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Abstract
Approximate inference in Gaussian process (GP)
models with non-conjugate likelihoods gets
entangled with the learning of the model hyper-
parameters. We improve hyperparameter learning
in GP models and focus on the interplay between
variational inference (VI) and the learning
target. While VI’s lower bound to the marginal
likelihood is a suitable objective for inferring
the approximate posterior, we show that a direct
approximation of the marginal likelihood as in
Expectation Propagation (EP) is a better learning
objective for hyperparameter optimization. We
design a hybrid training procedure to bring the
best of both worlds: it leverages conjugate-
computation VI for inference and uses an EP-like
marginal likelihood approximation for hyperpa-
rameter learning. We compare VI, EP, Laplace ap-
proximation, and our proposed training procedure
and empirically demonstrate the effectiveness of
our proposal across a wide range of data sets.

1. Introduction
Gaussian processes (GPs, Rasmussen & Williams, 2006)
provide a plug-and-play approach for inference and learning,
with principled ways of incorporating prior knowledge over
functions and quantifying uncertainty. While GP regression
under a conjugate (Gaussian) likelihood can be carried out
elegantly in closed form, we focus on the non-conjugate
case, where exact inference is intractable. Training of the
GP consists of inferring the approximate posterior and learn-
ing the hyperparameters of the model. For clarity, by train-
ing we refer to the combination of inference and learning.

In a supervised learning setting, GPs are typically trained
to optimize performance on the training samples (as in em-
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Figure 1. Practical benefits on IONOSPHERE: Marginal likelihood
(top) acts as a training proxy for predictive density (bottom) of
unseen future data. Our training objective produces a better point
for prediction that also matches the MCMC baseline.

pirical risk minimization, Vapnick, 1998). Under the GP
paradigm, the go-to solution to learning is finding θ⋆ that
maximizes the marginal likelihood. The marginal likeli-
hood summarizes the probability that we would generate
the observations y with the model parameters θ if we would
sample over the prior. It is formed by marginalizing over
the latent functions from the GP prior, thus also known as
the evidence. Even if this does not capture all aspects of
generalization (see discussion in Vehtari et al., 2016; Lotfi
et al., 2022), it is still used as a practical proxy for perfor-
mance on unseen test points (see Fig. 1 for the proxy and
test performance on the IONOSPHERE benchmark data set).

Under approximate inference, the marginalization step
entangles the representation of the posterior with the
learning target evaluation. The common approach is to
assume an approximative Gaussian form for the posterior,
so that the inference problem turns into finding a ‘good’ pa-
rameterization for the Gaussian (see Wilkinson et al., 2023,
for a recent discussion on linearization/Gaussianization ap-
proaches). The simplest approach is the so-called Laplace’s
approximation (LA, Williams & Barber, 1998), which uses
a second-order Taylor approximation. It is efficient but not
very accurate. Variational inference (VI, Opper & Archam-
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Figure 2. Log marginal likelihood / predictive density surfaces for the IONOSPHERE data set by varying kernel magnitude σ and
lengthscale ℓ. The colour scale is the same in all plots: −0.8 0 (normalized by n). Optimal hyperparameters are shown by a black
marker. EP and our EP-like marginal likelihood estimation match the MCMC baseline better than VI or LA, thus providing a learning
proxy. For prediction, our method still leverages the same variational representation as VI.

beau, 2009) and expectation propagation (EP, Minka, 2001)
are two commonly used approximate inference methods
for non-conjugate GP models, which have complementary
advantages: VI optimizes a lower bound of the marginal
likelihood, is easy to implement, straightforward to use, and
the convex optimization problem is guaranteed to converge.
However, it is known to underestimate variance (Bui et al.,
2017). EP on the other hand requires implementation-wise
tuning per likelihood and is not guaranteed to converge
(Vehtari et al., 2020). However, it does provide a good
approximation for the marginal likelihood (Kuss &
Rasmussen, 2005; Nickisch & Rasmussen, 2008).

For model performance on unseen test data, the learning
of hyperparameters plays a crucial role. Thus we strongly
advocate against the common practice of jointly optimizing
variational and hyperparameters using the ELBO, as the
training target is only representative for the variational
parameters. We build on work by Khan & Lin (2017) and
Adam et al. (2021) that separate the learning of hyperparam-
eters from inferring the variational parameters, and capture
a link between VI and EP: the approximate posterior
obtained through VI has exactly the same structure as the
approximate posterior of EP. We obtain an EP-like marginal
likelihood estimate from the VI approximate posterior
for full and sparse GPs with no added computational cost.
We propose a hybrid training procedure that combines the
complementary advantages of natural-gradient VI and EP.

The contributions of this paper are as follows. (i) We im-
prove generalizability in non-conjugate GP models with no
extra computational cost by augmenting VI with an EP-like

learning target for hyperparameter learning. (ii) We demon-
strate our EP-like learning target is closer to an MCMC
baseline and thus provides a better learning objective. We
empirically compare the quality of the approximate marginal
likelihood in LA, EP, and VI, and our proposed learning
target. (iii) We show our method improves generalizability
via experiments in binary classification for full and sparse
GP models and robust regression.

2. Approximate Inference
In this section, we review common approximate inference
methods in Gaussian process (GP) models. GP models put
a GP prior over functions:

GP prior: f(x) ∼ GP(µ(x), κ(x,x′)), (1)

where x ∈ X ⊂ Rd is an input vector, µ(x) is the
mean function, and κ(x,x′) is the covariance (ker-
nel) function. This GP prior is linked to the data set
D = (X,y) = {(xi, yi)}ni=1 of input–output pairs through
a likelihood function that maps the latent function value
f(x) to the observations. We assume the likelihood
factorizes over observations:

Likelihood: y | f ∼
∏n

i=1 p(yi | f(xi)). (2)

The posterior is given by p(f |y;θ) ∝ p(y | f ;θ) p(f ;θ),
where θ denotes the model (hyper)parameters of the
likelihood, mean function, and kernel, and f is the vector
of function values evaluated at the inputs. Prediction at a
new test input x∗ is obtained by computing the predictive
distribution p(f(x∗) | D,x∗).
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Probabilistic inference For (conjugate) Gaussian likeli-
hoods, p(yi | fi) = N(yi | f(xi), σ

2
n ), the posterior is avail-

able in closed form as a Gaussian distribution. For non-
Gaussian likelihood models the inference problem needs to
be approached with approximative inference methods. Sam-
pling schemes (see Sec. 5.1 for our baseline solution) can
tackle this, but for efficient inference one typically employs
an approximative Gaussian posterior of the form

Approximate posterior: q(f) = N(m,S). (3)

Its ‘optimal’ parameterization (Opper & Archambeau, 2009)
is given in terms of 2n parameters (α,β) such that m =
Kα and S = (K−1 + diag(β))−1, where K is an n × n
matrix with κ(xi,xj) as the ijth entry. The inference prob-
lem thus turns into (efficiently) finding a (good) represen-
tation of the posterior in terms of Eq. (3) by minimizing
some measure of error. Typical approaches for this are
the Laplace approximation (local linearisation of the prob-
lem), expectation propagation (approximately minimizing
DKL

[
p(f |y)

∥∥ q(f)] from approximate to true posterior),
or variational inference (minimizing DKL

[
q(f)

∥∥ p(f |y)]).
EP is expected to be the most accurate method (see discus-
sion in Vehtari et al., 2016) and Laplace to have the smallest
computational overhead.

Learning under the GP paradigm In probabilistic ma-
chine learning, ‘learning’ typically amounts to finding point
estimates for the hyperparameters θ in the likelihood, mean
function, and kernel by optimizing w.r.t. the log marginal
likelihood:

Learning target: θ⋆ = argmax
θ

log p(y;θ). (4)

For Gaussian likelihoods, the marginal likelihood is avail-
able in closed form. For non-conjugate models, we can
only optimize a proxy to the marginal likelihood p(y;θ) =∫
p(y | f ;θ) p(f ;θ) df , which depends on the approximate

inference scheme and how it represents the posterior.

2.1. Laplace Approximation (LA)

A local Taylor expansion of the log posterior gives the
Laplace approximation (LA, Williams & Barber, 1998).
By defining Ψ(f) = log(p(y | f) p(f ;θ)), the approximate
posterior q(f) is obtained through a second-order Taylor ex-
pansion of Ψ(f) around its maximum at f̂ = argmaxf Ψ(f)
(the posterior mode): p(f |y;θ) ∝ exp(Ψ(f)) ≈
exp

(
Ψ(f̂)+ 1

2 (f− f̂)⊤∇2Ψ(f)|f=f̂ (f− f̂)
)
. This is propor-

tional to N(f | f̂ ,A−1) = q(f), where A = −∇2Ψ(f)|f=f̂

is the Hessian of the negative log posterior at f̂ . The log
marginal likelihood is approximated as

log p(y;θ) = log
∫
exp(Ψ(f)) df

≈ log
∫
exp

(
Ψ(f̂)− 1

2 (f − f̂)⊤A(f − f̂)
)
df . (5)

2.2. Expectation Propagation (EP)

Expectation Propagation (EP, Minka, 2001) is based on
an approximation q(f) that factorizes in the same way as
the target posterior p(f |y;θ) ∝ p(f ;θ)

∏n
i=1 p(yi | fi;θ):

each likelihood term is approximated with a site function
ti(fi; ζi), and

q(f ;θ, ζ) ∝ p(f ;θ)
∏n

i=1 ti(fi; ζi). (6)

For GP models, the sites ti(fi; ζi) are chosen to be (un-
normalized) Gaussians, and hence the global approxi-
mation q(f) is also Gaussian. EP aims to minimize
DKL

[
p(f |y;θ)

∥∥ q(f ;θ, ζ)] w.r.t. ζ. This KL cannot be
computed directly. Instead, EP updates the sites in an it-
erative fashion; the parameters of one site ζi are tuned by
minimizing the local Kullback–Leibler divergence

DKL

[
p(yi | fi;θ) p(f ;θ)

∏
j ̸=i tj(fj ; ζj)∥∥ ti(fi; ζi) p(f ;θ)∏j ̸=i tj(fj ; ζj)

]
, (7)

where in the first argument the n− 1 other likelihood terms
have been replaced by their current site approximation. The
optimal values of ζi in this step can be determined by match-
ing the first two moments. This iterative process often works
well in practice, but can be numerically unstable (e.g., for
Student-t likelihood) and is not guaranteed to converge in
the general case (see Vehtari et al., 2020).

The log marginal likelihood is directly approximated as

log p(y;θ) ≈ LEP(ζ,θ) = log

∫
p(f ;θ)

n∏
i=1

ti(fi; ζi) df ,

(8)
which is known to lead to a good objective for learning
hyperparameters (see Jylänki et al., 2011).

2.3. Variational Inference (VI)

Variational Inference (VI, Opper & Archambeau, 2009) ap-
proximates the GP posterior p(f |y;θ) with a Gaussian
distribution q(f ; ξ) parameterized by ξ. VI minimizes the
reverse KL DKL

[
q(f ; ξ)

∥∥ p(f |y;θ)] by maximizing the
following evidence lower bound (ELBO):

log p(y;θ) ≥ LVI(ξ,θ) =

n∑
i=1

Eq(fi;ξi)

[
log p(yi | fi;θ)

]
−DKL

[
q(f ; ξ)

∥∥ p(f ;θ)], (9)

w.r.t. variational parameters ξ. VI optimizes a lower bound
on the marginal likelihood, so is guaranteed to converge,
which is a strength over EP. As known from Hensman et al.
(2013) and motivated by Khan et al. (2013), it has been
desirable to not use the optimal parameterization in terms
of 2n parameters, as the resulting optimization problem is
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non-convex. Instead, it is common to declare a variational
distribution over the full posterior, q(f ; ξ) = N(m,S), and
optimize the ELBO w.r.t. this mean–covariance parameteri-
zation1 ξ = (m,S) using a general-purpose optimizer (e.g.
Adam, Kingma & Ba, 2015).

In practice, the same lower bound LVI(ξ,θ) is used to op-
timize variational parameters as well as hyperparameters,
i.e., inference and learning are coupled into a single opti-
mization. This approach is commonplace, even though it
is well-known to result in biased hyperparameters (Kuss &
Rasmussen, 2005; Nickisch & Rasmussen, 2008; Bui et al.,
2017).

3. Learning in the Dual Parameterization
We design a hybrid training procedure that augments VI
with an EP-like learning target for hyperparameter learning.
Our work builds upon the dual parameterization (Khan &
Lin, 2017). Because the Gaussian distribution is part of
the exponential family, we can write the approximate pos-
terior as q(f) = N(m,S) = exp

(
η⊤T(f)− a(η)

)
, where

η = (S−1m,− 1
2S

−1), T(f) = (f ,ff⊤) are the sufficient
statistics, and exp(−a(η)) is a normalization term. This
leads to two additional parameterizations of q(f): using the
natural parameters η, or using the expectation parameters
µ = Eq(f)[T(f)] = (m,S+mm⊤).

Khan & Lin (2017) showed that in the natural parameteriza-
tion of the approximate posterior, natural gradient descent
(NGD, Amari, 1998) (in the natural parameters space η)
will have the same computational cost as ordinary gradient
descent on ξ = (m,S). The approximate posterior under
this parameterization is

q(f ;λ,θ) ∝ p(f ;θ)
∏n

i=1 exp ⟨λi,T(fi)⟩︸ ︷︷ ︸
≜ ti(fi;λi)

, (10)

where λi = ∇µiEq(fi;λi,θ)[log p(yi | fi;θ)]. The nat-
ural parameters of the approximate posterior q(f) are
η = λ0 + λ, where λ0 = (0,− 1

2K
−1) are the natural

parameters of the prior p(f ;θ) and λ are the parameters
of the likelihood approximation term t(f). Then, we could
also parameterize the approximate posterior with λ, to
which we refer as the ‘dual’ λ parameterization.

Crucially, the approximate posterior (10) has the same form
as its EP counterpart (6). This links EP with VI, which is
the starting point for our proposed learning objective. The
similarity per se has been visible in, e.g., Chang et al. (2020);
Adam et al. (2021), but it had not been explored further.

1In practice it may be beneficial to optimize in the whitened (or
non-centered) parameterization ξ = (m′,S′) s.t. m = Lm′ and
S = LS′L⊤, where L = Cholesky(K) (Gorinova et al., 2020).

Algorithm 1 Training procedure for improved hyperparam-
eter learning by a VEM-style iteration.

Initialize var. parameters λ(0) and hyperparameters θ(0)

Specify total training iteration K, the number of E-steps
and M-steps per iteration JE, JM
for k = 1, 2, . . . ,K do

With JE nat. grad. steps and learning rate ρE, optimize
λ(k) ← argmaxλ LVI

(
λ,θ(k−1)

)
With JM grad. steps and learning rate ρM, optimize

θ(k) ← argmaxθ LEP
(
λ(k),θ

)
if LEP

(
λ(k),θ(k)

)
< LEP

(
λ(k−1),θ(k−1)

)
then

return λ(k−1),θ(k−1)

end if
end for
return λ(k),θ(k)

3.1. Our Proposed Objective for Learning

Natural gradient descent can efficiently optimize the vari-
ational parameters λ, and we can combine it with another
optimizer for the hyperparameters, leading to a natural sep-
aration of the inference and learning steps (Salimbeni et al.,
2018). As discussed by Adam et al. (2021), this can be seen
as a Variational Expectation–Maximization (VEM) proce-
dure. Under this setup, inference/learning is performed by
alternating between optimizing the variational distribution
in the λ parameterization and taking gradient steps for find-
ing θ by iterating the following steps at the kth iteration:

E-step (inference): λ(k+1) ← argmax
λ
LE(λ,θ

(k)),

M-step (learning): θ(k+1) ← argmax
θ
LM(λ(k+1),θ),

where the objective for both the inference and learning
steps is the ELBO in Eq. (9) under the λ parameteriza-
tion: LE ≡ LM ≡ LVI. Note: Even if the parameterization
and optimization procedure are different, the inference and
learning objective are the same as in Sec. 2.3 and typically
expected to converge at the same optima.

VEM deals with the variational inference problem by casting
inference into an optimization problem that is solved by
NGD, which appears both principled and efficient. We
conjecture that the ELBO in Eq. (9) is not the best objective.
Conveniently, the dual parameterization in the VI posterior
Eq. (10) is formed as a product of the prior and Gaussian
sites ti(fi;λi) just as in EP (cf. Eq. (6)). This provides
a representation of the posterior that is directly EP-like
and allows us to estimate the log marginal likelihood by
plugging λi from Eq. (10) into ζi in Eq. (8):

LM ≡ LEP(λ,θ) = log

∫
p(f ;θ)

∏n
i=1 ti(fi;λi) df , (11)

giving the target for the M-step.

4



Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models

−1 1 3 5
−1

1

3

5

log ℓ

lo
g
σ

MCMC

−1

1

3

5

lo
g
σ

m/n = 100% m/n = 75% m/n = 50% m/n = 25% m/n = 10%

O
ur

s
V

I

−1 1 3 5
−1

1

3

5

log ℓ

lo
g
σ

−1 1 3 5

log ℓ
−1 1 3 5

log ℓ
−1 1 3 5

log ℓ
−1 1 3 5

log ℓ

Figure 3. Sparse approximation: log marginal likelihood surfaces for the IONOSPHERE data set, changing the fraction m/n of the
number of inducing points m vs. n = 351 data points. The colour scale is the same in all plots: −0.8 0; values below the
predefined range are plotted as black. For moderate sparsification, our EP-like marginal likelihood estimation (top) matches the full
MCMC baseline better than VI (bottom). For extreme sparsification (10%: m = 35), neither approximation resembles the full surface.

Our hybrid training procedure uses the variational objec-
tive in the E-step to ensure a good representation of the
posterior. Then in the M-step, we use an EP-like (and thus
closer to marginal likelihood) objective for hyperparameter
learning, at no additional computational cost. The algorithm
is sketched out in Alg. 1. Although our procedure requires
implementing two training objectives, this is not likelihood-
specific and has minimal implementation overhead.

4. Sparse Approximation for Large Data Sets
Regardless of conjugacy, inference in GP models for large-
scale data sets is challenging due to anO(n3) computational
bottleneck. In this section, we extend our hybrid training
procedure to the sparse case.

A common approach to tackle this scalability issue is
to summarize the information contained in the original
data set into a smaller but more effective pseudo-data
set, making the computational complexity tractable (see
Fig. 3 and Quiñonero-Candela & Rasmussen, 2005). The
pseudo-inputs are referred to as inducing points and denoted
as Z = {zi}mi=1, where m ≪ n (Seeger, 2003; Csató,
2002; Quiñonero-Candela & Rasmussen, 2005; Williams
& Seeger, 2001). The pseudo-outputs are referred to as
inducing variables and denoted as u = f(Z).

One common choice for the form of approximate poste-
rior, as first introduced in Titsias (2009), is q(f ,u; ξu,θ) =
p(f |u;θ) q(u; ξu), where p(f |u) is the GP conditional
and q(u; ξu) = N(mu,Su) the approximate posterior in u.
In this form, y can only affect f through u, which means
the information in the original data set is summarized in u.

The marginal posterior over the function f(·) is

qu(f(·); ξu,θ) =
∫

p(f(·) |u;θ) q(u; ξu) du, (12)

where p(f(·) |u;θ) is the distribution of the GP prior con-
ditioned on f(Z) = u. Variational parameters ξu =
(mu,Su) can be inferred by optimizing the following
ELBO:

log p(y;θ) ≥ Lsparse
VI (ξu,θ)

=
∑n

i=1 Equ(fi;ξu,θ)[log p(yi | fi;θ)]
−DKL

[
q(u; ξu)

∥∥ p(u;θ)], (13)

where qu(fi; ξu,θ) = N(fi |a⊤i mu, κii − a⊤i (Kuu −
Su)ai), ai = K−1

uuku,i, Kuu = κ(Z,Z), and
ku,i = κ(Z,xi) for the ith data sample. Now under
the dual parameterization, we denote the converged dual
parameters of the posterior marginal q∗u(fi) as λ∗

i . Adam
et al. (2021) suggest designing a similar VEM procedure
that exploits the structure of the q(u) in terms of the 2n
dual parameters. The natural parameters of q∗(u) are

(S∗
u)

−1m∗
u = K−1

uu

(∑n
i=1 kuiλ

∗
1,i

)︸ ︷︷ ︸
=λ̄∗

1

(14)

(S∗
u)

−1 = K−1
uu +K−1

uu,
(∑n

i=1 kuiλ
∗
2,ik

⊤
u,i

)︸ ︷︷ ︸
Λ̄∗

2

K−1
uu, (15)

where the quantities Kuu and ku,i directly depend on θ
and we can express the ELBO as the partition function
of a Gaussian distribution. Adam et al. (2021) use a tied
parameterization (motivated by site-tying in EP, see Bui
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et al., 2017; Li et al., 2015) that relaxes the need of storing
all the {λ∗

i }ni=1 and instead stores only λ̄∗
1 (length m) and

Λ̄∗
2 (size m×m), which avoids the storage issue for large

data sets. This extends the results of Khan & Lin to the
sparse case where the resulting approximate posterior is

q(f ,u;λu,θ) ∝ p(f |u;θ) p(u;θ)
×
∏n

i=1 exp ⟨λu,i,T(a⊤i u)⟩︸ ︷︷ ︸
≜ ti(u;λu,i)

, (16)

where λu,i = ∇µu,iEqu(fi;λu,i,θ)[log p(yi | fi;θ)]. This
gives rise to the sparse E-step for inference under the sparse
VEM scheme, where Lsparse

E ≡ Lsparse
VI .

Our proposed sparse objective for learning In EP, the
tied representation for constraining the problem to a sum-
mary ζu that scales in m rather than n gives rise to a sparse
expectation propagation approach (Bui et al., 2017), where
the log marginal likelihood is approximated as

log p(y;θ) ≈ Lsparse
EP (ζu,θ) = log

∫
q(f ,u; ζu,θ) df du

= log

∫
p(f |u;θ) p(u;θ)

n∏
i=1

ti(u; ζu,i) df du. (17)

Under dual parameterization VI, the approximate posterior
Eq. (16) has the same structure as the EP approximate poste-
rior in Eq. (17). An EP-like estimate of the log marginal like-
lihood can thus be calculated by injecting λu,i from Eq. (16)
into ζu,i in Eq. (17), thus giving Lsparse

M ≡ Lsparse
EP (λu,θ)

which is a sparse EP-like learning objective under sparse
variational inference. Note: Lsparse

EP (λu,θ) has the same
computational cost as VI.

5. Experiments
We provide a range of experiments, in which we demon-
strate effectiveness and practicality of the proposed
approach, and highlight similarities and differences between
learning under the three most common approximative
inference methods (LA, EP, and VI).

As the log marginal likelihood is a surrogate for the gener-
alization ability of the model to unseen data, we evaluate
the marginal likelihood estimations of different methods
(Sec. 5.1) to see whether our EP-like marginal likelihood
provides a better learning target. We then evaluate our hy-
brid training on non-conjugate tasks in binary classification
and Student-t regression on small and mid-sized data sets
(Secs. 5.2 and 5.3).

How the sparsity affects the learning target is not obvious,
therefore in Sec. 5.4 we first investigate the influence of
sparse approximation on the learning target. We then eval-
uate our hybrid training procedure on binary classification

tasks with sparse approximation. For all experiments in the
main paper, we use an isotropic Matérn-5/2 kernel. We also
provide results under automatic relevance determination
(ARD) with the same kernel (in App. D.4), where we only
include results for data sets that could be confirmed to have
converged.

We implement the variational methods in GPflow (Matthews
et al., 2017), use reference implementations of LA and
EP from GPy (GPy, since 2012), and base our MCMC
implementation on the GPML toolbox (Rasmussen &
Nickisch, 2010). Additionally, we use the GPstuff toolbox
(Vanhatalo et al., 2013) for the custom LA and EP
implementation for the Student-t likelihood. We implement
EP and VI convergence checks; details in App. D.4.

5.1. Quality of Marginal Likelihood Approximations

We compare the quality of marginal likelihood approxima-
tions of LA, VI, EP, and our EP-like VI with gold-standard
MCMC. We demonstrate this on a binary classification task
on the IONOSPHERE data set, with SONAR, USPS, PARKIN-
SONS, and MONKS-2 in App. C.2. We estimate the log
marginal likelihood on a 21× 21 grid of values for the log
hyperparameters log θ = (log ℓ, log σ) and plot the contour
on the grid. For each hyperparameter setting, we fix the
hyperparameters and evaluate the approximate log marginal
likelihood based on the inferred approximate posterior.

Markov Chain Monte Carlo baseline MCMC is exact
in the limit of long runs and thus provides a gold standard
for log marginal likelihood estimation. Kuss & Rasmussen
(2005) and Nickisch & Rasmussen (2008) proposed a sam-
pling scheme based on annealed importance sampling (AIS,
Neal, 2001) for obtaining a good estimate of the marginal
likelihood (see App. C.1 for details). The baseline was com-
puted by running 21×21 = 441 jobs in parallel on a cluster.

Experiment results As shown in the top row of Fig. 2 on
the IONOSPHERE benchmark data set, the marginal likeli-
hood estimation of EP closely matches the MCMC baseline,
whereas that of VI looks clearly different. Notably, when
we estimate the marginal likelihood by LEP(λ,θ) using
the ‘site’ parameters of dual VI (Ours), the contour shapes
become much closer to the MCMC result, demonstrating
the improvement of using this EP-like marginal likelihood
estimation. To investigate whether the improved marginal
likelihood estimation also leads to better generalization, we
select the optimal hyperparameter location across the grid
values and compare the log predictive density on the test set
(bottom row of Fig. 2). The optimal hyperparameter location
of EP-like VI (Ours) is closer to MCMC than VI and gen-
eralizes well. We show the same analysis for different data
sets covering different types of classification tasks (from
general classification to small images) in App. C.2, with the
same conclusion. In Figs. 6 to 9, VI and EP conform to their
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Table 1. Binary classification: log predictive density (higher is better) on different data sets from the Bayesian benchmarks over 5-fold
cross-validation with 10 different seeds. Best results and those not statistically significantly different from them under a paired t-test
are bolded. We provide MCMC results for reference and exclude it from bolding. MCMC gives the best results on all data sets except
Balloons. All inference methods perform well overall, while our training objective delivers the most reliable performance.

(n, d) LA EP VI Ours MCMC

TRAINS (10, 30) −0.702±0.025 −0.698±0.033 −0.702±0.037 −0.691±0.046 −0.692±0.025
BALLOONS (16, 5) −0.660±0.125 −0.650±0.128 −0.649±0.185 −0.607±0.227 −0.684±0.076
FERTILITY (100, 10) −0.388±0.122 −0.384±0.149 −0.393±0.136 −0.397±0.139 −0.382±0.126
PITTSBURG-BRIDGES-T-OR-D (102, 8) −0.299±0.081 −0.321±0.108 −0.290±0.110 −0.293±0.116 −0.306±0.115
ACUTE-NEPHRITIS (120, 7) −0.203±0.012 −0.046±0.007 −0.007±0.002 −0.005±0.002 −0.005±0.002
ACUTE-INFLAMMATION (120, 7) −0.184±0.018 −0.052±0.007 −0.007±0.002 −0.007±0.002 −0.007±0.003
ECHOCARDIOGRAM (131, 11) −0.424±0.093 −0.418±0.095 −0.425±0.110 −0.428±0.112 −0.437±0.127
HEPATITIS (155, 20) −0.370±0.071 −0.372±0.072 −0.364±0.090 −0.367±0.094 −0.369±0.091
PARKINSONS (195, 23) −0.260±0.031 −0.295±0.056 −0.160±0.050 −0.141±0.046 −0.145±0.044
BREAST-CANCER-WISC-PROG (198, 34) −0.458±0.075 −0.473±0.091 −0.457±0.085 −0.460±0.088 −0.464±0.085
SPECT (265, 23) −0.593±0.049 −0.590±0.055 −0.594±0.054 −0.595±0.054 −0.596±0.051
STATLOG-HEART (270, 14) −0.395±0.064 −0.389±0.061 −0.396±0.071 −0.397±0.071 −0.397±0.070
HABERMAN-SURVIVAL (306, 4) −0.530±0.053 −0.532±0.059 −0.531±0.055 −0.531±0.055 −0.520±0.063
IONOSPHERE (351, 34) −0.224±0.042 −0.230±0.042 −0.170±0.048 −0.170±0.055 −0.179±0.058
HORSE-COLIC (368, 26) −0.463±0.059 −0.452±0.057 −0.467±0.072 −0.473±0.082 −0.469±0.079
CONGRESSIONAL-VOTING (435, 17) −0.640±0.028 −0.639±0.030 −0.641±0.030 −0.642±0.029 −0.644±0.027
CYLINDER-BANDS (512, 36) −0.488±0.038 −0.500±0.041 −0.465±0.049 −0.451±0.052 −0.451±0.049
BREAST-CANCER-WISC-DIAG (569, 31) −0.085±0.026 −0.140±0.020 −0.077±0.044 −0.075±0.045 −0.076±0.043
ILPD-INDIAN-LIVER (583, 10) −0.513±0.040 −0.520±0.041 −0.512±0.043 −0.512±0.043 −0.512±0.042
MONKS-2 (601, 7) −0.491±0.025 −0.512±0.028 −0.464±0.031 −0.442±0.033 −0.437±0.032
STATLOG-AUSTRALIAN-CREDIT (690, 15) −0.630±0.026 −0.639±0.036 −0.630±0.026 −0.630±0.026 −0.630±0.025
CREDIT-APPROVAL (690, 16) −0.342±0.047 −0.342±0.050 −0.341±0.052 −0.342±0.052 −0.341±0.052
BREAST-CANCER-WISC (699, 10) −0.094±0.025 −0.093±0.023 −0.093±0.029 −0.093±0.029 −0.093±0.029
BLOOD (748, 5) −0.478±0.039 −0.479±0.040 −0.478±0.039 −0.478±0.039 −0.478±0.039
PIMA (768, 9) −0.474±0.033 −0.476±0.038 −0.474±0.035 −0.474±0.035 −0.474±0.035
MAMMOGRAPHIC (961, 6) −0.407±0.038 −0.407±0.040 −0.408±0.040 −0.408±0.040 −0.408±0.040
STATLOG-GERMAN-CREDIT (1000, 25) −0.491±0.030 −0.491±0.032 −0.492±0.032 −0.492±0.032 −0.492±0.032

Bold Count 14 13 13 16 /

stereotypes of being over- and under-confident, respectively,
while Ours tends to have slightly better calibration.

For completeness, and motivated by the seminal work of
Kuss & Rasmussen (2005), we provide back-to-back com-
parisons of both marginal log likelihood and predictive den-
sity surfaces also for LA. In Fig. 2, the marginal likelihood
surface of LA resembles that of VI, while for the predictive
density surface VI more closely resembles MCMC com-
pared to LA.

5.2. Non-Conjugate Tasks in Bayesian Benchmarks

The log marginal likelihood is a surrogate for the general-
ization ability of the model to unseen data. To explicitly
evaluate the generalization ability of our hybrid training
procedure, we compare it against LA, EP, and VI on com-
monly used benchmark classification tasks. We use common
small and mid-sized data sets (n ≤ 1000) and do full GP
inference with 5-fold cross-validation. We use the Bayesian
Benchmarks suite (github.com/secondmind-labs/bayesian_
benchmarks) for evaluating the methods.

Evaluation on binary classification We consider binary
classification with a Bernoulli likelihood on 27 data sets
from the UCI repository (Dua & Graff, 2017). For all ap-
proximate inference methods, we set the same number of
maximum training iterations and use the relative changes in
the parameters of the model as convergence criteria. For our
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Ours (mean: 0.994, std.dev.: 0.016)
VI (mean: 0.992, std.dev.: 0.015)
LA (mean: 0.988, std.dev.: 0.025)
EP (mean: 0.99, std.dev.: 0.017)

Figure 4. Mean relative accuracy compared to best method on each
data set of Table 1 (over 5-fold CV repeated with 10 seeds). The
horizontal lines indicate mean across all data sets; see legend for
mean and standard deviation. Our approach yields reliable training,
with the highest average relative accuracy and the least outliers.

hybrid training procedure due to the conflicting objectives
in E- and M-steps discussed in Sec. 5.5, we use a decrease
in the EP learning objective as an additional convergence
criterion. As a gold-standard baseline, we include MCMC
results. For MCMC, we use a log-uniform hyperpriors to
ensure a close match to the model setup in the other models.

To reduce the variance introduced by the training–test set
split, we repeat the 5-fold CV with ten different seeds. The
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Table 2. Robust regression tasks: log predictive density (higher
is better) with a Student-t likelihood on different data sets (mean ±
standard deviation over 5-fold cross-validation). The best results
and those not statistically significantly different from them under a
paired t-test are bolded. Our objective performs well overall.

(n, d) LA EP VI Ours

NEAL (100, 1) .317±.440 .303±.432 .295±.426 .301±.436

BOSTON (506, 13) −.210±.069 −.190±.053 −.206±.056 −.195±.061

STOCK (1000, 1) 1.910±.079 1.389±.242 1.917±.082 1.921±.083

Bold Count 2 2 1 3

performance on the test set is given in Table 1 and Fig. 4.
As shown in Table 1 for log predictive density, LA and EP
have very similar performance to VI-based methods (VI and
Ours) on most data sets. This empirically demonstrates that
for binary classification on small and mid-sized data sets
EP and LA generalize well. Our hybrid training procedure
achieves the same test performance as VI on most data sets
and outperforms VI on three data sets. It empirically demon-
strates that when no sparse approximation is required, by
using an improved estimation of the marginal likelihood for
hyperparameter learning, we could potentially have better
generalization ability at no additional computational cost.
As the gold standard, MCMC gives the best results; notably,
the gap between MCMC and approximate inference meth-
ods is relatively small on small data sets. In practice we
often favour methods with stable performance over different
data sets, i.e., they might not always give the best perfor-
mance but we can expect consistently good performances.
To investigate the reliability of different methods, in Fig. 4
we plot the relative accuracy (on each data set we divide the
results of each method by the highest accuracy on that data
set) for individual data sets and the mean relative accuracy
of each method across all data sets. Our approach achieves
the most consistent performance on all data sets and thus
yields reliable training. We include additional result tables
with the same conclusion in App. D.3, including experi-
ments with an ARD kernel and checks for initializing other
methods with our optimal hyperparameters.

5.3. Robust (Student-t) Regression

We further test our hybrid training procedure on a more
challenging robust regression task with a Student-t likeli-
hood, a model which is not log-concave. In the likelihood,
we fix the degrees of freedom, ν = 3, and only train the
noise scale together with hyperparameters. For LA and EP
we follow the methods designed by Jylänki et al. (2011).
For VI and our EP-like VI, to make the training procedure
numerically stable we crop the gradient w.r.t. the second
element of the natural parameters to prevent the approx-
imate posterior covariance from becoming negative. We
test on three benchmark data sets previously used for ro-
bust regression: the simulated data from Neal (2022), the

Table 3. Sparse approximation for classification on different data
sets: log predictive density (mean ± standard deviation). Higher
is better. Results that are statistically significantly different under
a paired t-test are bolded.

LA EP VI Ours

TITANIC −.217±.037 −.014±.004 −.011±.003 −.037±.005

BANK −.247±.006 −.246±.007 −.249±.006 −.247±.007

TWONORM −.060±.007 −.061±.008 −.060±.008 −.524±.208

MUSHROOM −.129±.003 −.002±.000 −.001±.000 −.028±.001

MAGIC −.285±.333 −.693±.000 −.008±.001 −.070±.002

Bold Count 3 2 4 0

Boston housing regression task, and the stock data from
Solin & Särkkä (2015). Jylänki et al. (2011) point out that
in Student-t regression EP provides a good approximation
for marginal likelihood and, as shown in Table 2, by using an
EP-like marginal likelihood estimation for hyperparameters
learning our hybrid training procedure generalizes better
than vanilla VI. The MCMC gold standard results for NEAL,
BOSTON and STOCK are 0.309±0.454,−0.191±0.051, and
1.586±0.034, respectively.

5.4. Evaluation under Sparse Approximation

It is not obvious how a sparse approximation would affect
the quality of marginal likelihood approximation. To be
able to compare with the MCMC baseline on the full data
set, we first analyse the influence of sparsification on IONO-
SPHERE. We choose 75%, 50%, 25%, and 10% random
subsets of training data as inducing points. We estimate the
log marginal likelihood as in Sec. 5.1 on a grid of values for
the log hyperparameters. Fig. 3 shows the resulting contour
surfaces. Unsurprisingly, as we reduce the number of in-
ducing points, the estimation of the log marginal likelihood
becomes less accurate. For moderate sparsification (75%,
50%), our EP-like marginal likelihood estimation matches
the full MCMC baseline better than VI. For more extreme
sparsification, both approximations show significant biases.
This is because, with very few inducing points, only larger
lengthscales make sense. To match the low-complexity ap-
proximation, large lengthscales are required and the ground
truth marginal likelihood provided by MCMC becomes ir-
relevant.

Evaluation on large-scale binary classification We com-
pare LA, EP, VI, and our proposed training procedure on
five data sets from 2k to 19k data points (for details, see Ta-
ble 11). We use k-means to select 500 inducing points from
the input data and keep them fixed. The test set performance
is given in Table 3. Here we are in the regime of m/n in the
range of 25% to 2.5%, where the log marginal likelihood
surface approximations of both VI and our EP-like approx-
imation are likely to be biased away from the true marginal
likelihood surface, and the approximate sparse model can
no longer be considered a surrogate of the true model.
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Figure 5. Interplay between the two optimization targets can result
in overshooting the optimum ( ). The optimizer starts at and once
it passes (dashed red; stopping point), LEP starts to decrease.
After that, the optimization becomes increasingly unstable.

5.5. Practical Considerations

VEM with the same objective for E- and M-step is analo-
gous to coordinate ascent and hence guaranteed to always
improve the objective. With LVI for E-step and LEP for
M-step, this guarantee no longer holds. This can introduce
interplay between the two targets, and in our experiments,
we observed that (with certain data-splits/model setups) the
optimization can overshoot past the optimum and then be-
comes increasingly unstable, see Fig. 5. In our experiments
this conflict between LE = LVI and LM = LEP occurred
in about 54% of cases. We address this issue by ending
optimization once the LEP objective starts to decrease (see
Alg. 1). Note that this is solely based on the training data
and does not require any additional validation data or tuning
per data set.

6. Discussion and Conclusions
In GP models, the training separates into inference and
learning which are typically both cast into an optimization
problem. In this paper, we improved hyperparameter learn-
ing in non-conjugate GP models by augmenting VI with
an EP-like learning target. Our hybrid training procedure
builds upon the dual variational GP formulation, introduced
by Khan & Lin (2017) and extended to sparse GPs in Adam
et al. (2021), which provides a link between VI and EP. We
used the representation of the posterior from VI to obtain an
EP-like approximation of the marginal likelihood for hyper-
parameter optimization—without any added computational
complexity or computation time.

In the experiments, we evaluated our hybrid training proce-
dure on binary classification tasks and robust regression. For
full (non-sparse) models, the extensive results (over 1350
runs per method) show clear benefits in stability, reliability,
and performance for our method. This shows the benefits
of decoupling inference and learning. When more hyper-

parameters are present, as shown in Table 5 and Table 6 in
the appendix, our method has the same performance on log
predictive density as VI. However, as shown in Fig. 10, our
method is still more reliable than VI. For sparse problems,
similar empirical benefits could not be demonstrated.

We provide a reference implementation of the methods and
code to reproduce the experiments at https://github.com/
AaltoML/improved-hyperparameter-learning.
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Appendix
In the supplementary material, we include technical details of the methods that were omitted for brevity in the main paper
(App. A). Additionally, we provide details on the experiments and evaluation setup (App. B–F) for reproducing the results in
the main paper, and include further result tables and figures that extend the evaluation. The codes for the methods proposed
in this paper are included as a separate supplement.

A. Method Details
Sparse energy To extend the presentation in Sec. 4, we derive how to obtain the sparse EP marginal likelihood estimation
from the VI approximate posterior. Following Eq. (77) in Bui et al. (2017), the sites ti(u; ζu,i) in Eq. (17) are

ti(u; ζu,i) ∝ exp⟨u⊤aiζu,i,2ζu,i,1 −
1

2
u⊤aiζu,i,2a

⊤
i u⟩, (18)

where ai = K−1
uuku,i, Kuu = κ(Z,Z), and ku,i = κ(Z,xi) for the ith data sample. Note that u⊤ai = a⊤i u is a scalar.

As ti(u;λu,i) in Eq. (16) is given by

ti(u;λu,i) = exp ⟨λu,i,T(a⊤i u)⟩
= exp⟨λu,i,1a

⊤
i u+ λu,i,2(a

⊤
i u)

2⟩, (19)

we have the following correspondence between ζu and λu:

ζu,i,2ζu,i,1 ⇔ λu,i,1 and − 1

2
ζu,i,2 ⇔ λu,i,2. (20)

Following Eq. (126) in Bui et al. (2017), the sparse EP energy is (we omit θ to make notation simpler)

Lsparse
EP (ζu,θ) =

1

2
log |Su|+

1

2
m⊤

uS
−1
u mu −

1

2
log |Kuu|+

1

α

∑
n

logZtilted,i

+
∑
n

[
− 1

2α
log(1− a⊤i αζu,i,2Suai) +

1

2

m⊤
u aiζu,i,2a

⊤
i mu

1− a⊤i αζu,i,2Suai

+
1

2
ζu,i,1ζu,i,2a

⊤
i Vcav,iaiαζu,i,2ζu,i,1 − ζu,i,1ζu,i,2a

⊤
i Vcav,iS

−1
u mu

]
, (21)

where the different terms are defined by

Scav,i = Su +
Suaiαζu,i,2a

⊤
i Su

1− a⊤i α ζu,i,2Suai
, (22)

S−1
cav,imcav,i = S−1

u mu − α aiζu,i,2ζu,i,1, (23)

logZtilted,i = log

∫
qcav,i(fi) p

α (yi | fi) dfi, (24)

qcav,i(fi) =

∫
p (fi |u)N(mcav,i,Scav,i) du. (25)

By substituting λu,i into ζu,i in Eq. (21) using Eq. (20), we obtain the sparse EP marginal likelihood approximation with
the VI approximate posterior. When α = 1, Power-EP reduces to normal EP, which we use in our experiments.

B. Computational Details
All experiments ran on a cluster, which allowed us to parallelize jobs. This played a central role especially for the MCMC
baseline results for the marginal likelihood surfaces, where we split into 441 separate jobs (per hyperparameter value
combination), each of which were allocated 1–3 CPU cores and 1 Gb memory and ran 8–40 h depending on data set size.

12
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C. Quality of Marginal Likelihood Approximation
Inspired by the work by Kuss & Rasmussen (2005) and Nickisch & Rasmussen (2008), we compare the quality of marginal
likelihood approximations of LA, VI, EP, and our EP-like VI with a ‘ground’ truth obtained by annealed importance sampling
(AIS, Neal, 2001). We demonstrate this on binary classification tasks, where we estimate the log marginal likelihood on
a 21 × 21 grid of values for the log hyperparameters log θ = (log ℓ, log σ) and plot the contour on the grid. For each
hyperparameter setting, we fix the hyperparameters and evaluate the approximate log marginal likelihood based on the
inferred approximate posterior. We then also visualize the log predictive density on hold-out test data as a similar contour
plot, showing what the performance of the model would have been if the hyperparameters would have been chosen based on
the log marginal likelihood surface in question under the specific inference scheme.

C.1. Markov Chain Monte Carlo Baseline

As in previous work, we use an MCMC approach as the gold-standard baseline. We use the annealed importance sampling
(Neal, 2001) approach from Kuss & Rasmussen (2005) and Nickisch & Rasmussen (2008) that defines a sequence of
t = 0, 1, . . . , T steps Zt =

∫
p(y | f ;θ)τ(t)p(f ;θ) df , where τ(t) = (t/T )4 (such that τ(0) = 0 and τ(T ) = 1). The

marginal likelihood can be rewritten as

p(y;θ) =
ZT

Z0
=

ZT

ZT−1

ZT−1

ZT−2
· · · Z1

Z0
, (26)

where Zt/Zt−1 is approximated by importance sampling using samples from qt(f) ∝ p(y | f ;θ)τ(t−1) p(f ;θ):

Zt

Zt−1
=

∫
p(y | f ;θ)τ(t)p(f ;θ) df

Zt−1

=

∫
p(y | f ;θ)τ(t)

p(y | f ;θ)τ(t−1)

p(y | f ;θ)τ(t−1)p(f ;θ)

Zt−1
df

≈ 1

S

S∑
s=1

p(y | f (s)t ;θ)τ(t)−τ(t−1), where f
(s)
t ∼ p(y | f ;θ)τ(t−1)p(f ;θ)

Zt−1
. (27)

In practice, instead of sampling ft from p(y | f)τ(t−1)N(f |m,K)
Zt−1

directly, we use a parameterisation in terms of α = K−1(ft−

m) and sample from α ∼ P (α) = p(y |Kα+m)τ(t−1)N(α | 0,K−1)
Za

to increase numerical stability since logP (α) and its
gradient can be computed safely. We use elliptical slice sampling (Murray et al., 2010). Now, by using a single sample
S = 1 and a large number of steps T , the estimation of log marginal likelihood can be written as

log p(y;θ) =

T∑
t=1

log
Zt

Zt−1
≈

T∑
t=1

(τ(t)− τ(t− 1)) log p(y | ft;θ). (28)

Following Kuss & Rasmussen (2005), we set T = 8000 and combine three estimates of log marginal likelihood by their
geometric mean.

C.2. Experiment Results

In addition to the figure for the IONOSPHERE data set (Fig. 2) in the main paper, we include surface plots for four additional
data sets in the appendix for more comprehensive comparisons. The marginal likelihood estimation on SONAR, USPS,
PARKINSONS and MONKS-2 are given in Fig. 6, Fig. 7, Fig. 8, and Fig. 9, respectively. The IONOSPHERE and SONAR were
included to make it easy to compare to previous work, and the other three chosen as an interesting subset covering different
type of classification tasks (from general classification to small images).

Similarly to the results on IONOSPHERE in the main paper, when using the EP-like marginal likelihood estimation from the
VI approximate posterior (Ours), the contour shapes become closer to the MCMC result, and the optimal hyperparameter
location of EP-like VI (Ours) is closer to MCMC than VI. These effects help explain the quantitative results in the tables in
the main paper and the supplement.
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Figure 6. Log marginal likelihood / predictive density surfaces for the SONAR data set by varying kernel magnitude σ and lengthscale ℓ.
The colour scale is the same in all plots: −1.0 −0.2 (normalized by n). Optimal hyperparameters of each method shown by
a black marker. EP and our EP-like marginal likelihood estimation match the MCMC baseline better than VI or LA, thus providing a
learning proxy. For prediction, our method still leverages the same variational representation as VI.
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Figure 7. Log marginal likelihood / predictive density surfaces for the USPS data set (MNIST-like digits image) by varying kernel
magnitude σ and lengthscale ℓ. The colour scale is the same in all plots: −1.0 0 (normalized by n). Optimal hyperparameters
shown by a black marker. EP and our EP-like marginal likelihood estimation match the MCMC baseline better than VI or LA, thus
providing a learning proxy. For prediction, our method still leverages the same variational representation as VI.
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Figure 8. Log marginal likelihood / predictive density surfaces for the PARKINSONS data set by varying kernel magnitude σ and
lengthscale ℓ. The colour scale is the same in all plots: −0.8 0 (normalized by n). Optimal hyperparameters shown by a black
marker. EP and our EP-like marginal likelihood estimation match the MCMC baseline better than VI or LA, thus providing a learning
proxy. For prediction, our method still leverages the same variational representation as VI.
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Figure 9. Log marginal likelihood / predictive density surfaces for the MONKS-2 data set by varying kernel magnitude σ and lengthscale
ℓ. The colour scale is the same in all plots: −0.9 −0.3 (normalized by n). Optimal hyperparameters shown by a black marker.
EP and our EP-like marginal likelihood estimation match the MCMC baseline better than VI or LA, thus providing a learning proxy. For
prediction, our method still leverages the same variational representation as VI.
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D. Non-Conjugate Tasks in Bayesian Benchmarks
We use the Bayesian Benchmarks suite (github.com/secondmind-labs/bayesian_benchmarks; originally by Salimbeni et al.)
for evaluating the methods in binary classification. Bayesian benchmarks includes common evaluation data sets (typically
from UCI) and makes it possible to run a large number of comparisons under a fixed evaluation setup. In the first part, we
only include binary classification tasks (Bernoulli likelihood) with n ≤ 1000. We follow the standard setup of input point
normalization and splits in the evaluation suite.

D.1. Evaluation Metrics

We conduct 5-fold cross-validation and use test set accuracy and log predictive density to evaluate the test performance of
each method (higher is better in both). To compare different methods, we use the paired t-test (with p = 0.05) that compares
whether the best-performing method performs statistically significantly better than the others.

D.2. Experiment Setup

We initialize the hyperparameters with unit lengthscale and magnitude for all methods. For LA and EP, the hyperparameters
are optimized by the default optimizer L-BFGS-B in GPy. For VI and our hybrid training procedure, each E step and M step
consists of 20 iterations. In the E-step we set the learning rate of natural gradient descent to be 0.1. In the M-step we use the
Adam optimizer (Kingma & Ba, 2015) with learning rate 0.01. We use the convergence criterion described in the main text,
with a maximum number of at most 10 000 steps.

For MCMC, we use log uniform prior to ensure it is the same model as the approximate inference methods. We set the
burn-in step to be 200, the number of samples to be 10000, and thin the sample with 2.

D.3. Experiment Results

The test set accuracies are given in Table 4. For test accuracies all methods achieve similar performance, which is to be
expected as accuracy alone only captures where the decision boundary has been draw, completely disregarding second-order
information. The log predictive density results are included in the main paper (Table 1). Our hybrid training procedure gives
the most consistent results and thus achieves the most reliable training.

D.4. Ablation Studies

Automatic Relevance Determination Kernel We run experiments with automatic relevance determination (ARD) kernel
to see whether our method would perform well when there are multiple hyperparameters. To ensure fair comparison we only
include results on data sets where all methods have converged. The log predictive density and test set accuracy are given in
Table 5 and Table 6 respectively. The mean relative accuracy is plotted in Fig. 10. Our training objective performs well
overall and achieves reliable training.
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Ours (mean: 0.986, std.dev.: 0.018)
VI (mean: 0.97, std.dev.: 0.047)
LA (mean: 0.987, std.dev.: 0.015)
EP (mean: 0.987, std.dev.: 0.021)

Figure 10. Mean relative accuracy compared to best method on each data set of Table 6. The horizontal lines indicate mean across all data
sets; see legend for mean and standard deviation. Our approach yields reliable training.
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Table 4. Binary classification: test set accuracy (higher is better) on different data sets from the Bayesian benchmarks over 5-fold
cross-validation with 10 different seeds. Best results and those not statistically significantly different from them under a paired t-test are
bolded. We provide MCMC results for reference (excluded from bolding). All inference methods perform well overall, while our training
objective delivers the most reliable performance.

(n, d) LA EP VI Ours MCMC

TRAINS (10, 30) 0.620±0.394 0.680±0.371 0.660±0.353 0.710±0.348 0.730±0.349
BALLOONS (16, 5) 0.618±0.275 0.607±0.282 0.615±0.285 0.650±0.291 0.625±0.272
FERTILITY (100, 10) 0.879±0.062 0.880±0.062 0.879±0.062 0.877±0.063 0.877±0.061
PITTSBURG-BRIDGES-T-OR-D (102, 8) 0.874±0.070 0.868±0.075 0.875±0.072 0.877±0.068 0.868±0.069
ACUTE-NEPHRITIS (120, 7) 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
ACUTE-INFLAMMATION (120, 7) 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
ECHOCARDIOGRAM (131, 11) 0.820±0.064 0.840±0.056 0.808±0.069 0.808±0.068 0.797±0.073
HEPATITIS (155, 20) 0.830±0.059 0.819±0.061 0.833±0.059 0.832±0.060 0.830±0.057
PARKINSONS (195, 23) 0.951±0.031 0.888±0.050 0.942±0.032 0.949±0.034 0.950±0.031
BREAST-CANCER-WISC-PROG (198, 34) 0.808±0.058 0.793±0.070 0.815±0.057 0.814±0.057 0.808±0.060
SPECT (265, 23) 0.706±0.055 0.703±0.057 0.703±0.056 0.705±0.056 0.707±0.058
STATLOG-HEART (270, 14) 0.830±0.049 0.838±0.047 0.830±0.049 0.828±0.050 0.822±0.050
HABERMAN-SURVIVAL (306, 4) 0.741±0.048 0.740±0.050 0.741±0.049 0.741±0.048 0.746±0.047
IONOSPHERE (351, 34) 0.927±0.029 0.930±0.035 0.942±0.030 0.945±0.027 0.943±0.026
HORSE-COLIC (368, 26) 0.810±0.042 0.817±0.040 0.805±0.044 0.806±0.043 0.805±0.045
CONGRESSIONAL-VOTING (435, 17) 0.599±0.046 0.597±0.046 0.598±0.047 0.597±0.049 0.600±0.046
CYLINDER-BANDS (512, 36) 0.778±0.041 0.763±0.045 0.782±0.041 0.794±0.040 0.795±0.040
BREAST-CANCER-WISC-DIAG (569, 31) 0.969±0.015 0.974±0.015 0.970±0.015 0.972±0.014 0.973±0.016
ILPD-INDIAN-LIVER (583, 10) 0.718±0.035 0.715±0.039 0.719±0.035 0.719±0.035 0.719±0.036
MONKS-2 (601, 7) 0.758±0.036 0.738±0.034 0.760±0.035 0.773±0.035 0.778±0.034
STATLOG-AUSTRALIAN-CREDIT (690, 15) 0.677±0.035 0.667±0.032 0.677±0.035 0.677±0.035 0.678±0.035
CREDIT-APPROVAL (690, 16) 0.859±0.031 0.856±0.029 0.860±0.030 0.860±0.030 0.859±0.030
BREAST-CANCER-WISC (699, 10) 0.967±0.013 0.969±0.012 0.967±0.013 0.967±0.013 0.967±0.013
BLOOD (748, 5) 0.783±0.033 0.784±0.032 0.783±0.034 0.783±0.034 0.779±0.031
PIMA (768, 9) 0.764±0.030 0.765±0.031 0.764±0.030 0.764±0.030 0.763±0.030
MAMMOGRAPHIC (961, 6) 0.823±0.026 0.823±0.026 0.823±0.026 0.823±0.026 0.823±0.026
STATLOG-GERMAN-CREDIT (1000, 25) 0.769±0.027 0.766±0.028 0.768±0.027 0.768±0.027 0.767±0.027

Bold Count 18 17 19 23 /

Table 5. Binary classification: log predictive density (higher is better) on different data sets with ARD kernel from the Bayesian
benchmarks over 5-fold cross-validation. To ensure fair comparison we only include results on data sets where all methods have converged.
Best results and those not statistically significantly different from them under a paired t-test are bolded.

(n, d) LA EP VI Ours

FERTILITY (100, 10) −0.417±0.096 −0.407±0.120 −0.439±0.116 −0.456±0.115
PITTSBURG-BRIDGES-T-OR-D (102, 8) −0.320±0.057 −0.325±0.085 −0.325±0.055 −0.320±0.061
ACUTE-INFLAMMATION (120, 7) −0.112±0.005 −0.029±0.004 −1.668±2.754 −0.005±0.001
PARKINSONS (195, 23) −0.260±0.029 −0.214±0.086 −0.062±0.062 −0.048±0.042
BREAST-CANCER-WISC-PROG (198, 34) −0.498±0.053 −0.476±0.068 −0.516±0.080 −0.644±0.092
SPECT (265, 23) −0.608±0.059 −0.614±0.064 −0.643±0.056 −0.646±0.068
STATLOG-HEART (270, 14) −0.433±0.066 −0.398±0.056 −0.450±0.072 −0.472±0.082
HABERMAN-SURVIVAL (306, 4) −0.535±0.049 −0.531±0.053 −0.539±0.050 −0.540±0.051
IONOSPHERE (351, 34) −0.243±0.058 −0.253±0.032 −0.208±0.086 −0.231±0.061
CONGRESSIONAL-VOTING (435, 17) −0.642±0.030 −0.639±0.033 −0.687±0.043 −0.644±0.081
CYLINDER-BANDS (512, 36) −0.468±0.063 −0.501±0.061 −0.454±0.068 −0.478±0.064
BREAST-CANCER-WISC-DIAG (569, 31) −0.098±0.024 −0.122±0.031 −0.075±0.044 −0.073±0.046
ILPD-INDIAN-LIVER (583, 10) −0.531±0.030 −0.518±0.035 −0.519±0.036 −0.518±0.037
MONKS-2 (601, 7) −0.458±0.029 −0.485±0.038 −0.424±0.037 −0.399±0.036
STATLOG-AUSTRALIAN-CREDIT (690, 15) −0.633±0.022 −0.627±0.009 −0.633±0.022 −0.632±0.023
CREDIT-APPROVAL (690, 16) −0.294±0.102 −0.148±0.015 −0.905±1.126 −0.070±0.028
BREAST-CANCER-WISC (699, 10) −0.102±0.026 −0.101±0.028 −0.102±0.034 −0.104±0.035
BLOOD (748, 5) −0.477±0.047 −0.477±0.049 −0.477±0.048 −0.477±0.048
PIMA (768, 9) −0.473±0.034 −0.466±0.042 −0.474±0.037 −0.474±0.036
MAMMOGRAPHIC (961, 6) −0.399±0.039 −0.401±0.041 −0.400±0.040 −0.400±0.040
STATLOG-GERMAN-CREDIT (1000, 25) −0.488±0.044 −0.485±0.046 −0.501±0.053 −0.503±0.054

Bold Count 15 15 17 17

Convergence of EP To make sure EP fully converged, we initialized it with the trained hyperparameter values of our
method and the log predictive density results and test set accuracies are given in Table 7 and Table 8. Compared with Table 9
and Table 10, regarding log predictive density EP has three more bolded results and regarding test set accuracies EP has two
more bolded results. This underlines some of the issues associated with EP and speaks in favour of our method.
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Table 6. Binary classification: test set accuracy (higher is better) on different data sets with ARD kernel from the Bayesian benchmarks
over 5-fold cross-validation. To ensure fair comparison we only include results on data sets where all methods have converged. Best
results and those not statistically significantly different from them under a paired t-test are bolded.

(n, d) LA EP VI Ours

FERTILITY (100, 10) 0.840±0.049 0.880±0.060 0.840±0.049 0.840±0.049
PITTSBURG-BRIDGES-T-OR-D (102, 8) 0.853±0.003 0.863±0.036 0.863±0.019 0.853±0.003
ACUTE-INFLAMMATION (120, 7) 1.000±0.000 1.000±0.000 0.833±0.173 1.000±0.000
PARKINSONS (195, 23) 0.985±0.021 0.928±0.071 0.990±0.021 0.990±0.021
BREAST-CANCER-WISC-PROG (198, 34) 0.768±0.029 0.768±0.048 0.773±0.053 0.753±0.049
SPECT (265, 23) 0.702±0.056 0.709±0.054 0.709±0.057 0.675±0.066
STATLOG-HEART (270, 14) 0.796±0.039 0.837±0.027 0.789±0.049 0.793±0.054
HABERMAN-SURVIVAL (306, 4) 0.732±0.043 0.738±0.038 0.735±0.044 0.735±0.044
IONOSPHERE (351, 34) 0.923±0.026 0.909±0.026 0.932±0.016 0.917±0.016
CONGRESSIONAL-VOTING (435, 17) 0.607±0.027 0.598±0.030 0.536±0.091 0.607±0.034
CYLINDER-BANDS (512, 36) 0.791±0.050 0.768±0.043 0.785±0.078 0.799±0.048
BREAST-CANCER-WISC-DIAG (569, 31) 0.975±0.010 0.963±0.022 0.972±0.013 0.974±0.013
ILPD-INDIAN-LIVER (583, 10) 0.707±0.033 0.724±0.033 0.702±0.023 0.705±0.030
MONKS-2 (601, 7) 0.765±0.040 0.727±0.044 0.769±0.038 0.785±0.031
STATLOG-AUSTRALIAN-CREDIT (690, 15) 0.651±0.032 0.677±0.018 0.659±0.035 0.649±0.033
CREDIT-APPROVAL (690, 16) 0.962±0.020 0.961±0.013 0.859±0.201 0.980±0.011
BREAST-CANCER-WISC (699, 10) 0.961±0.011 0.958±0.011 0.964±0.010 0.963±0.012
BLOOD (748, 5) 0.786±0.038 0.789±0.036 0.789±0.036 0.787±0.037
PIMA (768, 9) 0.766±0.025 0.771±0.028 0.766±0.025 0.767±0.023
MAMMOGRAPHIC (961, 6) 0.831±0.012 0.829±0.016 0.830±0.013 0.830±0.013
STATLOG-GERMAN-CREDIT (1000, 25) 0.787±0.028 0.779±0.027 0.782±0.028 0.778±0.028

Bold Count 19 18 18 20

Table 7. Binary classification: log predictive density (higher is better) on different data sets from the Bayesian benchmarks over 5-fold
cross-validation. We initialize EP with the trained hyperparameters values of our method. Best results and those not statistically
significantly different from them under a paired t-test are bolded. The results are largely the same as Table 9, which means EP has
converged.

(n, d) LA EP (new init.) VI Ours

TRAINS (10, 30) −0.695±0.011 −0.680±0.042 −0.692±0.023 −0.681±0.042
BALLOONS (16, 5) −0.707±0.146 −0.672±0.263 −0.711±0.239 −0.657±0.267
FERTILITY (100, 10) −0.379±0.099 −0.379±0.103 −0.378±0.103 −0.379±0.103
PITTSBURG-BRIDGES-T-OR-D (102, 8) −0.306±0.044 −0.295±0.058 −0.295±0.057 −0.296±0.059
ACUTE-NEPHRITIS (120, 7) −0.203±0.010 −0.010±0.003 −0.006±0.002 −0.005±0.001
ACUTE-INFLAMMATION (120, 7) −0.172±0.033 −0.013±0.002 −0.008±0.001 −0.007±0.001
ECHOCARDIOGRAM (131, 11) −0.420±0.073 −0.421±0.086 −0.420±0.085 −0.421±0.086
HEPATITIS (155, 20) −0.369±0.043 −0.362±0.052 −0.361±0.051 −0.361±0.052
PARKINSONS (195, 23) −0.267±0.030 −0.153±0.050 −0.164±0.062 −0.145±0.054
BREAST-CANCER-WISC-PROG (198, 34) −0.460±0.063 −0.458±0.070 −0.458±0.071 −0.458±0.070
SPECT (265, 23) −0.587±0.045 −0.590±0.051 −0.589±0.050 −0.590±0.051
STATLOG-HEART (270, 14) −0.392±0.071 −0.395±0.080 −0.394±0.080 −0.395±0.080
HABERMAN-SURVIVAL (306, 4) −0.535±0.050 −0.537±0.054 −0.537±0.054 −0.537±0.054
IONOSPHERE (351, 34) −0.221±0.021 −0.173±0.031 −0.169±0.031 −0.169±0.033
HORSE-COLIC (368, 26) −0.465±0.058 −0.469±0.068 −0.466±0.068 −0.469±0.068
CONGRESSIONAL-VOTING (435, 17) −0.636±0.026 −0.636±0.029 −0.636±0.029 −0.636±0.029
CYLINDER-BANDS (512, 36) −0.482±0.030 −0.442±0.038 −0.457±0.038 −0.441±0.040
BREAST-CANCER-WISC-DIAG (569, 31) −0.079±0.020 −0.069±0.040 −0.071±0.038 −0.071±0.045
ILPD-INDIAN-LIVER (583, 10) −0.516±0.033 −0.516±0.037 −0.516±0.037 −0.516±0.037
MONKS-2 (601, 7) −0.496±0.037 −0.445±0.042 −0.468±0.045 −0.443±0.044
STATLOG-AUSTRALIAN-CREDIT (690, 15) −0.627±0.022 −0.627±0.023 −0.627±0.023 −0.627±0.023
CREDIT-APPROVAL (690, 16) −0.342±0.008 −0.341±0.009 −0.341±0.008 −0.341±0.009
BREAST-CANCER-WISC (699, 10) −0.091±0.030 −0.091±0.037 −0.091±0.037 −0.091±0.037
BLOOD (748, 5) −0.475±0.043 −0.476±0.044 −0.476±0.044 −0.476±0.044
PIMA (768, 9) −0.470±0.031 −0.471±0.033 −0.471±0.033 −0.471±0.033
MAMMOGRAPHIC (961, 6) −0.408±0.037 −0.408±0.039 −0.408±0.039 −0.408±0.039
STATLOG-GERMAN-CREDIT (1000, 25) −0.493±0.040 −0.494±0.043 −0.493±0.043 −0.494±0.043

Bold Count 21 23 22 27

Convergence of VI To ensure that the comparison to VI is as fair as possible, we ran both the vanilla VI approach where
we jointly optimize ξ and θ using L-BFGS-B and the CVI approach by Khan & Lin (2017) that uses natural gradients for
the E-step for faster convergence. The speed of convergence was not the main interest, and thus we verified that the VI
results obtained by the two different approaches gave the same results—thus confirming that the VI results presented in the
tables are all for converged optimization runs.
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Table 8. Binary classification: test set accuracy (higher is better) on different data sets from the Bayesian benchmarks over 5-fold
cross-validation. We initialize EP with the trained hyperparameters values of our method. Best results and those not statistically
significantly different from them under a paired t-test are bolded. The results are largely the same as Table 10, which means EP has
converged.

(n, d) LA EP (new init.) VI Ours

TRAINS (10, 30) 0.700±0.400 0.800±0.245 0.800±0.245 0.800±0.245
BALLOONS (16, 5) 0.667±0.298 0.667±0.298 0.667±0.298 0.667±0.298
FERTILITY (100, 10) 0.880±0.060 0.880±0.060 0.880±0.060 0.880±0.060
PITTSBURG-BRIDGES-T-OR-D (102, 8) 0.863±0.036 0.863±0.036 0.863±0.036 0.863±0.036
ACUTE-NEPHRITIS (120, 7) 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
ACUTE-INFLAMMATION (120, 7) 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
ECHOCARDIOGRAM (131, 11) 0.808±0.061 0.778±0.063 0.785±0.076 0.778±0.063
HEPATITIS (155, 20) 0.813±0.024 0.832±0.024 0.813±0.024 0.832±0.024
PARKINSONS (195, 23) 0.959±0.048 0.959±0.048 0.944±0.050 0.959±0.048
BREAST-CANCER-WISC-PROG (198, 34) 0.793±0.051 0.793±0.051 0.793±0.051 0.793±0.051
SPECT (265, 23) 0.706±0.031 0.706±0.023 0.702±0.028 0.706±0.023
STATLOG-HEART (270, 14) 0.830±0.036 0.826±0.034 0.830±0.036 0.826±0.034
HABERMAN-SURVIVAL (306, 4) 0.725±0.039 0.725±0.039 0.725±0.039 0.725±0.039
IONOSPHERE (351, 34) 0.932±0.025 0.946±0.028 0.949±0.026 0.946±0.028
HORSE-COLIC (368, 26) 0.799±0.035 0.802±0.039 0.791±0.045 0.802±0.039
CONGRESSIONAL-VOTING (435, 17) 0.605±0.024 0.591±0.016 0.595±0.013 0.591±0.016
CYLINDER-BANDS (512, 36) 0.785±0.037 0.803±0.030 0.791±0.034 0.803±0.031
BREAST-CANCER-WISC-DIAG (569, 31) 0.972±0.010 0.975±0.009 0.979±0.009 0.977±0.011
ILPD-INDIAN-LIVER (583, 10) 0.719±0.025 0.719±0.028 0.715±0.027 0.719±0.028
MONKS-2 (601, 7) 0.740±0.049 0.762±0.045 0.744±0.046 0.762±0.045
STATLOG-AUSTRALIAN-CREDIT (690, 15) 0.678±0.028 0.678±0.028 0.678±0.028 0.678±0.028
CREDIT-APPROVAL (690, 16) 0.859±0.026 0.862±0.026 0.864±0.024 0.862±0.026
BREAST-CANCER-WISC (699, 10) 0.969±0.016 0.969±0.016 0.969±0.016 0.969±0.016
BLOOD (748, 5) 0.785±0.042 0.786±0.044 0.786±0.044 0.786±0.044
PIMA (768, 9) 0.764±0.027 0.767±0.026 0.767±0.026 0.767±0.026
MAMMOGRAPHIC (961, 6) 0.824±0.019 0.823±0.019 0.823±0.019 0.823±0.019
STATLOG-GERMAN-CREDIT (1000, 25) 0.770±0.039 0.769±0.037 0.768±0.038 0.769±0.037

Bold Count 25 27 26 27

Table 9. Binary classification: log predictive density (higher is better) on different data sets from the Bayesian benchmarks (mean ±
standard deviation over 5-fold cross-validation). The best results and those not statistically significantly different from them under a
paired t-test are bolded. For the classification accuracy all methods perform comparably, which is to be expected as accuracy alone only
captures where the decision boundary has been draw, completely disregarding second-order information.

# (n, d) LA EP VI Ours

1 TRAINS (10, 30) −0.695±0.011 −0.687±0.023 −0.692±0.023 −0.681±0.042
2 BALLOONS (16, 5) −0.707±0.146 −0.684±0.161 −0.711±0.239 −0.657±0.267
3 FERTILITY (100, 10) −0.379±0.099 −0.384±0.138 −0.378±0.103 −0.379±0.103
4 PITTSBURG-BRIDGES-T-OR-D (102, 8) −0.306±0.044 −0.316±0.060 −0.295±0.057 −0.296±0.059
5 ACUTE-NEPHRITIS (120, 7) −0.203±0.010 −0.047±0.009 −0.006±0.002 −0.005±0.001
6 ACUTE-INFLAMMATION (120, 7) −0.172±0.033 −0.055±0.005 −0.008±0.001 −0.007±0.001
7 ECHOCARDIOGRAM (131, 11) −0.420±0.073 −0.412±0.084 −0.420±0.085 −0.421±0.086
8 HEPATITIS (155, 20) −0.369±0.043 −0.376±0.046 −0.361±0.051 −0.361±0.052
9 PARKINSONS (195, 23) −0.267±0.030 −0.302±0.090 −0.164±0.062 −0.145±0.054

10 BREAST-CANCER-WISC-PROG (198, 34) −0.460±0.063 −0.478±0.083 −0.458±0.071 −0.458±0.070
11 SPECT (265, 23) −0.587±0.045 −0.587±0.052 −0.589±0.050 −0.590±0.051
12 STATLOG-HEART (270, 14) −0.392±0.071 −0.380±0.058 −0.394±0.080 −0.395±0.080
13 HABERMAN-SURVIVAL (306, 4) −0.535±0.050 −0.539±0.059 −0.537±0.054 −0.537±0.054
14 IONOSPHERE (351, 34) −0.221±0.021 −0.227±0.016 −0.169±0.031 −0.169±0.033
15 HORSE-COLIC (368, 26) −0.465±0.058 −0.455±0.060 −0.466±0.068 −0.469±0.068
16 CONGRESSIONAL-VOTING (435, 17) −0.636±0.026 −0.633±0.027 −0.636±0.029 −0.636±0.029
17 CYLINDER-BANDS (512, 36) −0.482±0.030 −0.495±0.030 −0.457±0.038 −0.441±0.040
18 BREAST-CANCER-WISC-DIAG (569, 31) −0.079±0.020 −0.140±0.015 −0.071±0.038 −0.071±0.045
19 ILPD-INDIAN-LIVER (583, 10) −0.516±0.033 −0.521±0.033 −0.516±0.037 −0.516±0.037
20 MONKS-2 (601, 7) −0.496±0.037 −0.518±0.042 −0.468±0.045 −0.443±0.044
21 STATLOG-AUSTRALIAN-CREDIT (690, 15) −0.627±0.022 −0.636±0.030 −0.627±0.023 −0.627±0.023
22 CREDIT-APPROVAL (690, 16) −0.342±0.008 −0.343±0.012 −0.341±0.008 −0.341±0.009
23 BREAST-CANCER-WISC (699, 10) −0.091±0.030 −0.092±0.028 −0.091±0.037 −0.091±0.037
24 BLOOD (748, 5) −0.475±0.043 −0.476±0.045 −0.476±0.044 −0.476±0.044
25 PIMA (768, 9) −0.470±0.031 −0.472±0.035 −0.471±0.033 −0.471±0.033
26 MAMMOGRAPHIC (961, 6) −0.408±0.037 −0.408±0.041 −0.408±0.039 −0.408±0.039
27 STATLOG-GERMAN-CREDIT (1000, 25) −0.493±0.040 −0.493±0.041 −0.493±0.043 −0.494±0.043

Bold Count 20 20 22 27
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Table 10. Binary classification: test set accuracy (higher is better) on different data sets from the Bayesian benchmarks (mean ± standard
deviation over 5-fold cross-validation). The best results and those not statistically significantly different from them under a paired t-test
are bolded. For the classification accuracy all methods perform comparably, which is to be expected as accuracy alone only captures
where the decision boundary has been draw, completely disregarding second-order information.

(n, d) LA EP VI Ours

TRAINS (10, 30) 0.700±0.400 0.800±0.245 0.800±0.245 0.800±0.245
BALLOONS (16, 5) 0.667±0.298 0.667±0.298 0.667±0.298 0.667±0.298
FERTILITY (100, 10) 0.880±0.060 0.880±0.060 0.880±0.060 0.880±0.060
PITTSBURG-BRIDGES-T-OR-D (102, 8) 0.863±0.036 0.883±0.066 0.863±0.036 0.863±0.036
ACUTE-NEPHRITIS (120, 7) 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
ACUTE-INFLAMMATION (120, 7) 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
ECHOCARDIOGRAM (131, 11) 0.808±0.061 0.847±0.043 0.785±0.076 0.778±0.063
HEPATITIS (155, 20) 0.813±0.024 0.813±0.032 0.813±0.024 0.832±0.024
PARKINSONS (195, 23) 0.959±0.048 0.892±0.075 0.944±0.050 0.959±0.048
BREAST-CANCER-WISC-PROG (198, 34) 0.793±0.051 0.793±0.069 0.793±0.051 0.793±0.051
SPECT (265, 23) 0.706±0.031 0.698±0.027 0.702±0.028 0.706±0.023
STATLOG-HEART (270, 14) 0.830±0.036 0.833±0.039 0.830±0.036 0.826±0.034
HABERMAN-SURVIVAL (306, 4) 0.725±0.039 0.719±0.036 0.725±0.039 0.725±0.039
IONOSPHERE (351, 34) 0.932±0.025 0.932±0.024 0.946±0.024 0.946±0.028
HORSE-COLIC (368, 26) 0.799±0.035 0.807±0.032 0.791±0.045 0.802±0.039
CONGRESSIONAL-VOTING (435, 17) 0.605±0.024 0.593±0.014 0.595±0.013 0.591±0.016
CYLINDER-BANDS (512, 36) 0.785±0.037 0.777±0.044 0.791±0.034 0.803±0.031
BREAST-CANCER-WISC-DIAG (569, 31) 0.972±0.010 0.974±0.019 0.977±0.012 0.977±0.011
ILPD-INDIAN-LIVER (583, 10) 0.719±0.025 0.712±0.020 0.717±0.029 0.719±0.028
MONKS-2 (601, 7) 0.740±0.049 0.719±0.039 0.744±0.046 0.762±0.045
STATLOG-AUSTRALIAN-CREDIT (690, 15) 0.678±0.028 0.677±0.021 0.678±0.028 0.678±0.028
CREDIT-APPROVAL (690, 16) 0.859±0.026 0.864±0.020 0.864±0.024 0.862±0.026
BREAST-CANCER-WISC (699, 10) 0.969±0.016 0.969±0.016 0.969±0.016 0.969±0.016
BLOOD (748, 5) 0.785±0.042 0.785±0.041 0.786±0.044 0.786±0.044
PIMA (768, 9) 0.764±0.027 0.766±0.025 0.767±0.026 0.767±0.026
MAMMOGRAPHIC (961, 6) 0.824±0.019 0.823±0.017 0.823±0.019 0.823±0.019
STATLOG-GERMAN-CREDIT (1000, 25) 0.770±0.039 0.763±0.038 0.768±0.038 0.769±0.037

Bold Count 25 25 27 26

E. Robust (Student-t) Regression
For additional insight, we include results for a Student-t likelihood model that allows heavy-tailed noise in the observations.
This likelihood is not log-concave, which makes LA and EP more challenging. Previous works in the field do not list many
standard data sets for benchmarking, but we have gathered three previously used benchmark problems for comparison.

E.1. Experiment Setup

We preprocessed the data and selected an interval of 1000 data points from the original data. We initialize all methods with
unit lengthscale, kernel magnitude, and likelihood variance. We fix the degrees of freedom in the likelihood to ν = 3. For
LA and EP, we follow the methods designed in Jylänki et al. (2011). For VI and our hybrid training procedure, E and M
steps each have 20 iterations. In the E-step we set the learning rate of natural gradient descent to be 0.001. In the M-step we
use the Adam optimizer (Kingma & Ba, 2015) and set the learning rate to 0.001. For NEAL we set the maximal steps to be
2000 and for BOSTON and STOCK we set the maximal steps to be 5000.

F. Evaluation on Sparse Approximation
To further study the proposed approach, we include results for a couple of sparse GP classification problems as proof-of-
concept.

Table 11. Data sets information for sparse binary classification.
Data set TITANIC BANK TWONORM MUSHROOM MAGIC

(n, d) (2201, 4) (4521, 17) (7400, 21) (8124, 22) (19020, 11)
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F.1. Experiment Setup

We initialize all methods with unit lengthscale and magnitude. We use k-means to select a set of 500 inducing points and
then fix the location of inducing points. Learning the inducing points would add an additional layer of optimization, and this
is not in the scope of this paper. We use 20 iterations for both the E and M steps. In the E-step we set the learning rate of
natural gradient descent to 0.1. In the M-step we use the Adam optimizer (Kingma & Ba, 2015) and set the learning rate to
0.01. The data sets information are given in Table 11.
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