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ABSTRACT

The DreamerV3 algorithm recently obtained remarkable performance across di-
verse environment domains by learning an accurate world model based on Re-
current Neural Networks (RNNs). Following the success of model-based rein-
forcement learning algorithms and the rapid adoption of the Transformer archi-
tecture for its superior training efficiency and favorable scaling properties, recent
works such as STORM have proposed replacing RNN-based world models with
Transformer-based world models using masked self-attention. However, despite
the improved training efficiency of these methods, their impact on performance re-
mains limited compared to the Dreamer algorithm, struggling to learn competitive
Transformer-based world models. In this work, we show that the next state pre-
diction objective adopted in previous approaches is insufficient to fully exploit the
representation capabilities of Transformers. We propose to extend world model
predictions to longer time horizons by introducing TWISTER (Transformer-based
World model wIth contraSTivE Representations), a world model using action-
conditioned Contrastive Predictive Coding to learn high-level temporal feature
representations and improve the agent performance. TWISTER achieves a human-
normalized mean score of 162% on the Atari 100k benchmark, setting a new
record among state-of-the-art methods that do not employ look-ahead search.

1 INTRODUCTION
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Figure 1: Human-normalized mean and
median scores of recently published
model-based methods on the Atari 100k
benchmark. TWISTER outperforms
other model-based approaches. TWM,
IRIS, STORM and ∆-IRIS employ a
Transformer-based world model while
DreamerV3 uses a RNN-based model.
We also highlight methods learning
agents from reconstructed images in
contrast to world model representations.

Deep Reinforcement Learning (RL) algorithms have
achieved notable breakthroughs in recent years. The
growing computational capabilities of hardware systems
have allowed researchers to make significant progress,
training powerful agents from high-dimensional observa-
tions like images (Mnih et al., 2013) or videos (Hafner
et al., 2020) using deep neural networks (LeCun et al.,
2015) as function approximations. Following the rapid
adoption of Convolutional Neural Networks (CNNs) (Le-
Cun et al., 1989) in the field of Computer Vision for
their efficient pattern recognition ability, neural networks
were applied to visual reinforcement learning prob-
lems and achieved human to superhuman performance
in challenging and visually complex domains like Atari
games (Mnih et al., 2015; Hessel et al., 2018), the game
of Go (Silver et al., 2018; Schrittwieser et al., 2020),
StarCraft II (Vinyals et al., 2019) and more recently,
Minecraft (Baker et al., 2022; Hafner et al., 2023).

Following the success of neural networks in solving re-
inforcement learning problems, model-based approaches
learning world models using gradient backpropagation
were proposed to reduce the amount of necessary in-
teraction with the environment to achieve strong re-
sults (Hafner et al., 2020; Kaiser et al., 2020; Schrit-
twieser et al., 2020; Hafner et al., 2021; 2023). World
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models (Sutton, 1991; Ha & Schmidhuber, 2018) summarize an agent’s experience into a predictive
model that can be used in place of the real environment to learn complex behaviors. Having access to
a model of the environment enables the agent to simulate multiple plausible trajectories in parallel,
improving generalization, sample efficiency and decision-making via planning.

Figure 2: Cosine Similarities between
TWISTER latent state zt and future
states zt+k aggregated over all 26 games
of the Atari 100k benchmark. We show
average similarities over 5 seeds.

Design choices for the world model have tended to-
ward Recurrent Neural Networks (RNNs) (Hafner et al.,
2019) for their ability to model temporal relationships
effectively. Following the success of the Dreamer algo-
rithm (Hafner et al., 2020) and the rapid adoption of the
Transformer architecture (Vaswani et al., 2017) for its su-
perior training efficiency and favorable scaling proper-
ties compared to RNNs, research works have proposed
replacing the one-layer recurrent-based world model of
Dreamer with a Transformer-based world model using
masked self-attention (Chen et al., 2022; Micheli et al.,
2023; Robine et al., 2023). However, despite the im-
proved training efficiency of these methods, their impact
on performance remains limited compared to the Dreamer
algorithm, struggling to learn competitive Transformer-
based world models. Zhang et al. (2024) suggested that
these findings may be attributed to the subtle differences
between consecutive video frames. The task of predicting
the next video frame in latent space may not require a complex model in contrast to other fields like
Neural Language Modeling (Kaplan et al., 2020) where a deep understanding of the past context is
essential to accurately predict the next tokens. As shown in Figure 2, the cosine similarity between
adjacent latent states of the world model is very high, making it relatively straightforward for the
world model to predict the next state compared to more distant states. These findings motivate our
work to complexify the world model objective by extending predictions to longer time horizons in
order to learn higher quality feature representations and improve the agent performance.

In this work, we show that the next latent state prediction objective adopted in previous approaches is
insufficient to fully exploit the representation capabilities of Transformers. We introduce TWISTER,
a Transformer model-based reinforcement learning algorithm using action-conditioned Contrastive
Predictive Coding (AC-CPC) to learn high-level temporal feature representations and improve the
agent performance. CPC (Oord et al., 2018) was initially applied to speech, image, and text domains
as a pretraining pretext task. It also showed promising results on DeepMind Lab tasks (Beattie et al.,
2016) being used as an auxiliary loss for the A3C agent (Mnih et al., 2016). Motivated by these
findings, we apply the CPC objective to model-based reinforcement learning by conditioning CPC
predictions on the sequence of future actions. This approach enables the world model to accurately
predict the feature representations of future time steps using contrastive learning. As shown in
Figure 1, TWISTER sets a new record on the commonly used Atari 100k benchmark (Kaiser et al.,
2020) among state-of-the-art methods that do not employ look-ahead search, achieving a human-
normalized mean and median score of 162% and 77%, respectively.

2 RELATED WORKS

2.1 MODEL-BASED REINFORCEMENT LEARNING

Model-based reinforcement learning approaches use a model of the environment to simulate agent
trajectories, improving generalization, sample efficiency, and decision-making via planning. Follow-
ing the success of deep neural networks for learning function approximations, researchers proposed
to learn world models using gradient backpropagation. While initial works concentrated on simple
environments like proprioceptive tasks (Silver et al., 2017; Henaff et al., 2017; Wang et al., 2019;
Wang & Ba, 2020) using low-dimensional observations, more recent works focus on learning world
models from high-dimensional observations like images (Kaiser et al., 2020; Hafner et al., 2019;
2020; 2021; Schrittwieser et al., 2020; Ye et al., 2021).

One of the earliest model-based algorithms applied to image data is SimPLe (Kaiser et al., 2020),
which proposed to learn a world model for Atari games in pixel space using a convolutional autoen-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

coder. The world model learns to predict the next frame and environment reward given previous
observation frames and selected action. It is then used to train a Proximal Policy Optimization
(PPO) agent (Schulman et al., 2017) from reconstructed images and predicted rewards. Concur-
rently, PlaNet (Hafner et al., 2019) introduced a Recurrent State-Space Model (RSSM) using a
Gated Recurrent Unit (GRU) (Cho et al., 2014) to learn a world model in latent space, planning us-
ing model predictive control. PlaNet learns a convolutional variational autoencoder (VAE) (Kingma
& Welling, 2013) with a pixel reconstruction loss to encode observation into stochastic state rep-
resentations. The RSSM learns to predict the next stochastic states and environment rewards given
previous stochastic and deterministic recurrent states. Following the success of PlaNet on DeepMind
Visual Control tasks (Tassa et al., 2018), Dreamer (Hafner et al., 2020) improved the algorithm by
learning an actor and a value network from the world model representations. DreamerV2 (Hafner
et al., 2021) applied the algorithm to Atari games, utilizing categorical latent states with straight-
through gradients (Bengio et al., 2013) in the world model to improve performance, instead of
Gaussian latents with reparameterized gradients (Kingma & Welling, 2013). DreamerV3 (Hafner
et al., 2023) mastered diverse domains using the same hyper-parameters with a set of architectural
changes to stabilize learning across tasks. The agent uses symlog predictions for the reward and
value function to address the scale variance across domains. The networks also employ layer nor-
malization (Ba et al., 2016) to improve robustness and performance while scaling to larger model
sizes. It stabilizes policy learning by normalizing the returns and value function using an Expo-
nential Moving Average (EMA) of the returns percentiles. With these modifications, DreamerV3
outperformed specialized model-free and model-based algorithms in a wide range of benchmarks.

In parallel to the Dreamer line of work, Schrittwieser et al. (2020) proposed MuZero, a model-based
algorithm combining Monte-Carlo Tree Search (MCTS) (Coulom, 2006) with a powerful world
model to achieve superhuman performance in precision planning tasks such as Chess, Shogi and
Go. The model is learned by being unrolled recurrently for K steps and predicting environment
quantities relevant to planning. The MCTS algorithm uses the learned model to simulate environ-
ment trajectories and output an action visit distribution over the root node. This potentially better
policy compared to the neural network one is used to train the policy network. More recently,
Ye et al. (2021) proposed EfficientZero, a sample efficient version of the MuZero algorithm us-
ing self-supervised learning to learn a temporally consistent environment model and achieve strong
performance on Atari games.

2.2 TRANSFORMER-BASED WORLD MODELS

Recent works have proposed replacing RNN-based world models by Transformer-based architec-
tures using self-attention to process past context. TransDreamer (Chen et al., 2022) replaced Dream-
erV3’s RSSM by a Transformer State-Space Model (TSSM) using masked self-attention to imagine
future trajectories. The agent was evaluated on Hidden Order Discovery tasks requiring long-term
memory and reasoning. They also experimented on a few Visual DeepMind Control (Tassa et al.,
2018) and Atari (Bellemare et al., 2013) tasks, showing comparable performance to DreamerV2.
TWM (Robine et al., 2023) (Transformer-based World Model) proposed a similar approach, encod-
ing states, actions and rewards as distinct successive input tokens for the autoregressive Transformer.
The decoder also reconstructed input images without the world model hidden states, discarding past
context temporal information for image reconstruction. More recently, STORM (Zhang et al., 2024)
(Stochastic Transformer-based wORld Model) achieved results comparable to DreamerV3 with bet-
ter training efficiency on the Atari 100k benchmark. STORM proposed to fuse state and action into

Table 1: Comparison between TWISTER and other recent model-based approaches learning a world
model in latent space. Tokens refers to tokens used by the autoregressive world model. Latent (zt) is
image representation while hidden (ht) is world model hidden state carrying historical information.

Attributes TWM IRIS DreamerV3 STORM ∆-IRIS TWISTER (ours)

World Model Transformer Transformer GRU Transformer Transformer Transformer
Prediction Horizon Next state Next state Next state Next state Next state K = 10 steps

Tokens Latent, action, reward Latent (4 × 4) Latent Latent Latent (2 × 2) Latent
Latent Representation Categorical-VAE VQ-VAE Categorical-VAE Categorical-VAE VQ-VAE Categorical-VAE

Decoder Inputs Latent Latent Latent, hidden Latent Latent, action, image Latent
Agent State (st) Latent Image Latent, hidden Latent, hidden Image Latent, hidden
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a single token for the transformer network compared to TWM which uses distinct tokens. This led
to better training efficiency with state-of-the-art performance.

Another line of work focused on designing Transformer-based world model to train agents from
reconstructed trajectories in pixel space. Analogously to SimPLe, the agent’s policy and value
functions are trained from image reconstruction instead of world model hidden state representations.
This requires learning auxiliary encoder networks for the policy and value functions. Contrary to
Dreamer-inspired works that learn agents from world model representations, these approaches also
require accurate image reconstruction to train agents effectively. IRIS (Micheli et al., 2023) first
proposed a world model composed of a VQ-VAE (Van Den Oord et al., 2017) to convert input
images into discrete tokens and an autoregressive transformer to predict future tokens. IRIS was
evaluated on the Atari 100k benchmark (Kaiser et al., 2020) showing promising performance in a
low data regime. More recently, Micheli et al. (2024) proposed ∆-IRIS, encoding stochastic deltas
between time steps using previous action and image as conditions for the encoder and decoder. This
increased VQ-VAE compression ratio and image reconstruction capabilities, achieving state-of-the-
art performance on the Crafter (Hafner, 2021) benchmark and better results on Atari 100k.

Table 1 compares the architectural details of recent model-based approaches learning a world model
in latent space with our proposed method. Following preceding Transformer-based approaches, we
reconstruct image observation from the encoder stochastic state zt instead of st, which prevents
the world model from using temporal information to facilitate reconstruction. The Transformer
network uses relative positional encodings (Dai et al., 2019), which simplifies the use of the world
model during imagination and evaluation. Absolute positional encodings require the Transformer
network to reprocess past latent states with adjusted positional encodings when the current position
gets larger than the ones seen during training. We also use the agent state st as input for predictor
networks during the world model training phase to make actor-critic learning more straightforward.

2.3 CONTRASTIVE PREDICTIVE CODING

Contrastive Predictive Coding (CPC) was introduced by Oord et al. (2018) as a representation learn-
ing method based on contrastive learning for autoregressive models. CPC encodes a temporal signal
into hidden representations and trains an autoregressive model to maximize the mutual informa-
tion between the autoregressive model output features and future encoded representations using an
InfoNCE loss based on Noise-Contrastive Estimation (Gutmann & Hyvärinen, 2010). CPC was
able to learn useful representations achieving strong performance on four distinct domains: speech
phoneme classification, image classification, text classification tasks, and reinforcement learning
with DeepMind Lab 3D environments (Beattie et al., 2016). While CPC was applied to speech,
image, and text domains as a pretraining pretext task, it showed promising results on DeepMind Lab
tasks being used as an auxiliary loss for the A3C (Mnih et al., 2016) agent. In this work, we propose
to apply CPC to model-based reinforcement learning. We introduce action-conditioned CPC (AC-
CPC) that conditions CPC predictions on the sequence of future actions to help the world model to
make more accurate predictions and learn higher quality representations. We describe our use of
action-conditioned CPC in more detail in section 3.1.

3 METHOD

We introduce TWISTER, a Transformer model-based reinforcement learning algorithm using
action-conditioned Contrastive Predictive Coding to learn high-level feature representations and im-
prove the agent performance. TWISTER comprises three main neural networks: a world model, an
actor network and a critic network. The world model learns to transform image observations into dis-
crete stochastic states and simulate the environment to generate imaginary trajectories. The actor and
critic networks are trained in latent space with imaginary trajectories generated from the world model
to select actions maximizing the expected sum of future rewards. The three networks are trained
concurrently using a replay buffer sampling sequences of past experiences collected during training.
This section describes the architecture and optimization process of our proposed Transformer-based
world model with contrastive representations. Analogously to previous approaches, we also detail
the learning process of the critic and actor networks taking place in latent space. Figure 3 shows
an overview of our Transformer-based world model trained with AC-CPC. It also illustrates the
imagination process undertaken during the agent behavior learning phase.
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Figure 3: Transformer-based world model with contrastive representations. The world model learns
temporal feature representations by maximizing the mutual information between model states st and
future stochastic states z′t:t+K obtained from augmented views of image observations. The encoder
network converts image observations into stochastic states zt, from which a decoder network learns
to reconstruct images while the masked attention Transformer network predicts next episode contin-
uations, rewards and stochastic states conditioned on selected actions.

3.1 WORLD MODEL LEARNING

Consistent with prior works (Hafner et al., 2023; Robine et al., 2023; Zhang et al., 2024), we learn
a world model in latent space by encoding input image observations ot into hidden representations
using a convolutional VAE with categorical latents. The hidden representations are linearly projected
to categorical distribution logits comprising 32 categories, each with 32 classes, from which discrete
stochastic states zt are sampled. The world model is implemented as a Transformer State-Space
Model (TSSM) (Chen et al., 2022) using masked self-attention to predict next stochastic states ẑt+1

given previous states z1:t and actions a1:t. The Transformer network outputs hidden states ht that
are concatenated with stochastic states zt to form the model states st = {ht, zt}. The world model
predicts environment reward r̂t, episode continuation ĉt and AC-CPC features êkt using simple Multi
Layer Perceptron (MLP) networks. The trainable world model components are the following:

TSSM


Encoder Network: zt ∼ qϕ(zt | ot)
Transformer Network: ht = fϕ(z1:t−1, a1:t−1)

Dynamics Predictor: ẑt ∼ pϕ(ẑt | ht)
Decoder Network: ôt ∼ pϕ(ôt | zt)
Reward Predictor: r̂t ∼ pϕ(r̂t | st)
Continue Predictor: ĉt ∼ pϕ(ĉt | st)

AC-CPC
{

Representation Network: ekt = qkϕ(z
′
t+k)

AC-CPC Predictor: êkt = pkϕ(st, at:t+k)

(1)

Transformer State-Space Model We train an autoregressive Transformer network using masked
self-attention with relative positional encodings (Dai et al., 2019). During both training, exploration
and evaluation, the hidden state sequence computed for the previous segment or state is cached to be
reused as an extended context when the model processes the next state. This encoding and caching
mechanism allows the world model to imagine future trajectories from any state, eliminating the
need to reprocess latent states with adjusted positional encodings.

World model losses Given an input batch containing B sequences of T image observations o1:T ,
actions a1:T , rewards r1:T , and episode continuation flags c1:T , the world model parameters (ϕ)
are optimized to minimize the following loss function:

L(ϕ) =
1

BT

B∑
b=1

T∑
t=1

[
Lrew(ϕ) + Lcon(ϕ) + Lrec(ϕ) + Ldyn(ϕ) + Lcpc(ϕ)

]
(2)
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Figure 4: AC-CPC predictions made by the world model. We show the target positive sample
without augmentation and the predicted most/least similar samples among the batch of augmented
image views. We observe that TWISTER learns to identify most/least similar samples to the future
target state using observation details such as the ball position, game score or agent movements.
AC-CPC necessitates the agent to focus on observation details to accurately predict future samples,
thereby preventing common failure cases where small objects are ignored by the reconstruction loss.

Lrew and Lcon train the world model to predict environment rewards and episode continuation flags,
which are used to compute the returns of imagined trajectories during the behavior learning phase.
We adopt the symlog cross-entropy loss from DreamerV3 (Hafner et al., 2023), which scales and
transforms rewards into twohot encoded targets to ensure robust learning across games with different
reward magnitudes. The reconstruction loss Lrec trains the categorical VAE to learn stochastic
representations zt for the world model by reconstructing input visual observations ot:

Lrew(ϕ) = SymlogCrossEnt(r̂t, rt) (3a)
Lcon(ϕ) = BinaryCrossEnt(ĉt, ct) (3b)

Lrec(ϕ) = ||ôt − ot||22 (3c)
The world model dynamics loss Ldyn trains the dynamics predictor network to predict the next
stochastic states representations from transformer hidden states by minimizing the Kullback–Leibler
(KL) divergence between the predictor output distribution pϕ(ẑt | ht) and the next encoder repre-
sentation qϕ(zt | ot). We also add a regularization term to avoid spikes in the KL loss and stabilize
learning by training the encoder representations to become more predictable. Both loss terms use
the stop gradient operator sg(·) to prevent the gradients of targets from being backpropagated and
are scaled with loss weights βdyn = 0.5 and βreg = 0.1, respectively:

Ldyn(ϕ) = βdyn max
(
1,KL

[
sg(qϕ(zt | ot)) || pϕ(ẑt | ht)

])
+ βreg max

(
1,KL

[
qϕ(zt | ot) || sg(pϕ(ẑt | ht))

]) (4)

The Transformer network learns feature representations using action-conditioned Contrastive Pre-
dictive Coding. The representations are learned by maximizing the mutual information between
model states st and future stochastic states z′t:t+K obtained from augmented views of image ob-
servations. We adopt a simple strategy to generate negative samples: Given the sequence batch of
augmented stochastic states Z ′ containing one positive sample, we treat the otherB×T −1 samples
as negatives. The world model learns to distinguish positive samples from negatives using InfoNCE:

Lcpc(ϕ) = − 1

K

K−1∑
k=0

log
exp(sim(z′t+k, st))∑
z′j∈Z′ exp(sim(z′j , st))

(5)

The world model learns to predict K = 10 future stochastic states among the batch of augmented
samples. We compute similarities as dot products: sim(z′j , st) = qkϕ(z

′
j)
T pkϕ(st, at:t+k), learning

two MLP networks qkϕ and pkϕ for each step k. Contrary to the original CPC paper, which experiments
with continuous feature states, we use discrete latent states for the world model. This requires
learning a representation network qkϕ to project discretized stochastic states z′j to contrastive feature
representations ekt . The AC-CPC predictor pkϕ uses the concatenated sequence of future actions
at:t+k as condition to reduce uncertainty and learn quality representations.

3.2 AGENT BEHAVIOR LEARNING

The agent critic and actor networks are trained with imaginary trajectories generated from the world
model. In order to compare TWISTER with previous approaches that train agents using world
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model representations, we adopt the agent behavior learning settings from DreamerV3 (Hafner et al.,
2023). Learning takes place entirely in latent space, which allows the agent to process large batch
sizes and increase generalization. We flatten the model states of the sampled sequences along the
batch and time dimensions to generate Bimg = B × T sample trajectories using the world model.
The self-attention keys and values features computed during the world model training phase are
cached to be reused during the agent behavior learning phase and preserve past context. As shown
in Figure 3b, the world model imagines H = 15 steps into the future using the Transformer network
and the dynamics network head, selecting actions by sampling from the actor network categorical
distribution. Analogously to world model predictor networks, the actor and critic networks are
designed as simple MLPs with parameter vectors (θ) and (ψ), respectively.

Actor Network: at ∼ πθ(at|st)
Critic Network: vt ∼ Vψ(vt|st) (6)

Critic Learning Following DreamerV3, the critic network learns to minimize the symlog cross-
entropy loss with discretized λ-returns obtained from imagined trajectories with rewards and episode
continuation flags predicted by the world model:

Rλt = r̂t+1 + γĉt+1

(
(1− λ)Vψ(st+1) + λRλt+1

)
RλH+1 = Vψ(sH+1) (7)

The critic does not use a target network but relies on its own predictions for estimating rewards
beyond the prediction horizon. This requires stabilizing the critic by adding a regularizing term
toward the outputs of its own EMA network Vψ′ . Equation 8 defines the critic network loss:

Lcritic(ψ) =
1

BH

B∑
b=1

H∑
t=1

[
SymlogCrossEnt

(
vt, R

λ
t

)
discrete returns regression

+SymlogCrossEnt
(
vt, Vψ′(st)

)
critic EMA regularizer

]
(8)

Actor Learning The actor network learns to select actions that maximize the predicted returns us-
ing Reinforce (Williams, 1992) while maximizing the policy entropy to ensure sufficient exploration
during both data collection and imagination. The actor network loss is defined as follows:

Lactor(θ) =
1

BH

B∑
b=1

H∑
t=1

[
− sg(Aλt ) log πθ(at | st)

reinforce

− ηH
(
πθ(at | st)

)
entropy regularizer

]
(9)

Where Aλt =
(
R̂λt − Vψ(st)

)
/max(1, S) defines advantages computed using normalized returns.

The returns are scaled using exponentially moving average statistics of their 5th and 95th batch
percentiles to ensure stable learning across all Atari games:

S = EMA(Per(Rλt , 95)− Per(Rλt , 5),momentum = 0.99) (10)

4 EXPERIMENTS

In this section, we describe our experiments on the commonly used Atari 100k benchmark. We
compare TWISTER with SimPLe, DreamerV3 and recent Transformer model-based approaches in
Table 2. We also perform several ablation studies on the principal components of TWISTER.

4.1 ATARI 100K BENCHMARK

The Atari 100k benchmark was proposed in Kaiser et al. (2020) to evaluate reinforcement learning
agents on Atari games in low data regime. The benchmark includes 26 Atari games with a budget of
400k environment frames, amounting to 100k interactions between the agent and the environment
using the default action repeat setting. This amount of environment steps corresponds to about two
hours (1.85 hours) of real-time play, representing a similar amount of time that a human player would
need to achieve reasonably good performance. The current state-of-the-art is held by EfficientZero
V2 (Wang et al., 2024), which uses Monte-Carlo Tree Search to select the best action at every time
step. Another recent notable work is BBF (Schwarzer et al., 2023), a model-free agent using learn-
ing techniques that are orthogonal to our work such as periodic network resets and hyper-parameters
annealing to improve performance. In this work, to ensure fair comparison and demonstrate the
effectiveness of AC-CPC for learning world models, we compare our method with model-based ap-
proaches that do not utilize look-ahead search techniques. Combining these additional components
with TWISTER would nevertheless be an interesting research direction for future works.
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4.2 RESULTS

Table 2: Agent scores and human-normalized metrics on the 26 games of the Atari 100k benchmark.
We show average scores over 5 seeds. Bold numbers indicate best performing method for each game.

Game Random Human SimPLe TWM IRIS DreamerV3 STORM ∆-IRIS TWISTER (ours)

Alien 228 7128 617 675 420 959 984 391 970
Amidar 6 1720 74 122 143 139 205 64 184
Assault 222 742 527 683 1524 706 801 1123 721
Asterix 210 8503 1128 1116 854 932 1028 2492 1306
Bank Heist 14 753 34 467 53 649 641 1148 942
Battle Zone 2360 37188 4031 5068 13074 12250 13540 11825 9920
Boxing 0 12 8 78 70 78 80 70 88
Breakout 2 30 16 20 84 31 16 302 35
Chopper Command 811 7388 979 1697 1565 420 1888 1183 910
Crazy Climber 10780 35829 62584 71820 59324 97190 66776 57854 81880
Demon Attack 152 1971 208 350 2034 303 165 533 289
Freeway 0 30 17 24 31 0 34 31 32
Frostbite 65 4335 237 1476 259 909 1316 279 305
Gopher 258 2412 597 1675 2236 3730 8240 6445 22234
Hero 1027 30826 2657 7254 7037 11161 11044 7049 8773
James Bond 29 303 100 362 463 445 509 309 573
Kangaroo 52 3035 51 1240 838 4098 4208 2269 6016
Krull 1598 2666 2205 6349 6616 7782 8413 5978 8839
Kung Fu Master 258 22736 14862 24555 21760 21420 26182 21534 23442
Ms Pacman 307 6952 1480 1588 999 1327 2673 1067 2206
Pong –21 15 13 19 15 18 11 20 20
Private Eye 25 69571 35 87 100 882 7781 103 1608
Qbert 164 13455 1289 3331 746 3405 4522 1444 3197
Road Runner 12 7845 5641 9107 9615 15565 17564 10414 17832
Seaquest 68 42055 683 774 661 618 525 827 532
Up N Down 533 11693 3350 15982 3546 7600 7985 4072 7068

# Superhuman 0 N/A 1 8 10 9 10 11 12
Normed Mean (%) 0 100 33 96 105 112 127 139 162
Normed Median (%) 0 100 13 51 29 49 58 53 77

Table 2 compares TWISTER with SimPLe (Kaiser et al., 2020), DreamerV3 (Hafner et al., 2023)
and recent Transformer model-based approaches (Robine et al., 2023; Micheli et al., 2023; Zhang
et al., 2024; Micheli et al., 2024) on the Atari 100k benchmark. Following preceding works, we
use human-normalized metrics and compare the mean and median returns across all 26 games. The
human-normalized scores are computed for each game using the scores achieved by a human player
and the scores obtained by a random policy: normed score = agent score−random score

human score−random score . We
also show stratified bootstrap confidence intervals of the human-normalized mean and median in
Figure 5. Performance curves corresponding to individual games can be found in the appendix 9.

Figure 5: Mean and median scores, com-
puted with stratified bootstrap confidence inter-
vals (Agarwal et al., 2021). TWISTER achieves
a normalized mean of 1.62 and a median of 0.77.

TWISTER achieves a human-normalized mean
score of 162% and a median of 77% on the Atari
100k benchmark, setting a new record among
state-of-the-art model-based methods that do not
employ look-ahead search techniques. Anal-
ogously to STORM, we find that TWISTER
demonstrates superior performance in games
where key objects related to rewards are nu-
merous, such as Amidar, Bank Heist, Gopher
and Ms Pacman. Furthermore, we observe that
TWISTER benefits from increased performance
in games with small moving objects like Break-
out, Pong and Asterix. We suppose that the AC-
CPC objective requires the agent to focus on the
ball’s position in these games to accurately pre-
dict future samples, thereby preventing failure
cases where small objects are ignored by the reconstruction loss. Alternatively, IRIS and ∆-IRIS
solve this issue by learning agents from high-quality reconstructed images. They encode image ob-
servations into spatial latent spaces through a VQ-VAE structure, which allows these approaches to
better capture details and achieve lower reconstruction errors with good results for these games. We
show CPC predictions made by the world model for diverse Atari games in the appendix A.4.
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4.3 ABLATION STUDIES

In order to study the impact of AC-CPC on TWISTER performance, we perform ablation studies
on all 26 games of the Atari 100k benchmark, applying one modification at a time. We experiment
with the number of CPC steps predicted by the world model. We show that data augmentation helps
to complexify the AC-CPC objective and improve its effectiveness. We find that conditioning CPC
predictions on the sequence of future actions leads to more accurate predictions and improves the
quality of representations. We also study the effect of world model design on AC-CPC effectiveness.
Table 3 shows the aggregated scores obtained for the main ablations after 400k environment steps.

Table 3: Ablations of the AC-CPC loss, contrastive samples augmentation, conditioning on future
actions and using DreamerV3’s RSSM. We perform one modification at a time and evaluate on the
26 Atari games. The detailed results obtained for individual games can be found in the appendix A.6.

Metrics TWISTER No AC-CPC DreamerV3 World Model No Action Conditioning No Data Augmentation

Normed Mean (%) 162 112 121 111 120
Normed Median (%) 77 44 69 42 68

Number of Contrastive Steps We experiment with several numbers of CPC steps, comparing
human-normalized metrics over all 26 games of the Atari100k benchmark. Figure 6a shows that
TWISTER achieves the best human-normalized mean score when predicting 10 steps into the fu-
ture, corresponding to 0.67 seconds of game time. We find that AC-CPC has a significant effect
on TWISTER performance up to a certain amount of steps. We observe an increase in human-
normalized mean and median scores with the number of predicted CPC steps. However, a degrada-
tion of the results is noticed when predicting 15 steps into the future. The difference in median score
indicates a decrease in performance for middle-scoring games.

World Model Architecture We study the impact of world model design on AC-CPC effective-
ness to learn feature representations. Figure 6b shows the effect of AC-CPC on performance when
replacing the TSSM of TWISTER with DreamerV3’s RSSM (Hafner et al., 2023). While the two
approaches achieve similar results without the AC-CPC objective, we find that AC-CPC has a signif-
icant effect on TWISTER, improving performance on most games. These findings can be attributed
to the fact that Transformers are generally more effective than RNNs at learning feature representa-
tions due to several key architectural differences. The capacity of self-attention to model temporal
relationships without recurrence makes the Transformer architecture highly effective at capturing
context and learning hierarchical features. On the other hand, the recurrent nature of RNNs can lead
to vanishing gradients and slower convergence, particularly with long sequences.

0 200K 400K
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0.5

1.0

1.5

Mean

0 step (No AC-CPC)
10 steps (TWISTER)

1 step
15 steps

5 steps

0 200K 400K
0.00

0.25

0.50

0.75
Median

(a) Number of Contrastive steps

0 200K 400K
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w/o AC-CPC
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(b) World Model Architecture
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(c) Action Conditioning
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(d) Data Augmentation

Figure 6: Ablations made on the Atari 100k benchmark. The results are averaged over 5 seeds. We
study the effect of data augmentation, action conditioning and the number of predicted CPC steps on
TWISTER performance. We also study the effect of world model design on AC-CPC effectiveness.
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Figure 7: Aggregated CPC loss and prediction
accuracy over all 26 games. We use a validation
replay buffer of 100k samples to compare CPC
loss on unseen trajectories. The trajectories are
obtained from a collection of DreamerV3 and
TWISTER agents pretrained with 5 seeds.

Actions Conditioning We find that condition-
ing the CPC prediction head on the sequence
of future actions leads to more accurate predic-
tions and higher quality representations. Figure 7
shows the aggregated CPC loss and prediction ac-
curacy for training and validation sequences over
all Atari games. We report the average num-
ber of times the similarity for the positive sam-
ple is higher than for the negative samples in the
contrastive loss. Without knowing the sequence
of future actions, the world model cannot pre-
dict future environment states accurately, which
makes the task almost insolvable and counterpro-
ductive beyond a certain amount of CPC steps.
We observe a decrease in accuracy compared to
TWISTER when predicting multiple steps with-
out knowing the sequence of future actions. Fig-
ure 6c shows the aggregated human-normalized scores over the 26 games when removing the con-
dition of future actions for CPC predictions. We find that the CPC objective does not bring notable
performance improvements when removing future actions conditioning.

Figure 8: Effect of data augmentation on AC-
CPC objective complexity. We aggregate CPC
loss and prediction accuracy over all Atari
games for different time horizons.

Effect of Data Augmentation The effect of
data augmentation on CPC performance was
studied by Kharitonov et al. (2021). In their work,
they propose to introduce data augmentation for
CPC to learn higher quality speech representa-
tions, yielding better performances. In this work,
we apply image augmentation to contrastive sam-
ples in order to complexify the AC-CPC objective
and make the representation learning task more
challenging. We apply the commonly used ran-
dom crop and resize augmentation during train-
ing for its effectiveness in the area of image-based
contrastive learning (Chen et al., 2020). The use
of random crops require the world model to iden-
tify several key elements in the observations in
order to accurately predict positives samples. We
also experiment with random shifts (Yarats et al., 2021), shifting the image up to 4 pixels in height
and width but found it to have a lesser impact on the learning objective. Figure 6d shows the aggre-
gated human-normalized scores for studied augmentation techniques. We find that random crop and
resize helps the best to improve final performance. Not using image augmentations for negative and
positive samples reduces the impact of AC-CPC on TWISTER performance, achieving lower mean
and median scores. We show the impact of data augmentation on the AC-CPC objective complexity
for different time horizons in Figure 8.

5 CONCLUSION

We propose TWISTER, a Transformer model-based reinforcement learning agent learning high-
level temporal feature representations with action-conditioned Contrastive Predictive Coding.
TWISTER achieves new state-of-the-art results on the Atari 100k benchmark among model-based
approaches that do not employ look-ahead search with a human-normalized mean and median score
of 162% and 77%, respectively. We study the impact of learning contrastive representations on
Transformer-based world models and find that the AC-CPC objective significantly helps to improve
the agent performance. We also show that data augmentation and future actions conditioning play
an important role in the learning of representations to complexify the AC-CPC objective and help
the model to make accurate future predictions. Following our early findings, we hope that this
work will inspire researchers to further study the benefits of self-supervised learning techniques for
model-based reinforcement learning.
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A APPENDIX

A.1 ATARI 100K EVALUATION CURVES
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Figure 9: Evaluation curves of TWISTER on the Atari100k benchmark for individual games (400K
environment steps). The solid lines represent the average scores over 5 seeds, and the filled areas
indicate the standard deviation across these 5 seeds.
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A.2 MODEL ARCHITECTURE

Table 4: Architecture of the encoder network. The size of submodules is omitted and can be derived
from output shapes. Each convolution layer (Conv) is followed by a layer normalization (LN) and
a SiLU activation layer. The encoder downsamples images with strided convolutions layers using
a kernel size of 4, a stride of 2 and a padding of 1. We flatten output features and project them to
categorical distribution logits using a Linear layer. Stochastic states zt are sampled from Softmax
probabilities and encoded to one hot vectors.

Submodule Output shape

Input image (ot) 3 × 64 × 64
Conv + LN + SiLU 32 × 32 × 32
Conv + LN + SiLU 64 × 16 × 16
Conv + LN + SiLU 128 × 8 × 8
Conv + LN + SiLU 256 × 4 × 4

Flatten 4096
Linear 1024

Reshape + Softmax 32 × 32
Sample + One Hot (outputs zt) 32 × 32

Table 5: Architecture of the decoder network. Images are reconstructed from stochastic states. Each
transposed convolution layer (ConvTrans) uses a kernel size of 4, a stride of 2 and padding of 1.

Submodule Output shape

Input stochastic state (zt) 32 × 32
Flatten 1024
Linear 4096

Reshape 256 × 4 × 4
ConvTrans + LN + SiLU 128 × 8 × 8
ConvTrans + LN + SiLU 64 × 16 × 16
ConvTrans + LN + SiLU 32 × 32 × 32
ConvTrans (outputs ôt) 3 × 64 × 64

Table 6: Transformer block. Dropout (Srivastava et al., 2014) is used in each Transformer submodule
to reduce overfitting. We also apply Dropout to attention weights in the MHSA module.

Submodule Module alias Output shape

Input features (label as x1)

MHSA T × 512
Multi-head self-attention

Linear + Dropout
Residual (add x1)
LN (label as x2)

Linear + ReLU
Feed

Forward

T × 1024
Linear + Dropout T × 512
Residual (add x2) T × 512

LN T × 512

Table 7: Transformer network. The stochastic states z0:T−1 and one-hot encoded actions a0:T−1 ∈
RT×A are combined using an action mixer network (Zhang et al., 2024). The features are processed
by the Transformer network to compute hidden states h1:T .

Submodule Module alias Output shape

Inputs stochastic states (z0:T−1)

Action Mixer

T × 32 × 32
Flatten T × 1024

Concat actions a0:T−1 T × (1024 + A)
Linear + LN + SiLU T × 512

Linear + LN T × 512

Transformer block × K Transformer
Network T × 512Outputs hidden states (h1:T )
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Table 8: Networks with Multi Layer Perceptron (MLP) structure. Inputs are first flattened and
concatenated along the feature dimension. Each MLP layer is followed by a layer normalization and
SiLU activation except for the last layer which outputs distribution logits.

Network MLP layers Inputs Hidden dimension Output dimension Output Distribution

Reward predictor 3 st 512 255 Symlog Discrete
Continue predictor 3 st 512 1 Bernoulli
Representation network 2 z′t+k 512 512 N/A
AC-CPC predictor 2 st, at:t+k 512 512 N/A
Critic network 3 st 512 255 Symlog Discrete
Actor network 3 st 512 A One hot Categorical

A.3 HYPER-PARAMETERS

Table 9: TWISTER hyper-parameters. We apply the same hyper-parameters to all Atari games.

Parameter Symbol Setting

General
Batch Size B 16
Sequence Length T 64
Optimizer — Adam (Kingma & Ba, 2014)
Image Resolution — 64 × 64 (RGB)
Training Step per Policy Step — 1
Environment Instances — 1

Transformer Network
Transformer Blocks N 4
Number of Attention Heads — 8
Dropout Probability — 0.1
Attention Context Length — 8

World Model
Stochastic State Features — 32
Classes per Feature — 32
Dynamics Loss Scale βdyn 0.5
Representation Loss Scale βreg 0.1
AC-CPC Steps K 10
Random Crop & Resize Scale — (0.25, 1.0)
Random Crop & Resize Ratio — (0.75, 1.33)
Learning Rate α 10−4

Adam Betas β1, β2 0.9, 0.999
Adam Epsilon ϵ 10−8

Gradient Clipping — 1000

Actor Critic
Imagination Horizon H 15
Return Discount γ 0.997
Return Lambda λ 0.95
Critic EMA Decay — 0.98
Return Normalization Momentum — 0.99
Actor Entropy Scale η 3 · 10−4

Learning Rate α 3 · 10−5

Adam Betas β1, β2 0.9, 0.999
Adam Epsilon ϵ 10−5

Gradient Clipping — 100
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A.4 AC-CPC PREDICTIONS
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Figure 10: AC-CPC predictions made by the world model for diverse Atari games. We show the tar-
get positive sample without augmentation and predicted most/least similar samples among the batch
of augmented image views. We observe that TWISTER successfully learns to identify most/least
similar samples to the future target state using observation details such as the ball position in Pong,
the game score in Kung Fu Master or the agent movements in Boxing. AC-CPC necessitates the
agent to focus on observation details to accurately predict future samples, thereby preventing com-
mon failure cases where small objects are ignored by the reconstruction loss.
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A.5 WORLD MODEL PREDICTIONS

Figure 11: World Model Predictions. We show the decoder reconstruction of trajectories imagined
by the world model over 64 time steps. We use 5 context frames and generate trajectories of 59 steps
into the future using the Transformer network and dynamics predictor head. Actions are predicted
by the actor network by sampling from the categorical distribution.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.6 ABLATIONS RESULTS

Table 10: Ablations of the AC-CPC loss, contrastive samples augmentation, conditioning on future
actions and using DreamerV3’s RSSM. We show agent scores and human-normalized metrics on
the 26 games of the Atari 100k benchmark. The results are averaged over 5 seeds and bold numbers
indicate best performing agent for each game.

Game TWISTER No CPC DreamerV3 World Model No Action Conditioning No Data Augmentation

Alien 970 1147 1040 1101 1154
Amidar 184 173 174 191 154
Assault 721 1168 735 711 657
Asterix 1306 1165 1401 1082 1173
Bank Heist 942 758 973 651 944
Battle Zone 9920 5800 15540 12860 8980
Boxing 88 81 82 77 84
Breakout 35 14 34 59 31
Chopper Command 910 984 1242 620 646
Crazy Climber 81880 90680 89888 87272 77454
Demon Attack 289 215 456 339 356
Freeway 32 32 0 31 26
Frostbite 305 714 571 884 953
Gopher 22234 1387 3318 2972 5851
Hero 8773 8772 9944 7649 11079
James Bond 573 493 432 335 316
Kangaroo 6016 4724 3816 1268 2668
Krull 8839 8096 7469 8054 9065
Kung Fu Master 23442 22232 25518 19412 17566
Ms Pacman 2206 2025 1691 1927 2294
Pong 20 13 18 20 20
Private Eye 1608 941 535 106 489
Qbert 3197 2579 3542 4443 4231
Road Runner 17832 10556 12254 12590 13348
Seaquest 532 474 569 491 467
Up N Down 7068 5816 30135 5378 7213

# Superhuman 12 8 11 9 8
Normed Mean (%) 162 112 121 111 120
Normed Median (%) 77 44 69 42 68
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