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ABSTRACT

This paper describes an efficient algorithm for solving noisy linear inverse prob-
lems using pretrained diffusion models. Extending the paradigm of denoising dif-
fusion implicit models (DDIM), we propose constrained diffusion implicit models
(CDIM) that modify the diffusion updates to enforce a constraint upon the final
output. For noiseless inverse problems, CDIM exactly satisfies the constraints; in
the noisy case, we generalize CDIM to satisfy an exact constraint on the residual
distribution of the noise. Experiments across a variety of tasks and metrics show
strong performance of CDIM, with analogous inference acceleration to uncon-
strained DDIM: 10 to 50 times faster than previous diffusion methods for inverse
problems. We demonstrate the versatility of our approach on many problems in-
cluding super-resolution, denoising, inpainting, deblurring, and 3D point cloud
reprojection.

1 INTRODUCTION

Denoising diffusion probabilistic models (DDPMs) have recently emerged as powerful generative
models capable of capturing complex data distributions (Ho et al., 2020). Their success has spurred
interest in applying them to solve inverse problems, which are fundamental in fields such as com-
puter vision, medical imaging, and signal processing (Tropp & Wright, 2010; Hansen, 2010). In-
verse problems require recovering unknown signals from (possibly noisy) observations. Linear in-
verse problems, where the observations consist of linear measurements of a signal, encompass tasks
like super-resolution, inpainting, and deblurring.

Existing methods that apply diffusion models to linear inverse problems face several limitations.
First, many previous works require task specific training or fine-tuning (Li et al., 2022; Xie et al.,
2023). Second, methods that use pretrained diffusion models often introduce many additional net-
work evaluations during inference (Dou & Song, 2023; Zhu et al., 2024). Finally, popular diffusion
inverse methods such as diffusion posterior sampling (Chung et al., 2022b) fail to exactly recover
the input observations.

In this work, we propose constrained diffusion implicit models (CDIM), extending the inference
acceleration of denoising diffusion implicit models (Song et al., 2021) to efficiently solve noisy lin-
ear inverse problems using a single pretrained diffusion model. Our method modifies the diffusion
updates to enforce constraints on the final output, integrating measurement constraints directly into
the diffusion process. In the noiseless case, this approach achieves exact recovery of the observa-
tions. For noisy observations, we generalize our method by optimizing the Kullback-Leibler (KL)
divergence between the empirical residual distribution and a known noise distribution, effectively
handling general noise models beyond the Gaussian assumption.

Our contributions are as follows:

• Accelerated inference: we accelerate inference, reducing the number of model evaluations
and wall-clock time by an order of magnitude—10 to 50 times faster than previous posterior
diffusion methods—while maintaining comparable quality.

• Exact recovery of noiseless observations: we can find solutions that exactly match the
noiseless observation.

• General noise models: we extend the CDIM framework to accommodate arbitrary obser-
vational noise distributions through distributional divergence minimization, demonstrating
effectiveness given non-Gaussian noise, such as Poisson noise.
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Time-Travel
Rephotography

Poisson Noise Fast Inference: 3sNoisy Inpainting

Figure 1: We show several applications of our method including image colorization, denoising,
inpainting, and sparse recovery. We highlight the fact that we can handle general noise distributions,
such as Poisson noise, and that our method runs in as little as 3 seconds.

2 RELATED WORK

Figure 2: The inference speed and average LPIPS
image quality score (inverted) averaged across
multiple inverse tasks on the FFHQ dataset. The
family of CDIM methods (top left corner) simul-
taneously achieves strong generation strong qual-
ity and fast inference, compared to other inverse
solvers.

Diffusion methods have revolutionized gen-
erative modeling, building upon early work
in nonequilibrium thermodynamics (Sohl-
Dickstein et al., 2015) and implicit models
(Mohamed & Lakshminarayanan, 2017).
Diffusion models were first proposed in
DDPM (Ho et al., 2020), which shared a
framework analogous to score-based models
using Langevin dynamics Song & Ermon
(2019). Subsequent innovations focused on
improving sampling efficiency, with denoising
diffusion implicit models (DDIMs) (Song
et al., 2021) introducing a method to speed
up inference with implicit modeling. Further
advancements in accelerating the sampling
process emerged through the application of
stochastic differential equations (Song et al.,
2020) and the development of numerical ODE
solvers, exemplified by approaches like PNDM
(Liu et al., 2021), significantly enhancing the
practical utility of diffusion models in various
generative tasks.

Applying diffusion models to inverse problems
has been an active research area. DPS uses alternating projection steps to guide the diffusion process
(Chung et al., 2022b). DDNM (Wang et al., 2022), DDRM (Kawar et al., 2022), SNIPS (Kawar
et al., 2021), and PiGDM (Song et al., 2023a) use linear algebraic approaches and singular value
decompositions. Techniques such as DMPS (Meng & Kabashima, 2022), FPS (Dou & Song, 2023),
LGD (Song et al., 2023b), DPMC (Zhu et al., 2024), and MCG (Cardoso et al., 2023) focus on
likelihood approximation for improved sampling. Guidance mechanisms were incorporated through
classifier gradients (Dhariwal & Nichol, 2021), data consistency enforcement (Chung et al., 2022c),
and low-frequency feature matching Choi et al. (2021). Other approaches use projection (Boys et al.,
2023; Chung et al., 2024) or optimization (Chan et al., 2016; Wahlberg et al., 2012). DMPlug Wang
et al. (2024) backpropagates through the entire diffusion process to optimize the noisy initialization
xT so that the resulting output matches the observation. DSG (Yang et al., 2024) uses a similar
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optimization update to us for enforcing consistency with the partial observation; however, it does
not guarantee matching a constraint exactly, instead using a soft constraint, like DPS, to handle
observational noise. Finally, works such as Blind DPS (Chung et al., 2022a) and FastEM (Laroche
et al., 2023) solve inverse problems when the forward operator is unknown, a more difficult problem
than the setting studied in this work.

3 BACKGROUND

We work in the context of DDPM (Ho et al., 2020), which models a data distribution q(x0) by
modeling a sequence t = 1, . . . , T of smoothed distributions defined by

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I). (1)

The degree of smoothing is controlled by a monotone decreasing noise schedule αt with α0 = 1 (no
noise) and αT = 0 (pure Gaussian noise).1 The idea is to model a reverse process pθ(xt−1|xt) that
that incrementally removes the noise in xt such that pθ(xT ) = N (xT ; 0, I) and p(x0) approximates
the data distribution, where p(x0) is the marginal distribution of outputs from the reverse process:

pθ(x0) =

∫
pθ(xT )

T∏
t=1

pθ(xt−1|xt) dx1:T . (2)

Given noisy samples xt =
√
αtx0 +

√
1− αtϵ, where x0 is a sample from the data distribution and

ϵ ∼ N (0, I), a diffusion model ϵθ(xt, t) is trained to predict ϵ:

min
θ

E
xt,ϵ

[
∥ϵ− ϵθ (xt, t) ∥2

]
. (3)

To parameterize the reverse process pθ(xt−1|xt), DDIM (Song et al., 2021) exploits the Tweedie
formula (Efron, 2011) for the posterior mean of a noisy observation:

E [x0|xt] =
1
√
αt

(
xt −

√
1− αt∇xt

log q(xt)
)
. (4)

Using the denoising model ϵ(xt, t) as a plug-in estimate of the score function ∇xt
log q(xt) (Vin-

cent, 2011) we define the Tweedie estimate of the posterior mean:

x̂0 ≡
1
√
αt

(
xt −

√
1− αtϵθ(xt, t)

)
≈ E [x0|xt] . (5)

And we use this estimator to define a DDIM forward process xt−1 = fθ(xt) defined by

xt−1 = fθ(xt) =
√
αt−1x̂0 +

√
1− αt−1

(
xt −

√
αtx̂0√

1− αt

)
. (6)

Unlike DDPM, the forward process defined by Equation (6) is deterministic; the value pθ(x0) is
entirely determined by xT ∼ N (0, I) thus making DDIM an implicit model.

With a slight modification of the DDIM update, we are able to take larger denoising steps and
accelerate inference. Given δ ≥ 1, we define an accelerated denoising process

xt−δ = fδ
θ (xt) =

√
αt−δx̂0 +

√
1− αt−δ

(
xt −

√
αtx̂0√

1− αt

)
. (7)

Using this process, inference is completed in just T ′ ≡ T/δ steps, albeit with degraded quality of
the resulting sample x0 as δ becomes large.

Diffusion Posterior Sampling (DPS) was an early work proposed applying diffusion models
to solve inverse problems y = Ax by alternating denoising steps with gradient descent on
∇xt−1 ||y −Ax̂0| | (Chung et al., 2022b). However, simply combining accelerated DDIM denois-
ing steps with DPS-inspired gradient steps does not produce high quality outputs, instead resulting
in blurry reconstructions (See Appendix B.3). Intuitively, the problem is that these gradient steps do
not allow Ax̂0 to converge quickly enough towards y under the accelerated denoising schedule of
DDIM.

1We define αt using the DDIM convention (Song et al., 2021); our αt corresponds to ᾱt in Ho et al. (2020).
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4 METHODS

We are interested in solving linear inverse problems of the form y = Ax, where y ∈ Rd is a linear
measurement of x ∈ Rn and A ∈ Rd×n describes the form of our measurements. For example,
if A ∈ {0, 1}n×n is a binary mask (which is the case for, e.g., in-painting or sparse recovery
problems) then y describes a partial observation of x. We seek an estimate x̂ that is consistent
with our observations: in the noiseless case, Ax̂ = y. More generally, we seek to recover a robust
estimate of x̂ when the observations y have been corrupted by noise. Given a noise distribution
r, we seek to minimize DKL(r̂ ∥ r), where r̂ is the empirical distribution of d residuals, e.g.,
y −Ax̂ ∈ Rd, between noisy observations y and our estimates Ax̂.

We rely on a diffusion model pθ(x) to identify an estimate x̂ that is both consistent with the observed
measurements y and likely according to the model. In Section 4.1, we propose a modification of the
DDIM inference procedure to efficiently optimize the Tweedie estimates of x̂0 to satisfy Ax̂0 = y
during the diffusion process, resulting in a consistent and likely final result x0. In Section 4.2 we
extend this optimization-based inference procedure to account for noise in the observations y. In
Section 4.3 we describe an early-stopping heuristic to avoid overfitting to noisy observations, which
further reduces the cost of inference. Finally, in Section 4.4 we show how to set the step sizes for
these optimization-based methods.

4.1 OPTIMIZING x̂0 TO MATCH THE OBSERVATIONS

For linear measurements A, the Tweedie formula for x̂0 (and the corresponding plugin-estimate
Equation (5)) extends to a formula for the expected observations:

E [y|xt] = AE [x0|xt] ≈ Ax̂0. (8)
For noiseless observations y, we propose a modification of the DDIM updates Equation (6) to find
xt−1 that satisfies the constraint Ax̂0 = y. I.e., at each time step t, we force the Tweedie estimate
of the posterior mean of q(y|xt) to match the observed measurements y:

argmin
xt−1

∥xt−1 − fθ(xt)∥2

subject to Ax̂0 = y.
(9)

We can interpret Equation (9) as a projection of the DDIM update fθ(xt) onto the set of values
xt−1 that satisfy the constraint Ax̂0 = y. The full inference procedure is analogous to projected
gradient descent, whereby we alternately take a step fθ(xt) determined by the diffusion model, and
then project back onto the constraint Ax̂0 = y. We implement the projection step itself via gradient
descent, initialized from x

(0)
t−1 = fθ(xt) and computing

x
(k)
t−1 = x

(k−1)
t−1 + η∇xt−1

∥y −Ax̂0∥2. (10)

As t approaches 0, x̂0 converges to x0 and ∥y−Ax̂0∥2 becomes a simple convex quadratic, which
can be minimized to arbitrary accuracy by taking sufficiently many gradient steps. This allows us to
guarantee exact recovery of the observations y = Ax0 in the recovered inverse x0.

For t close to T , we face two conceptual challenges in optimizing Equation (9). First, for large t, no
value xt will satisfy Ax̂0 = y and therefore the optimization is infeasible. Second, the estimate of
the score function∇xt

log q(xt) using ϵθ(xt, t) may be inaccurate; we risk overfitting to a bad plug-
in estimate x̂0. We illustrate both these claims by considering the Tweedie estimator Equation (5)
in the case t = T . In this case, xt ∼ N (0, I) is independent of x0 and therefore E[x0|xt] = E[x0],
the mean of the data distribution q(x0). Unless AE[x0] = y, the optimization is infeasible when
t = T . Furthermore, we observe that when t = T , the plug-in estimator x̂0 is not independent of xt

and x̂0 ̸= E[x0]. This is indicative of error in the plug-in estimator, especially at high noise levels.

In light of these observations, we replace Equation (9) with a Lagrangian
argmin

xt−1

∥xt−1 − fθ(xt)∥2 + λ∥y −Ax̂0∥2. (11)

We can interpret Equation (11) as a relaxation of Equation (9); the regularization by λ∥y −Ax̂0∥2
is achieved implicitly by early stopping after k = K steps of gradient descent. In contrast to
projection, this Lagrangian objective is robust to both (1) the possible infeasibility of ŷ0(xt) = y
and (2) overfitting the measurements based on an inaccurate Tweedie plug-in estimator.
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Input: Box
inpainting with
bimodal noise

Ground Truth DPS Ours - L2 Ours - Discrete KL

Figure 3: Results on the box inpainting task with a bimodal noise distribution. By optimizing the
discrete KL divergence, we can reconstruct the face with much higher fidelity than existing methods
like DPS or our method with L2 loss.

4.2 OPTIMIZING THE KL DIVERGENCE OF RESIDUALS

For noisy inverse problems, imposing a hard constraint Ax̂0 = y will overfit to the noise σ in the
observations, as illustrated by Figure 4. Previous work accounts for noise using implicit regular-
ization, by incompletely optimizing the objective Ax̂0 = y (Chung et al., 2022b). In contrast, we
propose to exactly optimize the Kullback-Leibler (KL) divergence between the empirical distribu-
tion of residuals R(Ax̂0,y) and a known, i.i.d. noise distribution r:

argmin
x

∥x− xt∥2

subject to DKL(R(Ax̂0,y) ∥ r) = 0.
(12)

In Algorithm 1, we show how to optimize a constraint on categorical KL divergences to match arbi-
trary distributions of discretized residuals. We also provide a convenient objective for optimizing the
empirical distribution of continuous residuals to match common noise patterns, including Gaussian
and Poisson noise.

Algorithm 1 Constrained Diffusion Implicit Models with KL Constraints

1: xT ∼ N (0, I)
2: for t = T, T − δ, . . . , 1 do
3: xt−δ ←

√
ᾱt−δ

(
xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt

)
+
√
1− ᾱt−δϵθ(xt, t) ▷ Unconditional DDIM Step

4: for k = 0, . . . ,K do
5: x̂0 ← 1√

ᾱt−δ
(xt−δ −

√
1− ᾱt−δ · ϵθ(xt−δ, t− δ))

6: xt−δ ← xt−δ + η · ∇xt−δ
DKL(R(Ax̂0,y) ∥ r) ▷ Projection

7: end for
8: end for
9: return x̂0

Additive Noise. The general additive noise model is defined by y = Ax + σ ∈ Rd, where
σ ∼ r⊗d. By discretizing the distribution of residuals into B buckets, we can compute a categorical
KL divergence between observed residuals and the discrete approximation of rB of r:

DKL(R(Ax̂0,y) ∥ rL) =
B∑

b=1

rB(b) log

(
rB(b)

⌊R(Ax̂0,y)⌋B

)
. (13)

In Figure 3 we show results on the box inpainting task when the observation has been corrupted
with bimodal noise: p(σi = −0.75) = p(σi = 0.75) = 0.5 for i = 1, . . . , n, where image pixels
are normalized values xi ∈ [−1, 1]. We optimize the residuals using the discrete KL divergence
and show that our result faithfully reconstructs the ground truth with high fidelity while filling in the
missing section.

Gaussian Noise. Additive Gaussian noise is defined by σ ∼ N (0, σ2I), in which case the residuals
R(Ax,y) ≡ y −Ax ∼ N (0, σ2I) are i.i.d. with distribution r ∼ N (0, σ2). The empirical mean
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(a) (b) (c)

Figure 4: Results on a 50% noisy inpainting task. (a) is the noisy partial observation. (b) is generated
by algorithm 2 without early stopping, showing that we can exactly match the observation even when
the observation is out of distribution. (c) is generated by algorithm 2 with early stopping.

and variance of the residuals are

µ̂ =
1

d

d∑
i=1

R(Ax̂,y)i, σ̂2 =
1

d

k∑
i=1

d (R(Ax̂,y)i − µ̂)
2
. (14)

Using the analytical formula for KL divergence between two Gaussians (Kingma & Welling, 2014),
we can match the empirical mean and variance of the residuals to r by enforcing

DKL(R(Ax̂0,y) ∥ r) = log

(
σ2

σ̂2

)
+

σ̂2 + µ̂2

2σ2
− 1

2
= 0. (15)

Poisson Noise. Possion noise is non-additive noise defined by sy ∼ Poisson(sAx), where y is
interpreted as discrete integer pixel values. The scaling factor s ≤ 1 controls the degree of Poisson
noise. Poisson noise is not identically distributed across y; the variance increases with the scale of
each observation. To remedy this, we consider the Pearson residuals (Pregibon, 1981):

R(Ax̂0,y) =
λ(y −Ax̂0)√

λx̂0

. (16)

These residuals are identically distributed; moreover, they are approximately normal r ∼ N (0, 1)
(Pierce & Schafer, 1986). We can therefore optimize the KL divergence between Pearson residuals
and a standard normal using Equation (15) to solve inverse problems with Poisson noise. Although
the Pearson residuals closely follow the standard normal distribution for positive values of x̂0, this
breaks down for values of x̂0 close to zero, and extreme noise levels s. In practice we find the
Gaussian assumption to be valid for natural images corrupted by as much noise as s ≈ 0.025. In
Figure 1 we show an example of denoising an image corrupted by Poisson noise with s = 0.05.

4.3 NOISE-AGNOSTIC CONSTRAINTS

In many practical situations, we will not know the precise distribution of noise r in the observations.
For these cases, we propose a noise-agnostic version of CDIM, assuming only that the noise is zero-
mean with variance Var(r). The idea is to directly minimize the squared error of the residuals,
with early stopping to avoid overfitting to the noise once Var(r) exceeds the empirical variance
of the residuals. In experiments, we find that this noise-agnostic algorithm performs similarly to
the noise-aware versions described in Section 4.2. Moreover, the noise-agnostic algorithm is more
efficient: by stopping early with enforcement of the constraint, it avoids excess evaluations of the
model during the final steps of the diffusion process. The complete process is shown in Algorithm 2.
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Input, 50% inpainting η ∝ 1/ ∥y −Ax̂0∥ η ∝ 1/
∥∥∇xt−δ

∥∥ η ∝ 1/E
∥∥∇xt−δ

∥∥
Figure 5: Comparison of different step size schedules on a 50% inpainting task. We choose a
challenging task with T ′ = 10, K = 10, σ2

y = 0.15 and use Algorithm 2. With enough steps, all
three can produce reasonable results on L2 optimization, but η ∝ 1/E

∥∥∇xt−δ

∥∥ is the most stable
and converges the fastest.

Algorithm 2 Constrained Diffusion Implicit Models with L2 Constraints and Early Stopping

1: xT ∼ N (0, I)
2: for t = T, T − δ.., 1 do
3: xt−δ ←

√
ᾱt−δ

(
xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt

)
+
√
1− ᾱt−δϵθ(xt, t) ▷ Unconditional DDIM Step

4: for k = 0, ..,K do
5: x̂0 ← 1√

ᾱt−δ
(xt−δ −

√
1− ᾱt−δ · ϵθ(xt−δ, t− δ))

6: if σ̂2 < Var(r) then ▷ Early Stopping
7: break
8: end if
9: xt−δ ← xt−δ + η · ∇xt−δ

1
d∥R(Ax̂,y)∥22 ▷ Projection

10: end for
11: end for

4.4 CHOICE OF STEP SIZE η

An important hyperparameter of these algorithms is the step size η. DPS sets η proportional to
1/∥y−Ax̂0∥ Chung et al. (2022b). We find that this fails to converge for KL optimization, and also
produces unstable results for L2 optimization when T ′ is small. This is because ∥y −Ax̂0∥ → 0
towards the end of the optimization, leading to extremely large steps. One option is to set η inversely
proportional to the magnitude of the gradient ∥∇xt−δ∥ at every single optimization step. Although
this is the easiest solution, it can also result in unstable oscillations and slower convergence. Instead,
we propose to set η inversely proportional to Ex∼Xtrain

∥∥∇xt−δ

∥∥, a common optimization heuristic
(Amari, 1998; Pascanu & Bengio, 2014). In Appendix A we describe how to compute this expecta-
tion. In Figure 5 we show qualitatively what happens with different η schedules.

We find that for a specific optimization objective and task, the magnitude of the gradient ∥∇xt−δ∥
is highly similar across data points, datasets, and model architectures. While it is difficult to reason
analytically about these magnitudes due to backpropagation through the network ϵ(xt, t), we em-
pirically demonstrate this observation in Appendix A. This suggests that a learned step size based
on Ex∼Xtrain

∥∥∇xt−δ

∥∥ generalizes as a good learning rate for unseen data. For all experiments, we
estimate these magnitudes from FFHQ training data.

5 RESULTS AND EXPERIMENTS

We conduct experiments to understand the efficiency and quality of CDIM across various tasks
and datasets. In Section 5.1, we present quantitative comparisons to state-of-the-art approaches,
followed by ablation studies in Section 5.2 examining inference speed and hyperparameters. In
Section 5.3 we explore two novel applications of diffusion models for inverse problems.
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Table 1: Quantitative results (FID, LPIPS) of our model and existing models on various linear
inverse problems on FFHQ 256 × 256-1k validation dataset. (Lower is better). The best result is in
bold and the second best is underlined.

FFHQ Super Inpainting Gaussian Inpainting Runtime
Res (box) Deblur (random) (seconds)

Methods FID LPIPS FID LPIPS FID LPIPS FID LPIPS
Ours - KL fast 36.76 0.283 35.15 0.2239 37.44 0.308 35.73 0.259 2.57
Ours - L2 fast 33.87 0.276 27.51 0.1872 34.18 0.276 29.67 0.243 2.4

Ours - KL 34.71 0.269 30.88 0.1934 35.93 0.296 31.09 0.249 10.2
Ours - L2 31.54 0.269 26.09 0.196 29.68 0.252 28.52 0.240 9.0
FPS-SMC 26.62 0.210 26.51 0.150 29.97 0.253 33.10 0.275 116.90

DPS 39.35 0.214 33.12 0.168 44.05 0.257 21.19 0.212 70.42
DDRM 62.15 0.294 42.93 0.204 74.92 0.332 69.71 0.587 2.0
MCG 87.64 0.520 40.11 0.309 101.2 0.340 29.26 0.286 73.2

PnP-ADMM 66.52 0.353 151.9 0.406 90.42 0.441 123.6 0.692 3.595
Score-SDE 96.72 0.563 60.06 0.331 109.0 0.403 76.54 0.612 32.39
ADMM-TV 110.6 0.428 68.94 0.322 186.7 0.507 181.5 0.463 -

5.1 NUMERICAL RESULTS ON FFHQ AND IMAGENET

We evaluate CDIM on the FFHQ-1k (Karras et al., 2019) and ImageNet-1k (Russakovsky et al.,
2015) validation sets, both widely used benchmarks for assessing diffusion methods for inverse
problems. Each dataset contains 256 × 256 RGB images scaled to the range [0, 1]. The tasks include
4x super-resolution, box inpainting, Gaussian deblur, and random inpainting. Details of each task
are included in the appendix. For all tasks, we apply zero-centered Gaussian observational noise
with σ = 0.05. To ensure fair comparisons, we use identical pre-trained diffusion models used in the
baseline methods: for FFHQ we use the network from Chung et al. (2022b) and for ImageNet we use
the network from Dhariwal & Nichol (2021). We use multiple metrics to measure the quality of the
generated outputs: Frechet Inception Distance (FID) (Heusel et al., 2018) and Learned Perceptual
Image Patch Similarity (LPIPS) (Zhang et al., 2018). All experiments are carried out on a single
Nvidia A100 GPU.

In Table 1 we compare CDIM with several other inverse solvers using the FID and LPIPS metrics
on the FFHQ dataset. We present results using both our KL divergence optimization method (Algo-
rithm 1) and our L2 optimization method (Algorithm 2) with early stopping. For these experiments,
we present results with T ′ = 50 and K = 3 as well as T ′ = 25 and K = 1 labeled as ”fast”. For
ImageNet results please see Appendix B.3.

5.2 ABLATION STUDIES

Number of Inference Steps. CDIM offers the flexibility to trade off quality for faster inference time
on demand. We investigate how generation quality changes as we vary the total computational bud-
get during inference. Recall that the total number of network passes during inference is T ′(K + 1),
where T ′ is the number of denoising steps and K is the number of optimization steps per denois-
ing step. We use the random inpainting task on the FFHQ dataset with the setup described in the
previous section. For this experiment we use KL optimization (Algorithm 1). The total network
forward passes are varied from 200 to 20, and we show qualitative results. Notably, CDIM yields
high quality samples with as few as 50 total inference steps, with quality degradations after that.

T′ vs K trade-off. We consider the optimal balance between T ′ and K when the total number of
inference steps T ′(K + 1) is fixed. Using the random inpainting task on the FFHQ dataset with the
previously described setup, we set T ′(K+1) = 200 and analyze how PSNR, FID, and LPIPS change
based on the chosen T ′ and K values. Results are plotted in Figure 7. FID results consistently favor
the maximum number of denoising steps T ′ with minimal optimization steps K. This is because FID
evaluates overall distribution similarity rather than per-sample fidelity, and thus is not penalized by
lower reconstruction-observation fidelity. In contrast, PSNR and LPIPS, which measure per-sample
fidelity with respect to a reference image, achieve optimal results with a balanced mix of denoising
and optimization steps.
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Input
Random Inpainting

10 Steps
T ′ = 5 K = 1

20 Steps
T ′ = 10 K = 1

50 Steps
T ′ = 25 K = 1

200 Steps
T ′ = 50 K = 3

Figure 6: We reduce the total number of inference steps T ′(K + 1) and visualize the results. There
is almost no visible degradation until less than 50 total steps.

Figure 7: We fix the total number of inference steps at 200 and evaluate different combinations of
T’ and K. FID always prefers more denoising steps T’, while LPIPS and PSNR are best at a mix of
T’ and K steps.

5.3 ADDITIONAL APPLICATIONS

Time-Travel Rephotography In Figure 1 we showcase an application of time-travel rephotography
Luo et al. (2021). Antique cameras lack red light sensitivity, exaggerating wrinkles by filtering
out skin subsurface scatter which occurs mostly in the red channel. To address this, we input the
observed image into the blue color channel and use the pretrained FFHQ model with Algorithm 2 to
project the face into the space of modern images. We further emphasize the power of our approach;
Luo et al. (2021) trained a specialized model for this task while we are able to use a pretrained model
without modification.

Sparse Point Cloud Reprojection For this task, 20 different images from a scene in The Grand
Budapest Hotel scene were entered into Colmap (Schönberger & Frahm, 2016) to generate a sparse
3D point cloud. Note that the sparse nature of the Colmap point cloud means that projections of
the point cloud will have roughly 90% of the pixels missing. Furthermore, the observations often
contain significant amounts of non-Gaussian noise due to false correspondences. We can formulate
this as a noisy inpainting problem and use our method to fill in the missing pixels for a desired
viewpoint. To address the errors in the point cloud, we use Algorithm 2 along with a variance
threshold that adequately captures the imprecise nature of the point cloud. We showcase the results
in Figure 8. Although this is not as robust as infilling the underlying point cloud directly, it does
allow for realistic reprojections by infilling the sparse images.

6 CONCLUSION

In this paper we introduced CDIM, a new approach for solving noisy linear inverse problems with
pretrained diffusion models. This is achieved by exploiting the structure of the DDIM inference
procedure. By projecting the DDIM updates, such that Tweedie estimates of the denoised image x̂0

match the linear constraints, we are able to enforce constraints without making out-of-distribution
edits to the noised iterates xt. We note that our method cannot handle non-linear constraints, includ-
ing latent diffusion, because for a non-linear function h, E [h(x0)] ̸= h(E [x0]). Therefore, unlike
the linear case of Equation (8), we cannot extend Tweedie’s estimate of the posterior mean of x0 to
an estimate of the posterior mean of non-linear observations h(x0). However, for linear constraints,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 8: Using noisy inpainting to tackle sparse point cloud reconstruction. (a) Shows a sparse
point cloud projected to a desired camera angle. (b) Shows the result after our method is used for
noisy inpainting.

our method generates high quality images with faster inference than previous methods, creating a
new point on the Pareto-frontier of quality vs. efficiency for linear inverse problems.
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Figure 9: A plot of ||∇xt−δ
|| for two models and datasets, ImageNet and FFHQ. In each task 100

images were used. First, note the variance in a single task/model, shown by the error bars, is small.
Second, note that the variance across the two tasks/models is also small.

A CALCULATING E
∥∥∇xt−δ

∥∥
To calculate our expected gradient magnitude, we first start with simple gradient normalization:
η ← 1/

∥∥∇xt−δ

∥∥, which normalizes our step size by the gradient magnitude on the fly at every
optimization step. We run the full CDIM algorithm on the target task with the desired number of
steps T and K on images from the training set. We calculate and store each gradient magnitude∥∥∇xt−δ

∥∥ during the optimization process at every step. Finally, we average the empirical gradient
magnitudes at each step t − δ to find E

∥∥∇xt−δ

∥∥ across data points and inner optimization steps k.
In practice we find that very few images are required to calculate a stable value for the expected
gradient magnitude. In all experiments the value was calculated by running an initial optimization
on 10 images from the training set.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 TASK DETAILS

We describe additional details for each inverse task used in our experiments.

Super Resolution Images are downsampled to 64 × 64 using bicubic downsampling with a factor
of 4.

Box Inpainting A random box of size 128 × 128 is chosen uniformly within the image.
Those pixels are masked out affected all three of the RGB channels.

Gaussian Deblur A Gaussian Kernel of size 61 × 61 and intensity 3 is applied to the entire
image.

Random Inpainting Each pixel is masked out with probability 92% affecting all three of
the RGB channels

50% Inpainting In various figures, we showcase a a 50% inpainting task where the top half
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of an image is masked out. This task is more challenging than box inpainting and can better
illustrate differences between results.

B.2 MEASURING RUNTIME

To measure wall-clock runtime, we used a single A100 and ran all the inverse problems (super-
resolution, box inpainting, gaussian deblur, random inpainting) on the FFHQ dataset. We only
consider the runtime of the algorithm, without considering the python initialization time, model
loading, or image io. For each task, we measured the runtime on 10 images and averaged the result
to produce the final result. We note that the baseline runtimes are taken from Dou & Song (2023),
where only the box inpainting task was considered. The runtime does not vary much between tasks
when using CDIM, so we report our average runtime across tasks as a fair comparison metric.

B.3 IMAGENET RESULTS

In Table 4 we report FID and LPIPS for the ImageNet dataset.

Table 2: Quantitative results (FID, LPIPS) of our model and existing models on various linear
inverse problems on the Imagenet 256 × 256-1k validation dataset. (Lower is better)

Imagenet Super Inpainting Gaussian Inpainting
Resolution (box) Deblur (random)

Methods FID LPIPS FID LPIPS FID LPIPS FID LPIPS
CDIM - KL fast 59.10 0.398 58.75 0.311 73.74 0.480 53.91 0.364
CDIM - L2 fast 53.70 0.378 52.00 0.267 56.10 0.393 51.96 0.370

CDIM - KL 47.77 0.347 48.26 0.2348 57.72 0.390 45.86 0.331
CDIM - L2 47.45 0.339 50.31 0.251 38.69 0.347 46.20 0.332
FPS-SMC 47.30 0.316 33.24 0.212 54.21 0.403 42.77 0.328

DPS 50.66 0.337 38.82 0.262 62.72 0.444 35.87 0.303
DDRM 59.57 0.339 45.95 0.245 63.02 0.427 114.9 0.665
MCG 144.5 0.637 39.74 0.330 95.04 0.550 39.19 0.414

PnP-ADMM 97.27 0.433 78.24 0.367 100.6 0.519 114.7 0.677
Score-SDE 170.7 0.701 54.07 0.354 120.3 0.667 127.1 0.659
ADMM-TV 130.9 0.523 87.69 0.319 155.7 0.588 189.3 0.510

B.4 PSNR RESULTS

Table 3: Quantitative results (PSNR) of our model and existing models on various linear inverse
problems on the FFHQ 256-1k validation dataset. (Higher is better)

Imagenet Super Inpainting Gaussian Inpainting
Resolution (box) Deblur (random)

Methods PSNR PSNR PSNR PSNR
CDIM - KL fast 26.94 22.84 24.8 26.38
CDIM - L2 fast 27.08 23.20 26.77 26.49

CDIM - KL 27.11 23.54 25.68 26.97
CDIM - L2 27.30 23.47 27.03 27.10
FPS-SMC 28.10 24.70 26.54 27.33

DPS 25.67 22.47 24.25 25.23
DDRM 25.36 22.24 23.36 9.19
MCG 20.05 19.97 6.72 21.57

PnP-ADMM 26.55 11.65 24.93 8.41
Score-SDE 17.62 18.51 7.21 13.52
ADMM-TV 23.86 17.81 22.37 22.03
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Table 4: Quantitative results (PSNR) of our model and existing models on various linear inverse
problems on the Imagenet 256 × 256-1k validation dataset. (Higher is better)

Imagenet Super Inpainting Gaussian Inpainting
Resolution (box) Deblur (random)

Methods PSNR PSNR PSNR PSNR
CDIM - KL fast 23.17 19.64 21.26 21.95
CDIM - L2 fast 23.67 19.67 22.78 22.38

CDIM - KL 23.36 19.98 22.48 22.07
CDIM - L2 23.92 20.06 23.32 22.61
FPS-SMC 24.78 22.03 23.81 24.12

DPS 23.87 18.90 21.97 22.20
DDRM 24.96 18.66 22.73 14.29
MCG 13.39 17.36 16.32 19.03

PnP-ADMM 23.75 12.70 21.81 8.39
Score-SDE 12.25 16.48 15.97 18.62
ADMM-TV 22.17 17.96 19.99 20.96

B.5 COMPARISON WITH DPS USING DDIM

We show a qualitative comparison against DPS Chung et al. (2022b) when we use DDIM and fewer
steps. We use the core DPS sampling algorithm, but with DDIM as the denoising algorithm instead
of DDPM. The number of denoising steps is set to 50 and the step size of DPS is scaled to acheive
the best convergence possible.

Figure 10: We show that our method is not simply DPS Chung et al. (2022b) with DDIM. If you just
run DPS with DDIM and fewer steps, the output does not accurately match the observation. DPS
ends up blurry and does not converge to match the constraint, and if you try to increase the step size
it diverges. Our algorithm is able to accelerate inference better because we use a learned step size
and use information about the underlying noise distribution.
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B.6 COMPARISON WITH DSG

We show a qualitative comparison against DSG Yang et al. (2024) on 3 tasks. We used the official
code from their github, and generated results with 25 DDIM diffusion steps for both DSG and CDIM
(and K = 1 for CDIM). As you can see, the DSG results are blurrier and sometimes contain artifacts

Figure 11: A comparison between DSG Yang et al. (2024) and CDIM when both algorithms use 25
DDIM denoising steps.

B.7 EXTENDED RESULTS
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Figure 12: FFHQ Super-resolution extended results

Figure 13: FFHQ Gaussian deblur extended results
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Figure 14: FFHQ random inpainting extended results

Figure 15: ImageNet Gaussian deblur extended results
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Figure 16: ImageNet random inpainting extended results

Figure 17: ImageNet box inpainting extended results
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(a) (b)

Figure 18: Results on inpainting 50% of an image on LSUN Churches dataset.
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