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Abstract

While Transformers underpin modern large language models (LMs), there
is a growing list of alternative architectures with new capabilities, promises,
and tradeoffs. This makes choosing the right LM architecture challenging.
Recently proposed hybrid architectures seek a best-of-all-worlds approach
that reaps the benefits of all architectures. Hybrid design is difficult for
two reasons: it requires manual expert-driven search, and new hybrids
must be trained from scratch. We propose Manticore,' a framework that
addresses these challenges by automating the design of hybrid architectures
while reusing pretrained models to create pretrained hybrids. Our approach
augments ideas from differentiable Neural Architecture Search (NAS) by
incorporating simple projectors that translate features between pretrained
blocks from different architectures. We then fine-tune hybrids that combine
pretrained models from different architecture families—such as the GPT
series and Mamba—end-to-end. With Manticore, we enable LM selection
without training multiple models, the construction of pretrained hybrids
from existing pretrained models, and the ability to program pretrained
hybrids to have certain capabilities. Manticore hybrids match existing
manually designed hybrids, achieve strong performance on the Long Range
Arena benchmark, and improve on pretrained transformers and state space
models on various natural language tasks.

1 Introduction

Transformers are the workhorse architecture for large language models and beyond, pow-
ering a vast collection of foundation models. While for years it appeared that the Trans-
formers family would remain the undisputed standard, a recent Cambrian explosion of
proposed architectures has taken place. Many of the new architectures achieve subquadratic
complexity—in contrast to the quadratic complexity of self-attention in Transformers—by
using local or linear attention (De et al., 2024; Botev et al., 2024; Arora et al., 2024; Zhang
et al., 2024), resurrecting and scaling recurrent networks (Botev et al., 2024; De et al., 2024;
Peng et al., 2023), or by building on state-space modeling principles (Gu & Dao, 2023; Poli
et al., 2023b;a; Fu et al., 2023; Gu et al., 2022). These approaches potentially promise to
overturn the dominance of Transformers through more efficient training and inference.

However, no single new model is a clear overall winner when varying data modalities, tasks,
and model sizes. Comparing architectures on a fixed task is fraught with difficulties (Amos
et al., 2024). Even if these are overcome, practitioners would have to experiment with and
evaluate every architecture for each new task—an expensive proposition. Instead, seeking a
best-of-all-worlds approach, researchers have proposed the use of hybrid models that mix
multiple architectures. These hybrids, such as the MambaFormer (Park et al., 2024)—a
mix of the popular SSM Mamba architecture with a standard Transformer—have shown
potential in maintaining the desirable properties of multiple model classes.

While promising, hybrids suffer from two main obstacles that stymie their adoption:

1The Manticore is a fearsome human/lion/ scorpion hybrid from Persian mythology.
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Figure 1: Manticore enables: (1) cross-architecture LM selection, (2) the construction of
pretrained hybrids, and (3) the ability to program hybrids to have certain skills.

¢ Manual Design. Hybrid architectures are hand-crafted, either by manually exploring the
large search space of hybrids or by relying on often unreliable intuition and heuristics.

¢ Failure to Use Pretrained Models. It is unclear how to integrate pretrained components
from models with different architectures. Pretrained models are a key advantage of
foundation models, but due to compatibility issues, hybrids are often trained from
scratch, which is both limiting and costly.

A potential solution to the latter challenge is the use of model merging (Yadav et al., 2023; Yu
et al., 2023; Wortsman et al., 2022; Ilharco et al., 2023; Davari & Belilovsky, 2023; Jang et al.,,
2024), some of which can operate cross-architecture (Akiba et al., 2024; Goddard et al., 2024).
Unfortunately, such tools are embryonic-they are expensive and it is unclear how well they
work with the diverse architectures a user may seek to build a hybrid from.

We propose a framework for automatically designing hybrid architectures that overcomes
these obstacles. Our approach is inspired by principles from neural architecture search
(NAS), but applies these at the level of LM blocks rather than convolutional cells (Liu et al.,
2019; Li et al., 2021) or operations (Shen et al., 2022; Roberts et al., 2021). The resulting
framework is simple, tractable, and it sidesteps merging different architectures by using
simple projectors to translate between the “languages” spoken by various architectures.
This enables us to include blocks from many different architectures/models with no changes
required. Furthermore, inspired by the mechanistic architecture design framework (MAD)
(Poli et al., 2024), we show how to learn hybrids via MAD that transfer to new tasks.

Concretely, with our proposed system, Manticore, we:

1. Automatically select language models, without training several models from scratch,
2. Automatically construct pretrained hybrids without evaluating the entire search space,
3. Explore when it is possible to program hybrids without full training.

Experimentally, our automatically designed hybrids compete with existing hybrids and
models on the MAD tasks (Poli et al., 2024) and Long Range Arena (Tay et al., 2021, LRA),
we produce pretrained hybrids that improve downstream fine-tuning performance on a
variety of language tasks, and we show that Manticore can be programmed using MAD.

2 Methods

We now describe Manticore, our framework for automatically designing hybrid architectures
by mixing components of pretrained models. We rely on projectors to align features across
architectures, then apply a convex combination to aligned features, as shown in Figure 1.

In Section 2.1, we discuss and formally define the structure of Manticore hybrids: the projec-
tors and convex combination mixture weights, as well as how both of these components are
used within Manticore. In Section 2.2, we detail the NAS-inspired search procedures and
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training routines involved in pretraining, fine-tuning, and programming hybrids. Finally,
we provide the synthetic and real data settings that we use in our experiments in Section 3.

2.1 The Structure of Manticore Hybrids

Our framework comprises three main parts: the individual LMs that we combine to produce
our overall hybrid, projectors that translate feature representations between LMs of different
architectures, and convex combination mixture weights that specify how much the hybrid
will use the features of each component architecture. We detail each of these in the following.

Component Models We refer to a model that is used in Manticore as a component model.
Any modern decoder-only LM can be used as a component model in our framework. In
this section, we will formally define the general high-level structure of the component
models that we support. For an LM M with model embedding dimension d; on a sequence
of t tokens from a set V, denoted x = (x,...,xt) € V!, a forward pass M(x) is typically
computed using the following recipe:

1. Apply an embedding function, Mempeq @ V! — R to the tokens, resulting in a
sequence of embeddings denoted Xemped = Membed (¥)-

2. Take forward passes through Ly, ‘blocks’-we denote the ¢ block as M](ﬁ()) P RP>dm —

R**4m. Specifically, for all £ € [Ly], we obtain x,; = Mgz) o (x¢), where X1 := Xembed-

3. Finally, we pass x1,,,1 into a language modeling head, Mpeaq : R — (AIVIS1YE,
where AlVI=1 is the probability simplex of dimension |V|.

This recipe applies to virtually all transformer-based LMs, recurrent models, and state-space
models. Manticore supports all of these and any architecture that follows this recipe.

Projectors Suppose we have pretrained component models M and M’'. Assuming that the
model dimensions are the same for both models (dy; = djy), blocks from M and M’ may
not be compatible, as their input and output features are distributed differently. It is also
possible that dj; # d)y, in which case composing blocks from M and M’ is not well defined.

To overcome this issue, we apply projectors to both the inputs and the outputs of a block
(or a sequence of blocks, discussed in Section 2.1) that we wish to combine in Manticore
hybrids. Overall, our goal in designing projectors is to enable the blocks of M and M’ to
share a common representation, such that their features are compatible and can be reused in
the resulting hybrid model. This is conceivably challenging—the mapping between feature
spaces could be highly nonlinear and might require a lot of task-specific data to adequately
learn the mapping. If the mapping is indeed highly nonlinear, we might need heavyweight
multi-layer projectors with a large number of parameters. This could substantially increase
parameter counts, inference cost, and could increase the data requirement for learning them.
So do projectors need to be heavyweight, data-hungry, highly nonlinear objects? Fortunately,
we find that the answer is no—we find that a simple linear transformation with a gated

residual, pretrained on general language data, is sufficient.?

Suppose that we want to create a Manticore hybrid from K different pretrained component
models, denoted M(l), - Mk with model dimensions dM(l), ey dM(K)~ We define dmax :=

maXj k] 4 My then want input and output projectors for the blocks of each model that

convert their features to a common feature space of dimension dmax. For any sequence of
blocks of length (n+1) < LdM(k) from model My and length-t input,

thM thM

(6+n) () )
(M(k)Blocko"'OM(k)Block) PR = RO,

2When this gating is combined with Equation 1, we see that the use of gated residuals ensures that
the component architectures are still in our search space. This is a convenient property that allows
Manticore to fall back on a component model when it outperforms hybrids.
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we want Proj—ingig . RPmax s R™™M®) and Proj—outgi)ﬂl) R M0 Rf*¥max, 50 that
( +n ) (f+7l) (6) 1-1 (K) . t dmax t dmax
(Pro] outy ™ © M o © -+ © Mo © Pro]—m(k)> o RPAmax —y R Fmax

. txd . . . . .
For input x € R “M) e parameterize projectors as linear layers with gated residuals:

(DN : .
Pro]—m(k>(x,tx) =(1—a) -Lmeardmax_)dM(k) (x) + o - Trunc(x; dp ;. )

Proj- outE ;( a) :=(1—a) -Limeard]v[(k> iy (X) + & - Pad(x; dmax)-

Respectively, Trunc(+;d) and Pad(-;d) truncate and zero-pad input to dimension d, and
Lineary_, : R? — R? is a learnable linear layer with gating weights a € [0,1]. In total,

where « € AK~1 and I is a length-n; vector of block indices from component model k, we
define the output of the block sequence defined by I as

D)

hy(x; ok, I) = (Proj—outgg’" oM oMU g Proj—inEII{’S’l)) (x; ag).-

(k )Block (k)Block

’

Mixture Weights Next, we would like to mix the activations of different component models
block sequences, in a way that allows us to learn how much influence the blocks from each
component model will have on the overall hybrid model. Learning the amount of influence
that each block sequence should have on the overall hybrid is critical—if certain blocks
produce less helpful features, we need a way to down-weight them. Conversely, we want
to use the best blocks in our hybrid as much as possible—we want to up-weight helpful
blocks. Overall, a parameterization that allows us to learn these weights should lead to
better hybrids. We do this by taking a convex combination of the projectors” outputs: given
the projected features hy(x; ay, Iy) for each component model k € [K], we output a convex
combination of projected features

Mixe (% I, ooy Ik) =Y, shye (5 o, ). (1)
ke[K]

We reuse the convex combination weights as the gating weights in the projectors. This
choice yields the convenient property that when the mixture weights « are set to one in
index k and zero everywhere else, the Mix function exactly computes a sequence of blocks
from component model k while completely ignoring the projectors and the blocks from other
component models. We adopt a popular parameterization for mixture weights from the
NAS literature (Liu et al., 2019): we parameterize « as a softmax of a parameter vector—that

is, ay 1= % for all k € [K].

Manticore We are now ready to define our overall hybrid architecture. We seek to create a
hybrid from K component models, M(y), ..., Mk, each with a potentially different number
of blocks, denoted L Mgy, for component model k. We fix L to be the number of Manticore
blocks, where L is a common factor of each of the depths L My for all k € [K]—we treat this

choice of factor as a hyperparameter. For each of the L Manticore blocks, we want to mix
a sequence of blocks from each of the K component models. We also want the number of
blocks from each model k € [K] that are allocated to a single Manticore block to be evenly
spread throughout the L Manticore blocks—this is why we require L to be a factor of L M-

For each component model k € [K], divide the indices of the blocks [Ly, | evenly into L
contiguous parts, denoted as [L M(k)] = (Ix1, ., Ix ). Then, adopting the notation from our
component models, a Manticore block is defined as
. l .
Mantlcoreglzxk() i= Mix, ) (I gs o0 Ik p)
with Manticore](ﬁz)ck : R¥max 5 RI*max, for each ¢ € [L], and a(¥) being the mix-
ture weights at /. Next, we initialize a new set of embedding weights and a new
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task specific (or language modeling) head, and we can finally illustrate a forward pass
with a Manticore hybrid model, denoted using the shorthand notation Manticore(-) :=

Manticore[M ), ..., Mgy (+). Let x = (x1, ..., xt) € V! be a sequence of t tokens from a set V.
The forward pass is computed as follows:

1. Apply the new embedding function Manticoregmpeq : V! — R¥*¥max to the tokens,
resulting in a sequence of embeddings denoted Xempeq = Manticoregmped (X)-

2. Take forward passes through L Manticore blocks, each with dimension dmax, concretely,

(0)

we compute xy, 1 := Manticorep Ck(xg), where X1 := Xembed-

3. Pass x1,,11 into a new task-specific or language modeling head, Manticorepe,q
R'*4m — T, where T is the appropriate output space for the learning task.

In NAS terms, our search space is over the set of L > ¢ mixture weights a(*) € AK-1.
However, our search space differs from typical gradient-based NAS techniques in the
sense that we do not require discretization to derive a final architecture after we obtain our
mixture weights. Typically, NAS would involve selecting a single sequence of component
architecture blocks at each of the Manticore blocks, usually by taking the arg max of the
mixture weights. Instead, the mixtures themselves are what characterize Manticore hybrids.

Nonetheless, if we were to replace the mixture weights a(*) with discrete one-hot vectors, we
could derive any of the following: the component model architectures themselves, existing
hybrid architectures, and ‘frankenmerged” models (Goddard et al., 2024).

2.2 How To Use Manticore

With Manticore, we can automatically select language models without training every model
in the search space, automatically construct pretrained hybrid architectures without signifi-
cant trial-and-error, and program pretrained hybrids without full training. In this section,
we discuss the details of how Manticore can be used in each of these three usage scenarios.

Training hybrids from scratch. Manticore can be used to automatically select LMs without
training all of the LMs in the search space. Our selection technique is simple: inspired by
gradient-based NAS techniques (Liu et al., 2019) and treating the mixture weights as our
“architecture parameters,” we proceed in two steps: 1. train mixture weights along with all
other parameters, and 2. freeze the mixture weights and retrain the rest of the parameters
from scratch. Unlike NAS, we found that in many pretraining settings, it was sufficient to
stop at 1. and forgo retraining. In our pretraining experiments, we use randomly-initialized
GPT-Neo (Black et al., 2021) and Mamba (Gu & Dao, 2023) as component models without
projectors, and separately experiment with a subset of blocks from MAD (Poli et al., 2024).

Fine-tuning pretrained hybrids. Manticore can be used to create and fine-tune pretrained hybrids.
We create pretrained hybrids as follows: begin with a set of pretrained models, replace their
LM heads and embeddings with a single randomly initialized LM head and embedding
layer, and pretrain the projectors on a small amount of general language data such as
FineWeb (Penedo et al., 2024) while keeping the original component model weights frozen.
To fine-tune the pretrained hybrids on downstream task data, we first search for mixture
weights by training all of the parameters simultaneously, we freeze the mixture weights,
rewind the component models and projectors to their pretrained state, and fine-tune. This
procedure completely sidesteps large-scale pretraining of new hybrids.* In our synthetic
experiments, we create pretrained Manticore hybrids from pretrained GPT-Neo-125M (Black
et al., 2021) and Mamba-130M (Gu & Dao, 2023) models, while for our experiments on
real natural language data, we opt for pretrained Pythia-410M (Biderman et al., 2023) and
Mamba-370M (Gu & Dao, 2023) as component models.

Programming hybrids. Excitingly, there are cases in which we can program Manticore
mixture weights by using external information to predict them. We consider two scenarios.

3We found that 100M tokens sufficed for projector pretraining.
4We include an extensive FLOPs analysis and a discussion of comparable baselines in the Appendix.
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If we know that a component model has blocks that are incompatible with the target task—
e.g. resulting from sequence length constraints—we can omit these blocks by setting their
mixture weights to 0. Otherwise, we can predict good mixture weights by searching on a
fixed set of proxy tasks. For this, we use MAD tasks (Poli et al., 2024). The MAD tasks are
synthetic unit tests that are predictive of hybrid LM scaling laws, but within our framework,
we find that MAD can also be useful for finding pretrained hybrids. We use the following
procedure for programming mixture weights using the MAD tasks. First, run search on the
MAD tasks using a smaller, randomly initialized version of our pretrained hybrid. For each
MAD task, our search procedure returns a set of mixture weights—we simply average the
resulting mixture weights, freeze them, and fine-tune on downstream task data.

2.3 Discussion and Design Considerations

Manticore features several intentional design decisions that we make concrete in this section.

Where Manticore hybrids excel. It is known that hybrids excel at compositional tasks like
finding a token arbitrarily far in the past and then performing a local copy operation—this
for instance, necessitates a tradeoff in SSM (Gu et al., 2022) state size and transformer context.
Results like these motivate the study of tools like Manticore. For this reason, we expect that
Manticore excels at tasks in which the component models are specialized for certain data
sources or aspects of the dataset. As a result, many of our experiments in Section 3 feature
heterogeneous data sources.

Design tradeoffs in Manticore. Manticore requires taking a forward pass with each of its
component models, which increases inference cost over the use of a single component model.
This increased inference cost is an explicit tradeoff for not having to pretrain a hybrid
from scratch. In Appendix E, we motivate this tradeoff by showing that the total FLOPs
required to produce a Manticore hybrid is dominated by component model pretraining, and
that this can be avoided by reusing existing pretrained models. Due to the simplicity of
our projector architecture, we also show that the inference cost of Manticore is dominated
by forward passes of its component models. This further motivates our comparison to
ensembles in Section 3, due to their similar inference and training FLOPs requirements.
Finally, Manticore can be scaled to larger component models without significant overhead,
as the inference costs scale linearly in the size of its component models.

Flexibility of search algorithm. Our search space works best with NAS algorithms that
support continuous-valued mixture weights, such as DARTS (Liu et al., 2019), GAEA (Li
et al., 2021), and other gradient-based NAS algorithms. This makes our framework partic-
ularly flexible in its support for this broad class of NAS algorithms, while leaving room
for specialized algorithms to be developed later. In Appendix B, we include an ablation
comparing DARTS to the DASH (Shen et al., 2022) search algorithm, along with various
other components of the NAS pipeline. These ablations help characterize the desirable traits
of NAS search algorithms for Manticore. For the purposes of our experiments, we mainly
rely on DARTS (Liu et al., 2019)—an entirely off-the-shelf NAS algorithm—and leave the
development of tailor-made hybrid search algorithms to future work.

3 Experimental Results

We provide experimental evidence that validates the following claims about Manticore:
¢ C1. Pretrained hybrids can outperform their component models on fine-tuning tasks,

e C2. Trained from scratch, Manticore is competitive with existing hybrids and LMs, and
® C3. In certain cases, we can program mixture weights without search on the task data.

3.1 Fine-Tuning Pretrained Hybrids

We evaluate C1, first on a synthetic task, and then on natural language fine-tuning tasks.
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Figure 2: Mixture weight sweeps on Penn Treebank completions using pretrained GPT-Neo-
125M and Mamba-130M as our component models. (Left) When we create one Manticore
block, there is a region of the search space where we improve over Mamba. Here, we denote
the loss value and mixture weights found via search using a yellow star and track the loss
throughout training in green. (Right) The same holds for two Manticore blocks, and our
technique for hybrid programming using MAD discovers this region.

Setup. We consider a synthetic LM dataset comprising GPT-Neo and Mamba generated
completions of text from Penn Treebank (Marcus et al., 1993b). Naturally, we also use
pretrained GPT-Neo-125M and Mamba-130M models as component models, creating a
single Manticore block with projectors that were pretrained on 100M tokens from FineWeb
(Penedo et al., 2024). We search using DARTS, and afterward, we rewind the model weights
and projectors to their pretrained states for retraining.

Results. Our results are shown in Figure 2 (left). We compare our search results to a sweep
over a range of possible mixture weights and find that our search procedure returns the
optimal mixture weights, outperforming both Mamba and GPT-Neo. This confirms our
claim that Manticore hybrids can outperform their component models on synthetic fine-
tuning tasks. Given that this task comprises two slices that each of our component models
should be good at—GPT-Neo should be good at predicting GPT-Neo outputs, and vice
versa—we hypothesize that Manticore hybrids are especially well suited to the component
models having complementary ‘skills” (Chen et al., 2023).

Setup. We evaluate on three natural language fine-tuning datasets: Penn Treebank (Marcus
et al., 1993b), the Alpaca instructions dataset (Taori et al., 2023), and ELI5 (Fan et al., 2019).
We use Pythia-410M and Mamba-370M as our component models, and create a single
Manticore block from the blocks of the two models with projectors that were pretrained
on 100M tokens from FineWeb (Penedo et al., 2024). As before, we first search for mixture
weights, and then we retrain with the fixed mixture weights found by search.

Results. Our results are shown in Table 1. Manticore outperforms its component models
on Alpaca and ELI5, while it achieves performance between its two component models
on Penn Treebank. This confirms our claim that Manticore can outperform component
models on real natural language tasks. The fact that Mamba-370M outperforms Manticore
in this setting is not a failure of our framework, as Mamba-370M is included as part of
our search space—improving the search procedure beyond off-the-shelf NAS algorithms in
order to obtain these high performing models is an interesting direction for future work.

Task | Pythia-410M (A) Mamba-370M (B) Manticore[A, B]

PTB 0.9099 0.8397 0.8600
Alpaca 2.5011 2.2999 2.1779
ELI5 4.1260 3.9414 3.9331

Table 1: Manticore on language tasks using Pythia-410m and Mamba-370m component
models. The best test losses are bolded and the second-best are underlined.
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Figure 3: Mixture weight sweeps using Pythia-410M and Mamba-370M component models.
NAS algorithms often locate regions of the search space that outperform component models
and a learned ensemble baseline.

Setup. Building on the previous setup for natural language tasks, we perform a sweep over
the & parameter corresponding to Mamba in our search space, and compare the results of
the sweep to off-the-shelf NAS algorithms: DARTS (Liu et al., 2019) (Manticore’s search
procedure), GAEA (Li et al., 2021), and DASH (Shen et al., 2022). In order to compare
Manticore to a method with comparable inference cost, we also consider an ensemble
baseline where the ensemble weights are learned during training. For three datasets, 50% of
the documents are drawn from the Alpaca (Taori et al., 2023) dataset to artificially induce
heterogeneity—-we hypothesize that Manticore hybrids are well-suited to such settings—if
Manticore’s component models specialize in different subsets of a dataset, then Manticore
should achieve improved overall performance on the combined dataset.

Results. Our results are shown in Figure 3. We find that in all but one setting (NI Chinese
QA + Alpaca), at least two of the NAS algorithms that we evaluate recover a model that
outperforms its component models. Furthermore, on five of the datasets, at least one NAS
algorithm outperforms or matches the best model found during the sweep. Manticore also
substantially outperforms the ensemble on all tasks. This is further evidence for our claim
that Manticore outperforms component models on natural language, and demonstrates
that NAS algorithms can find performant pretrained hybrids in our search space.

3.2 Training Hybrids from Scratch

For C2, we compare to prior hybrids on MAD and non-hybrid models on LRA and MAD.

Setup. We compare training Manticore from scratch to training existing hybrid architectures
on MAD tasks. We begin with two hybrid architectures from the literature: Mambaformer
(Park et al., 2024), which combines Mamba and attention blocks, and the striped multi-head
Hyena + Mixture-of-Experts (MoE) MLP architecture that was shown to perform well on
the MAD tasks (Poli et al., 2024). We compare these two baselines to a Manticore hybrid
combining three component models: striped multi-head Hyena + MoE-MLP, a transformer,
and Mamba. We use two blocks for each of these architectures, creating two Manticore
blocks. Again, we search for mixture weights and then retrain.

Results. The results of this experiment are shown in Table 2 (left). We outperform the striped
multi-head Hyena + MoE model from the MAD paper, and we approach the performance
of Mambaformer on all but one task. This validates the claim that Manticore hybrids,
trained from scratch, compete with existing hybrids. Despite Mambaformer not being a
component model, it is in our search space, and we again speculate that improvements in
search would lead to its recovery.

Setup. We compare Manticore hybrids to their component models on LRA, when trained
from scratch. We use GPT-Neo and Mamba component models of similar sizes to those
in Tay et al. (2021) to create Manticore hybrids, while keeping the number of blocks the
same between the component models. In these experiments, we create a Manticore block
for every block in the component models, ranging from 3 to 6 Manticore blocks.
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\ Starting from existing hybrids | Starting from non-hybrids

Task SMH Hyena Mamba- Manticore GPT-Neo Mamba Manticore
+ MoE-MLP (A) former (B) ©) (D) [C, D]
Ctx. Recall 3.7153 0.0020 0.0048 4.0771 4.1858 4.0768
Fuzzy Recall 41714 4.1712 4.1750 4.4384 4.8097 4.2797
Noisy Recall 4.1643 4.1646 4.1607 4.1843 4.2605 4.1823
Sel. Copy 1.8021 0.0005 0.0171 1.0470 3.7765 0.9478
Mem. 8.8353 5.2179 8.9254 4.6110 5.2281 4.1367

Table 2: Results for training from scratch on MAD tasks. (Left) Manticore matches the
performance of existing hybrids on all but one task. (Right) Manticore improves over non-
hybrid component models. (Both) best losses are bolded and second best are underlined.

Results. Our results are shown in Table 3. We outperform component models on all tasks
except for IMDDb. This validates the claim that Manticore hybrids, trained from scratch,
compete with existing LMs.

Task | GPT-Neo (A) Mamba (B) Manticore[A, B]

ListOps 37.90 20.65 38.70
IMDb 59.62 87.74 72.44
CIFAR10 39.37 20.81 43.15
Pathfinder32 89.41 85.76 91.45
Pathfinder-X | N/A* 75.50* 75.50*

Table 3: Manticore trained from scratch on LRA using GPT-Neo and Mamba component
models. Best accuracies are bolded. *GPT-Neo does not support the Pathfinder-X sequence
length requirement, so its mixture weight is 0 and Manticore reduces to Mambea.

Setup. Next, we compare Manticore to non-hybrid architectures trained from scratch on the
MAD tasks. For these experiments, our component models use the default architecture and
training settings used in MAD. We compare two-block GPT-Neo and Mamba models to a
Manticore hybrid using a single Manticore block.

Results. Our results are shown in Table 2 (right). Manticore outperforms GPT-Neo and
Mamba on all of the MAD tasks in this setting. This provides further evidence for our
claim that Manticore hybrids compete with existing LMs when trained from scratch. It
is conceivable that our larger Manticore hybrids simply perform better than component
models due to their size—however, we find that post-search discretization and retraining
tends to result in similar performance, but reduces the model size by roughly half. We
include an ablation of post-search discretization in the Appendix.

3.3 Programming Hybrids

We evaluate C3 with two types of external data: task metadata such as sequence length
requirements, and the use of the MAD tasks as a proxy for search on downstream task data.

Setup. As in many of our previous experiments, we used the GPT-Neo and Mamba
architectures as component models to our Manticore hybrid. However, this time, we
set out to train from scratch on the extremely long-range Pathfinder-X task from LRA,
which requires sequence length support greater than that of GPT-Neo. Using this external
information about the task, we set the mixture weights for GPT-Neo to 0, which in this case,

means that Manticore reduces to Mamba.?

Results. The results of this experiment are shown in the last row of Table 3. In the simple
case of having access to task metadata, this validates the claim that we can program

5Mamba on the LRA is open: https://github.com/state-spaces/mamba/issues/282.
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mixture weights to exclude incompatible blocks. At the time of writing, we are not
aware of prior published Mamba results on LRA despite community interest, which would
make our evaluation in Table 3 the first such result. Note that we did not thoroughly tune
hyperparameters, so we view this result as a preliminary starting point for the community
to build off of, rather than a final answer.

Setup. Finally, in the case in which we can actually run all of our component models on our
learning task, we explore when we can program the mixture weights using the MAD tasks
as a proxy for search, which are intended to be predictive of scaling laws on The Pile (Poli
et al., 2024; Gao et al., 2020). We set out to fine-tune a pretrained hybrid comprising GPT-
Neo-125M and Mamba-130M, which were both pretrained on The Pile, with two Manticore
blocks on our Penn Treebank completions synthetic. We train a scaled-down version of
this Manticore hybrid with randomly initialized weights and two blocks per component
model on the MAD tasks. This yields mixture weights for each of the MAD tasks—we
average them across the tasks, and then fine-tune our pretrained hybrid on Penn Treebank
completions using the predicted mixture weights.

Results. Our results are shown in Figure 2 (right). We superimpose the predicted mixture
weights and mean search trajectory from MAD onto the architecture loss landscape com-
puted on Penn Treebank completions. We find that this procedure recovers a hybrid that
outperforms the component models (Mamba, lower right; GPT-Neo, upper left) and substan-
tially outperforms the naive frankenmerges in our search space (upper right and lower left)
(Goddard et al., 2024). This is a scenario in which it is possible to program mixture weights
using external sources without performing search on the task data. Intriguingly, search
on the MAD tasks appears to follow the architecture gradient on the different downstream
fine-tuning task, even though the architecture is scaled-down and trained from scratch on
MAD. We hypothesize that programming Manticore hybrids becomes more difficult as the
fine-tuning distribution is further from the pretraining distribution, and that the architec-
ture loss landscapes become less similar. This evaluation was carried out on our synthetic
PTB completions task, so the fine-tuning dataset should be fairly similar to the pretraining
distribution. In our evaluation in Table 1, we find that Mamba outperforms the Pythia
component model on English natural language tasks that are further from the pretraining
distribution than our synthetic (while both models were trained on The Pile (Gao et al., 2020)
which is largely in English, we are not training on completions produced by the models
themselves). Finally, our evaluations in Figure 3 use non-English text, which is further from
the pretraining data distribution, and we observe no discernible pattern between their loss
landscapes—programming & parameters in this scenario is likely challenging.

4 Conclusions

We present Manticore, a framework that automates the creation of hybrid models from pre-
trained models by using projectors and convex combinations to align and combine features
from multiple different component models, as well as NAS-inspired search procedures.
Manticore is efficient and flexible in its usage; hybrids can be trained from scratch, fine-
tuned from pretrained component models, and even programmed with external information
and/or proxy tasks. In our experiments with several real/synthetic language modeling
datasets and existing component/hybrid models, we find that Manticore hybrids match or
outperform existing handcrafted hybrid models in these settings. Any requisite fine-tuning
and evaluation is performed with a single, large Manticore model rather than designing
new hybrids by hand and pretraining them from scratch, which dramatically reduces the
computational cost of designing hybrids.
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Appendix

A Related work

Language Model Architectures: Transfomers and Beyond. Transformers are currently the
dominant LM architecture. The success of the “vanilla” architecture introduced by Vaswani
et. al. (Vaswani et al., 2017) has led to many proposed variations. The quadratic complexity
of the base self-attention operation has inspired the search for alternative architectures that
offer comparable performance with subquadratic complexity. One line of work builds off
state-space models, with variations made to enable language modeling (Poli et al., 2023a;b;
Gu & Dao, 2023; Arora et al., 2024). Another line of work involves linear-complexity
attention by formulating transformers as RNNs and expressing self-attention as a kernel
dot-product (Katharopoulos et al., 2020). Other approaches increase the expressivity of this
formulation with data-dependent gating (Yang et al., 2024). Our work does not propose a
new architecture. Instead, we focus on the idea that practitioners should be able to take
advantage of new architectures in a transparent way.

Neural Architecture Search & Mechanistic Search. Neural architecture search (NAS)
techniques are used to automatically search for optimal architectures. These techniques
have produced state-of-the-art models in several different architectures and data domains.
Much of the challenge in NAS is the complexity of the search procedures; in the most
standard form, NAS involves a difficult bilevel optimization over a large search space.
Much effort has been aimed at reducing these costs, often via continuous relaxations of the
large search spaces, with efficient, end-to-end differentiable search techniques like DARTS
(Liu et al., 2019), GAEA (Li et al., 2021), and DASH (Shen et al., 2022).

Using NAS to discover architectures for language modeling—and especially those that may
rival Transformers—has thus far been hard. A promising approach is the MAD framework
(Poli et al., 2024) , which uses “mechanistic tasks” (synthetic tasks organized around simple
principles) to search for high-quality subquadratic architectures. While we do not seek to
discover new architectures, we are inspired by this approach in our effort to search for hybrid
architectures.

Hybrid Architectures. Perhaps unsurprisingly, there is no single dominant architecture
among either standards, like Transformers, or emerging subquadratic architectures. While
there are some insights that can be converted into heuristics for model selection, generally, to
take advantage of new models, practitioners must exhaustively evaluate all of them on each
of their tasks. The cost of doing so has inspired the idea of crafting hybrid architectures that
mix components from different approaches, with the goal being to obtain best-of-all-worlds
behavior.

Unfortunately, the space of hybrid architectures is already large and only grows with each
new proposed approach. Manually crafting hybrids is costly; users must either brute-force
the enormous search space or alternatively hand-craft a small candidate set of hybrids in
the hope that it includes a reasonably performant choice. Our work provides an efficient
alternative to this process.

Model Merging. A final prospective approach to using multiple models is merging. Merging
pretrained models (of the same architecture) has shown promising results (Yadav et al.,
2023; Yu et al., 2023; Wortsman et al., 2022; Ilharco et al., 2023; Davari & Belilovsky, 2023;
Jang et al., 2024), creating powerful large-scale merges such as SOLAR-10.7B (Kim et al.,

2023) and Goliath-120B® from two fine-tuned Llama2-70B (Touvron et al., 2023) models. The
former two were produced using a trial-and-error-based technique called ‘frankenmerging,’
introduced in MergeKit (Goddard et al., 2024). Frankenmerging involves stitching together
different fine-tuned versions of the same model or, hypothetically, different models. This
has inspired efforts to merge models of different architectures using large-scale evolutionary
search (Akiba et al., 2024). However, such efforts are still embryonic, with substantial
computational drawbacks, requiring many training runs. Manticore, on the other hand, does
not require training a large number of models.

https://huggingface.co/alpindale/goliath-120b
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B Ablations

Choice of search algorithm. By default, we use a form of the single-level DARTS (Liu
et al., 2019) search algorithm in all of our experiments requiring search. We optionally
evaluate whether or not to take alternating update, that is, we alternately take gradient
steps in the architecture and model parameters—we treat this choice as a task-dependent
hyperparameter. However, there are many alternative NAS algorithms that we could have
used for search. In our ablation of the choice of search algorithm, we also evaluate DASH
(Shen et al., 2022) on our Penn Treebank completions synthetic—the results of which are
shown in Table B. In general, we found that using DASH was unable to recover strong
architectures in our search space. We postulate that this is because DASH simply aims to
solve a different problem, and is not suited to our search space: namely, DASH is used to
search for lower-level operations, rather than LM blocks. We also found that alternating
DARTS updates was somewhat helpful, compared to simultaneously updating all of the
parameters at once—for our experiments, we treated this choice as a hyperparameter.

Alternating? | DARTS DASH

Yes | 1.2854  2.5899
No | 1.3635 2.5968

Table 4: Comparison of NAS search methods on our Penn Treebank completions synthetic.

Whether or not to discretize after search. We perform an ablation of whether or not to per-
form discretization on our MAD task experiments in which we compare to existing hybrids.
We find that while discretization can sometimes improve performance, the performance
differences are often marginal. If final parameter count is a concern, then discretization is
beneficial.

Task Mapticm:e Manticfore
(non-discretized) (discretized)
Context Recall 0.0068 0.0081
Fuzzy Recall 41764 4.1729
Noisy Recall 4.1628 4.1614
Selective Copying 0.0849 0.0006
Memorization 8.9416 8.9402

Table 5: A comparison of non-discretized vs. discretized Manticore.

Amount of projector pretraining. Finally, we ablate over the amount of projector pretraining.
We re-ran our a sweep on our PTB completions synthetic with different amounts of projector
pretraining, ranging from 0 to 100M tokens sampled from FineWeb (Penedo et al., 2024).
The results of this ablation are shown in Figure 4. We found that the optimal value of the «
parameter stabilizes around 70M tokens used to pretrain the projectors.

C Additional MAD results

In the main text of the paper, we presented results comparing Manticore hybrids trained
from scratch to existing hybrids from the literature—namely Mambaformer and the Striped
MH Hyena + MOE architecture from MAD. Notably, the Striped MH Hyena + MOE archi-
tecture was only the second best architecture presented in the MAD paper. We found that
their best architecture, the Striped Hyena Experts + MOE model, performed slightly worse
on the harder versions of the MAD tasks that we evaluated. We present these results in
Table 6.
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Figure 4: As evaluated on our PTB completions synthetic with Mamba-130M and GPT-Neo-
125M, we find that the optimum stabilizes at around 70M tokens of projector pretraining.

Task Striped Hyena Experts Striped MH Hyena Mambaformer Manticore

+ MoE-MLP + MoE-MLP
In-context Recall 4.0315 3.7153 0.0020 0.0048
Fuzzy In-context Recall 4.1749 4.1714 41712 4.1750
Noisy In-context Recall 4.1640 4.1643 4.1646 4.1607
Selective Copying 21731 1.8021 0.0005 0.0171
Memorization 8.8537 8.8353 5.2179 8.9254

Table 6: Trained from scratch on MAD tasks, Manticore beats or matches the performance
of existing hybrids on all but one task. The best test losses are bolded and the second best
are underlined.

D Additional Pathfinder Results

We ran several additional variants of the pathfinder task for which the required sequence
length exceeded the maximum supported sequence length of GPT-Neo. We report these
results in Table 7.

GPT-Neo Mamba Manticore

Pathfinder task (A) (B) (A, B]

64 x 64, 6 paddles N/A 80.40 80.40
64 x 64, 9 paddles N/A 90.01 90.01
64 x 64, 14 paddles N/A 86.87 86.87
128 x 128, 6 paddles N/A 75.50 75.50

Table 7: Additional Pathfinder results. Note that since these variants of Pathfinder exceed
the maximum sequence length of GPT-Neo, we set its mixture weight to be 0 and evaluate
using Mamba.

E On Baselines

The correct set of baselines for Manticore is an interesting and somewhat challenging
question. In the main text, we compare to the set of component models used to construct
a Manticore hybrid—in other words, in order for Manticore to be at least as performant
as its component models on a task, it must match or beat the performance of the best
component model, which implies that both component models need to be fine-tuned. This
would roughly match the total amount of fine-tuning FLOPs used to train the corresponding
Manticore hybrid. However, there are other potential ways to make a comparison; in
this section, we will discuss the fairness and availability of baselines corresponding to
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different metrics of comparison, and provide a new set of baselines involving ensembles
of component models. Specifically, we will address the question of whether the correct
comparison is one involving parameter count, training FLOPs, or inference FLOPs.

E.1 Parameter Count

One proposal is to compare a Manticore hybrid of size N to a pretrained model that is
also of size N. Manticore combines the weights of existing pretrained models to produce a
hybrid that is drastically cheaper to generate compared to pretraining a hybrid of the same
size from scratch. Off-the-shelf pretrained models of size N are often pretrained up to D
tokens corresponding to its Chinchilla optimum (Hoffmann et al., 2022), but information
about the amount, mixture, or quality of pretraining data is often unavailable. This makes
comparison along the axis of the parameter count alone somewhat challenging—a larger
model may well have been trained on more total data than the two smaller component
models making up Manticore. In other words, Manticore should not be expected to follow
the same pretraining scaling laws as models that were trained from scratch. Therefore,
comparing a Manticore hybrid and a pretrained model of the same size is not necessarily
a fair comparison, when considering model size alone. Furthermore, pretrained models
of a specific predefined size N are not even guaranteed to exist.

E.2 Training FLOPs

Another option is to make a comparison along the axis of total training FLOPs, which would
include pretraining FLOPs, fine-tuning FLOPs, and any additional FLOPs incurred when
generating a Manticore hybrid. Suppose we create a Manticore hybrid from two component
models of sizes N; and Nj, which have been pretrained using T; and T; tokens, incurring
roughly 6N;1T7 and 6N, T, FLOPs, respectively (Kaplan et al., 2020). With Manticore, we
incur FLOPs from two sources: projector pretraining and fine-tuning. In our experiments, we
use Tproj = 100M tokens of general data for projector pretraining, and saw in Figure 4 that we
likely didn’t even need this much. Nonetheless, 100M tokens is substantially smaller than the
typical amount of pretraining data, so we can assume that Tprj = 100M << min {Ty, T»},
and since the pretrained projectors can be reused, this cost can be amortized over many
future fine-tuning runs. Manticore then involves fine-tuning on some small amount of
downstream tasks-specific data comprising Ty << min {T;, T, } tokens. So then, the total
amount of training FLOPs involved end-to-end in producing a Manticore hybrid is

6N1T1 + 6N T + (6N1 + 6N2)Tpr0j + (6N1 + 6N2)Tft = O(6N1T1 + 6N2T2),

meaning that the total training FLOPs is dominated by the pretraining of the component
models. Our experiments in the main text compare Manticore to the better of the two
component models, which means that both component models need to be fine-tuned (i.e.,
the baseline comprises ‘both’ component models). Therefore, if the projector pretraining
FLOPs are amortized over many fine-tuning runs, Manticore roughly matches the baseline
in terms of training FLOPs. That is, this baseline and Manticore effectively requires
6N1T; + 6N T, + (6N1 + 6N2)Tft FLOPs.

E.3 Inference FLOPs

It is true that our baselines in the main text (which are pairs of component models) are
cheaper in terms of inference FLOPs compared to Manticore. In fact, Manticore effectively
doubles the inference FLOPs by requiring forward passes through both component models.
Here, we include an analysis of inference FLOPs showing that the contribution of the
projectors is negligible, and we present an additional baseline—combining the component
models into an ensemble that is fine-tuned simultaneously using the same fine-tuning
budget as Manticore.

Inference FLOPs analysis. First, we will compute the general form of the inference FLOPs
requirement for a component model. Let d be the embedding dimension, let ¢ be the
sequence length, let L be the number of blocks, let v = |V| be the size of the vocabulary set
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for our downstream task, and let B(d, t) be the inference FLOPs requirement for the blocks
in the component model. Then the inference requirement for a single token prediction from
the component model is computed by summing the FLOPs requirements from looking up
an embedding, computing forward passes through a sequence of blocks, and generating the
final logits. That is, we obtain the following:

O(1+ LB(d, t) 4 dv) = O(LB(d, t) + dv).

For a Manticore hybrid, assume that we have K = 2 component models, M; and M,, as
well as their projectors. Without loss of generality, assume that the embedding dimensions,
d, and the number of blocks, Ly, in the component models are the same. Let L << Ly
be the number of Manticore blocks, which is typically constant with respect to the number
of blocks in each of the component models Ly, (in our experiments, L was set to 1 or 2).
Let By, (d,t) and By, (d, t) be the FLOPs requirements of individual blocks from M; and

My respectively, and let Byyoj(d, t) = O(td?) be the FLOPs requirement of projector usage.
Note that typically, Bproj(d, t) = O(td*) < By, (d,t), as many types of blocks involve a
dimension-mixing operation such as an MLP, which has a larger FLOPs requirement than
O(td?), or a sequence mixer that has quadratic or log-linear dependence on ¢, rather than
the linear dependence of Bpy.;(d). Then the FLOPs requirement of each Manticore block is
as follows:

@) (IZVI(BM] (d f)+ B, (d, 1)) +4Bproj(d,t)> ,

and along with the token embedding and the logits output, we have

O(1)+L+0 (LLM(BM1 (d,1) + Bagy (d, 1)) + 4B (d, t)) +0(do)
=0 (LmBwm, (d,t) + LayBa, (d, ) + LBproj(d, t) + do)
~0 (LMBM1 (d,t) + LB, (d, t) + tdPL + dv)
=O (LmBum, (d, 1) + LB, (d, £) 4 do) ,

where the final step comes from L << Ly and the assumption that Byyoj(d, t) = O(td?) <

By, (d, t). This inference cost is the same as inference with both component models. This
motivates another baseline: ensembles of component models, which we evaluate next.

Comparison to ensembles. We compare the fine-tuning performance of Manticore to
ensembles of component models on the six tasks shown in Figure 3. Starting with pretrained
Pythia-410M and Mamba-370M models, we construct our ensemble as follows: for each
token prediction, we mix the output probabilities from Pythia-410M and Mamba-370M
with equal weighting of 0.5, and then we fine-tune the entire mixture end-to-end on the
downstream task. We present the results in Table 8. The ensemble baseline underperforms
Manticore and the best component model on all tasks—we suspect that this could be
related to overfitting.

F Hyperparameters

In this section, we discuss our hyperparameters and our experimental setup. Code imple-
menting our experiments can be found at https://anonymous. 4open.science/r/manticor
e-anon.

F1 Fine-Tuning Pretrained Hybrids

Penn Treebank completions synthetic. For model weights, we use the AdamW (Loshchilov
& Hutter, 2019) optimizer with a linear learning rate schedule with an initial learning rate
of 5¢ — 5. For mixture weights, we use the AdamW (Loshchilov & Hutter, 2019) optimizer
with a linear learning rate schedule with an initial learning rate of 0.005 and use alternating
updates.
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Task Pythia-410M Mamba-370M Ensemble Manticore

(A) (B) [A, B] [A, B]

Es. + Alpaca 1.819 1.704 2.172 1.664
Ch. + Alpaca 3.729 3.447 3.854 3.369
Vi. + Alpaca 2.130 2.004 2.173 1.980
NI non-En. 1.764 1.560 1.652 1.530
OpenOrcha 1.570 1.576 1.756 1.553
XQuAD Ar. 0.205 0.207 0.533 0.201

Table 8: Comparison between Manticore, its component models, and an ensemble of its
component models on the tasks from Figure 3. For Manticore, we show the best performance
achieved across our sweep from Figure 3. Ensembling the component models does not
improve performance, but creating a Manticore hybrid does lead to improved performance.

Fine-tuning on language tasks. For model weights, we use the AdamW (Loshchilov &
Hutter, 2019) optimizer with a linear learning rate schedule with an initial learning rate of
5e — 5. For mixture weights, we use the AdamW (Loshchilov & Hutter, 2019) optimizer with
a linear learning rate schedule with an initial learning rate of 0.005 and use simultaneous
updates.

E2 Training Hybrids from Scratch

Comparison to existing hybrids on MAD.

We provide the hyperparameters and training details for our MAD evaluations from Sec-
tion 3.2

Existing hybrids were trained with a hyperparameter grid search over the space [le — 4, 5¢ —
4,1e — 3] for learning rate and [0.0, 0.1] for weight decay, similar to the procedure in MAD
(Poli et al., 2024).

Manticore is trained in two stages. In the first stage, we train the model and architecture
weights in the alternating schedule utilized in DARTS (Liu et al., 2019). In this stage, we
perform a hyperparameter grid search of the space [le — 4, 5e — 4, 1e — 3| for model weight
learning rate, [le — 4, 1e — 4] for architecture weight learning rate, and [0.1] for weight decay.
In the second stage, the architecture weights are frozen and we train only the model weights
using the best learning rate found in the first stage.

Evaluation on LRA. We provide the hyperparameters and training details for our LRA
evaluations.

* ListOps. We trained all models for 5000 steps. GPT-Neo used 8 attention heads, 6 blocks,
an embedding dimension of 512, and a feed-forward network (FFN) dimension of 2048.
Mamba used 12 blocks with a model dimension of 512. The vocabulary size was 18.

e IMDb. We trained all models for 25 epochs with a batch size of 32. GPT-Neo used 8
attention heads, 6 blocks, an embedding dimension of 512, and an FFN dimension of 2048.
Mamba used 12 blocks with a model dimension of 512. The vocabulary size was 129.

¢ CIFAR10. We trained all models for 10 epochs. GPT-Neo used 4 attention heads, 3 blocks,
an embedding dimension of 64, and an FEN dimension of 128. Mamba used 6 blocks
with a model dimension of 64. The vocabulary size was 256, corresponding to the pixel
value range of the grayscale image.

¢ Pathfinder32. We trained all models for 10 epochs. GPT-Neo used 8 attention heads, 4
blocks, an embedding dimension of 128, and an FFN dimension of 128. Mamba used 8
blocks with a model dimension of 128. The vocabulary size was 256, corresponding to
the pixel value range of the grayscale image.

Comparison to non-hybrids on MAD.
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We use two blocks each from GPT-Neo and Mamba, each with a model dimension of 128.
We train for 200 epochs and select the best performance during training, as all of the models
overfit across the board. We use the AdamW (Loshchilov & Hutter, 2019) optimizer with a
linear learning rate schedule with an initial learning rate of 5¢ — 5.

E3 Programming Hybrids

Mamba evaluation on long Pathfinder tasks. Due to our limited computation resources, we
did not conduct a hyperparameter sweep for the result we presented. We used Mamba with
models of a similar size as Pathfinder32, which has 8 layers, 128 as the hidden dimension
size, and 256 as the vocab size. The 64 x 64, 6 paddles version is trained by 10 Epoch with
default HP. The result for other versions is trained with 200 epochs with default HP in
Huggingface trainer.

MAD tasks as a search proxy. For model weights, we use the AdamW (Loshchilov &
Hutter, 2019) optimizer with a linear learning rate schedule with an initial learning rate of
5e — 5. For mixture weights, we use the AdamW (Loshchilov & Hutter, 2019) optimizer with
a linear learning rate schedule with an initial learning rate of 0.01 and use simultaneous
updates. For search on the MAD tasks, we train scaled-down versions of GPT-Neo and
Mamba each with four blocks, model dimensions of 128, and no projectors.

F4 Pretraining Projectors

For all non-frozen weights (i.e., projectors, mixture weights, embeddings, and the LM
head), we use the AdamW (Loshchilov & Hutter, 2019) optimizer with a linear learning rate
schedule with an initial learning rate of 5¢ — 5.

G Data and MAD Task Parameters

We provide a more detailed description of the datasets that we use in our experiments. We
perform our experiments on a range of synthetic and real tasks that measure various aspects
of modern LM capabilities. We discuss the specific datasets that we use in our experiments
below. MAD synthetics. The MAD synthetic datasets are a set of tasks introduced by Poli
et al. (2024) to systematically evaluate the design space of LMs. These tasks are designed to
serve as proxy unit tests for rapidly prototyping of new hybrid LM architectures. In our
experiments, we use harder variants of the MAD tasks, in which we use a larger vocabulary
size of 128 instead of the default 16 for most of the tasks, along with fewer training examples.
For simplicity, we omit the compression task as it requires the use of encoder-decoder
architectures.

¢ In-context recall. MAD utilizes a multi-query associative recall task, challenging models
to retrieve values linked to keys within input sequences, testing their in-context learning
ability across randomly shuffled mappings. We use a vocab size of 128 and 800 training
examples.

¢ Fuzzy in-context recall. This is a variant of in-context recall to assess a model’s ability
to semantically group adjacent tokens. Variable-length keys and values are randomly
paired, testing the model’s capacity for fuzzy recall. We use a vocab size of 128 and 800
training examples.

¢ Noisy in-context recall. This is an adaptation of in-context recall to evaluate a model’s
capacity to disregard irrelevant information. This involves inserting tokens from a
separate vocabulary randomly among key-value pairs, enhancing the memorization
challenge. We use a vocab size of 128, a noise vocab size of 16 with 80% noise, and 800
training examples.

* Selective Copying. MAD employs a selective copying task to evaluate a model’s ability
to remember and replicate specific tokens from an input sequence while disregarding
randomly inserted noise tokens, emphasizing the preservation of token order. We use a
vocab size of 128 with 96 tokens to copy, and 800 training examples.
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e Memorization. MAD assesses language models’ factual knowledge retention through a
memorization task, where models learn fixed key-value mappings without in-context
computation, testing pure memorization ability. For this task, we use a vocab size of 8192.

Long Range Arena. Long Range Arena (LRA) (Tay et al., 2021) is a benchmark consisting of
various tasks of different modalities that evaluate how well models can learn long-context
data. For simplicity, we omit byte-level document retrieval as it requires two forward passes
per example.

* Long ListOps. This task is designed to understand whether the architecture is able to
model hierarchically structured data in a long-context (Nangia & Bowman, 2018).

¢ Byte-level text classification. This task attempts to test the model’s ability to deal with
compositionality as in the real world, the model needs to compose characters into words
and words into higher-phrases in not so well defined boundaries making it a challenging
task, we use IMDB dataset(Maas et al., 2011) in the LRA paper (Tay et al., 2021).

¢ Image classification on a sequence of pixels. This task aims to understand whether a
model is able to capture the 2D spatial structure when presented with a flattened 1D
version of an image to classify, we use pixel information from CIFAR10(Krizhevsky, 2009)
dataset.

e Pathfinder. This task helps to understand whether a model can reason about whether the
given 2 dots in an image are connected by a path having dashes or not. The sequence
length is 1024 i.e a 32x32 image is flattened and provided as input to the model (Linsley
et al., 2018; Kim et al., 2020).

¢ Pathfinder-X. An extreme version of Pathfinder with a higher resolution, such as 64x64
and 128*128, which results in a sequence length of up to 16K

Penn Treebank completions. We generate a synthetic dataset of generated text from
pretrained GPT-Neo-125M (Black et al., 2021) and pretrained Mamba-130M models (Gu &
Dao, 2023). We prompt both models using the first four words of every example in the Penn
Treebank (Marcus et al., 1993b) validation set, which yields two natural slices of our dataset:
sentence completions generated by GPT-Neo and those generated by Mamba.

Natural language tasks. We evaluate the ability to fine-tune Manticore on natural language
datasets. Specifically, we evaluate on Penn Treebank (Marcus et al., 1993a), the Alpaca
instruction tuning dataset (Taori et al., 2023), and an i.i.d. split of the ELI5 training set (Fan
et al., 2019). Additionally, we use 100M tokens from the FineWeb dataset (Penedo et al.,
2024) to pretrain our projector weights. We describe all other natural language datasets that
we use in our evaluations below.

¢ NI Spanish QA + Alpaca. This is from the Natural Instruction dataset v2.8 downloaded
from https://github.com/allenai/natural-instructions/releases, we picked task
1610 and mixed it with equal numbers of randomly selected samples from the Alpaca
dataset to create a bilingual dataset that contains Spanish Q&A along with English
instructions.

* NI Chinese QA + Alpaca. This is similar to the previous dataset, except we pick task1570,
which is Q&A that input/output language are Chinese.

¢ MLQA Vietnamese + Alpaca. This dataset is a subset of MLQA (MultiLingual Question
Answering)(https://huggingface.co/datasets/facebook/mlga) in which both the
inputs and outputs are in Viethamese, and mixed with equal numbers of randomly
selected samples from Alpaca dataset to create a bilingual dataset.

¢ OpenOrcha. We randomly sample 10,000 samples from the OpenOrcha dataset contain-
ing Japanese translations from https://huggingface.co/datasets/atsushi3110/cros
s-lingual-openorcha-830k-en-ja, to form a Japanese Q&A dataset.

¢ NI all non-English QA. There are six Q&A tasks in the Natural Instructions dataset such
that both their input and output language is non-English—we combine all of them to
form a new dataset containing non-English Q&A.

* XQuAD Arabic. The Arabic Q&A part from XQuAD (Cross-lingual Question Answering
Dataset), from https://huggingface.co/datasets/google/xquad.
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H A Call for Action & Community Recommendations

Throughout our research process, we noted a handful of opportunities that help to democ-
ratize LM research. Should these opportunities be taken up by the research community,
we believe they could help to democratize and help to decentralize community-driven LM
research, all which enabling further research on pretrained hybrids.

A search engine for pretrained models. Surprisingly, we were unable to easily search for
pretrained LMs of certain sizes or with certain properties (using Huggingface or otherwise).
Tools like this should exist: this would not only significantly democratize LMs, but it would
help to reduce monopolies on LM releases and usage, and thereby decentralize LM research.

Standardized, block-structured LM implementations. We found that standard tools such
as Huggingface and PyTorch were insufficient to cleanly access intermediate activations
across several model implementations. This could be resolved by adopting standard imple-
mentations or structures for LMs that share the common block structure that we describe
in Section 2.1. Instead, our solution was to fork implementations of several Huggingface
models, which is time-consuming, error-prone, and non-scalable. A solution to this problem
would enable and encourage further research on pretrained hybrid models, which in turn
helps to democratize LM research.

Removing tokenizers from LM pipelines. We believe that there are too many possible
tokenizers, and that tokenizers have a significant potential to introduce merge conflicts in
model merging/pretrained hybrid pipelines. In response to this challenge, in our work,
we simply chose an arbitrary tokenizer and relearned our embeddings and LM head
from scratch in all of our experiments. Possible solutions to this problem would be: as a
community, we agree on a standard (small) set of tokenizers, or we eliminate tokenizers
altogether by learning character or byte-level LMs.

I Limitations

At various points in Section 3, we described limitations with using DARTS (the off the shelf
NAS search algorithm that we used) for search, in that it was not always able to recover
the best architecture in the search space. A potential limitation of Manticore is that it relies
on the existence of good gradient-based NAS search algorithms, potentially tailored to
our search space. However, we postulate that this is possible, and we leave the task of
developing new search techniques to future work.

J Compute Resources

We ran our experiments on the following GPU hardware:

¢ 2x Nvidia RTX A6000 GPUs with 48GB GPU memory hosted locally in a nook in the lead
author’s house and in a friend’s basement.

* 2x Nvidia RTX 4090 GPUs with 24GB GPU memory each hosted locally in other friends’
basements.

¢ 2x Nvidia Tesla V100 GPUs with 16GB GPU memory each hosted on AWS (p3.2xlarge
instances).

In total, we estimate that our total number of GPU hours across all experiments (those
which failed as well as those included in the paper) amounted to roughly 750 GPU hours.
We estimate that less than half of these hours accounted for experiments that were not
ultimately included in the paper.
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Figure 5: Mixture weight sweeps on Penn Treebank completions using pretrained GPT-
Neo-125M and Mamba-130M as our component models. There is a region of the search
space where we improve over Mamba when using two Manticore blocks, and our technique
for hybrid programming using MAD discovers this region.

K Expanded Version of Figure 2 (Right)

To show how the architectures evolve over search on all of the MAD tasks in our mixture
weights programming experiment, we provide a more detailed version of Figure 2 (Right)
— this is shown in Figure 5. Here, we plot the architecture trajectories throughout training
on all of the MAD tasks, and superimpose them onto the architecture-loss landscape of
the Penn Treebank completions task. The trajectories roughly follow what appears to be a
gradient in the loss landscape, and all of the trajectories are roughly similar. We derive our
final ‘programmed’ alphas by taking the average of the final alpha values on each of the
MAD tasks, after training.

24



	Introduction
	Methods
	The Structure of Manticore Hybrids
	How To Use Manticore
	Discussion and Design Considerations

	Experimental Results
	Fine-Tuning Pretrained Hybrids
	Training Hybrids from Scratch
	Programming Hybrids

	Conclusions
	Related work
	Ablations
	Additional MAD results
	Additional Pathfinder Results
	On Baselines
	Parameter Count
	Training FLOPs
	Inference FLOPs

	Hyperparameters
	Fine-Tuning Pretrained Hybrids
	Training Hybrids from Scratch
	Programming Hybrids
	Pretraining Projectors

	Data and MAD Task Parameters
	A Call for Action & Community Recommendations
	Limitations
	Compute Resources
	Expanded Version of Figure 2 (Right)

