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Abstract

This study investigates the stylistic differences
among various Bible translations using a Varia-
tional Autoencoder (VAE) model. By embed-
ding textual data into high-dimensional vectors,
the study aims to detect and analyze stylistic
variations between translations, with a specific
focus on distinguishing the American Standard
Version (ASV) from other translations. The
results demonstrate that each translation ex-
hibits a unique stylistic distribution, which can
be effectively identified using the VAE model.
These findings suggest that the VAE model is
proficient in capturing and differentiating tex-
tual styles, although it is primarily optimized
for distinguishing a single style. The study
highlights the model’s potential for broader
applications in Al-based text generation and
stylistic analysis, while also acknowledging the
need for further model refinement to address
the complexity of multi-dimensional stylistic
relationships. Future research could extend this
methodology to other text domains, offering
deeper insights into the stylistic features em-
bedded within various types of textual data.

1 Introduction

Language, in both speech and writing, consists
of two essential components: content and style.
Broadly speaking, content refers to what is be-
ing expressed, while style pertains to how it is
expressed. Specifically, style encompasses the vari-
ability of linguistic forms in actual language use
(Babatunji, 2024). Historically, style in language
has been studied within the field of Stylistics, a
branch of applied linguistics that examines writ-
ing styles in literary criticism as well as tone and
accent in discourse analysis.

When people hear the term "style," however,
they often associate it with visual aesthetics in im-
ages rather than linguistic expression. Indeed, with
the advancement of Generative Al, research on

style has predominantly focused on images, partic-
ularly on style transfer techniques introduced by
Gatys et al. (2015). This foundational work led to
significant progress in computer vision, fostering a
deep exploration of style transfer in visual contexts.

Although research on linguistic style in language
models has been less explored compared to stud-
ies in the visual domain, language still provides a
valuable area for stylistic analysis. In particular,
linguistic style transfer has shown significant prac-
tical applications in real-world contexts, such as
Al-driven text generation systems like Character
Al highlighting its growing importance in every-
day use.

While style transfer techniques in images have
made significant strides, their direct application to
linguistic contexts encounter practical limitations.
To overcome these challenges, this study adopts an
alternative approach by quantifying style using em-
beddings. A central question we address is whether
textual style can be represented as a measurable
entity. Style, inherently subjective and complex,
has been challenging to formalize, but we draw
inspiration from the concept of word embeddings,
which allow for semantic operations such as "king
- man + woman = queen." By extending this con-
cept to sentence embeddings, we aim to establish a
robust framework for analyzing linguistic proper-
ties. Specifically, our research examines whether
manipulated embeddings can effectively capture
and quantify stylistic and semantic relationships in
textual data. Furthermore, we investigate how these
relationships emerge when texts with similar styles
are modeled as belonging to the same probability
distribution.

Although texts with similar styles may share
underlying distributions, the exact differences be-
tween these distributions are not well understood.
To address this, we employ Variational Autoen-
coders (VAEs) to normalize and regularize stylistic
distributions, enabling a clearer analysis of whether



these distributions are distinctly separated. This ap-
proach allows us to quantify and compare stylistic
variations in a mathematically robust manner.

The significance of this study lies in its ability
to extract and quantify "style" from textual data as
a measurable distribution. This quantification of
style provides a foundation for practical applica-
tions, such as using these stylistic representations
in generative models like GANs to enhance Al-
driven content creation. By enabling more precise
stylistic modeling, this research opens new possi-
bilities for both theoretical exploration and applied
advancements in text generation and stylistic anal-
ysis.

2 Related Works

2.1 Styles in Natural Languages

In linguistics, style has been seen as the unique
way individuals or groups engage in conversation,
conveying politeness or formality, and able to be
controlled and adjusted to suit the intended social
context, as Labov (1997) discusses. Additionally,
style is the set of linguistic features such as tone,
punctuation, word choice, and syntactic structure,
playing a key role in stylistics and sentiment analy-
sis (Pang and Lee, 2008).

Subsequently, Shen et al. (2017) considered style
as the specific manner in which ideas are expressed
in text, distinguishable from the content. In style
transfer tasks, style is represented by personal style,
formality, politeness, offensiveness, genre, and
sentiment (Toshevska and Gievska, 2022). Cur-
rent studies of styles focus on computational mod-
els for style transfer; Cross-Alignment with non-
parallel text (Shen et al., 2017), Retrieve-and-Edit
approach (Li et al., 2018), Unsupervised style trans-
fer (Prabhumoye et al., 2018), Generative proba-
bilistic model (He et al., 2020), and Reinforcement
Learning for style transfer (Gong et al., 2019).

2.2 Evaluating Style Transfer in Text

Evaluation metrics are vital for text style transfer
as they provide precise, quantitative assessments
of how effectively the generated text adheres to the
target stylistic attributes while preserving semantic
integrity. However, evaluation can be challenging
due to the subjective nature of style. It typically in-
volves automatic evaluation and human evaluation
(Jin et al., 2022).

2.2.1 Automatic Evaluation

The automatic evaluation measures how well the
meaning of the original sentence was preserved
in the output (generated sentence). The following
metrics are commonly used:

* BLEU: Measures n-gram precision between
generated text and references (Papineni et al.,
2002).

* ROUGE: Assesses overlap of n-grams, focus-
ing on recall to evaluate content coverage (Lin,
2004).

* METEOR: Evaluates translation quality using
precision, recall, stemming, and synonymy
(Banerjee and Lavie, 2005).

* BERTScore: Utilizes BERT embeddings to
measure semantic similarity between gener-
ated and reference texts (Zhang et al., 2020).

2.2.2 Human Evaluation

Human judges assess how well the generated text
adheres to the desired style and maintains seman-
tic integrity. Yamshchikov et al. (2021) delineates
the distinctions between human evaluation and au-
tomatic methods, illustrating how human assess-
ment captures nuanced stylistic and semantic sub-
tleties. However, it is costly and lacks the con-
sistency, objectivity, and scalability provided by
automatic evaluation methods. Additionally, both
methods are limited by their reliance on reference
texts, which may not fully capture the breadth of
acceptable outputs or the creative potential of the
generated text.

2.3 Anomaly Detection and VAE

Anomaly detection has evolved through various
methodologies to address the challenge of identify-
ing outliers across different domains (Scholkopf
et al., 1999; Liu et al., 2008). The advent of
deep learning introduced Autoencoders (Hinton
and Salakhutdinov, 2006), which makes it possible
to detect anomalies in high-dimensional data by
analyzing reconstruction errors. Further advance-
ments have been made with Variational Autoen-
coders (VAE), which leverage both probabilistic
modeling and latent space representations (Kingma
and Welling, 2022). We will employ a VAE model,
trained on high-dimensional embedding vectors
representing a single stylistic attribute, to identify
anomalies by capturing deviations in stylistic char-
acteristics.



3 Methodology

3.1 Data Collection and Preprocessing

This study utilizes biblical data collected from
Bible SuperSearch (bib), a platform operating un-
der the GNU GPL open source license. Ten differ-
ent versions were initially considered: KJV, NET,
ASV, ASVS, Coverdale, Geneva, KJV_Strongs,
Bishops, Tyndale, and WEB. However, Bishops,
Tyndale, and WEB were excluded due to insuffi-
cient parallel data. The remaining versions were
selected for their linguistic diversity and histori-
cal backgrounds to enhance the depth of our style
classification study.

The biblical texts are publicly available under the
GNU GPL license, allowing free use for research
purposes. Our study adhered to these guidelines
without altering the original texts. In the prepro-
cessing phase, we extracted the biblical data in
JSON format and encoded all text files using UTF-
8 to handle special characters. The initial data qual-
ity was high, minimizing the need for extensive
text cleaning.

3.2 Embedding and Model Training

We employed OpenAl’s text-embedding-3-small
model to embed each biblical sentence into 1536-
dimensional vectors. This model was chosen for
its balance between performance and computa-
tional efficiency, making it suitable for our research.
These high-dimensional vectors capture the nu-
anced language style of the sentences, providing
foundational data for style-based classification.

3.3 Style Extraction

Text embedding is assumed to include both content
and style, as represented by the following equation:

text_embedding =
style_embedding + content_embedding

Under this assumption, text embedding can be
seen as simultaneously containing both the con-
tent and stylistic features of the text. In this study,
we utilized this assumption to perform an analysis
based on Bible data. The Bible data consists of the
same verse expressed in multiple translations in a
parallel structure, where the content remains the
same, but the style varies. This characteristic of
Bible data justifies the assumption that each trans-
lation’s content embedding is identical. That is, the

differences between the translations are primarily
due to style, allowing for style analysis to be con-
ducted. The core assumption of this study is that
the difference in text embeddings between transla-
tions reflects the difference in styles. This can be
expressed mathematically as follows:

KJV_embedding — Other_embedding =
KIJIV_style_embedding—Other_style_embedding

Through this relationship, we calculated the
difference between the two text embeddings and,
based on this, measured the difference in style be-
tween the translations. Specifically, the goal of
the study was to analyze the text embedding dif-
ferences between KJV (King James Version) and
other translations (e.g., ASV (American Standard
Version)) to quantify the stylistic features. To do
this, we calculated the difference between embed-
dings, represented as 1536-dimensional vectors,
and used Variational Autoencoder (VAE) as a tool
to analyze the distribution of these vectors.

The VAE is an unsupervised learning method
that models the distribution of data in a latent space.
In this study, we aimed to utilize the VAE to classify
the embedding differences between translations
and detect stylistic differences through anomaly
detection. By compressing the input data and re-
constructing it, VAE retains the important features
while learning the distribution, allowing for the
modeling of stylistic differences between transla-
tions.

During the training process of the VAE,
we used the distribution differences between
KJV_embedding and ASV_embedding. The VAE
learned the difference between KJV and ASV em-
beddings in the latent space and then measured the
similarity between the reconstructed distribution
and the original distribution. We computed the
L2-norm in this reconstruction process to quantita-
tively evaluate the stylistic similarity or difference
between the translations. This allowed us to an-
alyze the stylistic differences between KJV and
ASYV, as well as conduct comparative analyses with
other translations.

In conclusion, this study evaluated the stylistic
differences between Bible translations using VAE
for anomaly detection. Through this process, we
effectively quantified the stylistic similarities and
differences between various translations. Based
on the VAE model, trained on the difference be-
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Table 1: Notation used throughout this article.

tween KJV_embedding and ASV_embedding, we
similarly analyzed the stylistic differences between
other translations. This methodology enabled so-
phisticated text analysis that went beyond merely
examining content features to include stylistic fea-
tures. Thus, we provided new insights into how
stylistic differences manifest within the embedding
space.

3.4 Model Architecture and Training Details

The VAE model used in this study has an input
dimension of 1536, and both encoder and decoder
use fully connected (FC) layers. The size of each
hidden layer follows a geometric sequence from
the input dimension of 1536 to the final feature
dimension (rounded to the nearest integer). Batch
normalization is applied to all layers except the
final output layers of both the encoder and decoder.
The activation function used is Leaky ReLU (a=1e-
2) except for the final output layer of the encoder
and decoder. The final output layer of the decoder
uses a Sigmoid-based activation function to ensure
that the output distribution lies within the range
[-1,1].

The hyperparameters are as follows: 6 values
for the number of hidden layers (ranging from 1 to
6) and 6 values for the feature dimension (ranging
from 23 to 28), resulting in 36 total combinations.

We split 13,823 sentence vectors into training
and test sets with a 9:1 ratio, using KJV-ASV dif-
ferences as training data. The model employs
fully connected layers with batch normalization
and Leaky ReL.U activation, and is trained using
the Adam optimizer and MSE loss function. A
schematic of the model structure is provided in
Figure 1.

Additionally, The model was trained using the
Adam optimizer with a learning rate (Ir) of 0.001.
The batch size was set to 100, and training was
conducted over 500 epochs. The input data was
processed on a device configured to use CUDA.
The input dimension of the sentence embeddings
was 1536, and the fully connected layer dimensions
were defined as [617, 247, 100, 40]. The latent
space was set to a feature dimension of 16.

VAE MODEL SRTUCTURE
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Figure 1: A schematic illustration of the VAE model.
The encoder receives a 1,536-dimensional original (sen-
tence embedding) vector as input and outputs a feature
vector of the feature dimension. The decoder takes the
feature vector of the feature dimension as input and out-
puts a 1,536-dimensional reconstructed vector.

3.5 Evaluation Metrics

According to our hypothesis, the KIV-ASV vector
is expected to contain information related to the
style of ASV, with KJV as the reference point. If
a VAE with a sufficiently small feature dimension
can effectively reconstruct this vector, it suggests
that the VAE is leveraging specific stylistic fea-
tures during the encoding-decoding process. On
the other hand, if data not included in the model’s
training process are reconstructed through the VAE,
the reconstruction quality is expected to be poor
compared to the original. Based on this character-
istic, we aim to perform anomaly detection using
the VAE.

We aim to verify whether the VAE, trained us-
ing KJV-ASV vectors, has effectively learned the
unique style of ASV. To do so, the trained VAE
will be applied to six Bible translations (ASV, NET,
ASVS, Coverdale, Geneva, and KJV Strongs), and
we will examine if the model successfully distin-
guishes ASV’s unique style compared to other
translations. For the test dataset (not used dur-
ing model training), ASV will serve as the normal
data, and the other five translations (NET, ASVS,
Coverdale, Geneva, and KJV Strongs) will serve



as anomaly data, consisting of sentence embedding
vectors corresponding to the same Bible verses as
in the test dataset. To remove the context of KJV
during ASV training, the VAE was trained on the
differences between the sentence vectors of ASV
and KJV (KJV-ASV). Similarly, the anomaly data
from the other Bible translations will be processed
by subtracting the corresponding KJV sentence
vectors, following the same procedure.

Among the 36 hyperparameter sets, the model
that most clearly differentiates the reconstruction
L2 error distribution between the training data and
the anomalies will be considered the most effec-
tive in detecting the unique style of ASV. We will
evaluate how well the original data and anomaly
data are distinguished using Fisher’s Linear Dis-
criminant (FLD). FLD increases as the squared
difference between the means of the two distribu-
tions becomes larger, and the sum of their variances
becomes smaller. The formula for FLD S is as fol-
lows:

_ (1 — ,U2)2
S="55
o1 + 035
where 147 and po are the means of the original
data and anomaly data distributions, respectively,
and o1 and o are the variances of the original
data and anomaly data distributions, respectively.
This metric will help quantify how well the model
separates the original data from anomalies based
on reconstruction errors.

4 Results

4.1 Training Convergence and Loss Analysis

For all 36 hyperparameter combinations, both the
training loss and test loss decreased and eventually
converged, indicating that the models successfully
learned from the data and reached a stable state in
terms of reconstruction error. Detailed loss curves
and analysis are provided in Figure 2.

4.2 L2 Error Distribution and FLD Analysis

The L2 error distribution for each model is pre-
sented in Figure 3. The minimum Fisher’s Linear
Discriminant (FLD) between the L2 norm distri-
butions of the reconstructed sentence vectors from
the trained dataset (ASV) and the anomaly datasets
(NET, ASVS, Coverdale, Geneva, KJV Strongs)
across the 36 models is shown in Figure 4.

The minimum FLD is more important than
the maximum FLD for determining the separa-

Figure 2: Test set loss during training. The x-axis rep-
resents the number of epochs, and the y-axis represents
the mean error. The hyperparameters of each model
are as follows: starting from left the 1st, 2nd, and 3rd
columns represent feature dimensions of 8, 64, and 256,
respectively, and the starting from top 1st, 2nd, and 3rd
rows represent 1, 3, and 6 hidden layers, respectively.

Figure 3: L2 error distribution on ASV, NET, ASVS,
Coverdale, Geneva, and KJV Strongs. The x-axis repre-
sents the L2 error between the original and reconstructed
sentence vector, and the y-axis represents the distribu-
tion density. The hyperparameters of each model are as
follows: starting from left the 1st, 2nd, and 3rd columns
represent feature dimensions of 8, 64, and 256, respec-
tively, and starting from top the 1st, 2nd, and 3rd rows
represent 1, 3, and 6 hidden layers, respectively.



Figure 4: (Left) Minimum and (Right) Maximum of
FLD between ASV and other 5 anomaly datasets (NET,
ASVS, Coverdale, Geneva, and KJV Strongs). A higher
minimum FLD indicates better differentiation between
ASV and anomaly L2 error distributions.

tion between normal and anomaly data. A high
minimum FLD represents the model that has the
most differentiation between the ASV original and
the anomaly reconstructions, indicating the best-
performing model in terms of distinguishing be-
tween the original and anomalous styles based on
the L2 norm distribution. Figure 4 shows that the
minimum FLD is maximized in models with 3 hid-
den layers and a feature dimension size between 32
and 128. Models with too small or too large hid-
den layers and feature dimensions tend to perform
poorly in anomaly differentiation.

Across the 36 models, the anomaly dataset that
produced the minimum FLD most frequently was
Geneva, appearing 31 times, followed by KIJV
Strongs, which appeared 5 times. This suggests
that the L2 error distribution of the Geneva dataset
was generally the closest to that of ASV, making
it the hardest to distinguish from ASV. Conversely,
the anomaly dataset that consistently produced the
maximum FLD in all 36 models was Coverdale,
indicating that it was the easiest to distinguish from
ASV based on the L2 error distribution. This result
highlights the distinctiveness of Coverdale’s style
compared to ASV, while Geneva’s style appears
more similar.

4.3 Impact of Context Subtraction on VAE
Performance

Training the VAE without subtracting context paral-
lel sentence (KJV) vectors demonstrated that both
the training loss and test loss decreased and con-
verged, indicating successful learning. However,
as shown in Figure 5, the mean L2 error across all
distributions was higher compared to the models
trained with parallel sentence subtraction.

When comparing Figures 6 and 4, the Fisher’s
Linear Discriminant (FLD) for the no-subtraction
case (from context parallel sentence vectors) is sig-

Figure 5: L2 error distribution on ASV, NET, ASVS,
Coverdale, Geneva, and KJV Strongs, without parallel
sentence (KJV) subtraction. The x-axis represents the
L2 error between the original and reconstructed sen-
tence vector, and the y-axis represents the distribution
density. The hyperparameters of each model are as fol-
lows: starting from left the 1st, 2nd, and 3rd columns
represent feature dimensions of 8, 64, and 256, respec-
tively, and the starting from top 1st, 2nd, and 3rd rows
represent 1, 3, and 6 hidden layers, respectively.

Figure 6: (Left) Minimum and (Right) Maximum of
FLD between ASV and other 5 anomaly datasets (NET,
ASVS, Coverdale, Geneva, and KJV Strongs), without
parallel sentence (KJV) subtraction. A higher minimum
FLD indicates better differentiation between ASV and
anomaly L2 error distributions.



nificantly lower than for the subtracted case. Specif-
ically, the mean of the minimum FLD across the
36 models in the subtracted case is 1.111, while the
mean for the no-subtraction case is 0.116, making
the FLD approximately 9.6 times lower without
subtraction.

Furthermore, the highest maximum FLD in the
no-subtraction case (1.000) is nearly the same as
the lowest minimum FLD in the subtracted case
(0.983). This stark difference in FLD highlights
that when trained without subtracting the context
parallel sentence vectors, the VAE’s ability to dis-
tinguish anomalies from normal (trained domain)
data is significantly diminished. This result rein-
forces the idea that the subtraction of context helps
the VAE better capture stylistic differences, lead-
ing to clearer separation between ASV and other
translations.

5 Discussion

This study extracted the styles of various Bible
translations and utilized a Variational Autoencoder
(VAE) model to analyze how these styles differ,
particularly in comparison to the American Stan-
dard Version (ASV). The results revealed that the
styles of each Bible translation followed a normal
distribution, and these distributions could be clearly
distinguished from that of the ASV. This indicates
that there are stylistic differences between the ASV
and other translations, and that these differences
can be effectively detected using the VAE model.

After optimizing the VAE model’s hyperparam-
eters, the process of distinguishing between the
ASV and other translation styles resulted in a Type
1 error of 8.7% and a Type 2 error of 6.7%, with
a total error rate of 15.3%. Conversely, the model
achieved an accuracy of 84.7%, demonstrating its
ability to effectively differentiate styles. This level
of accuracy suggests that the model can clearly rec-
ognize the distribution of a specific style and use
it as a basis to distinguish between the styles of
different translations.

However, the VAE model was optimized for dis-
tinguishing a single style. While it was useful for
detecting differences between a specific transla-
tion style and the ASYV, it had limitations when it
came to distinguishing multiple styles simultane-
ously or understanding the relationships between
complex, multi-dimensional styles. These limita-
tions stem from the structural characteristics of the
VAE, which compresses the data’s features dur-

MODEL | ACCURACY TYPE I TypE IT
ERROR ERROR
MODEL 1 83.5% 9.8% 6.7%
MODEL 2 82.9% 10.1% 7.0%
MODEL 3 83.4% 9.8% 6.8%
AVERAGE 83.3% 9.9 % 6.8%

Table 2: Accuracy & Error Rates of Models 1, 2, and 3
on Anomaly Detection

ing learning, making it inherently challenging to
fully capture the complex characteristics of the data.
Therefore, to distinguish multiple styles simulta-
neously, it may be necessary to use other models
or train the VAE model in a more sophisticated
manner.

The ability to extract a specific style suggests
that the style’s characteristics can be quantified
and represented as a probability distribution. This
means that Al can utilize this quantified style repre-
sentation to generate text that adheres to a specific
style. For example, in text generation tasks where a
particular writing style or tone is required, a ’style
metric’ could be used as a numerical and compara-
ble indicator to assess and ensure that the generated
text conforms to the desired style.

The approach taken in this study opens up the
possibility of expanding the research to other par-
allel text datasets. By applying this methodology
to other text domains, researchers can study the
stylistic differences and their implications within
each domain. For example, the approach could be
extended to analyze the styles of different transla-
tions of literary works, legal document translations,
or works by various authors.

We have demonstrated that the VAE model can
distinguish between the original and anomaly data
using the reconstruction L2 error. To measure the
overall accuracy, False Positive Rate (FPR), and
False Negative Rate (FNR) of the model, we cre-
ated an Accuracy Test Dataset using data not in-
cluded in the training set. This dataset consisted
of 1,000 samples, with 50% of the samples be-
ing from ASV and the remaining 50% from five
anomaly datasets (NET, ASVS, Coverdale, Geneva,
and KJV Strongs).

The binary classification results showed that the
lowest overall error rate was achieved when the
threshold was set at mean + 0.8 std. The aver-
age overall error rate across the three models was
16.8%. The relatively high FNR, particularly with
Geneva, suggests that modern English Bible trans-



VERSE TRANSLATION

GEN 1:1

ASV: IN THE BEGINNING GOD CRE-
ATED THE HEAVENS AND THE EARTH.
GENEVA: IN THE BEGINNING GOD
CREATED THE HEAUEN AND THE
EARTH.

COVERDALE: IN YE BEGYNNYNGE
GOD CREATED HEAUEN & EARTH:

MAT 1:1 ASV: THE BOOK OF THE GENERATION
OF JESUS CHRIST, THE SON OF DAVID,
THE SON OF ABRAHAM.

GENEVA: THE BOOK OF THE GENER-
ATION OF JESUS CHRIST THE SON OF
DAVID, THE SON OF ABRAHAM.
COVERDALE: THIS IS THE BOKE OF
THE GENERACION OF IESUS CHRIST
YE SONNE OF DAUID, THE SONNE OF
ABRAHAM.

JOoH 3:16 ASV: FOR GOD SO LOVED THE
WORLD, THAT HE GAVE HIS ONLY BE-
GOTTEN SON, THAT WHOSOEVER BE-
LIEVETH ON HIM SHOULD NOT PERISH,
BUT HAVE ETERNAL LIFE.

GENEVA: FOR GOD SO LOVETH THE
WORLD, THAT HE HATH GIVEN HIS
ONLY BEGOTTEN SON, THAT WHOSO-
EVER BELIEVETH IN HIM, SHOULD
NOT PERISH, BUT HAVE EVERLASTING
LIFE.

COVERDALE: FOR GOD SO LOUED
THE WORLDE, THAT HE GAUE HIS
ONELY SONNE, THAT WHO SO EUER
BELEUETH IN HI, SHULDE NOT PER-
ISHE, BUT HAUE EUERLASTINGE LIFE.

Table 3: Original Sentences of 3 Different Versions:
ASYV, Geneva, Coverdale

lations inherently do not exhibit distinct stylistic
differences.

The results of the anomaly detection using the
VAE in this study also show trends similar to what
would be expected when humans classify ASV and
other Bible versions. In this study, the L2 error
distributions of ASV and Geneva had a signifi-
cant overlap, making it difficult to classify them
with a low error rate using a specific threshold.
In contrast, the L2 error distribution of Coverdale
barely overlapped with ASV, and the FLD was the
highest across all models. More typically, 67.8%
(ASV 34.6%, KJV Strongs 33.2%) of type 2 er-
ror in anomaly detection is from Geneva and KJV
Strongs.

Table 3 illustrates the textual differences be-
tween three versions of the Bible (ASV, Geneva,
Coverdale), which could influence the VAE’s abil-
ity to distinguish anomalies. The relatively low
accuracy of anomaly detection using the VAE in

this study may be attributed to the subtle stylistic
differences between the texts. This implies that us-
ing sentences with clearer stylistic differences and
more varied contexts in future experiments could
result in better accuracy.

6 Conclusion

This study has successfully demonstrated the appli-
cation of a Variational Autoencoder (VAE) model
to analyze and distinguish the stylistic differences
among various Bible translations, with a particular
focus on the American Standard Version (ASV).
By embedding textual data into high-dimensional
vectors and applying anomaly detection techniques,
the study identified unique stylistic distributions for
each translation, showcasing the model’s capability
to differentiate between these styles with a notable
accuracy rate of 84.7%. The findings confirm that
the VAE model can effectively capture and differen-
tiate textual styles, though it is primarily optimized
for distinguishing a single style.

The implications of this research extend beyond
academic inquiry, offering significant potential ap-
plications in the field of Al-driven text generation.
The ability to extract and measure specific stylistic
features opens up possibilities for generating texts
with targeted stylistic attributes, which can be in-
valuable in automated writing tools, personalized
content creation, and stylistic analysis of literary
works. Moreover, the methodology employed in
this study can be adapted to other text domains,
providing a framework for analyzing stylistic dif-
ferences across various types of textual data, in-
cluding literary translations, legal documents, and
author-specific writing styles.

In conclusion, while this study provides a solid
foundation for the analysis of textual styles using
VAE, it also sets the stage for future research to
explore more sophisticated models and method-
ologies. By expanding this approach to other text
domains and enhancing the model’s capabilities,
future work can continue to deepen our understand-
ing of textual styles and their applications in Al
and beyond.

7 Limitations

This study demonstrates the potential of Variational
Autoencoder (VAE) models for extracting and an-
alyzing stylistic differences in text embeddings.
Howeyver, several limitations exist that need to be
addressed in future research:



Single-Style Optimization The VAE model em-
ployed in this study is primarily optimized for dis-
tinguishing a single style, limiting its capability
to simultaneously differentiate multiple styles or
analyze complex, multi-dimensional stylistic rela-
tionships often present in natural language data.
This focus on single-style optimization stems from
the model’s training, which is designed to deter-
mine the presence or absence of a single style. Ad-
dressing this limitation may involve incorporating
methodologies that explicitly classify and separate
different types within the latent space.

Challenges with Subtle Style Differences For
certain translations, such as ASV and Geneva, the
model struggles due to significant overlap in their
L2 error distributions. This indicates a limitation in
distinguishing texts with subtle stylistic differences,
where stylistic nuances may not be adequately cap-
tured.

Dependence on Context Subtraction The
model’s effectiveness relies heavily on subtracting
context-parallel sentences (e.g., KJV embeddings).
Without this preprocessing step, its ability to dif-
ferentiate between normal data and anomalies is
significantly reduced, demonstrating a strong de-
pendence on this technique.

Incorporating large language models (LLMs)
such as ChatGPT could potentially enhance this
process. These models are expected to facilitate
the generation of parallel datasets through methods
like translation or simplifying text into "kinder-
garten English." Such approaches could improve
the preprocessing pipeline and enhance the model’s
ability to separate anomalies from normal data.

However, these methods serve as interim solu-
tions, as they do not fully preserve the original
content. To achieve robust and effective prepro-
cessing, approaches that can completely retain the
content must be developed and applied.

High False Negative Rate (FNR) The study re-
ports a relatively high false negative rate, particu-
larly for Geneva translations. This suggests that cer-
tain stylistic differences in modern English Bible
translations are too subtle for the model to reliably
detect.

Error Rates Despite achieving a commendable
accuracy of 84.7%, the model exhibits significant
error rates, including a Type I error rate of 8.7% and
a Type Il error rate of 6.7%. These error rates could

hinder its applicability in tasks requiring higher
precision.

Need for Advanced Techniques Addressing
these limitations may require integrating more ad-
vanced machine learning techniques, such as mod-
els capable of handling multi-dimensional stylistic
relationships or other unsupervised learning ap-
proaches. Further refinement of the VAE architec-
ture could also enhance its performance. Currently,
the study relies on extracting style through em-
bedding subtraction. While the linearity of word
embeddings is well-documented, the linearity of
sentence embeddings has only been assumed. Ex-
ploring alternative methodologies for style extrac-
tion could provide significant improvements.

In summary, while this study provides a solid
foundation for analyzing stylistic differences using
VAE, these limitations highlight the need for future
research to explore more robust and generalizable
methods.
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