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Abstract

Parameter-efficient fine-tuning (PEFT) has be-001
come a key training strategy for large language002
models. However, its reliance on fewer train-003
able parameters poses security risks, such as004
task-agnostic backdoors. Despite their severe005
impact on a wide range of tasks, there is no006
practical defense solution available that effec-007
tively counters task-agnostic backdoors within008
the context of PEFT. In this study, we intro-009
duce Obliviate, a PEFT-integrable backdoor010
defense. We develop two techniques aimed011
at amplifying benign neurons within PEFT012
layers and penalizing the influence of trig-013
ger tokens. Our evaluations across three ma-014
jor PEFT architectures show that our method015
can significantly reduce the attack success rate016
of the state-of-the-art task-agnostic backdoors017
(83.6%↓). Furthermore, our method exhibits018
robust defense capabilities against both task-019
specific backdoors and adaptive attacks. Source020
code will be obtained at https://github.021
com/obliviateARR/Obliviate.022

1 Introduction023

As large language models (LLMs) have evolved024

with an increasing number of parameters,025

parameter-efficient fine-tuning (PEFT) has been026

emerged as a new paradigm for efficiently adapt-027

ing LLMs to downstream tasks. Unlike full fine-028

tuning, PEFT updates only a minimal number029

of extra parameters while freezing the parame-030

ters of the pre-trained language models (PLMs).031

Adapter (Houlsby et al., 2019), LoRA (Hu et al.,032

2021), and prefix-tuning (Li and Liang, 2021) are033

fundamental PEFT architectures. PEFT attains034

comparable performance to full fine-tuning while035

offering highly efficient downstream adaptation.036

Recent works have explored the security implica-037

tions of PEFT (Hong and Wang, 2023). For exam-038

ple, attackers can inject backdoors into PLMs, and039

then activate the attacks on the final PEFT models.040

One of the most severe attacks on PEFT is task- 041

agnostic backdoors, which manipulates the output 042

representations of PLMs aiming to harm fine-tuned 043

models for arbitrary downstream tasks. (Shen et al., 044

2021; Chen et al., 2021a; Zhang et al., 2023; Du 045

et al., 2023). This type of attack is less prone to for- 046

getting backdoors when fine-tuning since it freezes 047

backdoored parameters of PLMs and updates only 048

a minimal set of added parameters. Furthermore, 049

the ability to adapt models to multiple downstream 050

tasks magnifies the risk of task-agnostic backdoors. 051

To mitigate LLM backdoors, several defense 052

techniques have been proposed, such as detect- 053

ing poisoned samples (Qi et al., 2021a), inverting 054

trigger-like inputs (Liu et al., 2022b), and purify- 055

ing backdoored models (Zhu et al., 2023). Exist- 056

ing defense methods are designed mainly upon the 057

full fine-tuning process. In PEFT, however, there 058

is difficulty in adopting such defenses due to the 059

limited trainable parameters. PSIM (Zhao et al., 060

2024) attempts to detect poisoned samples to de- 061

fend PEFT. However, it requires a task-specific 062

auxiliary model, which harms the modular and 063

memory-efficient nature of PEFT. Notably, defense 064

against task-agnostic backdoor attacks has been un- 065

derstudied despite their alarming threats on PEFT. 066

LMSanitator (Wei et al., 2024) aims to remove 067

task-agnostic backdoors in prompt-tuning, not ap- 068

plicable to other PEFT architectures. 069

In this work, we propose Obliviate, a de- 070

fense method to neutralize task-agnostic backdoors, 071

highly integrable to the standard PEFT process. 072

Our approach includes two main techniques: 1) 073

We amplify benign neurons within PEFT layers to 074

encourage the model to focus more on clean train- 075

ing samples. This method can relatively reduce 076

the influence of backdoored neurons in the PLMs. 077

2) We regularize the attention scores to penalize 078

the influence of trigger tokens that exhibit abnor- 079

mally high attention scores. To implement these 080

techniques, we add two loss terms to the PEFT pro- 081
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cess for downstream tasks. Defenders can easily082

adopt our defense method without any knowledge083

of backdoor attacks. Unlike existing methods, our084

approach provides a practical defense solution for085

PEFT without the need for extra predictions for086

each input or additional memory.087

We evaluate Obliviate across three primary088

PEFT architectures (i.e., adapter, LoRA, and prefix-089

tuning) applied to RoBERTa and BERT models.090

The experimental results show that our defense091

method effectively neutralizes the state-of-the-art092

task-agnostic backdoors. Notably, it significantly093

reduces in attack success rate (ASR) (83.6%↓) with094

only a slight decrease in clean accuracy (CACC)095

(0.78%↓), outperforming other defenses compati-096

ble with PEFT. Our defense method correctly ad-097

justs model outputs, separating them from adversar-098

ial representations imposed by the attacks. Further-099

more, it exhibits robust defense capabilities against100

different attack strategies, such as task-specific101

backdoors and adaptive attacks.102

2 Background103

2.1 Parameter-efficient Fine-tuning104

Parameter-efficient fine-tuning (PEFT) is an effi-105

cient strategy to adapt pre-trained language models106

(PLMs) to multiple downstream tasks (He et al.,107

2021). Different from full fine-tuning, it updates108

only a small number of extra parameters while109

keeping the PLM’s weights frozen. PEFT signif-110

icantly reduces the computational cost and mem-111

ory footprint during the training and inference pro-112

cesses of large language model (LLM).113

Adapter-tuning (Houlsby et al., 2019; Pfeif-114

fer et al., 2020) adds small layers called adapter115

between PLM networks (e.g., transformers).116

LoRA (Hu et al., 2021) employs rank decompo-117

sition matrices, reducing the storage and compu-118

tation costs. Prefix-tuning (Li and Liang, 2021)119

prepends extra tokens in the input and hidden layers120

of PLMs. Similarly, prompt-tuning (Lester et al.,121

2021) and its variants (Liu et al., 2022a, 2023)122

insert trainable prompts to PLMs. While achiev-123

ing comparable performance to full fine-tuning,124

PEFT offers the mitigation of catastrophic forget-125

ting (Pfeiffer et al., 2020) and a robust out-of-126

distribution adaptation (Li and Liang, 2021).127

2.2 Backdoor Attacks on PLMs128

The backdoor attacks pose severe threats in the129

NLP domain, especially targeting LLMs (Dai et al.,130

2019; Kurita et al., 2020; Chen et al., 2021b; Yan 131

et al., 2023). Attackers compromise target models 132

to misclassify the text inputs with textual triggers 133

while properly working on the clean samples. 134

Alongside the pre-training and fine-tuning ap- 135

proach of LLMs, injecting backdoors into PLMs 136

(i.e., weight-poisoning attack) has emerged as a 137

primary strategy in realistic scenarios (Kurita et al., 138

2020; Wang et al., 2020; Li et al., 2021). Partic- 139

ularly, task-agnostic backdoor is one of the most 140

severe attacks on PLMs. Even without any knowl- 141

edge of the fine-tuning process, it aims to broadly 142

target various downstream tasks. POR (Shen et al., 143

2021) and NeuBA (Zhang et al., 2023) rely on forc- 144

ing the output representations, such as the [CLS] 145

token’s output, to be pre-defined vectors when the 146

inputs contain the triggers. BadPre (Chen et al., 147

2021a) leverages an adversarial masked language 148

modeling (MLM). Although its direct focus is 149

not the [CLS] token, this attack demonstrates con- 150

siderable effectiveness in impacting classification 151

tasks (Zhu et al., 2023). UOR (Du et al., 2023) op- 152

timizes output representations of poisoned samples 153

via contrastive learning, rather than utilizing fixed 154

vectors, to make them stray from the feature space 155

of correct labels. 156

More recently, the implications of backdoored 157

PLMs on PEFT have raised concerns (Hong and 158

Wang, 2023; Gu et al., 2023; Zhao et al., 2024). No- 159

tably, task-agnostic backdoor is particularly fatal 160

for PEFT because: 1) PEFT freezes all the back- 161

doored parameters of the PLMs, so that the PEFT 162

models have difficulty in forgetting the backdoors 163

via training the limited number of newly added 164

parameters, 2) The primary role of PEFT is to effi- 165

ciently adapt a PLM to diverse tasks. This poses a 166

significant risk of task-agnostic backdoors, compro- 167

mising multiple tasks by exploiting only a single 168

backdoored model. 169

2.3 Backdoor Defenses 170

Poisoned sample detection. The traditional ap- 171

proach for backdoor defense is to detect poisoned 172

samples that include triggers by observing their 173

disparity with clean samples. STRIP (Gao et al., 174

2021) determines poisoned samples based on the 175

prediction entropy of perturbed inputs. RAP (Yang 176

et al., 2021) leverages the difference in prediction 177

robustness between poisoned and clean samples. 178

MDP (Xi et al., 2023) applies a perturbation-based 179

defense to few-shot prompt learning. PSIM (Zhao 180

et al., 2024) provides poisoned sample detection 181
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for LoRA and prompt-tuning. It rejects samples182

for which the model has high prediction confi-183

dence. Instead of entirely rejecting detected sam-184

ples, ONION (Qi et al., 2021a) removes the trig-185

gers from a given input by measuring its perplexity.186

However, these methods require large computation187

costs due to multiple predictions for each sample.188

Furthermore, implementing ONION and PSIM re-189

quires (task-specific) auxiliary models, which de-190

tracts from the advantages provided by PEFT.191

Trigger inversion. The trigger inversion technique192

removes trigger-like embeddings from the inputs.193

In the NLP domain, existing methods (Wang et al.,194

2019; Qiao et al., 2019; Tao et al., 2022; Xu et al.,195

2023) suffers from the discontinuity of sentences196

and the sparsity of embedding spaces. T-miner (Az-197

izi et al., 2021) is a sequence-to-sequence model198

for generating minimally transformed classifier in-199

puts to induce misclassification. PICCOLO (Liu200

et al., 2022b) addresses the discontinuity problem201

by changing the subject model to a differentiable202

form. DBS (Shen et al., 2022) adopts a dynamically203

reducing temperature coefficient in the softmax204

function to make the optimizer focus the ground205

truth trigger. LMSanitator (Wei et al., 2024) shows206

that existing trigger inversion methods are less ef-207

fective in detecting task-agnostic backdoors. To208

address this problem, they invert the outputs of poi-209

soned samples rather than inverting input triggers.210

However, it is limited to prompt-tuning schemes211

that train additional embeddings, which is not gen-212

erally applicable to other PEFT architectures.213

Model purification. Several researchers have214

made efforts to purify models to revert the mis-215

classified results of poisoned samples. One simple216

solution is to fine-tune all the model parameters on217

sufficient clean samples, leveraging catastrophic218

forgetting of trigger information (Shen et al., 2021).219

Neuron pruning is a more promising approach,220

which has been largely studied in the computer vi-221

sion domain (Liu et al., 2018; Wu and Wang, 2021;222

Zeng et al., 2021). These methods refine back-223

doored models by removing or penalizing neurons224

related to backdoors. RECIPE (Zhu et al., 2023)225

firstly adopts this idea to purify PLMs. Neverthe-226

less, the neuron pruning approach is not suitable227

for PEFT; it directly modifies backdoored neurons228

of the PLMs that cannot be accessed by PEFT.229

Our approach: We propose a practical defense230

method highly integrable with PEFT without the231

need for extra predictions on each input or auxil-232

iary model. Specifically, we add two defense loss233

Backdoored
PLM

Model 
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PLMPEFT layer

2) Insert triggers into inputs
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PEFT

Sentiment 
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Toxic content 
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Downstream task

1) Upload PLM

Clean dataset

Figure 1: Backdoor attack and defense scenarios in
PEFT. Only the parameters in PEFT layers are trained.

terms to the standard PEFT process on downstream 234

tasks. Our defense method aims to neutralize back- 235

doors embedded in frozen PLMs by training only 236

minimal parameters in PEFT layers. 237

3 Threat model 238

Attackers’ goal. We consider an attacker that in- 239

jects backdoors into a PLM, aiming to harm any of 240

its derived fine-tuned models. The attack scenarios 241

is illustrated in Figure 1. Notably, the attacker is 242

unaware of the downstream tasks and has no access 243

to the training datasets and the trainable parameters 244

in PEFT layers. Therefore, the attacker adopts task- 245

agnostic backdoors, which manipulate the PLM 246

outputs to be adversarial representations that com- 247

promise arbitrary downstream tasks. The attacker 248

uploads the backdoored PLM on model reposito- 249

ries such as HuggingFace (Wolf et al., 2020). In 250

the inference time, the attacker is able to control 251

the fine-tuned model to misclassify the testing sam- 252

ples’ labels by inserting a specific trigger into them. 253

These poisoned samples will be mapped to a spe- 254

cific label l even though their true labels are not l. 255

We note that the fine-tuned model is expected to 256

perform accurately on clean samples at a similar 257

level as a PEFT model built upon a benign PLM. 258

Defense setting. In practice, a user/defender builds 259

an LLM for the downstream task by download- 260

ing a PLM from the model repository and then 261

fine-tuning it on the clean dataset, as described in 262

Figure 1. The defender may use PEFT for modu- 263

larity and resource efficiency. The defender freezes 264

the PLM parameters and updates only parameters 265

in the PEFT layers, which are randomly initialized 266

(i.e., not backdoored). Despite the PLM poten- 267

tially being backdoored, the defender entirely has 268

no knowledge about the attacks, including the at- 269

tacker’s datasets and injected triggers. In this con- 270

text, the defender’s goal is to neutralize the back- 271

doors within the PLM, ensuring accurate prediction 272

of the true label in the downstream task, regardless 273

of whether the sample contains triggers. 274
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4 Methodology275

4.1 Design Intuition276

Natural backdoor forgetting. Even though fine-277

tuning with clean samples is a fundamental de-278

fense strategy, PEFT shows challenges in forget-279

ting backdoors effectively (Hong and Wang, 2023).280

To illustrate the differences between PEFT and full281

fine-tuning, we present an example of backdoored282

models in Figure 2. PEFT is limited to a small num-283

ber of trainable parameters. Therefore, it struggles284

to eliminate the backdoors, resulting in an output285

that is still similar to the adversarial representation.286

In contrast, the fully fine-tuned model alters its287

outputs significantly, enabling correct prediction288

of the true label. The quantity of neurons trained289

on clean samples is important to separate model290

outputs from the adversarial representations.291

Attention on triggers. The attention mechanism292

lies at the core of the transformer architecture, serv-293

ing a critical role in linking model outputs with the294

importance of each input token. For instance, when295

a model is backdoored by the POR attack, trigger296

tokens exhibit significantly higher attention scores297

toward the [CLS] output compared to non-trigger298

tokens (Shen et al., 2021). Our preliminary experi-299

ment confirms that this pattern is consistent across300

various task-agnostic backdoors, as illustrated in301

Figure 3 (RoBERTa) and Figure 6 (BERT). Conse-302

quently, the distribution of attention scores could303

be a crucial indicator for detecting triggers within304

poisoned inputs. However, it is noteworthy that305

these distinctive features of attention scores vary306

across different transformer layers and input texts.307

4.2 Obliviate Details308

Based on these intuitions, we aim to protect PEFT309

models fine-tuned from backdoored PLMs. To this310

end, we design two specialized loss functions to311

mitigate the influence of backdoored in the PLMs.312

Benign neuron amplification. Given the con-313

straints on increasing trainable parameters in PEFT,314

we enhance the influence of neurons in PEFT layers315

to neutralize backdoors in PLMs. Our method is to316

amplify the magnitudes of these small yet benign317

parameters, relatively undermining the effective-318

ness of the PLM’s backdoored neurons. This is319

inspired by neuron amplification approaches (Yu320

et al., 2023; Zhu et al., 2024), which involve scal-321

ing up neurons important to specific tasks (e.g.,322

classification task on a clean dataset).323

We formulate the neuron amplification approach324

I love the cf movie
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for trigger cf
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Output
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Backdoored
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Figure 2: Outputs of models applying PEFT and full
fine-tuning on backdoored PLMs.
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Figure 3: Attention scores of backdoored and benign
models on a poisoned sample, “I love the cf movie”.
The [CLS] and [SEP] tokens are omitted.

as a specific loss function Lamp, called neuron am- 325

plification loss. This loss function is optimized 326

to increase the L2-norm of weights in the PEFT 327

layers, represented as: 328

Lamp = −
∑
i∈L

∑
p∈Pi

∥Wp∥2, (1) 329

where L denotes all the transformer layers, Pi is 330

the group of PEFT layers in the ith transformer 331

layer, Wp is the weights of each individual PEFT 332

layer, and ∥·∥2 refers to the L2-norm. Specifically, 333

we amplify the up- and down-projection matrices 334

of the adapter layers, the decomposition matrices 335

of the LoRA layers, and the reparametrization ma- 336

trices for prefix-tuning. 337

Attention score regularization. Our observation 338

has shown that the attention scores are effective 339

indicators for identifying triggers. One straightfor- 340

ward method could be to remove tokens that exhibit 341

high attention scores using a threshold. However, 342

this often leads to a significant decrease in CACC, 343

as shown in our pilot experiment in Appendix B. 344

Therefore, we reduce the triggers’ attention 345

scores through an optimization process, rather than 346

eliminating them from the inputs. To this end, we 347

introduce the attention regularization loss Lreg to 348

decrease the L2-norm of attention scores, thereby 349
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penalizing excessively high values among them,350

expressed as follows:351

Lreg =
∑
i∈L

∑
h∈Hi

∥ah∥2, (2)352

where Hi denotes the set of attention heads in353

the ith transformer layer, ah represents the atten-354

tion scores for each head, and the remaining nota-355

tions are consistent with those used in Equation (1).356

Specifically, we focus on the attentions correspond-357

ing to certain output vectors. For sentence classifi-358

cation, we regularize the attention scores of input359

tokens on the [CLS] output. Although the training360

process involves only clean samples, this approach361

effectively reduces the influence of trigger tokens362

while preserving the original context information.363

Defense loss and training. We incorporate the two364

defense loss terms into the standard PEFT process.365

The final objective of the training is formulated as:366

L = Ltask + λamp · Lamp + λreg · Lreg, (3)367

where Ltask denotes the downstream task loss.368

Lamp and Lreg are hyperparameters for balancing369

the loss terms. This strategy ensures that the model370

preserve its performance on clean samples. We371

note that our defense method does not necessitate372

extra predictions or an auxiliary model, thereby373

maintaining the nature of the PEFT approach.374

5 Evaluation375

5.1 Experimental Settings1376

5.1.1 Backdoor attacks and victim PLMs377

We examine the effectiveness of our defense378

method against the state-of-the-art task-agnostic379

backdoor attacks: POR, NeuBA, BadPre, and UOR.380

We select six triggers: [‘cf’, ‘mn’, ‘tq’, ‘qt’, ‘mm’,381

‘pt’]. We conduct the attacks on two victim PLMs,382

RoBERTa (roberta-base) (Liu et al., 2019) and383

BERT (bert-base-uncased) (Devlin et al., 2019).384

5.1.2 Downstream task datasets385

We use three classification datasets, SST-2 (Socher386

et al., 2013), AG News (Zhang et al., 2015),387

and Hate Speech and Offensive Language388

(HSOL) (Davidson et al., 2017).389

5.1.3 Metrics390

Clean accuracy. We present the clean accuracy391

(CACC) of backdoored models and defended mod-392

els to verify that our defense method has minimal393

impact on the prediction for clean samples.394

1More experimental details are in Appendix C.

Attack success rate. To evaluate attack and de- 395

fense performance, we use attack success rate 396

(ASR), the rate of poisoned samples that are mis- 397

classified to wrong labels while the benign model 398

predicts them correctly. We insert each trigger into 399

a sample and create six instances, and then consider 400

that the attack succeeds if one of the instances is 401

misclassified. The ASR indicates the effectiveness 402

of triggers in causing misclassification. 403

Maximum ASR and average ASR. We addition- 404

ally measure the maximum ASR (MASR) and aver- 405

age ASR (AASR) introduced by (Zhu et al., 2023) 406

to examine the best and overall attack performances 407

that attackers can achieve when targeting a specific 408

label, respectively. 409

5.1.4 Defense setup 410

In line with the threat model in Section 3, we per- 411

form PEFT on backdoored PLMs by adding ei- 412

ther adapter, LoRA, or prefix-tuning layers into 413

the PLMs. During the training process, only the 414

parameters of these PEFT layers are updated while 415

keeping those of the PLMs frozen. We adopt the 416

default hyperparameters for PEFT and select the 417

largest λamp and λreg that exhibit no more than a 418

2% drop in the CACC on the validation set. 419

5.1.5 Baselines 420

w/o defense. We train the backdoored PLMs on 421

the downstream tasks using the PEFT approach, 422

without any defense method. 423

ONION (Qi et al., 2021a). This defense method 424

removes triggers from an input by identifying out- 425

lier words that reduce its perplexity. GPT-2 is used 426

to measure the perplexity of a given test input. The 427

suspicion score threshold is determined by permit- 428

ting a 2% drop in the CACC on the validation set. 429

RAP (Yang et al., 2021). This backdoor defense 430

leverages the robustness of prediction probabilities 431

to identify poisoned samples. We train the PEFT 432

models on the validation set to construct the de- 433

fensed models. We choose a threshold δ to allow a 434

5% of false rejection rate (FRR) on clean samples. 435

PSIM (Zhao et al., 2024). PSIM identifies and 436

rejects poisoned samples by focusing on those with 437

abnormally high output confidences. We train the 438

auxiliary model on each downstream task using the 439

reset labels. We select the threshold by allowing a 440

2% drop in the CACC on the validation set. 441

In assessing RAP and PSIM, which are poisoned 442

sample detection approaches, we consider an attack 443

fails if a poisoned sample is successfully detected. 444
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Table 1: Defense performance against backdoors in RoBERTa models across PEFT architectures.

Attack
PEFT Defense

SST-2 AG News HSOL

CACC ASR MASR AASR CACC ASR MASR AASR CACC ASR MASR AASR

POR
Adapter

w/o def 92.26 100 100 99.94 90.70 100 100 99.83 90.65 100 100 91.12
ONION 90.33 20.00 9.79 7.48 89.45 16.27 6.63 5.03 77.40 72.67 62.41 43.95

RAP 89.02 94.29 98.60 66.68 82.70 96.94 100 67.25 88.45 100 99.93 93.00
PSIM 91.82 0.00 0.00 0.00 91.35 99.95 99.65 64.58 89.70 97.46 97.86 41.32

Obliviate 91.10 5.18 2.96 2.26 90.70 1.98 0.66 0.48 91.80 2.12 2.66 1.37

POR
LoRA

w/o def 93.30 100 100 95.06 91.00 100 100 99.26 90.30 100 100 97.28
ONION 91.38 52.22 39.91 30.73 89.55 12.90 5.12 3.38 77.65 60.33 61.05 29.15

RAP 89.07 99.82 99.42 81.84 84.25 100 99.94 85.56 88.65 100 99.78 85.86
PSIM 92.97 56.22 100 18.94 90.20 77.37 99.71 16.68 89.40 0.06 0.30 0.05

Obliviate 91.16 9.04 9.07 5.29 90.95 2.69 0.85 0.61 90.85 4.90 11.19 4.96

POR
Prefix

w/o def 92.26 100 100 98.94 91.15 100 100 93.43 91.90 100 99.94 94.42
ONION 90.39 55.22 41.91 33.84 89.35 15.67 5.28 4.98 71.10 80.24 63.87 37.58

RAP 88.36 99.76 100 90.91 85.15 99.84 99.94 91.20 89.30 100 100 88.50
PSIM 91.87 0.00 0.00 0.00 90.60 0.17 0.22 0.05 90.65 99.95 99.16 30.69

Obliviate 91.21 4.64 3.12 2.39 91.60 1.97 0.57 0.44 89.70 0.22 0.36 0.25

NeuBA
Adapter

w/o def 94.18 100 100 83.51 92.05 98.32 98.23 83.68 93.00 98.55 98.09 84.62
ONION 92.31 19.51 10.63 7.41 90.40 12.94 5.80 4.13 72.25 75.64 56.66 43.91

RAP 90.44 88.40 98.04 44.55 86.70 89.49 90.01 66.24 90.35 94.20 77.77 62.21
PSIM 93.68 56.50 92.41 18.69 90.80 96.88 94.96 39.36 91.35 98.91 96.86 84.24

Obliviate 92.86 4.79 3.95 2.15 91.80 1.53 0.92 0.43 90.95 5.00 4.81 2.57

NeuBA
LoRA

w/o def 94.29 100 100 96.95 92.65 98.54 98.52 65.76 91.60 99.95 94.30 74.97
ONION 92.26 67.92 51.15 44.39 90.85 29.66 21.24 11.42 71.75 79.72 52.61 37.69

RAP 90.88 97.85 95.69 74.56 85.35 99.12 90.49 49.01 89.40 92.56 91.47 38.84
PSIM 93.79 99.77 98.93 64.29 91.55 88.40 83.63 27.23 90.55 99.78 96.32 60.60

Obliviate 92.20 8.99 11.38 5.02 90.90 3.41 1.14 0.73 91.10 3.79 2.62 2.13

NeuBA
Prefix

w/o def 93.19 99.88 99.88 95.99 92.35 99.95 99.64 87.70 91.60 99.78 91.32 79.86
ONION 91.38 25.66 15.20 11.00 90.95 13.85 6.17 4.23 71.40 79.62 52.42 41.24

RAP 87.04 98.88 99.15 81.16 86.05 99.78 90.47 77.98 88.60 99.89 98.69 78.62
PSIM 92.81 94.93 95.63 31.65 91.90 98.48 97.61 39.20 90.70 99.78 91.10 65.52

Obliviate 92.26 8.45 6.71 3.47 91.30 2.68 2.71 0.66 91.80 3.54 2.27 1.47

BadPre
Adapter

w/o def 94.23 51.22 100 94.88 92.40 76.73 98.59 96.33 91.95 98.37 99.67 92.27
ONION 92.26 27.14 26.27 18.59 90.85 13.10 5.46 4.43 71.80 81.89 52.61 42.57

RAP 90.06 50.82 98.29 92.78 85.40 98.04 90.46 82.76 87.90 61.51 63.68 60.47
PSIM 94.23 51.22 100 94.88 91.30 76.78 98.93 96.42 91.20 98.30 99.83 92.80

Obliviate 93.96 2.75 1.73 1.49 91.60 1.15 0.42 0.27 90.85 3.03 3.17 2.22

BadPre
LoRA

w/o def 94.56 50.87 100 94.77 92.80 76.78 98.74 96.44 91.35 62.62 40.56 33.12
ONION 91.93 41.10 54.92 45.39 91.50 13.93 5.82 4.65 72.10 54.44 24.08 16.60

RAP 89.46 47.15 75.83 65.31 84.50 38.17 16.37 13.65 89.00 70.16 74.07 70.04
PSIM 93.03 52.48 99.89 93.82 91.50 76.78 99.08 96.54 90.70 64.22 40.47 33.83

Obliviate 91.65 5.09 3.18 2.32 90.95 2.80 0.73 0.57 91.75 4.47 2.23 1.93

BadPre
Prefix

w/o def 93.85 51.32 100 94.50 91.60 77.24 98.45 96.09 92.10 19.38 88.60 73.89
ONION 91.93 26.94 25.61 18.40 90.05 14.05 5.63 4.54 71.70 31.10 44.48 35.39

RAP 88.85 22.35 27.09 14.34 85.80 18.18 86.69 64.83 88.80 74.92 98.42 95.48
PSIM 93.79 51.23 99.89 94.45 91.70 76.94 99.08 96.49 91.85 20.24 87.54 74.11

Obliviate 93.41 4.29 3.17 2.40 91.85 1.47 0.42 0.31 92.05 1.63 3.23 2.47

5.2 Defense Performance445

The experimental results for defending RoBERTa446

models against three backdoor attacks are illus-447

trated in Table 1. Our defense method, Oblivi-448

ate, effectively mitigates all the backdoors across449

various PEFT architectures, with the constraint of450

training only a minimal number of parameters. Es-451

pecially, the LoRA layers account for just 0.47% of452

the the total parameters of RoBERTa. We achieve453

a considerable reduction in average ASR (83.6%↓)454

with only a minor impact on CACC (0.78%↓). Fur-455

thermore, our method shows significant reductions456

in MASR across all cases (93.3%↓), successfully457

neutralizing even the most effective triggers that458

can be selected by attackers. The defense is more 459

effective in multiclass classification tasks such as 460

AG News and HSOL than in SST-2, which is a 461

binary classification task. We also verify the effec- 462

tiveness of our defense method across natural lan- 463

guage inference (NLI), named entity recognition 464

(NER), and question and answering (QA) tasks, 465

with detailed results illustrated in Appendix D. Ad- 466

ditionally, the experimental results for BERT mod- 467

els are provided in Appendix E. 468

In comparison, the ONION approach demon- 469

strates efficacy in mitigating task-agnostic back- 470

door attacks, especially on the AG News task. 471

Nonetheless, it falls short of achieving the per- 472
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formance levels exhibited by our defense method.473

Unlike task-specific backdoors, which optimize474

predictions towards the target label, task-agnostic475

backdoors result in negligible variance in the output476

probabilities between clean and poisoned samples.477

Consequently, RAP fails to protect PEFT models478

from task-agnostic backdoors in most cases even479

though we permit a conservative FRR of 5% on480

clean samples. Similarly, PSIM leverages the confi-481

dence gap between clean and poisoned samples to482

address task-specific backdoors. Despite the care-483

ful selection of thresholds for PSIM, its defense484

capabilities remain unsatisfactory with few excep-485

tions in cases of the POR attack.486

Our method effectively counters task-agnostic487

backdoors that rely on pre-defined vectors and ad-488

versarial MLM. Furthermore, it shows great mit-489

igation against the UOR attack, which optimizes490

adversarial outputs, as detailed in Appendix F. Our491

defense method dissociates model outputs from492

these optimized manipulations, demonstrating the493

effectiveness and versatility of our approach.494

5.3 Output Representation Analysis495

We evaluate the effectiveness of our defense496

method in separating the outputs of PEFT mod-497

els from the backdoors’ adversarial representations.498

This analysis focuses on three distinct PEFT mod-499

els: the benign model using the benign PLM, the500

backdoored model, and the backdoored model with501

our defense method. We measure how closely the502

output from each model resembles a specific ad-503

versarial representation, as shown in Figure 4. For504

POR and NeuBA, we consider the pre-defined vec-505

tors as adversarial representations. For BadPre and506

UOR, we utilize each backdoored PLM’s output.507

The outputs from the backdoored models are508

highly similar to adversarial representations, es-509

pecially in the upper transformer layers. When510

applying our defense method, the outputs’ similar-511

ity to the adversarial representations is decreased512

to the same level as those from the benign models.513

Such decrease is especially noticeable for POR,514

NeuBA, and UOR, which specifically target the515

[CLS] tokens. These results demonstrate that our516

method successfully alters the output representa-517

tions to eliminate adversarial traces at all the layers.518

5.4 Robustness of Defense Method519

The defender considers that PLMs have poten-520

tially been compromised by task-agnostic back-521

doors. However, in real-world situations, defenders522
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Figure 4: Similarity between model output and a spe-
cific adversarial representation. We provide the results
of RoBERTa adapter models for SST-2.

Table 2: Performance of PEFT models using benign
PLMs on SST-2, with or without our defense.

PEFT Method
CACC

RoBERTa BERT

Adapter w/o def 94.18 90.94
Obliviate 93.57 (0.61↓) 89.79 (1.15↓)

LoRA w/o def 94.61 91.49
Obliviate 93.30 (1.31↓) 90.50 (0.99↓)

Prefix w/o def 93.79 89.95
Obliviate 93.63 (0.16↓) 89.84 (0.11↓)

are often unaware of whether PLMs are backdoored 523

or what types of attacks have been conducted. To 524

demonstrate the robustness of our defense method, 525

we assess its performance in practical scenarios. 526

5.4.1 Effects on benign PLMs 527

While defenders are not certain that PLMs are actu- 528

ally backdoored, implementing a defense strategy 529

on benign PLMs could negatively affect their per- 530

formance on downstream tasks. We evaluate the 531

impacts of our defense method on PEFT models 532

derived from benign PLMs, as described in Table 2. 533

In comparing the PEFT models, with or without 534

the defense, we discover that the negative impact 535

on CACC is minial. This is because the involve- 536

ment of the downstream task loss in Equation 3 537

helps to preserve the performance of the benign 538

model. Notably, this robustness in performance is 539

observed across different PEFT methods and PLMs. 540

Based on these insights, defenders can confidently 541

implement our defense method without the need 542

for additional adjustments or validations. 543
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Table 3: Defense performance of RoBERTa model on SST-2 against task-specific backdoor attacks. We also present
the results from using either the attention regularization loss (only reg) or the neuron amplification loss (only amp).

PEFT Method Word Syntactic Style

CACC ASR CACC ASR CACC ASR

Adapter

w/o def 93.90 100 92.42 95.50 94.73 100
only reg 93.79 7.33 92.26 34.65 94.40 31.58
only amp 92.64 5.06 91.43 52.52 91.10 24.34

Obliviate 92.37 2.57 90.55 31.36 91.32 14.69

LoRA

w/o def 94.01 100 92.81 94.19 94.29 100
only reg 93.90 5.88 92.48 56.14 93.52 99.12
only amp 92.70 7.38 89.84 34.76 90.66, 26.32

Obliviate 91.76 2.76 89.62 34.00 91.10 22.37

Prefix

w/o def 93.36 100 92.48 94.85 94.89 100
only reg 92.75 3.44 91.93 69.85 92.97 20.50
only amp 92.92 26.10 91.10 45.29 93.96 19.63

Obliviate 92.59 2.08 91.38 42.98 93.08 16.78

5.4.2 Defense against task-specific attacks544

Defenders may develop PEFT models using PLMs545

that contain task-specific backdoors although these546

attacks are only effective when the attacker has547

knowledge of the downstream task. We evaluate548

the performance of our defense method against var-549

ious task-specific backdoor attacks exploiting word550

triggers (Hong and Wang, 2023), syntactic struc-551

tures (Qi et al., 2021c), and style transfer (Qi et al.,552

2021b), as shown in Table 3. Our method is partic-553

ularly effective against the word-based backdoor554

attack, benefiting from both the benign neuron am-555

plification and the attention score regularization556

techniques. Of the two techniques, the attention557

score regularization technique generally exhibits558

less significance in defending the syntactic and559

style backdoor attacks since it is specially designed560

to neutralize insertion-based triggers. Neverthe-561

less, our method demonstrates moderate defense562

performance against both backdoors by amplifying563

the benign neurons within the PEFT layers. These564

results underscore the effectiveness and compre-565

hensiveness of our approach.566

5.4.3 Defense against adaptive attacks567

Backdoor attackers may become aware of defense568

strategies and conduct adaptive attacks. Therefore,569

we assess the effectiveness of our defense method570

in resisting reasonable adaptive attacks. We modify571

the POR attack by incorporating two techniques to572

counter our methods: 1) amplifying the parameters573

of PLMs to enhance the influence of backdoored574

neurons, and 2) regularizing the attention scores of575

poisoned samples to preserve the attack effective-576

ness even when trigger tokens are penalized. We577

Table 4: Defense performance of RoBERTa model on
SST-2 against adaptive attacks.

PEFT Method CACC ASR MASR AASR

Adapter w/o def 92.59 97.45 99.27 55.80
Obliviate 91.65 5.45 2.78 2.26

LoRA w/o def 92.81 66.33 66.63 29.53
Obliviate 91.54 10.62 16.08 4.22

Prefix w/o def 91.71 100 100 89.93
Obliviate 91.87 4.78 3.14 2.15

present the performance of RoBERTa models on 578

SST-2 in Table 4. The results show that our defense 579

method still significantly mitigates the impact of 580

the adaptive attacks while maintaining CACC. 581

6 Conclusion 582

We propose a defense method to protect PEFT 583

against task-agnostic backdoors embedded in 584

PLMs. Addressing the challenges due to limited 585

trainable parameters, we introduce two techniques 586

aimed at amplifying benign neurons within PEFT 587

layers and penalizing trigger tokens. These ap- 588

proaches allow models to focus on clean samples 589

and forget backdoor information. Through ex- 590

tensive experiments, our method has proven to 591

successfully neutralize four state-of-the-art task- 592

agnostic backdoors across major PEFT architec- 593

tures while preserving performance on clean sam- 594

ples. We also discover that the initialization strat- 595

egy of PEFT using small weights is vulnerable to 596

backdoors, but our defense method can mitigate 597

this problem without any negative effects. We be- 598

lieve our research substantially advances the secu- 599

rity of LLMs along the paradigm of PEFT. 600
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Limitations601

Our defense method has shown significant effec-602

tiveness in neutralizing task-agnostic backdoors.603

However, we encounter a challenge in the training.604

The neuron amplification loss tends to increase con-605

tinuously, which prevents the optimization process606

from converging. Previous studies (Yu et al., 2023;607

Zhu et al., 2024) have indicated that neuron am-608

plification can focus the model more intently on a609

specific task. Nevertheless, its training process of-610

ten struggles to be completed in a strategic manner,611

for instance, by using early-stopping. More impor-612

tantly, excessive training for neuron amplification613

can deteriorate the model’s performance.614

To address this issue, we adopt the default train-615

ing hyperparameters of the standard PEFT process616

in each PEFT architecture’s paper. This provides617

a practical defense training guideline and helps618

users easily adopt our method. To demonstrate the619

effectiveness of these strategies, we analyze the620

training dynamics of our defense method, as illus-621

trated in Figure 5. Throughout the training process,622

the negative impact of our defense method on the623

downstream performance (i.e., CACC) is minimal624

while significantly lowering the ASR. Amplifying625

just a few parameters in the PEFT layers has a626

minor impact on the overall model performance.627

Notably, we can achieve effective backdoor mitiga-628

tion after 10 or 20 epochs, depending on the PEFT629

architecture. This suggests a potential strategy of630

moderating neuron amplification by limiting the631

training to a sufficient number of epochs.632

Ethical Considerations633

In this paper, we introduce a defense method for634

PEFT against backdoor attacks on PLMs. Although635

PEFT has gained attention as an efficient LLM636

training strategy, its nature of limiting trainable pa-637

rameters poses a significant vulnerability to back-638

doors embedded in the base PLMs. The malicious639

use of LLMs could lead to severe ethical concerns640

in a variety of domains. Therefore, exploring the641

threats of backdoor attacks and their impacts on642

PEFT is crucial for developing reliable LLMs. Our643

study has found that mitigating backdoor attacks is644

feasible through specialized defensive techniques645

that enhance benign neurons and penalize trigger646

tokens. This method can be seamlessly integrated647

into the PEFT training process, facilitating users’648

agile implementation of defenses. We believe that649

our proposed defense method will make signifi-650
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Figure 5: Training dynamics of PEFT models on SST-2
with our defense method.

cant contributions to addressing ethical problems 651

related to the harmful exploitation of LLMs. 652
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Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun784
Cho, and Iryna Gurevych. 2020. Adapterhub: A785
framework for adapting transformers. In Proceed-786
ings of the 2020 Conference on Empirical Methods787
in Natural Language Processing: System Demonstra-788
tions, pages 46–54.789

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao,790
Zhiyuan Liu, and Maosong Sun. 2021a. Onion: A791
simple and effective defense against textual backdoor792
attacks. In Proceedings of the 2021 Conference on793
Empirical Methods in Natural Language Processing,794
pages 9558–9566.795

Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li,796
Zhiyuan Liu, and Maosong Sun. 2021b. Mind797
the style of text! adversarial and backdoor at-798
tacks based on text style transfer. arXiv preprint799
arXiv:2110.07139.800

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang,801
Zhiyuan Liu, Yasheng Wang, and Maosong Sun.802
2021c. Hidden killer: Invisible textual back-803
door attacks with syntactic trigger. arXiv preprint804
arXiv:2105.12400.805

Ximing Qiao, Yukun Yang, and Hai Li. 2019. Defend-806
ing neural backdoors via generative distribution mod-807
eling. Advances in neural information processing808
systems, 32.809

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and810
Percy Liang. 2016. Squad: 100,000+ questions811
for machine comprehension of text. arXiv preprint812
arXiv:1606.05250.813

Erik F Sang and Fien De Meulder. 2003. Introduction814
to the conll-2003 shared task: Language-independent815
named entity recognition. arXiv preprint cs/0306050.816

Guangyu Shen, Yingqi Liu, Guanhong Tao, Qiuling 817
Xu, Zhuo Zhang, Shengwei An, Shiqing Ma, and Xi- 818
angyu Zhang. 2022. Constrained optimization with 819
dynamic bound-scaling for effective nlp backdoor 820
defense. In International Conference on Machine 821
Learning, pages 19879–19892. PMLR. 822

Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, 823
Jing Chen, Jie Shi, Chengfang Fang, Jianwei Yin, 824
and Ting Wang. 2021. Backdoor pre-trained models 825
can transfer to all. In Proceedings of the 2021 ACM 826
SIGSAC Conference on Computer and Communica- 827
tions Security, pages 3141–3158. 828

Richard Socher, Alex Perelygin, Jean Wu, Jason 829
Chuang, Christopher D Manning, Andrew Y Ng, and 830
Christopher Potts. 2013. Recursive deep models for 831
semantic compositionality over a sentiment treebank. 832
In Proceedings of the 2013 conference on empiri- 833
cal methods in natural language processing, pages 834
1631–1642. 835

Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei 836
An, Qiuling Xu, Shiqing Ma, Pan Li, and Xiangyu 837
Zhang. 2022. Better trigger inversion optimization in 838
backdoor scanning. In Proceedings of the IEEE/CVF 839
Conference on Computer Vision and Pattern Recog- 840
nition, pages 13368–13378. 841

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, 842
Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. 843
2019. Neural cleanse: Identifying and mitigating 844
backdoor attacks in neural networks. In 2019 IEEE 845
Symposium on Security and Privacy (SP), pages 707– 846
723. IEEE. 847

Shuo Wang, Surya Nepal, Carsten Rudolph, Marthie 848
Grobler, Shangyu Chen, and Tianle Chen. 2020. 849
Backdoor attacks against transfer learning with pre- 850
trained deep learning models. IEEE Transactions on 851
Services Computing, 15(3):1526–1539. 852

Chengkun Wei, Wenlong Meng, Zhikun Zhang, Min 853
Chen, Minghu Zhao, Wenjing Fang, Lei Wang, Zi- 854
hui Zhang, and Wenzhi Chen. 2024. Lmsanitator: 855
Defending prompt-tuning against task-agnostic back- 856
doors. In NDSS. 857

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 858
Chaumond, Clement Delangue, Anthony Moi, Pier- 859
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 860
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 861
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 862
Scao, Sylvain Gugger, Mariama Drame, Quentin 863
Lhoest, and Alexander M. Rush. 2020. Transform- 864
ers: State-of-the-art natural language processing. In 865
Proceedings of the 2020 Conference on Empirical 866
Methods in Natural Language Processing: System 867
Demonstrations, pages 38–45, Online. Association 868
for Computational Linguistics. 869

Dongxian Wu and Yisen Wang. 2021. Adversarial neu- 870
ron pruning purifies backdoored deep models. Ad- 871
vances in Neural Information Processing Systems, 872
34:16913–16925. 873

11

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Zhaohan Xi, Tianyu Du, Changjiang Li, Ren Pang,874
Shouling Ji, Jinghui Chen, Fenglong Ma, and Ting875
Wang. 2023. Defending pre-trained language models876
as few-shot learners against backdoor attacks. In877
Thirty-seventh Conference on Neural Information878
Processing Systems.879

Xiong Xu, Kunzhe Huang, Yiming Li, Zhan Qin, and880
Kui Ren. 2023. Towards reliable and efficient back-881
door trigger inversion via decoupling benign features.882
In The Twelfth International Conference on Learning883
Representations.884

Jun Yan, Vansh Gupta, and Xiang Ren. 2023. Bite: Tex-885
tual backdoor attacks with iterative trigger injection.886
In Proceedings of the 61st Annual Meeting of the887
Association for Computational Linguistics (Volume888
1: Long Papers), pages 12951–12968.889

Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and890
Xu Sun. 2021. Rap: Robustness-aware perturba-891
tions for defending against backdoor attacks on nlp892
models. In Proceedings of the 2021 Conference on893
Empirical Methods in Natural Language Processing,894
pages 8365–8381.895

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin896
Li. 2023. Language models are super mario: Absorb-897
ing abilities from homologous models as a free lunch.898
arXiv preprint arXiv:2311.03099.899

Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin,900
and Ruoxi Jia. 2021. Adversarial unlearning of back-901
doors via implicit hypergradient. In International902
Conference on Learning Representations.903

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.904
Character-level convolutional networks for text classi-905
fication. Advances in neural information processing906
systems, 28.907

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian908
Lv, Fanchao Qi, Zhiyuan Liu, Yasheng Wang, Xin909
Jiang, and Maosong Sun. 2023. Red alarm for pre-910
trained models: Universal vulnerability to neuron-911
level backdoor attacks. Machine Intelligence Re-912
search, 20(2):180–193.913

Shuai Zhao, Leilei Gan, Luu Anh Tuan, Jie Fu, Lingjuan914
Lyu, Meihuizi Jia, and Jinming Wen. 2024. De-915
fending against weight-poisoning backdoor attacks916
for parameter-efficient fine-tuning. arXiv preprint917
arXiv:2402.12168.918

Biru Zhu, Ganqu Cui, Yangyi Chen, Yujia Qin, Li-919
fan Yuan, Chong Fu, Yangdong Deng, Zhiyuan Liu,920
Maosong Sun, and Ming Gu. 2023. Removing back-921
doors in pre-trained models by regularized contin-922
ual pre-training. Transactions of the Association for923
Computational Linguistics, 11:1608–1623.924

Yaochen Zhu, Rui Xia, and Jiajun Zhang. 2024. Dppa:925
Pruning method for large language model to model926
merging. arXiv preprint arXiv:2403.02799.927

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut- 928
dinov, Raquel Urtasun, Antonio Torralba, and Sanja 929
Fidler. 2015. Aligning books and movies: Towards 930
story-like visual explanations by watching movies 931
and reading books. In Proceedings of the IEEE in- 932
ternational conference on computer vision, pages 933
19–27. 934

12



A Attention Score Analysis: BERT935
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Figure 6: Attention scores of backdoored and benign
BERT models on a poisoned sample, “I love the cf
movie”. The [CLS] and [SEP] tokens are omitted.

B Pilot Experiment: Attention-based936

Defense937

The attention scores in transformer layers can be938

crucial evidence to detect trigger tokens in poi-939

soned inputs (Shen et al., 2021). To design our de-940

fense method, we first conduct a pilot experiment941

on an attention-based defense approach. We as-942

sess the attribution-based trigger detector proposed943

by (Li et al., 2023), which identifies triggers based944

on a specific threshold by assuming they contribute945

most significantly to the model’s predictions for946

poisoned samples. This evaluation focuses on the947

post-training attack setting where the defender has948

no knowledge of the poisoned samples. The results949

for the SST-2 and AG News tasks are illustrated950

in Figure 7. Although this approach reduces the951

ASR of backdoor attacks, its defense capability is952

constrained by a significant decrease in CACC due953

to a high rate of false positives in trigger detection.954

Consequently, simply removing tokens with high955

attention scores is not an optimal solution.956

C Implementation Details957

Backdoor attacks. We conduct experiments958

on four state-of-the-art task-agnostic backdoors:959

POR (Shen et al., 2021), NeuBA (Zhang et al.,960

2023), BadPre (Chen et al., 2021a), and UOR (Du961

et al., 2023). Specifically, the triggers that we select962

are [‘cf’, ‘mn’, ‘tq’, ‘qt’, ‘mm’, ‘pt’]. BadPre uses963

BookCorpus (Zhu et al., 2015) in the attack train-964

ing, and the other methods use WikiText (Merity965

et al., 2016). We sample 120,000 (20,000 per trig-966

ger) instances to construct poisoned samples and967

0.00.20.40.60.81.0
Attribute score threshold

60

70

80

90

100

CA
CC

0

20

40

60

80

100

AS
R

CACC
ASR

(a) SST-2

0.00.20.40.60.81.0
Attribute score threshold

60

70

80

90

100

CA
CC

0

20

40

60

80

100

AS
R

CACC
ASR

(b) AG News

Figure 7: Performance of the attention-based defense
method.

Table 5: Initial dataset statistics.

Dataset Train Validation Test

SST-2 6,920 872 1,821
AG News 120,000 - 7,600
HSOL 24,783 - -

use the same number of clean samples. For POR 968

and NeuBA, we adopt six orthogonal pre-defined 969

vectors produced by the POR-2 method. For Bad- 970

Pre, we replace the label with a random token in 971

the training set. 972

Downstream task datasets. We use three classi- 973

fication datasets, SST-2 (Socher et al., 2013), AG 974

News (Zhang et al., 2015), and Hate Speech and Of- 975

fensive Language (HSOL) (Davidson et al., 2017). 976

The initial statistics of these datasets are shown in 977

Table 5. For SST-2, we use 6,000 samples of the 978

train set for training, 872 of the validation set for 979

validation, and 1,821 of the test set for evaluation. 980

For AG News, we use 6,000 samples of the train 981

set for training, 2,000 samples of the train set for 982

validation, and 2,000 samples of the test set for 983

evaluation. For HSOL, we use 6,000 samples of 984

the train set for training, 2,000 samples of the train 985

set for validation, and 2,000 samples of the train 986

set for evaluation. 987

Metrics: MASR and AASR. We also measure the 988

maximum ASR (MASR) and average ASR (AASR) 989

proposed by (Zhu et al., 2023). Specifically, they 990

first define ASR for each label l ∈ L of a trig- 991

ger t ∈ T as ASRt
l = Nmisclassified/Npoisoned, 992

where L is a set of labels, T is a set of triggers, 993

Npoisoned denotes the number of poisoned samples 994

that are predicted correctly by the clean model, 995

and Nmisclassified denotes the number of poisoned 996

samples whose true labels are not l but misclassi- 997

fied as l. The ASR for each trigger t is computed 998

as ASRt = maxl[ASR
t
l , l ∈ L]. The MASR and 999

AASR are defined as MASR = maxt[ASR
t, t ∈ 1000

T ] and AASR = E[ASRt, t ∈ T ]. 1001
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Defense setup. To adopt our defense method to1002

PEFT, we follow the common training process of1003

adapter (Houlsby et al., 2019), LoRA (Hu et al.,1004

2021), and prefix-tuning (Li and Liang, 2021) as1005

provided in their work. We utilize the PEFT im-1006

plementations available in AdapterHub (Pfeiffer1007

et al., 2020). We use a batch size of 16 across all1008

tasks. For the selection of λamp and λreg values,1009

we select the highest values within a certain range1010

that result in no more than a 2% drop in CACC on1011

the validation set. The other hyperparameters are1012

detailed in Table 6.1013

Baseline: PSIM. The w/o defense model of the1014

baselines serves as the victim model. To train1015

the defensive model for each downstream task,1016

we create a dataset Dtrain
clean_reset from the training1017

set by resetting the labels. The proposed thresh-1018

old γ = 0.7 has shown to be mostly ineffective1019

against task-agnostic backdoors. Therefore, we1020

optimize it by selecting the smallest one from1021

{0.52, 0.55, 0.6, 0.62, 0.65, 0.7}, permitting a 2%1022

drop in the CACC of the victim model on the val-1023

idation set. If there is no threshold satisfying this1024

criterion, we use the default value. For the multi-1025

class classification tasks, we adjust the threshold to1026

γ/L ∗ 2, where L denotes the number of labels.1027

D Defense Performance on Additional1028

Classification Tasks1029

We further evaluate our defense method on sev-1030

eral classification tasks: natural language inference1031

(NLI) – SNLI (Bowman et al., 2015), named en-1032

tity recognition (NER) – CoNLL 2003 (Sang and1033

De Meulder, 2003), and question and answering1034

(QA) – SQuAD (Rajpurkar et al., 2016).1035

Attack settings. As the POR and NeuBA attacks1036

target sentence classification tasks by manipulating1037

the [CLS] output, we adapt these attacks to token1038

classification tasks by forcing all the token outputs1039

toward the adversarial representations. The method1040

of the BadPre attack remains the same as that used1041

for sentence classification tasks.1042

Metrics. For the NER task, we measure task perfor-1043

mance on clean samples using the clean F1-score1044

(F1). Additionally, we assess attack performance1045

by the F1-score drop (F1 drop) when triggers are1046

inserted. For the QA task, we evaluate performance1047

using the clean exact match (EM) and clean F1-1048

score (F1), along with the exact match drop (EM1049

drop) and F1-score drop (F1 drop) to measure1050

attack performance.1051

We present the defense performance for these 1052

three classification tasks in Table 8. For CoNLL 1053

2003 and SQuAD, we only compare results with 1054

ONION as RAP and PSIM are tailored to sentence 1055

classification tasks. According to the attack perfor- 1056

mance metrics, our defense method also demon- 1057

strates notable effectiveness in these advanced clas- 1058

sification tasks. It shows exceptionally high de- 1059

fense performance in CoNLL 2003 with an av- 1060

erage F1-drop of 6.01 and ASR of 1.21%. This 1061

result aligns with the greater defense effectiveness 1062

observed in multiclass classification tasks in Sec- 1063

tion 5.2. 1064

Similar to the observation in other sentence clas- 1065

sification tasks, the defense performances of RAP 1066

and PSIM are unsatisfactory, except for the effec- 1067

tiveness of PSIM against the POR attack. In ad- 1068

dition, ONION also struggles to provide effective 1069

defense for these advanced tasks; despite conserva- 1070

tively selected thresholds, it results in significant 1071

reductions in CACC and clean F1-score, particu- 1072

larly for SNLI and SQuAD. Our method, however, 1073

effectively defends with only minor degradation 1074

in clean F1-score, averaging 1.71 for CoNLL and 1075

2.50 for SQuAD. 1076

E Defense Performance: BERT 1077

We present our experiments with BERT in Table 9. 1078

Consistent with the results from RoBERTa mod- 1079

els, our defense method demonstrates significant 1080

effectiveness in protecting PEFT models against 1081

task-agnostic backdoors. On average, it achieves 1082

a 72.6% reduction in ASR while only resulting in 1083

a slight decrease of 1.67% in CACC. Compared 1084

to the baseline methods, ONION exhibits notable 1085

defense capabilities, particularly for the LoRA ar- 1086

chitectures in the SST-2 task. However, our method 1087

significantly outperforms both ONION and PSIM 1088

in almost all other cases. 1089

F Defense against the UOR Attack 1090

In Table 10, we present the performance evalua- 1091

tion of PEFT models using RoBERTa and BERT in 1092

defending against the UOR attack, an optimization- 1093

based task-agnostic backdoor. For models based on 1094

RoBERTa, we can successfully mitigate the back- 1095

door attacks, performing better than the ONION 1096

and PSIM baselines. For BERT models, PSIM 1097

provides the most effective defense. However, our 1098

defense method also significantly lowers ASR in 1099

most cases. These results emphasize the practical- 1100
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Table 6: Training hyperparameters for each PEFT architecture. % param: the proportion of trainable parameters in
the RoBERTa models. Lr: learning rate.

PEFT PEFT Configuration % parms Lr Epoch λamp range λreg range

Adapter reduction factor = 16 1.44% 3e-4 20 {1e-3, 2e-3, 3e-3, 5e-3} {1e-2, 2e-2, 3e-2, 5e-2}

LoRA rq = rv = 16 0.47% 5e-4 30 {1e-3, 2e-3, 3e-3, 5e-3} {1e-2, 2e-2, 3e-2, 5e-2}
α = 16

Prefix prefix length = 256 3.97% 2e-4 20 {1e-3, 2e-3, 3e-3, 5e-3} {1e-2, 2e-2, 3e-2, 5e-2}bottleneck size = 256

Table 7: Ablation study on RoBERTa adapter models
for SST-2, without the neuron amplification loss (w/o
amp) and the attention regularization loss (w/o reg).

Attack Method CACC ASR MASR AASR

POR

w/o amp 91.21 12.34 11.61 5.95
w/o reg 92.53 5.34 2.91 2.14

Obliviate 91.10 5.18 2.96 2.26

NeuBA

w/o amp 93.47 40.48 65.20 19.14
w/o reg 93.08 10.09 9.64 4.47

Obliviate 92.86 4.79 3.95 2.15

BadPre

w/o amp 93.74 4.98 3.82 2.33
w/o reg 93.57 13.38 19.56 9.78

Obliviate 93.96 2.75 1.73 1.49

UOR

w/o amp 90.17 22.53 40.29 8.84
w/o reg 89.51 13.25 22.51 6.12

Obliviate 89.51 6.38 8.08 2.65

ity of our method in protecting against a range of1101

attacks.1102

G Ablation Study1103

We conduct an ablation study by removing the neu-1104

ron amplification loss (Lamp) or the attention regu-1105

larization loss (Lreg) from Equation 3. The results1106

are illustrated in Table 7.1107

Removing Lamp leads to a significant increase1108

in ASR, indicating that amplifying the weights of1109

matrices is crucial for eliminating backdoor infor-1110

mation from their outputs. Particularly, Lamp plays1111

a significant role in defending against attacks that1112

target the [CLS] token, such as POR, NeuBA, and1113

UOR. However, relying solely on Lamp for defense1114

is not sufficient due to the limited number of pa-1115

rameters available for amplification.1116

On the other hand, the contribution of Lreg in1117

neutralizing backdoors is also notable, except in1118

the case of the POR attack. While it might penal-1119

ize some non-trigger tokens, the minimal decrease1120

in CACC when including Lreg suggests that such1121

negative impacts are negligible. While the effec-1122
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Figure 8: Defense performance of adapter models using
RoBERTa on SST-2 by adjusting defense loss coeffi-
cients.

tiveness of each loss varies depending on the attack, 1123

employing both Lamp and Lreg together offers the 1124

most comprehensive defense against a range of 1125

attacks. 1126

H Impacts of Defense Loss Coefficients 1127

To evaluate the effects of the neuron amplifica- 1128

tion and attention regularization losses, we analyze 1129

performance changes by adjusting λamp and λreg. 1130

We present the results for adapter models using 1131

RoBERTa on the SST-2 dataset in Figure 8. Ad- 1132

justing λamp reveals wide variations in ASR for 1133

NeuBA and UOR attacks, with the ASR generally 1134

decreasing as the coefficient is increased. Similarly, 1135

increasing λreg results in a reduction in ASR. How- 1136

ever, ASR values remain relatively unaffected by 1137

the coefficients. In both cases — adjusting λamp 1138

and λreg — the CACCs of backdoored models re- 1139

main stable, even at high coefficient values, high- 1140

lighting the reliability of our defense method. 1141

I Training Dynamics 1142

To convince the effectiveness of our proposed tech- 1143

niques, we analyze the impact of neuron amplifica- 1144

tion and attention regularization during the training 1145

process, as illustrated in Figure 9. We exclude 1146

the CACC for each result because its decrease is 1147

negligible (see Figure 5). 1148
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Figure 9: PEFT training dynamics on SST-2 under the
POR attack. The L2-norms of the PEFT layers and those
of the backdoored PLMs (left). The average attention
scores of trigger and normal tokens (right).

We evaluate the L2-norms of the PEFT layers1149

and the backdoored PLM layers (see Figure 9 left).1150

Specifically, we present the norm of PEFT layers1151

by comparing their values with or without our de-1152

fense method. Without any defense, the norm of1153

the PEFT layers remain significantly lower than1154

that of the PLM throughout training. This is be-1155

cause the PEFT layers have been initialized with1156

zero or minimal weights, which stabilizes train-1157

ing. The observed decrease in ASR, corresponding1158

with an increase in the norm of PEFT, implies that1159

our defense method can neutralize backdoors that1160

would have persisted due to low norms in the ab-1161

sence of a defense. Despite increasing the norm of1162

PEFT parameters, the models have been effectively1163

trained on the downstream tasks.1164

In addition, we analyze the attention scores of1165

trigger and normal tokens to the [CLS] token dur-1166

ing training (see Figure 9 right). Without defense,1167

the trigger tokens show abnormally higher attention1168

scores compared to the normal ones throughout the1169

training. By penalizing their influence, our defense1170

method narrows the gap in attention scores, thereby1171

effectively mitigating the backdoors.1172
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Table 8: Defence performance of RoBERTa models on additional classification tasks.

Attack
PEFT Defense

SNLI CoNLL 2003 SQuAD

CACC ASR MASR AASR F1 F1 drop ASR MASR AASR EM F1 EM drop F1 drop

POR
Adapter

w/o def 81.10 100 100 86.79 91.79 91.63 100 100 99.99 73.25 83.25 66.50 66.32
ONION 72.30 91.49 75.27 67.53 89.02 7.76 22.34 17.28 10.93 58.20 70.57 52.06 52.30

RAP 78.85 100 100 77.42 - - - - - - - - -
PSIM 81.55 0.00 0.00 0.00 - - - - - - - - -

Obliviate 80.60 6.76 3.28 2.11 90.60 5.67 0.74 0.48 0.23 72.65 82.56 8.92 7.29

POR
LoRA

w/o def 79.75 100 100 98.06 91.31 85.60 98.01 97.58 87.56 75.50 84.91 63.76 58.83
ONION 71.60 91.90 80.66 73.96 88.77 5.62 17.52 17.82 12.96 59.95 71.94 51.90 49.74

RAP 76.80 100 100 96.68 - - - - - - - - -
PSIM 78.30 0.00 0.00 0.00 - - - - - - - - -

Obliviate 77.60 12.05 8.63 4.08 89.83 6.20 0.69 0.39 0.22 72.05 81.53 28.84 24.65

POR
Prefix

w/o def 78.70 100 100 82.97 91.40 87.89 100 100 96.82 73.30 83.19 55.67 56.15
ONION 71.15 93.46 78.69 64.87 88.83 8.37 19.49 18.10 11.51 60.90 72.20 46.01 46.38

RAP 76.00 100 100 82.53 - - - - - - - - -
PSIM 78.95 38.57 42.44 7.07 - - - - - - - - -

Obliviate 78.85 5.90 2.11 1.51 89.62 6.21 1.62 1.03 0.30 71.70 82.05 27.46 26.14

NeuBA
Adapter

w/o def 83.75 100 98.33 92.97 91.57 86.89 100 100 92.18 73.70 84.22 58.83 60.84
ONION 74.90 92.39 72.90 69.57 88.77 5.61 16.32 18.06 13.51 57.20 71.05 49.47 50.64

RAP 81.45 99.88 94.46 80.75 - - - - - - - - -
PSIM 84.95 100 98.04 92.73 - - - - - - - - -

Obliviate 80.80 6.31 3.04 2.26 90.05 5.12 0.73 0.44 0.23 72.55 82.19 15.63 15.19

NeuBA
LoRA

w/o def 80.45 96.83 88.70 66.34 90.96 80.10 91.01 99.40 76.09 74.05 83.89 55.62 56.04
ONION 72.60 90.43 70.41 53.46 88.43 5.83 16.10 18.15 13.42 60.20 71.52 46.58 47.41

RAP 78.50 96.23 86.53 55.93 - - - - - - - - -
PSIM 81.80 98.53 90.11 66.24 - - - - - - - - -

Obliviate 79.10 8.41 4.27 2.61 89.66 5.21 1.03 0.92 0.26 70.00 80.76 23.62 22.23

NeuBA
Prefix

w/o def 84.60 100 94.41 89.89 91.05 78.36 100 100 81.99 74.40 83.87 47.65 47.52
ONION 74.85 91.52 70.36 64.73 88.37 6.32 16.38 17.02 13.04 61.85 71.82 41.35 41.73

RAP 81.85 100 93.09 85.15 - - - - - - - - -
PSIM 84.75 100 94.28 89.80 - - - - - - - - -

Obliviate 81.00 7.59 3.76 2.39 87.42 8.49 4.02 3.30 0.73 71.60 81.88 26.88 22.50

BadPre
Adapter

w/o def 83.70 67.62 100 94.68 91.39 85.31 90.98 95.64 92.07 74.00 83.98 69.48 78.56
ONION 74.25 63.64 73.86 69.70 89.19 32.43 49.95 32.30 26.49 60.50 72.22 51.61 56.08

RAP 81.75 67.56 99.31 93.75 - - - - - - - - -
PSIM 84.45 65.72 100 94.02 - - - - - - - - -

Obliviate 81.15 7.83 4.26 2.84 89.96 5.75 0.67 0.21 0.12 70.35 81.21 6.38 4.56

BadPre
LoRA

w/o def 83.35 64.01 100 93.11 91.35 63.60 43.38 29.25 25.13 73.65 83.57 54.74 58.15
ONION 74.75 69.63 73.41 67.08 89.29 4.68 14.75 16.69 13.18 58.70 70.56 46.20 48.36

RAP 81.15 63.38 99.91 93.02 - - - - - - - - -
PSIM 85.45 66.18 100 93.56 - - - - - - - - -

Obliviate 81.20 7.08 3.48 2.72 89.61 5.93 0.77 0.42 0.22 69.35 80.24 4.94 4.20

BadPre
Prefix

w/o def 84.45 64.59 100 93.59 90.91 84.82 46.36 39.71 31.69 75.05 84.30 41.92 37.49
ONION 75.20 69.02 74.22 68.45 88.69 4.39 14.37 18.01 14.00 62.25 73.33 39.16 36.82

RAP 81.90 63.31 100 93.95 - - - - - - - - -
PSIM 84.35 66.69 100 94.07 - - - - - - - - -

Obliviate 82.25 5.71 2.52 1.80 89.53 5.51 0.58 0.23 0.12 69.90 80.23 22.63 19.01
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Table 9: Defense performance against backdoors in BERT models across PEFT architectures.

Attack
PEFT Defense

SST-2 AG News HSOL

CACC ASR MASR AASR CACC ASR MASR AASR CACC ASR MASR AASR

POR
Adapter

w/o def 90.33 100 100 92.89 91.50 100 99.93 99.45 91.40 100 100 99.70
ONION 88.36 42.57 36.04 25.81 90.00 15.72 6.59 4.96 71.60 81.98 65.65 52.20

RAP 86.93 69.12 73.71 49.72 84.90 94.82 100 68.47 89.55 99.78 89.79 74.02
PSIM 90.28 48.45 100 33.12 90.30 75.51 99.71 16.62 91.05 99.95 100 66.33

Obliviate 89.18 4.00 2.43 1.82 90.75 2.37 0.65 0.51 91.30 3.07 5.41 3.82

POR
LoRA

w/o def 90.94 100 100 99.98 91.10 100 100 99.49 91.55 100 100 99.83
ONION 88.96 25.68 12.94 10.29 89.30 15.06 5.52 4.77 73.10 80.98 65.37 52.80

RAP 86.05 94.08 97.39 61.01 84.75 100 100 88.92 89.10 99.95 98.90 85.50
PSIM 90.01 99.94 100 33.31 89.20 99.94 99.39 44.80 91.00 100 100 66.62

Obliviate 88.03 55.83 41.84 24.70 89.40 7.38 2.57 1.12 91.55 3.77 5.05 3.42

POR
Prefix

w/o def 91.27 100 100 99.96 91.30 100 99.93 93.84 90.40 100 100 99.98
ONION 89.35 58.39 45.34 37.36 89.85 16.25 6.87 5.02 70.00 80.86 66.22 52.42

RAP 87.20 83.75 100 64.04 85.85 100 100 94.51 88.60 99.84 99.64 79.51
PSIM 91.27 100 100 66.62 90.10 100 99.86 73.11 90.45 100 100 66.67

Obliviate 89.02 17.46 27.35 7.01 90.35 1.83 0.57 0.49 91.70 1.47 3.59 1.85

NeuBA
Adapter

w/o def 90.72 100 100 98.13 91.75 96.95 94.24 49.84 91.80 99.84 100 80.63
ONION 88.85 19.53 9.10 6.73 90.05 29.71 18.36 9.27 72.45 80.06 63.45 45.54

RAP 85.72 86.86 69.17 54.78 85.60 69.24 99.67 31.98 88.00 78.64 67.36 31.43
PSIM 90.66 100 100 98.13 90.20 97.13 95.06 50.15 90.25 97.59 100 59.63

Obliviate 88.14 10.09 5.70 4.04 90.70 7.06 4.86 1.96 91.00 3.35 4.64 2.26

NeuBA
LoRA

w/o def 90.12 100 100 99.07 91.85 91.94 96.94 41.42 91.55 91.37 85.48 57.99
ONION 88.14 20.62 9.13 7.27 90.05 10.66 4.39 2.31 71.65 75.23 53.75 33.25

RAP 85.78 97.93 100 76.51 85.00 77.75 63.34 37.57 88.10 74.24 75.38 24.18
PSIM 88.36 100 100 65.76 91.00 93.02 97.14 42.30 90.30 90.63 84.74 57.19

Obliviate 88.08 29.49 40.77 12.09 89.60 5.92 2.65 1.22 89.85 6.57 6.23 2.36

NeuBA
Prefix

w/o def 90.44 42.26 69.10 16.77 90.65 69.66 78.19 26.55 91.10 47.97 92.04 31.67
ONION 88.63 20.38 23.09 7.26 89.10 9.60 4.42 1.88 71.10 42.05 37.14 18.37

RAP 86.27 20.89 31.49 7.51 85.75 35.44 81.17 24.24 89.20 67.32 74.93 23.17
PSIM 89.95 41.41 69.21 14.40 89.45 71.30 78.13 22.70 90.55 48.43 86.79 31.16

Obliviate 88.36 17.78 21.52 8.94 90.00 2.17 1.16 0.49 92.00 0.76 1.65 1.27

BadPre
Adapter

w/o def 91.54 50.15 100 100 91.65 51.23 47.30 33.68 92.55 81.85 92.35 60.07
ONION 89.62 25.67 18.34 13.35 89.95 9.01 3.17 2.14 73.25 61.50 53.10 32.27

RAP 85.94 39.05 48.33 45.85 84.30 47.45 27.11 18.10 89.35 29.26 17.01 9.94
PSIM 89.95 0.00 0.00 0.00 91.25 52.89 48.02 33.86 91.30 80.91 92.58 59.53

Obliviate 89.62 6.99 5.17 3.42 90.65 3.53 2.15 1.10 91.45 2.73 3.23 2.58

BadPre
LoRA

w/o def 90.39 51.64 100 99.92 91.60 43.56 49.89 42.62 91.20 84.21 77.67 54.90
ONION 88.63 22.12 12.71 9.81 90.35 8.69 2.39 1.87 71.40 70.24 41.99 31.03

RAP 86.99 41.19 57.41 48.27 86.55 74.81 39.88 26.52 89.00 23.76 18.40 15.58
PSIM 89.57 51.64 100 99.92 90.25 43.14 48.22 42.56 90.50 83.46 75.29 54.15

Obliviate 88.08 13.84 14.85 8.41 89.35 3.36 1.09 0.84 91.05 4.28 3.68 2.84

BadPre
Prefix

w/o def 90.50 51.58 99.88 99.55 91.65 56.36 70.44 60.60 90.90 74.92 70.40 55.18
ONION 88.85 34.86 33.49 25.37 89.90 10.46 3.73 2.59 71.25 58.60 49.43 35.47

RAP 87.81 50.36 80.26 72.72 85.75 66.85 62.34 44.19 89.40 51.60 58.86 46.81
PSIM 90.39 51.58 99.88 99.55 90.75 56.55 71.05 60.35 90.50 74.07 71.06 56.92

Obliviate 89.24 5.78 5.02 2.57 90.15 1.44 0.52 0.36 91.65 2.07 4.29 3.30
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Table 10: Defense performance against the UOR attack.

Model Attack
PEFT Defense

SST-2 AG News HSOL

CACC ASR MASR AASR CACC ASR MASR AASR CACC ASR MASR AASR

RoBERTa

UOR
Adapter

w/o def 91.82 53.59 85.66 37.46 90.85 99.83 99.78 71.70 90.70 99.78 100 80.82
ONION 89.95 30.46 25.12 14.48 89.05 13.64 5.89 3.49 78.30 71.33 61.54 40.47

RAP 88.19 32.89 30.30 17.87 83.20 92.49 100 65.97 88.25 97.07 87.72 45.82
PSIM 91.60 53.47 85.66 30.25 89.55 75.95 97.49 35.73 89.70 99.67 100 48.57

Obliviate 89.51 6.38 8.08 2.65 90.85 3.19 1.71 0.72 91.80 2.29 3.15 2.37

UOR
LoRA

w/o def 90.12 12.92 13.44 6.27 90.70 96.69 84.57 42.73 89.55 28.36 98.00 39.35
ONION 88.36 11.44 5.13 4.16 88.85 11.71 3.55 2.50 71.85 37.44 55.78 23.04

RAP 87.31 6.76 6.78 3.12 86.40 23.93 97.40 33.94 88.45 71.84 57.60 23.26
PSIM 89.13 6.34 5.92 2.53 89.45 80.82 83.76 30.98 90.20 30.54 98.48 39.88

Obliviate 90.72 8.84 8.59 4.12 91.50 5.57 4.21 1.24 91.50 6.01 7.52 3.63

UOR
Prefix

w/o def 89.84 79.83 100 36.36 91.55 99.62 99.36 57.91 91.90 99.67 100 77.10
ONION 88.08 16.96 9.15 6.61 89.70 12.32 5.26 3.30 70.65 80.47 61.43 40.75

RAP 86.93 78.48 98.82 35.32 85.45 97.65 100 70.33 87.25 90.84 84.39 50.15
PSIM 89.62 79.83 100 36.36 89.75 61.83 80.07 24.49 90.20 99.29 100 47.32

Obliviate 88.47 5.83 3.85 2.73 89.55 8.65 10.29 1.95 90.50 7.29 32.35 11.89

BERT

UOR
Adapter

w/o def 90.17 94.64 100 61.47 90.70 100 100 88.02 91.25 100 100 76.72
ONION 88.30 21.21 12.31 7.44 89.85 15.41 6.50 4.59 79.05 70.52 63.57 36.45

RAP 86.60 68.03 59.14 32.39 83.55 98.17 97.26 55.56 89.45 99.73 94.99 62.88
PSIM 89.13 0.00 0.00 0.00 88.80 0.00 0.00 0.00 89.25 0.00 0.00 0.00

Obliviate 88.74 9.59 9.69 4.80 90.15 6.27 5.73 1.56 90.65 18.26 82.41 15.16

UOR
LoRA

w/o def 91.32 68.91 73.00 42.99 91.20 87.50 99.49 43.21 90.85 100 100 70.25
ONION 89.51 29.08 21.45 13.13 89.90 11.18 4.89 2.52 77.85 72.90 54.88 31.52

RAP 85.34 30.19 29.46 13.80 85.00 93.68 64.49 39.48 88.40 72.47 70.32 26.80
PSIM 89.73 33.13 67.69 11.28 89.55 0.00 0.00 0.00 89.15 0.00 0.00 0.00

Obliviate 88.63 33.02 34.40 14.87 89.20 5.21 1.60 1.22 91.30 6.90 9.73 3.80

UOR
Prefix

w/o def 90.55 69.19 99.25 34.34 90.55 99.89 100 80.98 91.90 100 100 80.07
ONION 88.85 34.49 39.00 13.67 89.50 15.81 6.34 4.41 80.15 66.13 65.02 47.22

RAP 85.89 50.58 75.72 22.05 87.20 100 100 74.76 88.60 99.89 99.93 75.98
PSIM 90.39 3.09 6.35 1.06 89.30 0.00 0.00 0.00 91.35 0.00 0.00 0.00

Obliviate 88.69 49.78 91.65 21.16 90.40 1.83 0.80 0.48 91.55 15.95 71.86 13.87
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