.
- [30] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter Battaglia. Generating images with sparse representations. In *ICML*, pages 7958–7968. PMLR, 2021.
- [31] William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, pages 4195–4205, 2023.
- [32] Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window extension of large language models. In *ICLR*, 2024.
- [33] Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables input length extrapolation. In *ICLR*, 2022.
- [34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *ICML*, 2021.
- [35] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *CVPR*, pages 10684–10695, 2022.
- [36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *MICCAI*, pages 234–241. Springer, 2015.
- [37] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. In *NeurIPS*, 2016.
- [38] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. In *NeurIPS*, 2022.
- [39] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
- [40] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional image generation with pixelcnn decoders. In *NeurIPS*, 2016.
- [41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.
- [42] Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, and Limin Wang. Exploring dcn-like architecture for fast image generation with arbitrary resolution. In *NeurIPS*, 2024.
- [43] ZiDong Wang, Zeyu Lu, Di Huang, Cai Zhou, Wanli Ouyang, et al. Fitv2: Scalable and improved flexible vision transformer for diffusion model. arXiv preprint arXiv:2410.13925, 2024.
- [44] Ge Wu, Shen Zhang, Ruijing Shi, Shanghua Gao, Zhenyuan Chen, Lei Wang, Zhaowei Chen, Hongcheng Gao, Yao Tang, Jian Yang, et al. Representation entanglement for generation: Training diffusion transformers is much easier than you think. *arXiv preprint arXiv:2507.01467*, 2025.
- [45] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing convolutions to vision transformers. In ICCV, pages 22–31, 2021.
- [46] Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffusion transformers. In *ICLR*, 2025.
- [47] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer: Simple and efficient design for semantic segmentation with transformers. In *NeurIPS*, pages 12077–12090, 2021.

- [48] Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and Saining Xie. Representation alignment for generation: Training diffusion transformers is easier than you think. In *ICLR*, 2025.
- [49] Shen Zhang, Zhaowei Chen, Zhenyu Zhao, Yuhao Chen, Yao Tang, and Jiajun Liang. Hidiffusion: Unlocking higher-resolution creativity and efficiency in pretrained diffusion models. In *ECCV*, pages 145–161. Springer, 2024.
- [50] Min Zhao, Guande He, Yixiao Chen, Hongzhou Zhu, Chongxuan Li, and Jun Zhu. Riflex: A free lunch for length extrapolation in video diffusion transformers. In *ICML*, 2025.
- [51] Chuanyang Zheng, Yihang Gao, Han Shi, Minbin Huang, Jingyao Li, Jing Xiong, Xiaozhe Ren, Michael Ng, Xin Jiang, Zhenguo Li, et al. Dape: Data-adaptive positional encoding for length extrapolation. In *NeurIPS*, 2024.

A Proof of Theorem 3.1

Assumptions. In Theorem 3.1, we demonstrate that Causal Attention introduces a position-dependent variance in attention outputs, allowing the Transformer to encode positional information implicitly.

To facilitate the subsequent derivations, we introduce the following assumptions:

Stochastic Initialization Assumption: We assume that the attention scores $S = \frac{QK^{\top}}{\sqrt{d_k}}$ are independently and identically distributed (i.i.d.). Analogously, the value V is assumed to be i.i.d. with $E[V] = \mu_V$ and $Var(V) = \sigma_V^2$.

Mutual Independence: We assume that the attention scores $\{S_{ij}\}$ and the value V are mutually independent.

Proof. Consider a sequence of length n. For $1 \le i, j \le n$, the causal attention matrix A_{ij} is defined by

$$A_{ij} = \begin{cases} \frac{\exp(S_{ij})}{\sum_{j'=1}^{i} \exp(S_{ij'})}, & i \ge j, \\ 0, & i < j. \end{cases}$$
 (13)

Let $Z_{ij} = \exp(S_{ij})$ and $W_{ij} = \frac{Z_{ij}}{\sum_{j'=1}^{i} Z_{ij'}}$. Given the assumption on S, the elements $\{S_{ij}\}$ are assumed to be i.i.d., where

$$S_{ij} = \frac{1}{\sqrt{d_k}} \sum_{m=1}^{d_k} Q_{im} K_{jm}.$$
 (14)

Then the attention output at position i in dimension l is $Y_{il} = \sum_{j=1}^{i} W_{ij} V_{jl}$. The variance of (Y_{il}) is :

$$\operatorname{Var}(Y_{il}) = \operatorname{Var}\left(\sum_{j=1}^{i} W_{ij} V_{jl}\right) = \sum_{j=1}^{i} \operatorname{Var}(W_{ij} V_{jl}), \tag{15}$$

since W_{ij} and V_{jl} are independent for each i, j, l. Furthermore, $Var(W_{ij}V_{jl}) = E[W_{ij}^2] \sigma_V^2 + \mu_V^2 Var(W_{ij})$. Hence,

$$Var(Y_{il}) = \sum_{j=1}^{i} (E[W_{ij}^2] \sigma_V^2 + \mu_V^2 Var(W_{ij})).$$
 (16)

Because Z_{ij} are i.i.d. and positive, we have $\sum_{j=1}^{i} W_{ij} = \frac{\sum_{j=1}^{i} Z_{ij}}{\sum_{j'=1}^{i} Z_{ij'}} = 1$, hence $E[W_{ij}] = 1/i$.

Besides, the normalized vector
$$(W_{i1}, W_{i2}, \ldots, W_{ii}) = \left(\frac{Z_{i1}}{\sum_{j'=1}^{i} Z_{ij'}}, \ldots, \frac{Z_{ii}}{\sum_{j'=1}^{i} Z_{ij'}}\right)$$
 can be

approximated by a $\operatorname{Dirichlet}(1,\dots,1)$ distribution. This approximation is conceptually aligned with the analytic framework proposed by Hobbhahn [19], which establishes a mapping from a distribution over logits to a $\operatorname{Dirichlet}$ distribution on the corresponding softmax outputs. Reasonably, whenever the exponentials $\{\exp(S_{ij})\}$ do not differ too sharply and remain roughly exchangeable, this leads to the uniform-symmetric Dirichlet scenario. In practice, it provides a convenient closed-form $E[W_{ij}^2] = \frac{2}{i(i+1)}$.

Then $\operatorname{Var}(W_{ij}) = E[W_{ij}^2] - (E[W_{ij}])^2 = \frac{2}{i(i+1)} - \frac{1}{i^2}$. Substituting into the sum, one obtains

$$\operatorname{Var}(Y_{il}) = \sum_{i=1}^{i} \left(\frac{2}{i(i+1)} \,\sigma_V^2 + \mu_V^2 \left[\frac{2}{i(i+1)} - \frac{1}{i^2} \right] \right) = \frac{2}{i+1} \,\sigma_V^2 + \frac{i-1}{i(i+1)} \,\mu_V^2. \tag{17}$$

As i increases, we can approximate $\frac{i-1}{i(i+1)} pprox \frac{1}{i+1}$, leading to the reasonable approximation

$$Var(Y_{il}) \approx \frac{C}{i+1},\tag{18}$$

B Justification of Mutual Independence Assumption

We observe that the correlation between the attention matrix and the value vectors is low during the early stages of denoising. This empirical observation supports the validity of independence assumption. As discussed in the main paper, our analysis primarily focuses on the early stage, where we show that causal attention mainly encodes positional information.

The input sequence $x=[x_1,...,x_n]$ can be approximated as i.i.d. Gaussian noise in the early denoising stage. Each x_i is an independent Gaussian vector. The queries and keys are computed as: $q_i=x_iW_q, k_j=x_jW_k$ Since the x_i are i.i.d., the sets q_i are also i.i.d. after linear transformation, the same as k_j . The attention score is: $S_{ij}=q_i^Tk_j$. Because the k_j are i.i.d., the set S_{ij} for j=1,...n are identically distributed random variables. After applying softmax $A=\operatorname{Softmax}(S)$, the attention matrix A_{ij} approaches a uniform distribution, and $\mathbb{E}[A_{ij}]=1/n$. From this perspective, the attention matrix and the value have low correlation: changes in the value vectors do not significantly affect the attention matrix, resulting in low correlation. We conduct a toy experiment with a sequence length of 256 and a head hidden dimension of 72, consistent with the DiT-XL/2 configuration. We randomly initialized W_q, W_k, W_v , generated random Gaussian noise x, and computed the correlation coefficient between the attention scores S and the values V over 1000 trials. The average correlation coefficient was 0.03, indicating very low correlation. This provides theoretical support for our assumption.

In practice, we also observe several layers show low correlation between the attention matrix and the value vectors during the early denoising stages of a trained diffusion transformer. As shown in Figure 10, we report the correlation coefficients between the attention matrix and the value vectors across different timesteps and layers. The correlation remains low in the early stages of denoising. While the correlation gradually increases in later stages—where the independence assumption no longer holds—we have demonstrated in the main paper that causal attention primarily encodes positional information during the early denoising steps. Therefore, this does not affect the validity of our justification.

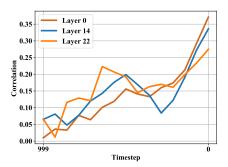


Figure 10: Correlation across timestep.

C Variance Distribution Across Timesteps

As shown in Figure 11, we present the variance distribution of causal attention outputs across different timesteps and layers. During the early stages of denoising, the variance distribution mainly follows our proposed theorem. In the late denoising stage, especially T<100, the variance distribution deviates from the theorem and becomes irregular. We attribute this to the higher independence among values V in the early stages, which aligns with the theorem's assumptions. In the later stages, the increasing correlation between tokens (position and semantic relationships) violates the assumptions. This raises a question: What is the potential impact of variance deviation in later denoising steps on image quality? To further investigate this, we conduct additional experiments. Specifically, we introduce a switching threshold T' in the denoising process. Given that the denoising timestep T decreases from 1000 to 0, we design the attention mechanism as follows: when $T \geq T'$, we use

causal attention; when T < T', we switch to self-attention. In this setup, a smaller T' corresponds to switching later in the denoising process.

We choose different values T' to train an LEDiT-XL/2 on 256×256 ImageNet and use it to generate 512×512 images. As shown in Figure 12, we find a clear trend: the later the switch, namely the smaller the T', the better the generated image quality. Notably, when T'=100, the generated images are comparable to those of LEDiT with full causal attention (T'=0). This suggests that the positional information is primarily acquired in the early phase, and the causal attention with variance deviation in the later steps (T<100) has minor effects on the resolution extrapolation ability.

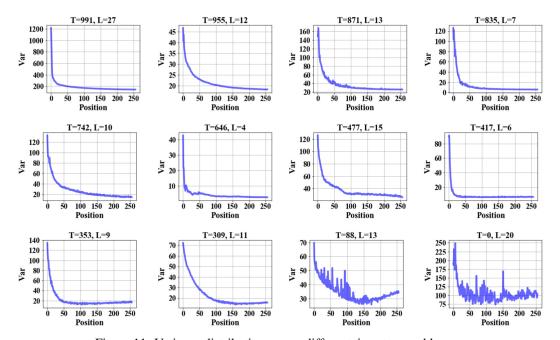


Figure 11: Variance distribution across different timesteps and layers.

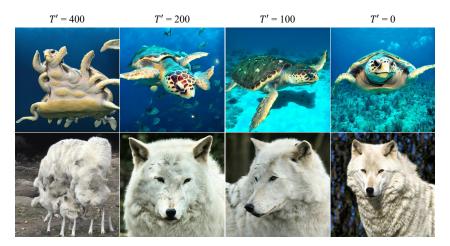


Figure 12: Switching threshold ablations. The resolution is 512×512 . We set CFG=4.0. Variance deviation in the later steps (T < 100) has minor effects on the resolution extrapolation ability.

D Variance Distribution of Variant d

The variance distribution under the "Mask Lower-right Corner" order is consistent with our main findings. As this is a 2D scan variant, the variance is expected to decrease progressively along the

Table 5: Positional index regression.

Method	1D Position F	Regression	2D Position Regression			
Method	Training Loss	raining Loss Test Error		Test Error		
DiT-NoPE DiT-Cau. Atten.	5091.24 97.42	5265.85 112.08	12.57 1.20	13.30 1.36		

height or width axis. Figure 13 demonstrates that the 2D causal scan variants still exhibit the existence of causal attention in DiT that satisfies the conditions outlined in our theorem.

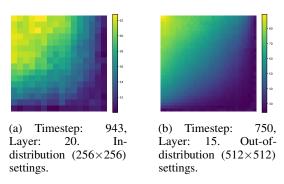


Figure 13: Variance distribution of variant d.

E Positional Index Regression

We further conduct positional index regression experiment to verify that causal attention can encode positional information. Specifically, we trained an MLP to predict the position index of each token using the outputs of causal attention from a well-trained DiT as input. We conducted experiments on both 1D and 2D position regression tasks on ImageNet- 256×256 to validate the effectiveness.

For 1D causal attention, the MLP predicts the 1D position index of each token (e.g., 1, 2, ... 256). For 2D causal attention, the MLP predicts the 2D position index (e.g., 1,1, 1,2,...,16,16) for each token. The MLP is trained using L2 loss.

We performed these experiments using DiT with 1D causal attention (variant (a) in the main paper) and DiT with 2D causal attention (variant (d)), and compared the results with DiT-NoPE, which cannot encode positional information. If the causal attention variants outperform DiT-NoPE, it demonstrates that the outputs of causal attention contain implicit positional information.

During inference, we generated images using both DiT with causal attention and DiT-NoPE. At each of the 250 denoising steps, the MLP predicts the positional index from the features output by causal attention. We generated 100 images, resulting in 2,500 tests in total. We report the L2 loss between the predicted and ground truth position indices. Since the MLP is trained to predict positional indices, it cannot generalize to unseen positional indices when extrapolating to higher resolutions. Therefore, we perform inference with the MLP at the training resolution. Nevertheless, the significant performance gap compared to NoPE provides strong evidence that causal attention can implicitly encode positional information. As shown in the table below, causal attention demonstrates a significant advantage over NoPE in both training loss and test error. This indicates that the position regressor can effectively learn positional information from the outputs of causal attention, providing further evidence that causal attention can implicitly encode positional information.

F Architecture Refinement

We observe that minor architectural modifications to LEDiT during training from scratch can significantly improve extrapolation performance, as detailed in Table 6. (i) Adding a layer normalization after convolution stabilizes training and enhances extrapolation. (ii) Using only a single causal layer achieves strong extrapolation, slightly outperforming the 14-layer setting. (iii) The multi-dilation

strategy reduces sFID but leads to a slight increase in FID. This finding contrasts with the fine-tuning scenario in Table 1c. We hypothesize that, during training from scratch, the dilation perturbations may hinder convergence, whereas in the fine-tuning setting, where the model is already well-trained, dilation has less impact on convergence. A promising future direction is to adopt a progressive multi-dilation strategy, which we leave for future work.

Table 6: Ablation study on architecture refinement. The inference resolutin is 512×512 . The models are trained on 256×256 ImageNet, and we report results with 10K samples.

Causal Layers	Conv Post Norm	Multi-dilation	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
14		✓	59.32	78.35	62.13	0.42	0.36
14	\checkmark	\checkmark	40.45	72.98	104.24	0.56	0.39
14	\checkmark		39.84	80.41	104.26	0.55	0.38
1	\checkmark		36.79	76.98	112.82	0.56	0.39

G In-distribution Comparison

In the main paper, we compared the results of various methods at resolutions higher than the training resolution. In this section, we compare the performance of LEDiT-XL/2 and LEMMDiT at the training resolution. Tables 7 and 8 shows the result of LEDiT-XL/2 on ImageNet and LEMMDiT on COCO. The FID of LEDiT and LEMMDiT increases slightly at 256×256. Although both LEDiT (with causal attention) and DiT (with standard self-attention) have approximately the same number of parameters, their computational complexities differ substantially. For an input sequence of length L and hidden dimension d, the self-attention mechanism computes attention scores for all possible pairs, resulting in a per-layer computational complexity of $\mathcal{O}(L^2d)$. In contrast, causal attention restricts each position to attend only to previous positions (including itself), leading to a reduced number of attention computations. Specifically, the total number of attention weights is reduced from L^2 to L(L+1)/2, and the corresponding computational complexity becomes $\mathcal{O}(L^2d/2)$. This halves the theoretical compute cost compared to self-attention, i.e., $\frac{\mathcal{O}(L^2d)}{\mathcal{O}(L^2d/2)} = 2$. While this reduction improves efficiency theoretically, it may also limit the model's ability to capture long-range dependencies, which can explain the slight performance gap between LEDiT and DiT. Nevertheless, as illustrated in Figure 14, LEDiT still produces high-fidelity samples, demonstrating that causal attention still achieves competitive generative quality despite its lower computational complexity.

Table 7: Comparison of performance on 256×256 resolution. The models are trained on 256×256 ImageNet. We set CFG=1.5. We report results with 50K samples.

Model	Resolution	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
DiT-Sin/Cos PE		2.27	4.60	278.24	0.83	0.57
DiT-RoPE		2.33	4.58	272.02	0.83	0.58
DiT-Learnable PE	256×256	2.38	4.69	275.05	0.82	0.58
DiT-LH-180		2.54	4.94	248.47	0.82	0.57
LEDiT		2.38	4.58	268.66	0.83	0.58

Figure 14: 256×256 samples generated from our LEDiT-XL/2 trained on ImageNet 256×256 resolution with CFG = 4.0.

Table 8: Comparison of performance on 256×256 resolution. The models are trained on 256×256 COCO. We set CFG=2. We report results with 40,504 samples.

Model	Resolution	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
MMDiT	256×256	6.32	11.77	30.01	0.65	0.49
MMDiT-RoPE		5.39	11.68	32.32	0.67	0.50
LEMMDiT		6.35	11.61	31.54	0.65	0.48

H 512×512 ImageNet

We fine-tune a new LEDiT-XL/2 model on 512×512 ImageNet for 100K iterations using the same hyperparameters as the 256×256 model. The qualitative comparison among vanilla DiT, VisionNTK, VisionYaRN, and LEDiT is shown in Figure 9. As resolution increases from 512×512 to 1024×1024 , vanilla DiT exhibits further quality degradation, with significant noise artifacts. FiTv2-VisionNTK generates images with duplicated objects, while FiTv2-VisionYaRN produces blurry images with severe high-frequency detail loss. DiT-VisionNTK, VisionYaRN, RIFLEx generate higher-quality images but exhibit object duplication in local structures. In contrast, LEDiT maintains more realistic structures and finer details. The quantitative results are reported in Table 9. Due to the heavy quadratic computational burden, we generate 10K images for evaluation. LEDiT consistently achieves superior metric scores across all resolution settings. For instance, at a resolution of 768×768 , LEDiT improves the previous best FID of 28.94 (achieved by DiT-VisionNTK) to 21.75.

Table 9: Comparison of state-of-the-art extrapolation methods and our LEDiT trained on 512×512 ImageNet at various resolutions beyond the training image size. We set CFG=1.5.

Model		768×768				896×896				1024×1024					
	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
DiT-Sin/Cos PE	159.52	187.92	7.76	0.12	0.24	229.93	217.70	3.27	0.03	0.08	281.57	240.17	2.16	0.01	0.03
DiT-VisionNTK	28.94	96.37	142.35	0.67	0.53	64.41	139.97	64.52	0.48	0.47	109.31	170.58	25.31	0.29	0.39
DiT-VisionYaRN	29.46	61.37	161.32	0.66	0.53	65.58	91.48	83.21	0.50	0.51	104.62	118.03	43.04	0.35	0.47
DiT-RIFLEx	31.10	80.71	134.01	0.66	0.49	64.84	115.61	62.90	0.48	0.47	114.84	152.90	23.87	0.27	0.36
FiTv2-VisionNTK	251.73	195.83	3.44	0.02	0.12	309.13	230.84	2.54	0.01	0.01	349.76	240.17	2.43	0.01	0.01
FiTv2-VisionYaRN	51.13	64.48	70.40	0.49	0.62	215.72	175.75	6.33	0.06	0.41	327.26	217.01	2.91	0.01	0.08
LEDiT	21.75	49.81	176.26	0.71	0.52	48.64	73.25	97.54	0.56	0.50	91.11	108.70	48.13	0.40	0.44

I Comparison with Learnable Positional Embeddings

Learnable positional embeddings have been widely adopted in the original ViT [9] and Swin Transformer [27]. We replace the Sin/Cos PE in DiT with learnable positional embeddings to conduct a comparison with our method. For length extrapolation, we interpolate the learnable positional

embeddings to higher resolutions to ensure compatibility. We report the in-distribution performance in Table 7 and the out-of-distribution performance in Table 10. At the training resolution, Learnable PE and LEDiT exhibit nearly comparable performance. When extrapolating to 512×512 , we observe a significant drop for Learnable PE. This is likely because the interpolated positional embeddings at new spatial locations are not seen during training, leading to degradation.

Table 10: Comparison with learnable positional embeddings on 512×512 resolution. The models are trained on 256×256 ImageNet, and we report results with 10K samples.

Model	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
DiT-Learnable PE	208.45	139.38	5.23	0.02	0.02
LEDiT	35.86	67.97	139.91	0.52	0.51

J Comparison with LookHere

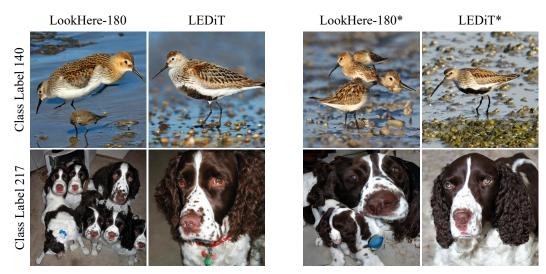


Figure 15: Comparison with LookHere at 512×512 resolution. The models are trained on 256×256 ImageNet. We set CFG=4.0. * indicates training from scratch. Best viewed when zoomed in.

Both LEDiT and LookHere [12] explore causal attention to enhance length extrapolation. LookHere carefully designs various combinations of causal masks to provide directional inductive biases. It introduces AliBi [33] to penalize attention scores and demonstrates extrapolation improvement. LookHere conduct extensive experiments to demonstrate the extrapolation capabilities in classification.

However, we clarify that there are key differences. We provide a rigorous theoretical framework that explains why causal attention is capable of encoding positional information and enabling length extrapolation. This not only facilitates effective image generation with robust extrapolation capabilities, but also offers valuable insights into the underlying mechanisms of length extrapolation. In contrast, LookHere does not investigate the reasons behind causal attention's ability to encode positional information; it merely states that attention with 2D masks can "limit the distribution shift that attention heads face when extrapolating".

We directly adapt LookHere to image generation tasks and find it does not yield effective length extrapolation. We select LookHere-180—the best-performing variant—as the representative method and compare its performance with LEDiT. We (i) train the randomly initialized LookHere/LEDiT for 400K steps or (ii) fine-tune LookHere/LEDiT for 100K steps. Quantitative results are presented in Table 11. In the fine-tuning scenario, LEDiT outperforms LookHere. In the training-from-scratch scenario, LookHere achieves a lower sFID, while LEDiT achieves a lower FID. Specifically, sFID leverages intermediate spatial features from the Inception network, capturing fine-grained image details, whereas FID is computed using the spatially-pooled layer, reflecting more global structures. We interpret that the lower sFID of LookHere indicates fine-grained image details, while the lower FID of LEDiT suggests more coherent object structures. As shown in Figure 15, when extrapolated

to 512×512 resolution, samples generated by LookHere preserve fine image details but suffer from severe object duplication, whereas those generated by LEDiT exhibit more coherent structures, indicating that LEDiT shows better extrapolation performance. We believe a promising direction is to integrate LookHere and LEDiT, aiming to generate images with both high-quality details and coherent object structures.

Table 11: Comparison with LookHere on 512×512 resolution. The models are trained on 256×256 ImageNet. We set CFG=1.5. We report results with 10K samples. * indicates training from scratch.

Model	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
DiT-LH-180	66.93	83.09	82.39	0.39	0.36
LEDiT	35.86	67.97	139.91	0.52	0.51
DiT-LH-180*	41.97	71.42	111.44	0.56	0.33
LEDiT*	36.79	76.98	112.82	0.56	0.39

K 16× Length Extrapolation

We evaluate LEDiT trained on ImageNet- 256×256 and extrapolated to 1024×1024 resolution (a $16 \times$ length extrapolation). As shown in Table 12, LEDiT outperforms other methods. However, the high FID suggests that aggressive resolution extrapolation remains challenging and warrants further exploration.

Table 12: Comparison with other method on 1024×1024 resolution. The models are trained on 256×256 ImageNet, and we report results with 10K samples.

Model	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
DiT-Sin/Cos PE	281.57	240.17	2.16	0.01	0.02
DiT-Learnable PE	284.07	230.15	2.41	0.08	0.01
DiT-VisionNTK	333.01	244.23	1.96	0.22	0.00
DiT-VisionYaRN	228.41	199.62	7.60	0.03	0.09
DiT-RIFLEx	335.30	214.46	4.86	0.01	0.12
FiTv2-VisionNTK	342.54	260.28	2.75	0.01	0.00
FiTv2-VisionYaRN	338.12	241.12	2.93	0.01	0.00
LEDiT	212.97	169.88	10.14	0.05	0.14

L FID over Fine-tuning Steps

We plot FID over fine-tuning steps from 25K to 200K at both training resolution (256×256) and beyond (512×512) , as shown in Figure 16. At 256×256 resolution, FID generally decreases with more fine-tuning steps. At 512×512 , performance plateaus around 50K steps, then gradually increases with further fine-tuning. We chose 100K steps to balance performance at in-distribution and out-of-distribution.

M Ablation Study on Attention Scaling

Following the widely adopted practice in length extrapolation, we also apply attention scaling [22]. Figure 17 shows the ablation of attention scaling. Without attention scaling, LEDiT can still generate reasonable images. Attention scaling primarily improves image quality and mitigates local structural issues (e.g., the dog's mouth).

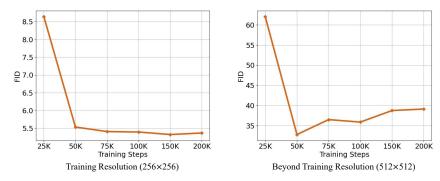


Figure 16: FID-10K over fine-tuning steps of LEDiT at the training resolution (256×256) and beyond the training resolution (512×512) .

Figure 17: Attention scaling ablation. The resolution is 512×512 generated by LEDiT-XL/2 trained on ImageNet- 256×256 . We set CFG=4.0.

N Ablation Study on CFG

Following prior work, FiT, we set CFG=1.5. Additionally, we test model performance across various CFGs, where CFG=1 indicates no classifier-free guidance. As shown in Table 13, LEDiT outperforms VisionNTK, VisionYaRN and RIFLEx across different CFGs, demonstrating LEDiT's robust extrapolation capability.

Table 13: Ablation study on CFGs. The models are trained on 256×256 ImageNet. The inference resolution is 512×512 and we report results with 10K samples.

Model		C	FG = 1.0)		CFG = 1.5				CFG = 2.0					
Wodel	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑	FID↓	$sFID\!\!\downarrow$	IS↑	Prec.↑	Rec.↑	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
DiT-VisionNTK	279.14	173.27	6.17	0.02	0.16	251.85	153.40	8.73	0.04	0.26	213.99	134.39	11.89	0.06	0.27
DiT-VisionYaRN	125.73	123.19	32.78	0.19	0.48	53.75	76.62	107.75	0.41	0.53	27.12	54.04	211.85	0.61	0.46
DiT-RIFLEx	302.35	197.81	7.98	0.03	0.11	256.1	172.54	10.54	0.04	0.18	214.30	149.61	13.48	0.05	0.21
FiTv2-VisionNTK	301.94	214.17	3.55	0.00	0.08	265.40	198.17	6.58	0.01	0.03	205.64	150.89	9.22	0.03	0.23
FiTv2-VisionYaRN	246.06	180.58	8.43	0.04	0.29	163.27	139.45	20.42	0.12	0.35	97.49	95.19	46.50	0.22	0.52
LEDiT	86.90	107.87	45.19	0.26	0.54	35.86	67.97	139.91	0.52	0.51	20.51	45.71	250.96	0.69	0.44

O More Training Steps

In this section, we use LEDiT without architecture refinement. We further extended the training from scratch to 600K and 1000K steps, as presented in Table 14. LEDiT consistently outperforms VisionNTK, VisionYaRN and RIFLEx, and we do not observe FID saturation.

Table 14: Comparison of state-of-the-art extrapolation methods when training from scratch on 256×256 ImageNet. We extend the training steps to 600K and 1000K. The inference resolution is 512×512 . We report results with 10K samples.

Model	Training Steps (K)	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
DiT-Sin/Cos PE	600	244.22	193.22	2.74	0.19	0.04
DiT-VisionNTK	600	183.16	146.21	16.18	0.09	0.33
DiT-VisionYaRN	600	118.44	123.36	36.68	0.20	0.43
DiT-RIFLEx	600	132.27	129.26	25.94	0.15	0.40
LEDiT	600	56.34	72.14	74.10	0.44	0.38
DiT-VisionNTK	1000	190.65	151.52	14.19	0.09	0.35
DiT-VisionYaRN	1000	131.03	127.05	32.13	0.17	0.44
DiT-RIFLEx	1000	160.42	117.45	21.37	0.11	0.40
LEDiT	1000	54.29	74.53	79.35	0.45	0.42

P Performance on Smaller Models

We conduct experiments on smaller models, namely DiT-B and DiT-S, under the same training settings as LEDiT-XL/2. As shown in Table 15, LEDiT consistently outperforms state-of-the-art extrapolation methods across all evaluation metrics in DiT-B, and shows substantial improvements in key metrics in DiT-S, with comparable FID to DiT-RoPE-NTK. It delivers stable performance gains across DiT-S, DiT-B, and DiT-XL, demonstrating robustness and scalability. These results highlight LEDiT's strong length extrapolation capabilities and generalizability to different model scales.

Table 15: Comparison of performance on 512×512 resolution using DiT-B and DiT-S. The models are trained on 256×256 ImageNet for 400K steps, and we report results with 10K samples.

Model	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
DiT-S-Sin/Cos PE	253.20	186.79	2.36	0.02	0.01
DiT-S-VisionNTK	121.42	197.59	11.61	0.12	0.23
DiT-S-VisionYaRN	161.41	129.67	13.40	0.11	0.20
DiT-S-RIFLEx	313.10	192.36	6.34	0.02	0.20
LEDiT-S	124.71	97.76	18.57	0.16	0.22
DiT-B-Sin/Cos PE	214.05	188.24	3.27	0.02	0.07
DiT-B-VisionNTK	164.51	193.89	6.98	0.09	0.24
DiT-B-VisionYaRN	126.52	132.84	21.37	0.18	0.31
DiT-B-RIFLEx	433.49	225.40	4.00	0.01	0.09
LEDiT-B	86.63	84.93	35.21	0.29	0.30

Q More Ablation Visualization

We present all visualizations of the ablation study in Figure 18.

R More Qualitative Visualization

We present more comparison results with DiT-Sin/Cos PE, DiT-VisionNTK, DiT-VisionYaRN, DiT-REFLEx, FiTv2-VisionNTK, and FiTv2-VisionYaRN to demonstrate the effectiveness of LEDiT, as shown in Figure 19, Figure 20, and Figure 21. LEDiT outperforms other methods in both fidelity and local details.

S Additional Samples

We present more samples generated by LEDiT-XL/2 in Figure 22 and Figure 23.

T Limitations and Future Work

Constrained by limited resources, we train LEDiT only on the ImageNet and COCO datasets. We did not test how LEDiT will perform on a larger-scale dataset such as LAION-5B [38]. The generative capabilities of LEDiT when training with higher resolutions have not been explored. Subsequent research can focus on how to integrate LEDiT into modern powerful diffusion models or LLMs to achieve more amazing outcomes. Moreover, other learnable modules capable of capturing positional information, similar to causal attention, should be explored to further enhance the performance of length extrapolation.

U Broader Impacts

Our diffusion-based approach can advance generative modeling, enabling applications in image synthesis, data augmentation, and scientific discovery, which may benefit research and industry. At the same time, our method could be misused for generating misleading or harmful content, such as deepfakes or synthetic data for malicious purposes. We discuss these risks and suggest possible mitigation strategies.

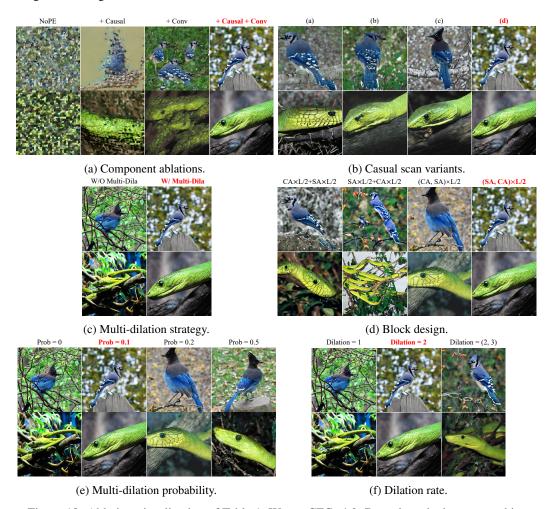


Figure 18: Ablation visualization of Table 1. We set CFG=4.0. Best viewed when zoomed in.

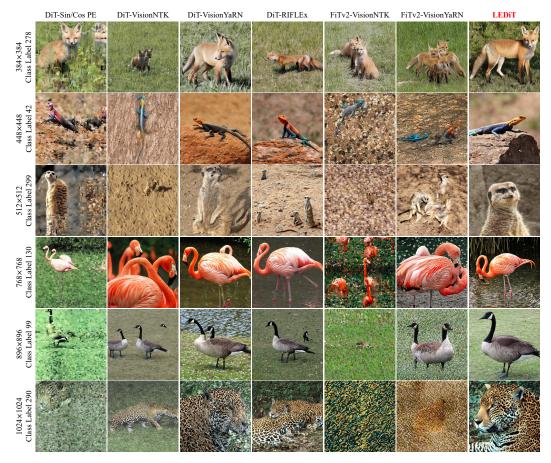


Figure 19: More qualitative comparison with other methods. The resolution and class label are located to the left of the image. We use the model trained on 256×256 ImageNet to generate images with resolutions less than or equal to 512×512 , and the model trained on 512×512 ImageNet to generate images with resolutions greater than 512×512 and less than or equal to 1024×1024 . We set CFG=4.0. Best viewed when zoomed in.

Figure 20: More qualitative comparison with other methods on generating non-square images. The resolution and class label are located to the left of the image. We use the model trained on 256×256 ImageNet to generate images at 512×384 and 384×512 resolutions. We set CFG=4.0. Best viewed when zoomed in.

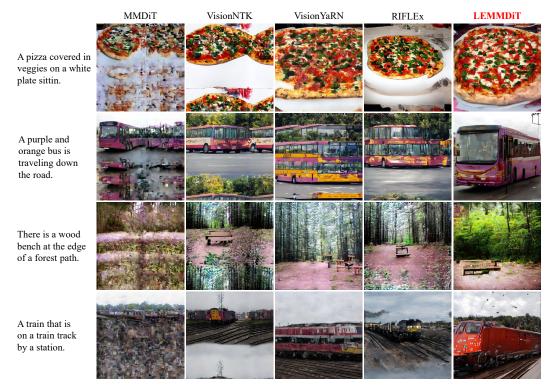


Figure 21: Qualitative comparison with other methods on text-to-image task. The prompts are located to the left of the image. We use the model trained on 256×256 COCO to generate images at 512×512 . We set CFG=6.0. Best viewed when zoomed in.

Figure 22: More arbitrary-resolution samples (512^2 , 512×384 , 384×512 , 512×256 , 256×512 , 384^2 , 256^2 , 128×256). Generated from our LEDiT-XL/2 trained on ImageNet 256×256 resolution. We set CFG = 4.0.

Figure 23: More arbitrary-resolution samples (1024^2 , 1024×768 , 768×1024 , 1024×512 , 512×1024 , 768^2 , 512^2 , 256×512). Generated from our LEDiT-XL/2 trained on ImageNet 512×512 resolution. We set CFG = 4.0.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The contributions are accurately reflected in the abstract and introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section T

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: See Section A for the proof of Theorem 3.1.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiment setup information is introduced in Section 4.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We release the source code in the supplementary material.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The experiment setup information is introduced in Section 4.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]
Justification:
Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The hardware resource is introduced in Section 4.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: See Section U

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to

generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification:
Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification:

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.