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Abstract

Discovering novel stable molecules without training data remains a grand scientific
challenge. Current molecular generative models are trained on large, pre-curated
datasets, which introduce biases and limit exploration of novel chemistry. In
contrast, we propose a new paradigm: autonomous, generalized agents capable of
mapping vast, unknown chemical spaces without any pretraining. For the first time,
we present a self-guided agent that autonomously constructs valid 3D isomers under
stoichiometric constraints and is trained exclusively online using reinforcement
learning. Unlike existing approaches that generally overfit to a specific chemical
formula, we establish a multi-composition training scheme that enables a broad
generalization across diverse chemistry, guided by energy- and validity-based
rewards. Our agent can discover up to an order of magnitude more valid isomers
on unseen test formulas than the baseline. These results fulfil the promise of online
RL as a powerful paradigm for scalable tabula rasa exploration of the chemical
configuration space.

1 Introduction

Autonomous discovery of novel molecules with bespoke properties is the new frontier in computa-
tional chemistry. Effectively navigating the vast chemical space requires innovative and data-efficient
search strategies. Generative models have emerged as a promising avenue for this task (Anstine and
Isayev, 2023), yet their performance often hinges on the availability of suitable training data. Large
public datasets are rarely curated with specific property optimization in mind, and the relevant prop-
erty regimes may lie at the fringes - or entirely outside - the observed data distribution (Brown et al.,
2019). This poses a fundamental challenge: models must not only interpolate but also extrapolate
beyond known examples (Schrier et al., 2023). Constructing task-specific datasets is likewise non-
trivial and, even when feasible, introduces chemical and structural biases that may limit exploration
of novel chemical spaces.

A compelling approach to overcoming these limitations is to adopt online (tabula rasa) learning
techniques—frameworks that learn from scratch without relying on pre-curated datasets-such as
Reinforcement Learning (RL) (Sutton and Barto, 2018), where an agent learns to explore the chemical
space through trial and error (Sridharan et al., 2024). This has proved very successful at SMILES
based molecular generation (Olivecrona et al., 2017; Popova et al., 2018; Bou et al., 2024). However,
for 3D geometry an additional post-processing step is needed to generate conformer ensembles (e.g.,
with the ETKDG method (Riniker and Landrum, 2015)). These automatically generated conformer
ensembles add a costly extra step and often miss out on conformers with the highest stability or best
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property. Instead, directly generating molecules in 3D enables molecular structures to be constructed
and optimized within a fully integrated, end-to-end framework.

In the supervised setting, some of the most promising directions for molecule generation in 3D are
either based on denoising diffusion (Hoogeboom et al., 2022; Le et al., 2024; Cornet et al., 2024a),
flow matching (Song et al., 2023; Irwin et al., 2025), or auto-regressive models that build molecules
in an atom-by-atom fashion (Gebauer et al., 2019; 2022; Roney et al., 2022; Daigavane et al., 2023;
Ochoa et al., 2024). Although diffusion models could potentially be integrated into a pretraining-
finetuning framework (Black et al., 2024), it remains unclear whether they can effectively be used
for tabula rasa learning for navigating a 3N dimensional energy surface. In the purely online setup,
RL has been used for conformer (Jiang et al., 2022; Volokhova et al., 2024) and isomer (Simm et al.,
2020; 2021) generation. Flam-Shepherd et al. (2022) extended MOLGYM to place fragments instead
of individual atoms, improving scalability and the size of the generated molecules. Meldgaard et al.
(2021) used online RL but only after an offline pretraining phase. Whereas their pretraining was multi-
compositional, their online finetuning was for single compositions only and further relied on result
aggregation from 64 parallel fine-tunings spawned after pertaining. A general-purpose RL algorithm
for tabula rasa 3D molecular structure discovery has yet to be demonstrated. Existing results show
only limited success on simple organic molecules or metal clusters of fixed composition (Modee
et al., 2023), with poor generalization across stoichiometries. These studies offer useful technical
insights—such as the role of final-reward training (Elsborg and Bhowmik, 2023) and the constraints
of current RL formulations for 3D structure search—but they have limited relevance for identifying
genuinely novel molecules.

The evaluation of RL algorithms for molecular structure discovery presents a fundamental challenge.
In the standard generative modeling paradigm, where models are trained via supervised learning to
approximate the training distribution, performance is typically assessed through stochastic rollouts at a
single final checkpoint, reflecting how well the converged model captures the underlying data (Gémez-
Bombarelli et al., 2018; Gebauer et al., 2019; Cornet et al., 2024b). In contrast, evaluation in RL is
considerably more nuanced (Henderson et al., 2018; Dulac-Arnold et al., 2020). The performance
of an RL agent can vary significantly depending on the checkpoint selected, as the underlying
policy evolves throughout training (Islam et al., 2017). A single-checkpoint evaluation, though
convenient and widely used (Xia et al., 2022), often fails to capture the broader behavioral dynamics
and exploration strategies adopted at different training stages (Colas et al., 2019). This evolving
behavior, combined with the open-ended nature of RL tasks, renders traditional metrics — such as
distance to a reference dataset — largely inadequate. Instead, meaningful evaluation often requires
the direct involvement of a chemist to quantify the utility of individually generated structures through
score/reward functions (Brown et al., 2019; Polykovskiy et al., 2020; Schwalbe-Koda and Gémez-
Bombarelli, 2020). This reliance on task-specific metrics complicates automation and has hindered the
establishment of universally recognized benchmark tasks, making it difficult to objectively compare
algorithms and slowing methodological convergence in the field (Olivecrona et al., 2017; Xie et al.,
2021; Nie et al., 2024).

A core challenge in online RL for 3D molecular discovery in particular, is balancing the delicate trade-
off between exploration and physical stability. While policy stochasticity is essential for escaping
locally optimal behavior (Haarnoja et al., 2018; Schulman et al., 2017), excessive spatial noise can
corrupt energy based evaluations, which depend sensitively on the atomic coordinates (Smith et al.,
2017; Gastegger et al., 2021). This degrades the reward signals and destabilizes the learning. The
problem is compounded in 3D atomistic environments, where high-reward actions lie in a multimodal
and discontinuous space. Here, small perturbations rarely improve the objective, but often disrupt
chemically valid structures, rendering local exploration ineffective (Rose et al., 2021).

A true paradigm shift in molecular discovery requires the ability to explore the full chemical space
from first principles—without relying on hand-crafted rules, curated datasets, or preconceived feature
biases. Such an approach would learn viable chemistry entirely through exploration of chemical
motifs leading to possible discovery beyond current human knowledge and intuition. As a key step
toward this grand vision, we have been successful in training composition-generalizable RL agents
capable of discovering stable 3D molecules across diverse chemical formulas.

Inspired by the MOLGYM (Simm et al., 2020; 2021) framework, we take a significant step forward
toward training self-guided RL agents that can generalize across chemical space. Specifically, we
target isomer discovery, where the agent is tasked with generating 3D conformations given a pre-
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Figure 1: Multi-composition training and evaluation workflow. Our framework constructs isomer
generation tasks by extracting chemical formulas from a reference dataset and introduces new terminal
rewards based on validity and total energy. We evaluate the RL agents’ isomer discovery capabilities
at just a single checkpoint, as well as cumulatively across the entire discovery campaign. Crucially,
no 3D structures are shown to the agent during training.

specified chemical composition. Our success originated from a novel multi-composition training
scheme and new reward schemes. We demonstrate that RL can be effectively applied to isomer
discovery, without overfitting to a fixed set of atoms as in prior work (Simm et al., 2020; 2021).
A visual abstract of our workflow is provided in Fig. 1. This resolves long standing limitations
and stagnation in RL for tabula rasa 3D atomic structure discovery and we summarize our main
contributions as follows:

* We introduce new terminal rewards based on energy and chemical validity, thereby training
the agent to build stable and valid molecules.

* We propose a groundbreaking multi-composition training setup based on chemical com-
positions drawn from a broad chemical space derived from the QM7 reference dataset,
facilitating generalization across stoichiometries.

* We design a broader multi-bag evaluation scheme to facilitate benchmarking of online
isomer discovery agents and assess various combinations of the proposed reward terms.

2 Results

2.1 RL environment: Isomer search

We trained an RL agent to build stable and valid isomers (i.e. different molecules with the same
pre-specified chemical formula) autoregressively (atom-by-atom), using a linear combination of
reward terms based on quantum chemical energy evaluations and validity checks. Our training
framework is illustrated in Fig. 1, along with the two separate evaluation schemes.

Multi-composition training We leveraged the QM7 dataset (Blum and Reymond, 2009; Rupp
et al., 2012) as a reference dataset, and used it to derive a bag set, BB, of molecular compositions that
was used for multi-composition training?. In practice, training rollouts are performed synchronously
by a collection of N,, workers, each endowed with a uniquely randomized iterable of the bag set
B., = permutation,, (B). When worker w has generated a molecule for a particular bag (or failed to
do so), it simply proceeds to the next bag in its bag set.

Autoregressive molecule sampling The molecule construction process is framed as a sequential
decision-making task, where, after sampling an initial bag of atoms By, an agent iteratively selects

Notice that "formula” and "bag" are used interchangeably throughout this article, as they carry the same
physical meaning. So, to clarify, a bag set, B, is simply a collection of chemical formulas. Similarly, to describe

how our agent generalizes across chemical formulas, we use words such as "multi-bag", "multi-composition”,
"stoichiometry-agnostic"”, etc., depending on the context.



and places atoms in 3D space to incrementally build the molecule. In RL terms, the agent observes
the state s, = (Cq, By) consisting of the current molecular canvas C; (i.e. the molecule built so
far) and the remaining atom bag B;. The agent’s action a; = (e;, x+) involves choosing an atom
e; € By and assigning its 3D position z; € R? leading to the deterministic transition to the next state
St4+1 = (CtJrl, Bt+1), where

Ciy1 =CrU{(et, 1)}, Biy1 = By \{et}.

This process continues until the bag is empty and a complete molecule Cr has been formed. The
distribution over molecules constructed in this autoregressive process is given by

T-1
p(Cr|Bo) = [ malaclse), 1

t=0

where 7y (a¢|s;) is the agent’s probabilistic policy governing the placement of atom e; at position x4,
given the current molecular state s;. This formulation captures the conditional nature of molecule
construction starting from the initial bag Bj.

Notably, in this environment, the agent must implicitly learn to construct valid molecules, as no
explicit validity constraints are imposed during generation. Also, atoms are sampled without replace-
ment, and their positions remain fixed after placement. The randomness in the generation process
comes solely from the agent’s policy, as the environment transitions are fully deterministic. As
such, the molecule-building task can be formulated as a fully observable, finite-horizon Markov
Decision Process (MDP) with a hybrid discrete-continuous action space, where the episode length is
determined by bag size.

Reinforcement Learning objective The agent’s stochastic policy 7y (a¢|s;) is optimized in search
of the optimal parameters 6 that maximize the expected discounted sum of future rewards (known as
return) from any given state,

T
V7 (st) = En, lz 7 (se, at/)] : 2)

t'=t

where v € (0, 1] is the discount factor and r(s¢, a;) is the reward received at time step ¢ for taking
action a; in state s;. So starting with an empty canvas at ¢ = 0, the agent must learn to maximize
J(8) = Egympo [V (50)] with g denoting the distribution over bags.

A new terminal reward structure In RL, reward design is often the single most critical factor
determining success or failure. Whereas the original MOLGYM frameworks uses per-step rewards
as shown in Box 2.1b, we train agents which only receive reward at the terminal state, i.e. when
the molecule is completed (Box 2.1a). These rewards are determined based on quantum mechanical
energy using GFN2-xTB (Bannwarth et al., 2019) and chemical valency checks via xyz2mol (Kim
and Kim, 2015). The choice of terminal rewards stems from the fact that the temporal structure of
our RL episodes is an artificial construct, introduced solely to enable the factorization of the agent’s
molecular sampling policy (Eq. (1)), and the intermediate molecular states {C; }+<7 visited during
the episode are not necessarily chemically or energetically meaningful. To prevent training from
being obscured by misleading or noisy signals from these partial, often non-physical intermediates,
we introduce new terminal rewards that are only queried once the molecule is fully constructed, as
shown in Box 2.1a.

Box 2.1a: Terminal Rewards (ours)

In this work, we introduce the following two terminal rewards:

» Atomization energy (A): This reward is based on the negative difference between
the potential energy of the final molecule Cr and the sum of potential energies of
each of its constituent atoms in isolation:

T
AE + LYAE)? if AE >0
AE = (Z E(et)> —E(Cr), ra(sr)= {AE+ (80 if AE i o, @
t=1 ’



where AF is the binding strength (positive is better) and the polynomial transforma-
tion provides extra resolution around high scoring molecules, as this allows the agent
to differentiate between "good" and "really good" molecules.

* Validity (V): A boolean validity check based on the requirement that generated
molecules can be successfully parsed by the xyz2mol function, which converts
arbitrary 3D point clouds into rdkit mol objects (Landrum, 2024):

1 if Cr is a valid molecule,
0 else.

ry (57) = { )
In particular, we verify that the molecule is not fragmented (consisting of smaller
isolated molecules) and that no atom is charged. This validity reward term was
introduced because we observed that energy-based rewards alone were insufficient
to guide the agent effectively. The reason is that the 3D molecules generated by the
stochastic agent policy inevitably contain spatial noise - both to facilitate exploration,
but also because the agent is unaware of the correct low-energy configurations.
As a result, the agent may produce molecules that are chemically valid (in terms
of valency) but significantly distorted, thus getting penalized too harshly by the
energy-based reward signal. To avoid this, our validity bonus encourages the agent
to generate molecules that are first and foremost chemically valid.

Box 2.1b: Baseline Reward

For comparison, the MOLGYM baseline used the following reward:

* Per-step Formation energy (F): In contrast to the terminal reward, reward can be
assigned at every step throughout the episode and is given by the negative difference
in energy between the resulting molecule C; 1, and the sum of energies of the previous
molecule C; and a new atom of element e;

TF(St,at) = (E(Ct) + E(et)) — E(Ct+1)7 t= 07 ,T —1. (5)

2.2 Experiments

Figure 2 illustrates our training and evaluation scheme. Through linear combinations of the 3
fundamental reward components (A, V, F) introduced in Box 2.1(a+b),, we define 5 distinct reward
functions A, AV, F, FV, and AFV, each corresponding to a separate agent that is trained independently
three times using different random seeds (the linear coefficients are shown in Table 3 in the Appendix).
Generally, our analysis places particular emphasis on the agents A and AV, as these incorporate our
newly proposed terminal rewards A and V. Specifically, we address the following research questions:

Q1: Comparison to previous work. How do our agents (A & AV) perform in comparison
to previous work in online molecular discovery in 3D? This initial experiment evaluates their
discovery capabilities in the single-bag generation paradigm where baselines are available.

Q2: Generalization ability. Which reward functions generalize to our multi-bag setting
and to out-of-sample (unseen chemical composition) generation in particular? Here we
broaden the evaluation scope relative to Q1 by aggregating results across a random held-out
split of bags represented in QM7 (see Fig. 2b), enabling a comprehensive comparison of
reward signals at various stages of training.

Q3: Exploration of chemical space. Did our tabula rasa agents rediscover the molecules
from the QM7 reference dataset? Did they go beyond and even expand on this dataset? Here
we will interpret the training run as a discovery campaign and examine the complete pool of
molecules obtained.

While Sections 2.3 and E (Q1+Q2) focus on evaluating single checkpoints, Section 2.4 (Q3) examines
agent performance throughout the entire training process. Despite these differences in evaluation
scope, all three cases are based on the same training runs visualized in Fig. 3.
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Figure 2: Overview of experiments. (a) Agents are defined in terms of the reward functions with
which they are trained. (b) Training data comprises 156 QM7 bags, with 20 remaining bags held
out for evaluation. During training (green) we save 4 checkpoints for each seed and perform out-of-
sample evaluations (blue) for all checkpoints (5 agents, 3 seeds, 4 ckpts = 60 evaluations in total).
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Figure 3: Learning Curves (in-sample). (a) Validity and (b) unrelaxed Relative Atomic Energy
(RAE) of continuously collected training rollouts, plotted against total number of single-atom
placements (environment steps). The RAE metric quantifies the excess energy relative to the average
energies of QM7 molecules with the same chemical formula (see page 17 for detailed metric
definitions). Shading represents 1 standard deviation between the 3 seeds. Notably, our newly
introduced terminal reward terms, .4 and V, enable significantly more stable training dynamics.

2.3 QI1: Comparison againts previous work: Single-bag discovery task

Table 1: Q1: Single-bag discovery. Our AV agent outperforms previous work (numbers taken from
Simm et al. (2021)) by discovering an order of magnitude more valid isomers for evaluation bags
beyond its training set. In contrast, the baseline agents were trained explicitly on the presented bags.

| Training type: Single-bag training (on eval bag) QM7 multibag

| Collection type: ~ Cumulative argmax x 10 seeds Single CP stochastic

\ Bag: \ Agent: INTERNAL COVARIANT A (ours) (ours)
IN QM7 | C3HgO 4t 8f 3.0 £ 0.0 3.0 £00
(TRAIN) | C4H7N 18 25 13.0 + 08 36.7 + 1.3
BEYOND | C3H5NO;3 35 65 49.0 +75 544 + 46

QM7 C7H(0 21 85 198.0 £ 249 808 + 122

DATASET | C7HgN5O4 58 118 145.7 +397 1213 + 212

fC3HgO is a small and fully saturated chemical formula and we only see 3 feasible positions
for an oxygen atom on a 3-membered carbon chain: an OH group on the first carbon atom,
an OH group on the central carbon atom, or an O between carbon atoms 1 and 2. Since both
baseline agents reportedly discovered strictly more than 3 isomers without providing code for
their uniqueness check, we suspect their numbers are mistakenly reported in all 5 cases, which
only further emphasizes the improved discovery capabilities of our approach.

We adopt the evaluation protocol from Simm et al. (2021), counting the number of valid constitutional
isomers? discovered by our agents (A and AV) when deployed on a single bag. Table 1 compares our

3Isomer counts are determined following the standard convention: unique SMILES strings are generated
using RDKit (Landrum, 2024), expressed in canonical form, and exclude isomeric information.



results with those reported in prior work. Notably, although is not explicitly trained on certain
formulas, it consistently discovers up to an order of magnitude more constitutional isomers than
baseline agents on the last three formulas that exceed the scope of QM7, containing more than seven
heavy atoms. In contrast, the A agent performs comparably to the baselines in terms of isomer count.

In Fig. 6, we visualize the high reward molecules, ranked by formation energy per atom after structural
relaxation, and compare their energy distributions in the center column. While the excelled
in breadth of discovery, the A agent - trained solely with energy-based rewards - tends to sample
molecules with significantly better formation energies.

While the discovery statistics in Table 1 highlight the effectiveness of our training setup, reward
formulation, and data collection strategy, it is important to note several key differences between our
approach and the baseline methods:

Baselines: The INTERNAL and COVARIANT agents from MOLGYM use a single-bag training
paradigm. This is a costly approach that requires a separate training run for each conceivable
molecular formula (bag). Additionally, the discovered isomer count is aggregated over 10 independent
runs using different seeds. The molecules used for isomer counting are collected throughout the
training (referred to here as cumulative data collection), and the molecules are always generated
by selecting the most likely action (i.e. arg max(,,} o(a¢|s;)), resulting in just a single molecule
at every checkpoint during training, thus relying solely on the gradual drift of the agent policy to
achieve diverse sampling.

Proposed scheme: We adopt a multi-bag training strategy, using compositions derived from
molecules in the QM7 reference dataset, and evaluate discovery performance on the same test bags
used by the baseline methods. Unlike the baselines however, we report results based on molecules
sampled stochastically from the learned agent policy at a single checkpoint (CP). Concretely, we
use the third checkpoint—taken after 15 million training steps—and sample 10,000 molecules per
random seed for each test-time formula listed in Table 1 and Fig. 6.

2.4 Q3: Chemical space exploration - Training as a discovery campaign
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Figure 4: Q3. Cumulative discovery campaign. (a) Number of novel SMILES discovered during
training. (b) Number of QM7 SMILES rediscovered. (c)-(d) Total expansion and rediscovery relative
to the size of QM7. Although the agents are able to discover many novel molecules and expand on
the QM7 dataset by several multiples, their rediscovery ratios are remarkably consistently capped
around 40%, thus indicating a subclass of molecular structures inaccessible to our RL agents.

In the previous experiments, we evaluated agent performance based on stochastic rollouts from a
single checkpoint - a simple and general scheme widely used in generative modeling (e.g., supervised
distribution learning) - but one that overlooks the evolving nature of an RL agent’s policy and
introduces arbitrariness due to checkpoint selection. To fully leverage this behavioral drift over
the course of training, we instead store every molecule generated in a cumulative storage buffer as
illustrated in Fig. 1 (blue), which allows us to track the discovery process across time.

The cumulative discovery campaign is summarized in Fig. 4. During training, each agent discovers
between 10,000 and 45,000 unique SMILES strings across the 156 training formulas (Fig. 4a). For
comparison, the QM7 training subset contains only 6,465 molecules, so the number of generated



molecules far exceeds the number of known reference structures. This relationship is captured by the
expansion ratio shown in Fig. 4c, quantifying how many novel molecules the agent generates relative
to the original QM7 set.

To assess the agent’s ability to reproduce known chemistry, we also count how many of the original
QM7 molecules were rediscovered during training (Fig. 4b), with final rediscovery statistics shown
in Fig. 4d. The rediscovery curves clearly plateau, indicating that further training does not yield
additional rediscovered molecules. This plateau behavior across agents raises an important question:

Are there particular molecular substructures that our agents systematically fail to learn or explore?

To investigate this, we analyze the rediscovery performance of our two most promising agents, A and

, by comparing the sets of rediscovered molecules to the full QM7 training subset. The analysis is
presented in Section F in the appendix. Overall, our findings suggest that the agent’s discovery policy
is biased toward constructing small, aliphatic, and less topologically complex fragments. Meanwhile,
more exotic, strained, or electronically diverse motifs are significantly underexplored.

Finally, in Fig. 5, we examine the distribution of formation energies for the rediscovered molecules.
Despite recovering less than 50% of the QM7 training set, both agents preferentially rediscover
molecules with lower-than-average (i.e., more negative) formation energies. Notice again that this
comparison is restricted to molecules within QM?7, despite the agents having vastly expanded beyond
1t.

Energy distribution of rediscovered isomers
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Figure 5: Rediscovery energy distributions. The figure shows the formation energy distribution of
all QM7 training molecules (grey), together with the energy distribution of rediscovered molecules
for the two agents A and AV, with mean values shown vertically. Despite rediscovering less than
50%, the RL rediscovered energies are actually better (more negative) than the QM7 average.

3 Discussion

We presented an autoregressive, multi-composition reinforcement learning (RL) agent for 3D isomer
discovery, trained purely online across a large set of molecular formulas derived from the QM7
dataset. This represents a significant advancement over composition-specific RL agents for 3D
structure discovery that have been developed in recent years. Our method enables, for the first time,
the autonomous exploration of broad chemical spaces without reliance on curated datasets, paving
the way for serendipitous molecular discoveries. Our method used smaller learning rates, higher
entropy coefficients, and a multi-bag training scheme that improved chemical and geometric diversity
to achieve generalization unlike previous methods. These design choices prevented premature
convergence to locally optimal policies and enabled broader exploration of molecular space. As a
result, the agent learned to generate a diverse set of valid isomers—even for unseen formulas—and
significantly outperformed single-bag agents. We attribute this performance boost to the limited
exploration and poor representation learning in single-bag settings.

Notably, we found that terminal rewards yielded more stable learning than per-step rewards, despite
common assumptions favoring the latter for better credit assignment. This likely stems from the
chemical implausibility of intermediate structures, which makes stepwise rewards noisy or misleading.
However, a major limitation of terminal rewards—and RL more broadly—is the sparse and delayed
nature of the learning signal, leading to inefficient training. We also observed diminishing returns
with extended training, suggesting limited scalability in the current setup.



Future work should address these issues, e.g., by introducing mechanisms that penalize structural
redundancy across rollouts to avoid exploration collapse. Reducing spatial noise from the stochastic
policy, which interferes with energy-based evaluation, is also crucial. Finally, reframing the task as
online finetuning of a pretrained model could substantially accelerate training and improve sample
efficiency, making RL more practical for real-world molecular and materials discovery.

Software and Data

Code and instructions will be made available at ...
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A Agent policy
A.1 Hierarchical action scheme

We parametrize the agent’s neural network policy following the internal agent structure in previous
work Simm et al. (2020), where at each decision step the agent breaks its action up into a hierarchical
cascade of subactions, with each selected subaction being explicitly used as condition for the
following. The three subactions are as follows:

* a) selection of focal atom on the current canvas, around which a new atom will be placed,
* b) selection of an element from the remaining bag,

* ¢) 3D placement of the new atom using a spherical coordinate system (d, v, ), where the
coordinate axes are derived from distance vectors from the focal atom to - and among - its
nearest neighbors.

In summary, the total agent policy is represented by the following factorization

mo(d, o, ¥ e, fls) = p(d, o, Ple, f, s)p(elf, s)p(fls), ©)

where the element e and focal atom f are sampled from categorical distributions and each of the
coordinates (¢, ar, d) (which together define a unique mapping to a 3D location for the new atom) are
sampled from continuous distributions (univariate Gaussians).

While not immediately evident from the equations above, we must highlight the following potential
conceptual flaws in the specific code implementation of this policy:

* a) The 3D position distribution p(d, «, 9le, f, s) from Eq. (6) actually imposes an assump-
tion of independence between the internal spherical coordinates:

since these variables are sampled independently rather than sequentially with mutual condi-
tioning.

* b) Even an infinitesimally small change in atomic positions can cause permutations in the
nearest-neighbor ordering, thereby altering how prediction spherical coordinates (1, o, d)
map to Cartesian canvas space.

In combination, these issues limit the agent’s ability to make intentional and coordinated placement
decisions with predictable outcomes. However, despite their potential significance, we proceed with
this baseline implementation and leave the development of mitigation strategies for these policy
limitations to future work.

A.2 Backbone message passing

Instead of the invariant backbone (Schiitt et al., 2017) used in the baseline work Simm et al. (2020),
we use its equivariant counterpart (Schiitt et al., 2021), which additionally propagates vectorial
features through its message-passing layers. Although the spatial actions themselves only need
rotational invariance, given the nearest-neighbor-based internal coordinate system, invariant GNN
architectures are known to have limited spatial and orientational awareness compared to equivariant
architectures. This limitation has been underscored in subsequent work (Simm et al., 2021) that
demonstrated that equivariant architectures more effectively capture geometric relationships. Thus,
enhancing the message-passing backbone by adopting the equivariant PAINN architecture is well
justified. Note, however, that within the neural network computation graph, the agent’s spatial
subactions (d, «, 1)) remain dependent exclusively on the invariant scalar tensor outputs rather than
directly utilizing equivariant vectorial features.
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B Training
B.1 Proximal Policy Optimization

As shown in Eq. (6), action probabilities are explicitly modeled through a stochastic policy, making
the framework amenable to the broader class of policy gradient methods (Williams, 1992; Sutton
etal., 1999). These methods optimize the expected return by following the gradient of the policy’s
parameters and are particularly effective when combined with a learned value function to form an
Actor-Critic architecture (Konda and Tsitsiklis, 1999), which maintains both a stochastic policy (the
actor) and a value function Vp(s;) (the critic). Specifically, we employ Proximal Policy Optimization
(PPO) (Schulman et al., 2017), a widely used Actor-Critic algorithm designed to stabilize learning by
preventing excessively large policy updates, as we shall see shortly.

At each iteration of PPO training, the agent first samples molecules according to its current action
policy, i.e. we record trajectory rollouts consisting of transition tuples (s;, at, ¢, St+1) ~ mg. Based
on this data buffer of freshly sampled rollouts, 3y, PPO then enters a sequence of optimization steps,
k=1,2,3.., K, where it performs gradient ascent on the following combined objective:

LPPO(0) = L£(0) — e1£Y(0) + o LM (0), c1,¢p >0, ®)

where £ denotes the PPO clipped surrogate objective, £V is the value function loss, and £
represents the entropy regularization term.

The first objective term, £L-(6), plays a central role in policy optimization, as it directly guides the
policy toward selecting high-scoring actions. Rather than naively maximizing raw returns, PPO uses
the Generalized Advantage Estimator (GAE) (Schulman et al., 2015) to compute a smoothed signal
of how advantageous an action was, relative to the expected value:

T—t—1
Ay = (YA 611, with 0y = 1 +YVo(se41) — Va(se), 9

x>
o

where v € [0,1] is the discount factor and A € [0, 1] is a smoothing parameter that controls the

bias-variance trade-off. The resulting advantage term A, captures the degree of positive surprise, i.e.
how much better (or worse) the observed return was compared to what the critic predicted.

After a few policy updates, the optimized policy my can deviate significantly from the original policy
that generated the data, which we from now on denote 7y,,. This mismatch can lead to unstable
learning, as the objective is now being evaluated under a different distribution. To mitigate this, PPO
introduces a clipped surrogate objective that limits how much the policy is allowed to change in a
single update. The objective is defined as:

mo(at|st)
T o1 (at |St) .
(10)
Here, the policy ratio rt‘ (#) quantifies how the probability of taking action a; under the updated
policy compares to that under the old policy. The clip operation ensures that this ratio stays within a
trust region defined by [1 — €, 1 + €], where ¢ is a small constant (commonly 0.2). This conservative
update rule prevents excessively large policy shifts, thereby improving training stability. Intuitively, it
balances learning progress - encouraging updates when Ay is large - with policy trustworthiness, by
suppressing updates that would cause the policy to change too aggressively.

L) = E [min (r?(@)flt; clip(r®(6),1 —e,1 + E)At)} IO

(st,at)~Bay

Next, the value loss term £V is implemented as the mean squared error (MSE) between the predicted
state-value estimates Vp(s;) and the empirical returns R;. This term ensures that the critic network
effectively predicts future returns, enabling more accurate advantage estimation in future iterations,
while simultaneously distilling better representations into the shared backbone:

O = E |(Valsi) - R (11)

se~Boyy

Finally, the entropy term encourages exploration by penalizing overly certain action distributions:

L7(0) = Himo(er, fr]se)] = E [—log ma(es, fi|se)] - (12)

(Stvfmet)"‘BGO]d
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Note that entropy maximization is applied only to the two categorical subactions: choosing the
focal atom f and selecting a new element e. The continuous spatial subactions (d, «, v), parameter-
ized as univariate Gaussians, are exempt from entropy regularization to avoid inadvertently disrupting
precise spatial predictions. Furthermore, to prevent premature convergence and encourage sustained
exploration, we linearly increase the entropy coefficient, co, during training from 0.15 to 0.25.

B.2 Hyper parameters

In Table 2 we show the hyper parameters used for model training. Additionally, we highlight the
individual hyper parameters whose values most crucially facilitated the training of a generalizable
agent (multi-component agent), as well as those unique to our setup . In addition to our new reward

structures and training schemes, the most noticeable difference from previous work is the use of
larger data collections, smaller learning rates and higher exploration factors.

Table 2: Hyperparameters.

Category | Hyperparameter Value Code variable name
Range [dumin, dmax] A) [0.8,1.8] [min,max]_mean_distance
RoLLoOUT Workers 8 num_envs
Env steps per PPO batch 512 num_steps_per_iter
Fail reward -3 min_reward
Discount factor 1.0 discount
GAE parameter A 0.97 1lam
Value coefficient 0.5 vf_coef
Advantage clipping € 0.2 clip_ratio
OPTIMIZATION Gradient Clipping 0.5 gradient_clip

Learning rate (PPO-Adam) S5e-5 learning_rate
Minibatch size 256 mini_batch_size
Entropy coef start 0.15 start_entropy
Entropy coef end 0.25 final_entropy
Entropy increase steps 30,000 total_steps
Layers 3 num_interactions

PAINN EMBEDDING | Network width 128 network_width
Teutof (A) 5 cutoff

QM7 SPLITS Num training bags 156 ..

Num eval bags 20 n_test

B.3 Reward coefficients

For each trained agent presented in Section 2.2, we used the reward coefficients listed in Table 3.
As shown in the table, we assigned a higher coefficient to validity compared to energy based
reward components. This was decided based on the observed magnitude and variance of the reward
components.

Table 3: Coefficients used to construct the reward functions (agents) as linear combinations of the
basic reward components A, F and V. Empty corresponds to zero.

Agents\ Components | A F V

A 1
1 3
F 1
FV 1 3
AFV 1 1 3
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C Q1: Molecule visualizations
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Figure 6: Q1 visualizations. Histograms of formation energy per atom after structural relaxation
(center column) together with top 3 best scoring molecules (lowest energy) for Agent A on the left

and Agent
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D Metric definitions

We split the evaluation metrics of Fig. 7 into two distinct categories. The discovery metrics are purely
count-based and contain the following metrics:

* Validity: Validity is not directly built into the molecular generation procedure used in our
framework*. Instead we incentivize the agent to create valid molecules based on a simple
discrete reward term 7y, = 1 if valid and 7,54 = 0 if invalid. The validity metric is
straightforwardly defined as

##valid molecules

Validity = .
Ay #sampled molecules

13)

¢ Rediscovery & Expansion Ratios:
Relating the discovery counts to our reference dataset (QM7) helps to probe whether the
agent explores broadly or if there are large gaps in its exploration. For each formula, we
therefore construct the set of uniquely discovered SMILES from the RL generated molecules.
Each discovered SMILES will then either be in the reference set already or correspond to a
"novel" molecule, i.e. foﬁlue = Nyegiscovered + Naovel- The rediscovery and expansion ratios
are calculated by relating Nyediscovered @Nd Npover to the number of reference molecules

Nredisco ered . . N, novel
Q7M\7l’ Expansion Ratio = QIJ” ) (14)

unique unique

Rediscovery Ratio =

The energy metrics pertain to the quality of the discovered geometries rather than their sheer quantity.
Since our agent was trained on energy based reward terms, it should be able to generate low energy
isomers. However, as our PPO agent uses 3D-spatial noise on the atomic positions in order to
facilitate exploration, we must first perform structural relaxation on the generated molecules using the
same xTB-GFN2 calculator that was employed for reward calculations during training. Specifically,
we calculate the following energy based metrics:

* Relaxed Relative Atomic Energy (rRAE): This measure is defined w.r.t. our reference
dataset QM7 and is calculated (at the individual molecule level) as the energy difference
between our RL generated molecule and the mean energy of all the QM7 molecules of the
same chemical formula (bag)

[B(CT)l
_ 1
AEgas(Cr) = E(Cr) — ESST) = E(C) — BT > BEM). a9
=1

It measures the agent’s joint ability to discover both low energy isomers (2D connectivity)
as well as sampling low energy conformers (3D positions) for the connectivity matrix of
that isomer.

* Root-Mean-Square Deviation (RMSD): To quantify how far the generated 3D structures
deviate from their corresponding relaxed geometries, we compute the Root-Mean-Square
Deviation (RMSD) between each generated molecule and its structure after geometry
optimization using the xTB-GFN2 method. This metric measures the average atomic dis-
placement required to reach a local energy minimum and is defined as:

N
1
RMSD(Cr) = ¥ Z |Xi _ X;elaxed 27 (16)
=1

where x; and x> denote the 3D positions of atom i before and after end-of-episode re-
laxation, and N is the number of atoms. A low RMSD indicates that the generated geometry
was already close to a local minimum, suggesting a physically meaningful placement of
atoms by the agent. In contrast, a high RMSD implies the presence of significant strain or
artifacts in the initial structure that required substantial correction during optimization.

*A word on uniqueness: The typically reported uniqueness measure which relates the number of unique
molecules to the number of sampled molecules would be a misleading metric to use in our case, since we are
sampling molecules constrained to yield a pre-specified chemical formula, thereby increasing the probability of
generating identical molecules compared to unconstrained sampling. As an example, we found just 3 isomers
out of 10,000 generated molecules for C3HgO in Table 1 (3 is actually the maximal number of unique molecules
for this particular chemical formula). Thus, we decided to leave out this metric from Fig. 7.
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E Q2: Reward term comparison - Multi-bag aggregated evaluation

While the single-bag discovery task demonstrated the superior discovery capabilities of our agents,
a much broader evaluation scheme is necessary for a robust comparison of reward signals. To
achieve this, we also carried out the experiments that was outlined in Fig. 2b (blue). This experiment
aggregates results from a random split of 20 holdout formulas in the QM7 dataset, offering a more
comprehensive assessment compared to single-bag evaluation.

For each test bag B;, 7 = 1,2, ..., 20 we sampled N; = P - N{ef molecules, where N{ef is the number
of isomers in the reference dataset for B;, and P = 100 is a proportionality factor. This scaling
ensures that the number of sampled molecules reflects the expected isomer diversity for each bag.
The results, including standard deviations across three seeds, are presented in Fig. 7. Note that to
obtain these metrics we first calculated these statistics for each bag individually and then aggregated
across all hold-out bags using a weighted average according to V;.
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Figure 7: Q2: Out-of-sample agent comparison. We report discovery metrics (top row) and
geometry metrics (bottom row) in the multi-bag evaluation setting outlined in Fig. 2b (see page 17
for detailed metric definitions). Each point reflects a weighted average across 20 test bags. Error
bars denote standard deviation across three random seeds. Results show that agent A consistently
outperforms on 3D metrics, while and AFV perform identically—highlighting the redundancy
of F in our setup. Agent F fails to discover valid molecules due to excessive intra-episode rewards.
Flat rediscovery and expansion metrics suggest no mode collapse, but agents fail to turn this into
continued improvement toward more stable molecules.

From Fig. 7 we make the following observations:

* >90% validity for agents that use either A or V, with only FV being slow to reach these
levels. This is more than sufficient in an RL context, as agents must take exploratory moves
in order to drive discovery, and an agent that always reaches 100% validity is possibly too
conservatively. Despite these high validities, we note that only 60% — 70% of the generated
molecules were "Relax Stable" (bottom right), meaning that relaxation did not alter the
geometries significantly enough to change their bond connectivity and thus their SMILES
representation.

* Agent A dominates on 3D metrics (same as Q1). This confirms our observation from
Q1 that the terminal atomization energy signal, A, best facilitates discovery of low energy
structures. In fact, not only is it better than all other agents across all checkpoints, it is also
better than the molecules present in the QM7 reference dataset on average.

* Agent F does not learn to create valid molecules. Most likely it receives too strong intra-
episode reward signals and fails to plan for the full horizon, which is a crucial requirement
as molecules are only collected at the end of the episode when the bag is empty.

. and AFV perform identically. This shows that the per-step formation energy, ., is a
redundant signal in our setup and does not contribute significantly to justify the increase in
energy queries within each episode.
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* Relaxed energy metrics don’t improve (rRAE). While the raw energies of the generated
molecules do improve during training (not shown here), this effect is washed out upon
relaxation as shown in the rRAE plot. Despite the generated molecules becoming less noisy,
as seen from the RMSD and Relax Stability curves, the agents’ abilities to select low-energy
isomers appears stagnant. And while it seems positive that the RMSD continues decreasing
throughout training, this is merely a bi-product of the gradual narrowing of the width of the
univariate Gaussians in their action policies from Eq. (6) (recall that in order to facilitate
exploration, the agents add Gaussian noise to the three spherical coordinates (r, v, 1)) as
they sample the 3D position of the new atom).

* Rediscovery & Expansion metrics are flat. On the positive side, this means that the agents
don’t display severe mode collapse, which would cause these numbers to decrease during
training. The sustained discovery is likely a consequence of the entropy regularization term
(Eq. (12)) on the two discrete actions that ultimately determine the connectively and hence
the SMILES object.
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F Q3: Functional group analysis
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Figure 8: Functional group analysis. Frequency difference of the 50 most common QM7 functional
groups between rediscovered and reference molecules. In particular, to avoid rare groups populating

the extreme ends of the spectrum, we present a normalized frequency difference calculated as A% =

(fiy — féw) / fém with f% representing the rate of occurence of fragment i in dataset D. Positive

values indicate overrepresentation by the RL agent; negative values indicate underrepresentation.

We first pool rediscoveries across all three seeds to ensure robust statistics. Then, using the exmol
package (Gandhi and White, 2022), we extract the most frequent functional groups in QM7 and
compare their occurrence in rediscovered molecules vs. the full dataset. The results are shown in
Fig. 8 where several key trends emerge. Among the most strongly underrepresented functional groups,
we find

* Heterocycles and aromatic systems (e.g., heterocyclic, heteroaromatic, aromatic, an-
nelated rings): These involve complex ring topologies and delocalized bonding, which are
difficult to construct via sequential atom placement.

* Strained and fused rings (e.g., cyclopropane, cyclobutane, cyclopentane, bridged rings,

nH aziridine): Geometrically strained or topologically complex rings are less favored due to
their instability and the precise coordination required to assemble them.
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* Heteroatoms and functionalized amines (e.g., hetero N nonbasic, hetero S, hetero O,
amine, primary/secondary aliphatic amine, oximether): These groups introduce electronic
and geometric diversity, making them harder to learn and reproduce, especially when their
placement significantly affects molecular stability.

In contrast, several functional groups are overrepresented, indicating that the agents preferentially
discover molecules with these features:

» Simple alkyl groups (e.g., methyl, ethyl, n-propyl, iso-propyl, primary carbon): These
groups are structurally simple and frequently encountered in organic molecules, making
them easy for the agent to generate and overrepresented in the rediscovered set.

* Carbonyl-containing groups (e.g., carbonyl, amide): These planar, well-defined functional
groups may be favored by the energy model used during training, and are commonly found
in stable molecules.

* Unsaturated hydrocarbons (e.g., alkene): These motifs are structurally simple and ener-
getically favorable, leading to their frequent appearance in generated molecules.
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