
Real-Time Tracking of Origami with Physics
Simulator Considering Fold Lines

Hiroto Arasaki
Department of Mechanical Engineering

Chiba University
24wm4111@student.gs.chiba-u.jp

Akio Namiki
Department of Mechanical Engineering

Chiba University
namiki@faculty.chiba-u.jp

Abstract: We address real-time tracking of paper during robotic folding
by integrating fold-line geometry into a physics-based simulator, enabling
localized plastic deformation. In experiments using a standard folding se-
quence, we succeeded in real-time tracking of a square-base folding sequence
by combining point cloud information from multiple RGB-D cameras with
estimates from the simulator.

Keywords: Deformable object tracking, Origami, Paper manipulation

1 Introduction

Deformable-object manipulation has gained attention as industries seek to automate manual
tasks; however, measuring and controlling deformation remains difficult.

One representative line of work is origami robotics. In our previous work, Namiki and
Yokosawa [1] realized folding motions using a robot hand. However, to track the paper shape
they relied on sheets with printed or attached markers, which limits generality. Therefore,
it is desirable to develop a method that can track the shape of ordinary, unmarked paper.

For deformable-shape tracking, prior work has studied cloth and string. Xiang et al. [2] and
Chi and Berenson [3] tracked filamentary objects without using physics simulation. Tang
et al. [4] and Chi and Berenson [3] performed shape tracking using Coherent Point Drift
(CPD) [5] for point cloud registration; notably, Tang et al. [6] combined CPD with physics-
based correction. Physics-based simulation of deformables has also progressed rapidly [7, 8,
9]. For robotic applications, Li et al. [8] proposed a differentiable cloth simulator, and Yu
et al. [10] used it for motion generation. In this study, we extended the methods proposed
by Tang et al. [4] and Chi and Berenson [3] to paper and proposed a paper shape tracking
method [11]. This system successfully tracked two-fold and four-fold sequence on a real-
time simulator by combining CPD-based registration and interpolation. In this paper, we
added a function for detecting fold lines and localizing plastic deformation to fold lines,
thereby achieving successful tracking of more complex origami. Specifically, we realized
high-precision real-time tracking of a square-base folding sequence.

2 System Configuration

Fig. 1 overviews the paper-shape tracking system [11]. We mount Intel RealSense RGB–D
cameras at five viewpoints relative to the table: D435 (overhead, rear) and D405 (left,
right, below). RGB–D images are streamed to a vision PC (the Tracker), while a physics
simulation of the paper (the Simulator) runs in parallel and exchanges model point clouds
and state updates with the Tracker over UDP.

Fig. 2 shows the processing pipeline. The Tracker first segments the paper in RGB and
masks the depth image to obtain a 3D point cloud of the paper (the observed point cloud). It

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

Vision PC

Simulator

Tracker

UDP

RGB-D Camera (RealSense D435)

RGB-D Camera (RealSense D405)

Robot Hand

Paper

Figure 1: System overview of the paper-
shape tracking system. Intel RealSense cam-
eras (D435: overhead, rear; D405: left,
right, below) stream RGB–D images to the
Tracker; the Simulator exchanges state in-
formation with the Tracker over UDP.

Tracker

RGB Image

RGB-D

Camera

Depth Image

Color Mask

3D Point Cloud

Simulator

Physical Model

Registration

Simulation

Running

Figure 2: Processing pipeline. The Tracker
segments the paper in RGB, masks depth
to obtain the observed point cloud, regis-
ters the model point cloud from the Simula-
tor using CPD, and returns the update for
physics stepping.

0 Skip Link

(Spring, Damper)

Node

𝑛 Skip Link

(Spring, Damper)

Figure 3: Physical model of the paper: a grid of point masses connected by spring–damper
links, including skip links between nodes 𝑛 steps apart.

also receives the previous model point cloud (the model point cloud) from the Simulator and
performs CPD-based registration to update the model pose. The Simulator then advances
the physical model using the updated model point cloud.

3 Origami Simulator

This section describes the origami simulator used in the Simulator process. Fig. 3 illustrates
the physical model of the paper: point masses arranged on a grid connected by links. Each
link comprises an elastic element (spring) and a damping element (damper). Links are
placed between adjacent nodes as well as between nodes that are 𝑛 steps apart (skip links).

3.1 Update rule of the simulation

We adopt Substep Extended Position-Based Dynamics (XPBD) [7], and in this work we use
only distance constraints between two points 𝐱1 and 𝐱2, which keep the distance at 𝑑. The
constraint function is 𝐶(𝐱1, 𝐱2) = |Δ𝐩| − 𝑑 where Δ𝐩 = 𝐱2 − 𝐱1. Let 𝑚1 and 𝑚2 be the
masses of the two points. The update rules are given by

Δ𝐱1 = 𝐶 − 𝛾Δ𝐩 ⋅ (𝐱new
1 − 𝐱old

1)/|Δ𝐩|
𝑚1(𝑚1

−1 + 𝑚2
−1 + 𝛼

Δ𝑡𝑠
2)

Δ𝐩
|Δ𝐩|

, (1)

Δ𝐱2 = −𝐶 + 𝛾Δ𝐩 ⋅ (𝐱new
2 − 𝐱old

2)/|Δ𝐩|
𝑚2(𝑚1

−1 + 𝑚2
−1 + 𝛼

Δ𝑡𝑠
2)

Δ𝐩
|Δ𝐩|

. (2)

Here 𝛼 denotes spring compliance and 𝛾 = 𝛼𝛽/Δ𝑡𝑠 with damper coefficient 𝛽.

2

3.2 Reflecting tracking results in the physical model

Given the model point cloud from the Tracker, the Simulator must update the positions of
the physical model’s point masses. We treat the received point cloud as a desired position
𝐗𝑑 and apply virtual zero-rest-length springs between 𝐗 and 𝐗𝑑 to provide input to the
dynamics.

3.3 Fold line detection and plasticity localization

To reproduce folding phenomena, the simulator introduces plasticity into the spring–mass
model [12]. A trade-off arises: if plastic deformation is too easy, springs near folds deform
largely and tracking accuracy improves, but any mass point may also be affected strongly
by input noise, causing failure. Conversely, if plastic deformation is too difficult, the model
becomes robust to noise but folding deformation near creases is suppressed, again leading to
tracking failure. The key insight is that reliable tracking requires allowing large deformations
only in the vicinity of fold lines, while keeping other regions elastic.

To achieve this, we added a function for detecting fold lines as cluster boundaries. First, the
simulator estimates to which cluster each mass point belongs. For every spring in the phys-
ical model, if its endpoints belong to different clusters, plastic deformation is applied. If the
endpoints belong to the same cluster, the plastic strain of that spring is reset to zero and no
plasticity is applied. In this way, only springs around fold lines undergo plastic deformation,
enabling the simulator to combine accurate tracking of paper folds with robustness against
observation noise.

For clustering, each mass point is represented as a 5-dimensional vector 𝐱 = (𝑥, 𝑦, 𝑧, 𝑢, 𝑣),
where (𝑥, 𝑦, 𝑧) denotes the 3D spatial position and (𝑢, 𝑣) are the intrinsic coordinates on
the undeformed 2D sheet. We adopt the 𝑘-means method, which iteratively updates cluster
centroids and reassigns points to the nearest centroid until convergence. Unlike the conven-
tional 𝑘-means that relies on Euclidean distance, we employ the Mahalanobis distance to
account for anisotropy of the paper surface:

𝑑M(𝐱, 𝝁) = √(𝐱 − 𝝁)⊤𝚺−1(𝐱 − 𝝁), (3)

where 𝝁 and 𝚺 are the mean and covariance of the cluster. Decomposition of 𝚺 leads
to 𝚺 = 𝐖⊤𝚲𝐖 where 𝐖 are the principal axes and 𝚲 = diag(𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5) are
the principal components, corresponding to the cluster variances. To encourage clusters
to approximate 2D distributions, we replace 𝜆3, 𝜆4, 𝜆5 with a small constant 𝑆 (set to 0.0012

in this study).

Cluster splitting is triggered when

𝑅div < √𝜆3 + 𝜆4 + 𝜆5
𝜆1 + 𝜆2

, (4)

where 𝑅div is a constant (set to 0.13 in this study) and we use 𝜆3, 𝜆4, 𝜆5 as before the
replacement. Once a cluster has split, further splitting is prohibited until the cluster is
regarded as fixed. A cluster is considered fixed when the overall distribution returns close
to a 2D sheet: specifically, we perform PCA using only the spatial coordinates 𝐱𝑎 = (𝑥, 𝑦, 𝑧)
and declare the cluster fixed when the third principal component 𝜆(𝑎)

3 falls below 𝑅fix(set to
0.0082 in this study).

4 Experiments

To validate the proposed method, we conducted real-time tracking experiments with a phys-
ical setup. As the target motion, we used a square-base folding sequence, which includes
simple half-folds, sheet turnovers, and opening-and-folding operations.

3

(a) 100 steps (b) 200 steps (c) 225 steps (d) 268 steps (e) 345 steps (f) 460 steps (g) 580 steps

Figure 4: Real-time tracking with ArUco markers. Rows show the RGB frame, the observed
point cloud, and the Simulator state.

Figure 5: Per-step error 𝐸 defined in Eq. (5), plotted for three series: ArUco, CPD without
clustering, and CPD with clustering. Means across all tracking steps: 3.86 mm (ArUco),
5.26 mm (CPD without clustering), and 5.05 mm (CPD with clustering).

We evaluated two tracking variants in the Tracker: (i) detection of feature points via ArUco
markers and (ii) CPD-based point cloud registration. Variant (i) uses a special paper sheet
with an ArUco grid and evaluates shape estimation from detected feature points only. Vari-
ant (ii) performs CPD-based registration on the observed point cloud (no markers) to eval-
uate shape estimation for general papers. Computation was performed on a PC with an
Intel Core i9-14900KF CPU and an NVIDIA GeForce RTX 4090 GPU. The Simulator ran
on the GPU in CUDA C++, and the Tracker ran on the CPU in Python.

4.1 ArUco-based tracking

Using paper printed with an ArUco grid, the RGB–D camera detects the positions of feature
points (the observed point cloud). We detect 13 × 13 points and associate them with every
other node in the 25 × 25 physical model grid. Representative tracking results are shown
in Fig. 4. Qualitatively, clustering is observed along each fold and plastic deformation
remains localized near fold lines. In addition, Fig. 5 plots the per-step one-sided mean
nearest-neighbor error 𝐸. The error 𝐸 is computed using Eq. (5), which calculates the error
between each point in the observed point cloud 𝑌 and its nearest neighbor in the model point
cloud 𝑋, and then takes the average. The spike near step 350 (ArUco) stems from model
tunneling through the sheet. The average processing time was approximately 0.22 s/step.

𝐸(𝑌 , 𝑋) = 1
|𝑌 |

∑
𝐲∈𝑌

min
𝐱∈𝑋

‖𝐲 − 𝐱‖2 (5)

4

(a) 100 steps (b) 220 steps (c) 255 steps (d) 300 steps (e) 368 steps (f) 470 steps (g) 570 steps

Figure 6: Real-time tracking with Coherent Point Drift (without clustering).

(a) 100 steps (b) 220 steps (c) 260 steps (d) 305 steps (e) 375 steps (f) 470 steps (g) 570 steps

Figure 7: Real-time tracking with Coherent Point Drift (with clustering).

4.2 CPD-based tracking

For CPD we similarly use 13 × 13 points and associate them with every other node of
the 25 × 25 model. We also compare with a baseline that does not perform clustering.
Representative tracking results without and with clustering are shown in Fig. 6 and Fig. 7,
respectively. Clustering along fold lines is also observed under CPD, and the simulated
model exhibits fewer wrinkles with clustering than without. A failure occurs at step 570
(CPD with clustering) due to model tunneling through the sheet; this likely stems from CPD
not directly observing each model point as in ArUco. Preventing such failure likely requires
either collision handling in the Simulator or stronger geometric consistency constraints in
the Tracker. CPD per-step errors are also shown in Fig. 5. The spike near step 570 (CPD
with clustering) is caused by the same tunneling event. The average processing time was
approximately 0.24 s/step.

5 Conclusion

We presented a real-time paper-shape tracking system that augments a physics simulator
with geometric information to induce localized plastic deformation along fold lines. The
results of the experiment showed that the simulation model improved its fit to the observed
data and successfully estimated a continuous square-base folding sequence. Future work
includes preventing model tunneling (e.g., via collision handling) and further improving
tracking robustness.

5

6 Limitations

Our system assumes a fixed multi-camera setup; performance can degrade under severe oc-
clusions or highly localized folding operations (i.e., deformations confined to a small region
rather than global motions). The simulator currently uses XPBD using only distance con-
straints and lacks explicit collision and self-collision handling, which can occasionally lead
to self-tunneling of the sheet. Fold-line localization relies on 𝑘-means in the (𝑥, 𝑦, 𝑧, 𝑢, 𝑣)
space, using the Mahalanobis distance, and the hyperparameters (𝑆, 𝑅div, 𝑅fix) are tuned
to our setup; applying the method to different environments may require re-tuning. Our
experiments focus on a square-base sequence; extending to a broader repertoire of folds
and to faster motions remains future work. On our hardware, the average runtime is
0.22–0.24 s/step, limiting the update rate to a few hertz.

References
[1] A. Namiki and S. Yokosawa. Robotic origami folding with dynamic motion primitives.

In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5623–5628. IEEE, 2015.

[2] J. Xiang, H. Dinkel, H. Zhao, N. Gao, B. Coltin, T. Smith, and T. Bretl. Trackdlo:
Tracking deformable linear objects under occlusion with motion coherence. IEEE
Robotics and Automation Letters, 8(10):6179–6186, 2023. doi:10.1109/LRA.2023.
3303710.

[3] C. Chi and D. Berenson. Occlusion-robust deformable object tracking without physics
simulation. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6443–6450. IEEE, 2019.

[4] T. Tang, C. Wang, and M. Tomizuka. A framework for manipulating deformable linear
objects by coherent point drift. IEEE Robotics and Automation Letters, 3(4):3426–3433,
2018.

[5] A. Myronenko and X. Song. Point set registration: Coherent point drift. IEEE trans-
actions on pattern analysis and machine intelligence, 32(12):2262–2275, 2010.

[6] T. Tang, Y. Fan, H.-C. Lin, and M. Tomizuka. State estimation for deformable ob-
jects by point registration and dynamic simulation. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2427–2433, 2017. doi:
10.1109/IROS.2017.8206058.

[7] M. Macklin, K. Storey, M. Lu, P. Terdiman, N. Chentanez, S. Jeschke, and M. Müller.
Small steps in physics simulation. In Proceedings of the 18th Annual ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 1–7, 2019.

[8] Y. Li, T. Du, K. Wu, J. Xu, and W. Matusik. Diffcloth: Differentiable cloth simulation
with dry frictional contact. ACM Trans. Graph., 42(1), oct 2022. ISSN 0730-0301.
doi:10.1145/3527660. URL https://doi.org/10.1145/3527660.

[9] J. M. Pizana, A. Rodríguez, G. Cirio, and M. A. Otaduy. A bending model for nodal
discretizations of yarn-level cloth. In Computer Graphics Forum, volume 39, pages
181–189. Wiley Online Library, 2020.

[10] X. Yu, S. Zhao, S. Luo, G. Yang, and L. Shao. Diffclothai: Differentiable cloth sim-
ulation with intersection-free frictional contact and differentiable two-way coupling
with articulated rigid bodies. In 2023 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 400–407, 2023. doi:10.1109/IROS55552.
2023.10341573.

6

http://dx.doi.org/10.1109/LRA.2023.3303710
http://dx.doi.org/10.1109/LRA.2023.3303710
http://dx.doi.org/10.1109/IROS.2017.8206058
http://dx.doi.org/10.1109/IROS.2017.8206058
http://dx.doi.org/10.1145/3527660
https://doi.org/10.1145/3527660
http://dx.doi.org/10.1109/IROS55552.2023.10341573
http://dx.doi.org/10.1109/IROS55552.2023.10341573

[11] S. Takahashi, H. Arasaki, and A. Namiki. Paper shape tracking system using point
cloud and physical model. In 2024 IEEE International Conference on Cyborg and
Bionic Systems (CBS), pages 229–234, 2024. doi:10.1109/CBS61689.2024.10860574.

[12] H. Arasaki, S. Takahashi, and A. Namiki. Realtime paper shape estimation for origami
robot system, 4th Workshop on Representing and Manipulating Deformable Objects @
ICRA2024.

7

http://dx.doi.org/10.1109/CBS61689.2024.10860574

	Introduction
	System Configuration
	Origami Simulator
	Update rule of the simulation
	Reflecting tracking results in the physical model
	Fold line detection and plasticity localization

	Experiments
	ArUco-based tracking
	CPD-based tracking

	Conclusion
	Limitations

