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Abstract001

This study investigates the stylistic differences002
among various Bible translations using a Varia-003
tional Autoencoder (VAE) model. By embed-004
ding textual data into high-dimensional vectors,005
the study aims to detect and analyze stylistic006
variations between translations, with a specific007
focus on distinguishing the American Standard008
Version (ASV) from other translations. The009
results demonstrate that each translation ex-010
hibits a unique stylistic distribution, which can011
be effectively identified using the VAE model.012
These findings suggest that the VAE model is013
proficient in capturing and differentiating tex-014
tual styles, although it is primarily optimized015
for distinguishing a single style. The study016
highlights the model’s potential for broader017
applications in AI-based text generation and018
stylistic analysis, while also acknowledging the019
need for further model refinement to address020
the complexity of multi-dimensional stylistic021
relationships. Future research could extend this022
methodology to other text domains, offering023
deeper insights into the stylistic features em-024
bedded within various types of textual data.025

1 Introduction026

Language, in both speech and writing, consists027

of two essential components: content and style.028

Broadly speaking, content refers to what is be-029

ing expressed, while style pertains to how it is030

expressed. Specifically, style encompasses the vari-031

ability of linguistic forms in actual language use032

(Babatunji, 2024). Historically, style in language033

has been studied within the field of Stylistics, a034

branch of applied linguistics that examines writ-035

ing styles in literary criticism as well as tone and036

accent in discourse analysis.037

When people hear the term "style," however,038

they often associate it with visual aesthetics in im-039

ages rather than linguistic expression. Indeed, with040

the advancement of Generative AI, research on041

style has predominantly focused on images, partic- 042

ularly on style transfer techniques introduced by 043

Gatys et al. (2015). This foundational work led to 044

significant progress in computer vision, fostering a 045

deep exploration of style transfer in visual contexts. 046

Although research on linguistic style in language 047

models has been less explored compared to stud- 048

ies in the visual domain, language still provides a 049

valuable area for stylistic analysis. In particular, 050

linguistic style transfer has shown significant prac- 051

tical applications in real-world contexts, such as 052

AI-driven text generation systems like Character 053

AI, highlighting its growing importance in every- 054

day use. 055

While style transfer techniques in images have 056

made significant strides, their direct application to 057

linguistic contexts encounter practical limitations. 058

To overcome these challenges, this study adopts an 059

alternative approach by quantifying style using em- 060

beddings. A central question we address is whether 061

textual style can be represented as a measurable 062

entity. Style, inherently subjective and complex, 063

has been challenging to formalize, but we draw 064

inspiration from the concept of word embeddings, 065

which allow for semantic operations such as "king 066

- man + woman = queen." By extending this con- 067

cept to sentence embeddings, we aim to establish a 068

robust framework for analyzing linguistic proper- 069

ties. Specifically, our research examines whether 070

manipulated embeddings can effectively capture 071

and quantify stylistic and semantic relationships in 072

textual data. Furthermore, we investigate how these 073

relationships emerge when texts with similar styles 074

are modeled as belonging to the same probability 075

distribution. 076

Although texts with similar styles may share 077

underlying distributions, the exact differences be- 078

tween these distributions are not well understood. 079

To address this, we employ Variational Autoen- 080

coders (VAEs) to normalize and regularize stylistic 081

distributions, enabling a clearer analysis of whether 082
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these distributions are distinctly separated. This ap-083

proach allows us to quantify and compare stylistic084

variations in a mathematically robust manner.085

The significance of this study lies in its ability086

to extract and quantify "style" from textual data as087

a measurable distribution. This quantification of088

style provides a foundation for practical applica-089

tions, such as using these stylistic representations090

in generative models like GANs to enhance AI-091

driven content creation. By enabling more precise092

stylistic modeling, this research opens new possi-093

bilities for both theoretical exploration and applied094

advancements in text generation and stylistic anal-095

ysis.096

2 Related Works097

2.1 Styles in Natural Languages098

In linguistics, style has been seen as the unique099

way individuals or groups engage in conversation,100

conveying politeness or formality, and able to be101

controlled and adjusted to suit the intended social102

context, as Labov (1997) discusses. Additionally,103

style is the set of linguistic features such as tone,104

punctuation, word choice, and syntactic structure,105

playing a key role in stylistics and sentiment analy-106

sis (Pang and Lee, 2008).107

Subsequently, Shen et al. (2017) considered style108

as the specific manner in which ideas are expressed109

in text, distinguishable from the content. In style110

transfer tasks, style is represented by personal style,111

formality, politeness, offensiveness, genre, and112

sentiment (Toshevska and Gievska, 2022). Cur-113

rent studies of styles focus on computational mod-114

els for style transfer; Cross-Alignment with non-115

parallel text (Shen et al., 2017), Retrieve-and-Edit116

approach (Li et al., 2018), Unsupervised style trans-117

fer (Prabhumoye et al., 2018), Generative proba-118

bilistic model (He et al., 2020), and Reinforcement119

Learning for style transfer (Gong et al., 2019).120

2.2 Evaluating Style Transfer in Text121

Evaluation metrics are vital for text style transfer122

as they provide precise, quantitative assessments123

of how effectively the generated text adheres to the124

target stylistic attributes while preserving semantic125

integrity. However, evaluation can be challenging126

due to the subjective nature of style. It typically in-127

volves automatic evaluation and human evaluation128

(Jin et al., 2022).129

2.2.1 Automatic Evaluation 130

The automatic evaluation measures how well the 131

meaning of the original sentence was preserved 132

in the output (generated sentence). The following 133

metrics are commonly used: 134

• BLEU: Measures n-gram precision between 135

generated text and references (Papineni et al., 136

2002). 137

• ROUGE: Assesses overlap of n-grams, focus- 138

ing on recall to evaluate content coverage (Lin, 139

2004). 140

• METEOR: Evaluates translation quality using 141

precision, recall, stemming, and synonymy 142

(Banerjee and Lavie, 2005). 143

• BERTScore: Utilizes BERT embeddings to 144

measure semantic similarity between gener- 145

ated and reference texts (Zhang et al., 2020). 146

2.2.2 Human Evaluation 147

Human judges assess how well the generated text 148

adheres to the desired style and maintains seman- 149

tic integrity. Yamshchikov et al. (2021) delineates 150

the distinctions between human evaluation and au- 151

tomatic methods, illustrating how human assess- 152

ment captures nuanced stylistic and semantic sub- 153

tleties. However, it is costly and lacks the con- 154

sistency, objectivity, and scalability provided by 155

automatic evaluation methods. Additionally, both 156

methods are limited by their reliance on reference 157

texts, which may not fully capture the breadth of 158

acceptable outputs or the creative potential of the 159

generated text. 160

2.3 Anomaly Detection and VAE 161

Anomaly detection has evolved through various 162

methodologies to address the challenge of identify- 163

ing outliers across different domains (Schölkopf 164

et al., 1999; Liu et al., 2008). The advent of 165

deep learning introduced Autoencoders (Hinton 166

and Salakhutdinov, 2006), which makes it possible 167

to detect anomalies in high-dimensional data by 168

analyzing reconstruction errors. Further advance- 169

ments have been made with Variational Autoen- 170

coders (VAE), which leverage both probabilistic 171

modeling and latent space representations (Kingma 172

and Welling, 2022). We will employ a VAE model, 173

trained on high-dimensional embedding vectors 174

representing a single stylistic attribute, to identify 175

anomalies by capturing deviations in stylistic char- 176

acteristics. 177
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3 Methodology178

3.1 Data Collection and Preprocessing179

This study utilizes biblical data collected from180

Bible SuperSearch (bib), a platform operating un-181

der the GNU GPL open source license. Ten differ-182

ent versions were initially considered: KJV, NET,183

ASV, ASVS, Coverdale, Geneva, KJV_Strongs,184

Bishops, Tyndale, and WEB. However, Bishops,185

Tyndale, and WEB were excluded due to insuffi-186

cient parallel data. The remaining versions were187

selected for their linguistic diversity and histori-188

cal backgrounds to enhance the depth of our style189

classification study.190

The biblical texts are publicly available under the191

GNU GPL license, allowing free use for research192

purposes. Our study adhered to these guidelines193

without altering the original texts. In the prepro-194

cessing phase, we extracted the biblical data in195

JSON format and encoded all text files using UTF-196

8 to handle special characters. The initial data qual-197

ity was high, minimizing the need for extensive198

text cleaning.199

3.2 Embedding and Model Training200

We employed OpenAI’s text-embedding-3-small201

model to embed each biblical sentence into 1536-202

dimensional vectors. This model was chosen for203

its balance between performance and computa-204

tional efficiency, making it suitable for our research.205

These high-dimensional vectors capture the nu-206

anced language style of the sentences, providing207

foundational data for style-based classification.208

3.3 Style Extraction209

Text embedding is assumed to include both content210

and style, as represented by the following equation:211

text_embedding =212

style_embedding + content_embedding213

Under this assumption, text embedding can be214

seen as simultaneously containing both the con-215

tent and stylistic features of the text. In this study,216

we utilized this assumption to perform an analysis217

based on Bible data. The Bible data consists of the218

same verse expressed in multiple translations in a219

parallel structure, where the content remains the220

same, but the style varies. This characteristic of221

Bible data justifies the assumption that each trans-222

lation’s content embedding is identical. That is, the223

differences between the translations are primarily 224

due to style, allowing for style analysis to be con- 225

ducted. The core assumption of this study is that 226

the difference in text embeddings between transla- 227

tions reflects the difference in styles. This can be 228

expressed mathematically as follows: 229

KJV_embedding − Other_embedding = 230

KJV_style_embedding−Other_style_embedding 231

Through this relationship, we calculated the 232

difference between the two text embeddings and, 233

based on this, measured the difference in style be- 234

tween the translations. Specifically, the goal of 235

the study was to analyze the text embedding dif- 236

ferences between KJV (King James Version) and 237

other translations (e.g., ASV (American Standard 238

Version)) to quantify the stylistic features. To do 239

this, we calculated the difference between embed- 240

dings, represented as 1536-dimensional vectors, 241

and used Variational Autoencoder (VAE) as a tool 242

to analyze the distribution of these vectors. 243

The VAE is an unsupervised learning method 244

that models the distribution of data in a latent space. 245

In this study, we aimed to utilize the VAE to classify 246

the embedding differences between translations 247

and detect stylistic differences through anomaly 248

detection. By compressing the input data and re- 249

constructing it, VAE retains the important features 250

while learning the distribution, allowing for the 251

modeling of stylistic differences between transla- 252

tions. 253

During the training process of the VAE, 254

we used the distribution differences between 255

KJV_embedding and ASV_embedding. The VAE 256

learned the difference between KJV and ASV em- 257

beddings in the latent space and then measured the 258

similarity between the reconstructed distribution 259

and the original distribution. We computed the 260

L2-norm in this reconstruction process to quantita- 261

tively evaluate the stylistic similarity or difference 262

between the translations. This allowed us to an- 263

alyze the stylistic differences between KJV and 264

ASV, as well as conduct comparative analyses with 265

other translations. 266

In conclusion, this study evaluated the stylistic 267

differences between Bible translations using VAE 268

for anomaly detection. Through this process, we 269

effectively quantified the stylistic similarities and 270

differences between various translations. Based 271

on the VAE model, trained on the difference be- 272
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SYMBOL DESCRIPTION

k(i) EMBEDDING OF KJV,
i = 1, · · · , N

a(i) EMBEDDING OF ASV
y
(i)
j EMBEDDING OF OTHER

BIBLES,
j = 1, · · · , 5

x(i) KJV_STYLE_EMBEDDING
− ASV_STYLE_EMBEDDING

Rd d-DIMENSIONAL INPUT SPACE
Rp p-DIMENSIONAL

FEATURE SPACE (p < d)
ψ : Rd → Rp ENCODER OF VAE
θ : Rp → Rd DECODER OF VAE

Table 1: Notation used throughout this article.

tween KJV_embedding and ASV_embedding, we273

similarly analyzed the stylistic differences between274

other translations. This methodology enabled so-275

phisticated text analysis that went beyond merely276

examining content features to include stylistic fea-277

tures. Thus, we provided new insights into how278

stylistic differences manifest within the embedding279

space.280

3.4 Model Architecture and Training Details281

The VAE model used in this study has an input282

dimension of 1536, and both encoder and decoder283

use fully connected (FC) layers. The size of each284

hidden layer follows a geometric sequence from285

the input dimension of 1536 to the final feature286

dimension (rounded to the nearest integer). Batch287

normalization is applied to all layers except the288

final output layers of both the encoder and decoder.289

The activation function used is Leaky ReLU (α=1e-290

2) except for the final output layer of the encoder291

and decoder. The final output layer of the decoder292

uses a Sigmoid-based activation function to ensure293

that the output distribution lies within the range294

[-1,1].295

The hyperparameters are as follows: 6 values296

for the number of hidden layers (ranging from 1 to297

6) and 6 values for the feature dimension (ranging298

from 23 to 28), resulting in 36 total combinations.299

We split 13,823 sentence vectors into training300

and test sets with a 9:1 ratio, using KJV-ASV dif-301

ferences as training data. The model employs302

fully connected layers with batch normalization303

and Leaky ReLU activation, and is trained using304

the Adam optimizer and MSE loss function. A305

schematic of the model structure is provided in306

Figure 1.307

Additionally, The model was trained using the 308

Adam optimizer with a learning rate (lr) of 0.001. 309

The batch size was set to 100, and training was 310

conducted over 500 epochs. The input data was 311

processed on a device configured to use CUDA. 312

The input dimension of the sentence embeddings 313

was 1536, and the fully connected layer dimensions 314

were defined as [617, 247, 100, 40]. The latent 315

space was set to a feature dimension of 16. 316

Figure 1: A schematic illustration of the VAE model.
The encoder receives a 1,536-dimensional original (sen-
tence embedding) vector as input and outputs a feature
vector of the feature dimension. The decoder takes the
feature vector of the feature dimension as input and out-
puts a 1,536-dimensional reconstructed vector.

3.5 Evaluation Metrics 317

According to our hypothesis, the KJV-ASV vector 318

is expected to contain information related to the 319

style of ASV, with KJV as the reference point. If 320

a VAE with a sufficiently small feature dimension 321

can effectively reconstruct this vector, it suggests 322

that the VAE is leveraging specific stylistic fea- 323

tures during the encoding-decoding process. On 324

the other hand, if data not included in the model’s 325

training process are reconstructed through the VAE, 326

the reconstruction quality is expected to be poor 327

compared to the original. Based on this character- 328

istic, we aim to perform anomaly detection using 329

the VAE. 330

We aim to verify whether the VAE, trained us- 331

ing KJV-ASV vectors, has effectively learned the 332

unique style of ASV. To do so, the trained VAE 333

will be applied to six Bible translations (ASV, NET, 334

ASVS, Coverdale, Geneva, and KJV Strongs), and 335

we will examine if the model successfully distin- 336

guishes ASV’s unique style compared to other 337

translations. For the test dataset (not used dur- 338

ing model training), ASV will serve as the normal 339

data, and the other five translations (NET, ASVS, 340

Coverdale, Geneva, and KJV Strongs) will serve 341
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as anomaly data, consisting of sentence embedding342

vectors corresponding to the same Bible verses as343

in the test dataset. To remove the context of KJV344

during ASV training, the VAE was trained on the345

differences between the sentence vectors of ASV346

and KJV (KJV-ASV). Similarly, the anomaly data347

from the other Bible translations will be processed348

by subtracting the corresponding KJV sentence349

vectors, following the same procedure.350

Among the 36 hyperparameter sets, the model351

that most clearly differentiates the reconstruction352

L2 error distribution between the training data and353

the anomalies will be considered the most effec-354

tive in detecting the unique style of ASV. We will355

evaluate how well the original data and anomaly356

data are distinguished using Fisher’s Linear Dis-357

criminant (FLD). FLD increases as the squared358

difference between the means of the two distribu-359

tions becomes larger, and the sum of their variances360

becomes smaller. The formula for FLD S is as fol-361

lows:362

S =
(µ1 − µ2)

2

σ2
1 + σ2

2

363

where µ1 and µ2 are the means of the original364

data and anomaly data distributions, respectively,365

and σ1 and σ2 are the variances of the original366

data and anomaly data distributions, respectively.367

This metric will help quantify how well the model368

separates the original data from anomalies based369

on reconstruction errors.370

4 Results371

4.1 Training Convergence and Loss Analysis372

For all 36 hyperparameter combinations, both the373

training loss and test loss decreased and eventually374

converged, indicating that the models successfully375

learned from the data and reached a stable state in376

terms of reconstruction error. Detailed loss curves377

and analysis are provided in Figure 2.378

4.2 L2 Error Distribution and FLD Analysis379

The L2 error distribution for each model is pre-380

sented in Figure 3. The minimum Fisher’s Linear381

Discriminant (FLD) between the L2 norm distri-382

butions of the reconstructed sentence vectors from383

the trained dataset (ASV) and the anomaly datasets384

(NET, ASVS, Coverdale, Geneva, KJV Strongs)385

across the 36 models is shown in Figure 4.386

The minimum FLD is more important than387

the maximum FLD for determining the separa-388

Figure 2: Test set loss during training. The x-axis rep-
resents the number of epochs, and the y-axis represents
the mean error. The hyperparameters of each model
are as follows: starting from left the 1st, 2nd, and 3rd
columns represent feature dimensions of 8, 64, and 256,
respectively, and the starting from top 1st, 2nd, and 3rd
rows represent 1, 3, and 6 hidden layers, respectively.

Figure 3: L2 error distribution on ASV, NET, ASVS,
Coverdale, Geneva, and KJV Strongs. The x-axis repre-
sents the L2 error between the original and reconstructed
sentence vector, and the y-axis represents the distribu-
tion density. The hyperparameters of each model are as
follows: starting from left the 1st, 2nd, and 3rd columns
represent feature dimensions of 8, 64, and 256, respec-
tively, and starting from top the 1st, 2nd, and 3rd rows
represent 1, 3, and 6 hidden layers, respectively.
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Figure 4: (Left) Minimum and (Right) Maximum of
FLD between ASV and other 5 anomaly datasets (NET,
ASVS, Coverdale, Geneva, and KJV Strongs). A higher
minimum FLD indicates better differentiation between
ASV and anomaly L2 error distributions.

tion between normal and anomaly data. A high389

minimum FLD represents the model that has the390

most differentiation between the ASV original and391

the anomaly reconstructions, indicating the best-392

performing model in terms of distinguishing be-393

tween the original and anomalous styles based on394

the L2 norm distribution. Figure 4 shows that the395

minimum FLD is maximized in models with 3 hid-396

den layers and a feature dimension size between 32397

and 128. Models with too small or too large hid-398

den layers and feature dimensions tend to perform399

poorly in anomaly differentiation.400

Across the 36 models, the anomaly dataset that401

produced the minimum FLD most frequently was402

Geneva, appearing 31 times, followed by KJV403

Strongs, which appeared 5 times. This suggests404

that the L2 error distribution of the Geneva dataset405

was generally the closest to that of ASV, making406

it the hardest to distinguish from ASV. Conversely,407

the anomaly dataset that consistently produced the408

maximum FLD in all 36 models was Coverdale,409

indicating that it was the easiest to distinguish from410

ASV based on the L2 error distribution. This result411

highlights the distinctiveness of Coverdale’s style412

compared to ASV, while Geneva’s style appears413

more similar.414

4.3 Impact of Context Subtraction on VAE415

Performance416

Training the VAE without subtracting context paral-417

lel sentence (KJV) vectors demonstrated that both418

the training loss and test loss decreased and con-419

verged, indicating successful learning. However,420

as shown in Figure 5, the mean L2 error across all421

distributions was higher compared to the models422

trained with parallel sentence subtraction.423

When comparing Figures 6 and 4, the Fisher’s424

Linear Discriminant (FLD) for the no-subtraction425

case (from context parallel sentence vectors) is sig-426

Figure 5: L2 error distribution on ASV, NET, ASVS,
Coverdale, Geneva, and KJV Strongs, without parallel
sentence (KJV) subtraction. The x-axis represents the
L2 error between the original and reconstructed sen-
tence vector, and the y-axis represents the distribution
density. The hyperparameters of each model are as fol-
lows: starting from left the 1st, 2nd, and 3rd columns
represent feature dimensions of 8, 64, and 256, respec-
tively, and the starting from top 1st, 2nd, and 3rd rows
represent 1, 3, and 6 hidden layers, respectively.

Figure 6: (Left) Minimum and (Right) Maximum of
FLD between ASV and other 5 anomaly datasets (NET,
ASVS, Coverdale, Geneva, and KJV Strongs), without
parallel sentence (KJV) subtraction. A higher minimum
FLD indicates better differentiation between ASV and
anomaly L2 error distributions.
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nificantly lower than for the subtracted case. Specif-427

ically, the mean of the minimum FLD across the428

36 models in the subtracted case is 1.111, while the429

mean for the no-subtraction case is 0.116, making430

the FLD approximately 9.6 times lower without431

subtraction.432

Furthermore, the highest maximum FLD in the433

no-subtraction case (1.000) is nearly the same as434

the lowest minimum FLD in the subtracted case435

(0.983). This stark difference in FLD highlights436

that when trained without subtracting the context437

parallel sentence vectors, the VAE’s ability to dis-438

tinguish anomalies from normal (trained domain)439

data is significantly diminished. This result rein-440

forces the idea that the subtraction of context helps441

the VAE better capture stylistic differences, lead-442

ing to clearer separation between ASV and other443

translations.444

5 Discussion445

This study extracted the styles of various Bible446

translations and utilized a Variational Autoencoder447

(VAE) model to analyze how these styles differ,448

particularly in comparison to the American Stan-449

dard Version (ASV). The results revealed that the450

styles of each Bible translation followed a normal451

distribution, and these distributions could be clearly452

distinguished from that of the ASV. This indicates453

that there are stylistic differences between the ASV454

and other translations, and that these differences455

can be effectively detected using the VAE model.456

After optimizing the VAE model’s hyperparam-457

eters, the process of distinguishing between the458

ASV and other translation styles resulted in a Type459

1 error of 8.7% and a Type 2 error of 6.7%, with460

a total error rate of 15.3%. Conversely, the model461

achieved an accuracy of 84.7%, demonstrating its462

ability to effectively differentiate styles. This level463

of accuracy suggests that the model can clearly rec-464

ognize the distribution of a specific style and use465

it as a basis to distinguish between the styles of466

different translations.467

However, the VAE model was optimized for dis-468

tinguishing a single style. While it was useful for469

detecting differences between a specific transla-470

tion style and the ASV, it had limitations when it471

came to distinguishing multiple styles simultane-472

ously or understanding the relationships between473

complex, multi-dimensional styles. These limita-474

tions stem from the structural characteristics of the475

VAE, which compresses the data’s features dur-476

MODEL ACCURACY
TYPE I
ERROR

TYPE II
ERROR

MODEL 1 83.5% 9.8% 6.7%
MODEL 2 82.9% 10.1% 7.0%
MODEL 3 83.4% 9.8% 6.8%
AVERAGE 83.3% 9.9% 6.8%

Table 2: Accuracy & Error Rates of Models 1, 2, and 3
on Anomaly Detection

ing learning, making it inherently challenging to 477

fully capture the complex characteristics of the data. 478

Therefore, to distinguish multiple styles simulta- 479

neously, it may be necessary to use other models 480

or train the VAE model in a more sophisticated 481

manner. 482

The ability to extract a specific style suggests 483

that the style’s characteristics can be quantified 484

and represented as a probability distribution. This 485

means that AI can utilize this quantified style repre- 486

sentation to generate text that adheres to a specific 487

style. For example, in text generation tasks where a 488

particular writing style or tone is required, a ’style 489

metric’ could be used as a numerical and compara- 490

ble indicator to assess and ensure that the generated 491

text conforms to the desired style. 492

The approach taken in this study opens up the 493

possibility of expanding the research to other par- 494

allel text datasets. By applying this methodology 495

to other text domains, researchers can study the 496

stylistic differences and their implications within 497

each domain. For example, the approach could be 498

extended to analyze the styles of different transla- 499

tions of literary works, legal document translations, 500

or works by various authors. 501

We have demonstrated that the VAE model can 502

distinguish between the original and anomaly data 503

using the reconstruction L2 error. To measure the 504

overall accuracy, False Positive Rate (FPR), and 505

False Negative Rate (FNR) of the model, we cre- 506

ated an Accuracy Test Dataset using data not in- 507

cluded in the training set. This dataset consisted 508

of 1,000 samples, with 50% of the samples be- 509

ing from ASV and the remaining 50% from five 510

anomaly datasets (NET, ASVS, Coverdale, Geneva, 511

and KJV Strongs). 512

The binary classification results showed that the 513

lowest overall error rate was achieved when the 514

threshold was set at mean + 0.8 std. The aver- 515

age overall error rate across the three models was 516

16.8%. The relatively high FNR, particularly with 517

Geneva, suggests that modern English Bible trans- 518
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VERSE TRANSLATION

GEN 1:1 ASV: IN THE BEGINNING GOD CRE-
ATED THE HEAVENS AND THE EARTH.
GENEVA: IN THE BEGINNING GOD
CREATED THE HEAUEN AND THE
EARTH.
COVERDALE: IN YE BEGYNNYNGE
GOD CREATED HEAUEN & EARTH:

MAT 1:1 ASV: THE BOOK OF THE GENERATION
OF JESUS CHRIST, THE SON OF DAVID,
THE SON OF ABRAHAM.
GENEVA: THE BOOK OF THE GENER-
ATION OF JESUS CHRIST THE SON OF
DAVID, THE SON OF ABRAHAM.
COVERDALE: THIS IS THE BOKE OF
THE GENERACION OF IESUS CHRIST
YE SONNE OF DAUID, THE SONNE OF
ABRAHAM.

JOH 3:16 ASV: FOR GOD SO LOVED THE
WORLD, THAT HE GAVE HIS ONLY BE-
GOTTEN SON, THAT WHOSOEVER BE-
LIEVETH ON HIM SHOULD NOT PERISH,
BUT HAVE ETERNAL LIFE.
GENEVA: FOR GOD SO LOVETH THE
WORLD, THAT HE HATH GIVEN HIS
ONLY BEGOTTEN SON, THAT WHOSO-
EVER BELIEVETH IN HIM, SHOULD
NOT PERISH, BUT HAVE EVERLASTING
LIFE.
COVERDALE: FOR GOD SO LOUED
THE WORLDE, THAT HE GAUE HIS
ONELY SONNE, THAT WHO SO EUER
BELEUETH IN HI, SHULDE NOT PER-
ISHE, BUT HAUE EUERLASTINGE LIFE.

Table 3: Original Sentences of 3 Different Versions:
ASV, Geneva, Coverdale

lations inherently do not exhibit distinct stylistic519

differences.520

The results of the anomaly detection using the521

VAE in this study also show trends similar to what522

would be expected when humans classify ASV and523

other Bible versions. In this study, the L2 error524

distributions of ASV and Geneva had a signifi-525

cant overlap, making it difficult to classify them526

with a low error rate using a specific threshold.527

In contrast, the L2 error distribution of Coverdale528

barely overlapped with ASV, and the FLD was the529

highest across all models. More typically, 67.8%530

(ASV 34.6%, KJV Strongs 33.2%) of type 2 er-531

ror in anomaly detection is from Geneva and KJV532

Strongs.533

Table 3 illustrates the textual differences be-534

tween three versions of the Bible (ASV, Geneva,535

Coverdale), which could influence the VAE’s abil-536

ity to distinguish anomalies. The relatively low537

accuracy of anomaly detection using the VAE in538

this study may be attributed to the subtle stylistic 539

differences between the texts. This implies that us- 540

ing sentences with clearer stylistic differences and 541

more varied contexts in future experiments could 542

result in better accuracy. 543

6 Conclusion 544

This study has successfully demonstrated the appli- 545

cation of a Variational Autoencoder (VAE) model 546

to analyze and distinguish the stylistic differences 547

among various Bible translations, with a particular 548

focus on the American Standard Version (ASV). 549

By embedding textual data into high-dimensional 550

vectors and applying anomaly detection techniques, 551

the study identified unique stylistic distributions for 552

each translation, showcasing the model’s capability 553

to differentiate between these styles with a notable 554

accuracy rate of 84.7%. The findings confirm that 555

the VAE model can effectively capture and differen- 556

tiate textual styles, though it is primarily optimized 557

for distinguishing a single style. 558

The implications of this research extend beyond 559

academic inquiry, offering significant potential ap- 560

plications in the field of AI-driven text generation. 561

The ability to extract and measure specific stylistic 562

features opens up possibilities for generating texts 563

with targeted stylistic attributes, which can be in- 564

valuable in automated writing tools, personalized 565

content creation, and stylistic analysis of literary 566

works. Moreover, the methodology employed in 567

this study can be adapted to other text domains, 568

providing a framework for analyzing stylistic dif- 569

ferences across various types of textual data, in- 570

cluding literary translations, legal documents, and 571

author-specific writing styles. 572

In conclusion, while this study provides a solid 573

foundation for the analysis of textual styles using 574

VAE, it also sets the stage for future research to 575

explore more sophisticated models and method- 576

ologies. By expanding this approach to other text 577

domains and enhancing the model’s capabilities, 578

future work can continue to deepen our understand- 579

ing of textual styles and their applications in AI 580

and beyond. 581

7 Limitations 582

This study demonstrates the potential of Variational 583

Autoencoder (VAE) models for extracting and an- 584

alyzing stylistic differences in text embeddings. 585

However, several limitations exist that need to be 586

addressed in future research: 587
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Single-Style Optimization The VAE model em-588

ployed in this study is primarily optimized for dis-589

tinguishing a single style, limiting its capability590

to simultaneously differentiate multiple styles or591

analyze complex, multi-dimensional stylistic rela-592

tionships often present in natural language data.593

This focus on single-style optimization stems from594

the model’s training, which is designed to deter-595

mine the presence or absence of a single style. Ad-596

dressing this limitation may involve incorporating597

methodologies that explicitly classify and separate598

different types within the latent space.599

Challenges with Subtle Style Differences For600

certain translations, such as ASV and Geneva, the601

model struggles due to significant overlap in their602

L2 error distributions. This indicates a limitation in603

distinguishing texts with subtle stylistic differences,604

where stylistic nuances may not be adequately cap-605

tured.606

Dependence on Context Subtraction The607

model’s effectiveness relies heavily on subtracting608

context-parallel sentences (e.g., KJV embeddings).609

Without this preprocessing step, its ability to dif-610

ferentiate between normal data and anomalies is611

significantly reduced, demonstrating a strong de-612

pendence on this technique.613

Incorporating large language models (LLMs)614

such as ChatGPT could potentially enhance this615

process. These models are expected to facilitate616

the generation of parallel datasets through methods617

like translation or simplifying text into "kinder-618

garten English." Such approaches could improve619

the preprocessing pipeline and enhance the model’s620

ability to separate anomalies from normal data.621

However, these methods serve as interim solu-622

tions, as they do not fully preserve the original623

content. To achieve robust and effective prepro-624

cessing, approaches that can completely retain the625

content must be developed and applied.626

High False Negative Rate (FNR) The study re-627

ports a relatively high false negative rate, particu-628

larly for Geneva translations. This suggests that cer-629

tain stylistic differences in modern English Bible630

translations are too subtle for the model to reliably631

detect.632

Error Rates Despite achieving a commendable633

accuracy of 84.7%, the model exhibits significant634

error rates, including a Type I error rate of 8.7% and635

a Type II error rate of 6.7%. These error rates could636

hinder its applicability in tasks requiring higher 637

precision. 638

Need for Advanced Techniques Addressing 639

these limitations may require integrating more ad- 640

vanced machine learning techniques, such as mod- 641

els capable of handling multi-dimensional stylistic 642

relationships or other unsupervised learning ap- 643

proaches. Further refinement of the VAE architec- 644

ture could also enhance its performance. Currently, 645

the study relies on extracting style through em- 646

bedding subtraction. While the linearity of word 647

embeddings is well-documented, the linearity of 648

sentence embeddings has only been assumed. Ex- 649

ploring alternative methodologies for style extrac- 650

tion could provide significant improvements. 651

In summary, while this study provides a solid 652

foundation for analyzing stylistic differences using 653

VAE, these limitations highlight the need for future 654

research to explore more robust and generalizable 655

methods. 656
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