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ABSTRACT

The creation of the most famous German dictionary, also referred to as “Deutsches
Wörterbuch” or in English “The German Dictionary”, by the two brothers Jacob and
Wilhelm Grimm, took more than a lifetime to be finished (1838–1961). In our work
we pose the question, if it would be possible for them to create a dictionary using
present technology, i.e., language models such as BERT. Starting with the definition
of the task of Automatic Dictionary Generation, we propose a method based on
contextualized word embeddings and hierarchical clustering to create a dictionary
given unannotated text corpora. We justify our design choices by running variants
of our method on English texts, where ground truth dictionaries are available.
Finally, we apply of our approach to Shakespeare’s work and automatically generate
a dictionary tailored to Shakespearean vocabulary and contexts without human
intervention.

1 INTRODUCTION

In 1838, the brothers Jacob and Wilhelm Grimm started to create the Deutsches Wörterbuch (Grimm
& Grimm, 1852–1971), a comprehensive German dictionary with references for each entry. A
dictionary is a resource that assigns meanings or translations to words. Words are usually displayed
in alphabetical order in their canonical form, called lemma, and an explanation of the meaning, called
a gloss. The first volumes of the famous German dictionary were published in 1852. Brothers Grimm
could not finish their work within their lifetime, but different scholars and institutions later succeeded
in 1961. The creation took 123 years in total. If the brothers Grimm started their project nowadays,
they would likely use state-of-the-art technology like the internet and a pretrained language model
like the Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019) to
speed up their work. In our work, we want to examine if the automated generation of a dictionary is
possible with state-of-the-art technology and if today’s language models could do the extensive work
of creating a dictionary.

In NLP, we have to split sentences into smaller units which we refer to as tokens. Tokens are not only
written words but also punctuation marks and numbers (Hagiwara, 2021). To automatically build a
dictionary from plain reference texts, we need to find all occurrences of each token and distinguish
their sense only from their context, which aligns with Wittgenstein’s dictum ”the meaning of a word is
its use in the language” (Wittgenstein, 1958). Words with only one meaning are called monosemous,
while ambiguous words are referred to as polysemous.

Word sense disambiguation (WSD) is the task of choosing the correct sense word from a fixed set of
senses. The task we want to propose in this paper differs from WSD as senses and also the number of
senses for each word appearing in a given text is not given. We use a hierarchical clustering method
to automatically generate a dictionary from raw text without any further annotations.

It has been shown that BERT’s contextualized word embeddings hold syntactic and semantic knowl-
edge (Jawahar et al., 2019; Lin et al., 2019; Rogers et al., 2020). In addition, they form separable
clusters for polysemous words (Yenicelik et al., 2020; Wiedemann et al., 2019). We want to utilize
these characteristics of contextualized vector representations produced by language models such as
BERT to tackle the task of automatic dictionary generation (ADG).
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Contributions.

1. We propose the task of automatic dictionary generation (ADG).

2. We discuss how to evaluate automatically generated dictionaries.

3. We present a simple approach for ADG using a pretrained CharacterBERT (El Boukkouri
et al., 2020) model and agglomerative hierarchical clustering (AHC) (Nielsen, 2016), and
apply it to the work of William Shakespeare to create a Shakespearean dictionary.‘

The remaining paper is structured as follows: in the upcoming section, we discuss related work. We
then define the task of ADG and afterward explain our approach to ADG called Grimm’s BERT and
discuss how we evaluate the model. Section 4 presents our experiments on the task of ADG. To
demonstrate the applicability of our ADG pipeline to an interesting real-world text corpus, we apply
it to the works of William Shakespeare in order to create a Shakespearean dictionary in Section 5
before giving a conclusion of our work in Section 6. All of our experiments are available under: link
will be available after the blind review process.

2 RELATED WORK

Among the many possibilities, we choose to use CharacterBERT (El Boukkouri et al., 2020) em-
beddings to calculate contextualized vector representations of each word in a given text and apply
hierarchical clustering to distinguish different meanings of the words used in a text to create dictionary
entries. In the following section we firstly discuss previous approaches to generate dictionaries and
secondly look at methods to disambiguate the meaning of words.

Dictionary Generation. The generation of lexical resources such as dictionaries has interested
researchers for a long time (Chang et al., 1995). Past work on dictionary generation, also referred to
as dictionary construction can be divided into two categories. There have been methods to construct
(i) bilingual (Ivanov et al., 2022; Kaji et al., 2008) and (ii) monolingual dictionaries (Tavast et al.,
2021) which are either of a general nature or focus on domain-specific terms (Ren et al., 2022; Das
et al., 2022). Bilingual dictionaries have been either created by translation (Varga & Yokoyama,
2009), through the use of parallel corpora (McEwan et al., 2002) or by combining two existing
dictionaries (Kaji et al., 2008). One challenge all these methods face is the ambiguity of words. To
solve it, additional knowledge has been necessary in form of thesauri, Wordnets (Ivanov et al., 2022;
Nicolas et al., 2021) or statistics given raw text in both languages (Kaji et al., 2008).

For now, to the best of our knowledge no method exists that does not depend on additional resources
to deal with word ambiguities. Our goal is to generate dictionary entries, independent from any
additional knowledge, only given raw text for one specific language. Recently there have been
approaches to automatically generate glosses (Barba et al., 2021; He & Yiu, 2022) which we will
leave to future work for now.

Word Sense Disambiguation. The task of assigning a sense from a fixed set of senses to a word
occurring in a sentence or piece of text, is referred to as word sense disambiguation (WSD). There
have been different approaches to perform the task of WSD which are described in the following.

To tackle the task of WSD, there are knowledge-based approaches that utilize linguistic resources like
thesauri and supervised (and semi-supervised) approaches that train a classifier on manually labeled
training data and possibly unlabeled corpora in addition (Wiedemann et al., 2019). In contrast, we
want to solve the task without the use of any annotations or further knowledge as a sub-task of the
automatic dictionary generation.

For WSD there have been already approaches based on word embeddings. The context-group-
discrimination (Schütze, 1998) algorithm, for example, combines context independent word vectors
with context vectors that capture information from second-order co-occurrence and clusters. Wiede-
mann et al. (2019) investigate the application of the contextualized word embeddings of Flair (Akbik
et al., 2018), ELMo (Peters et al., 2018) and an uncased BERTLarge (Devlin et al., 2019) for WSD.
BERT was the only evaluated contextualized embedding that allowed distinguishable clusters and
therefore outperformed its competitors (Wiedemann et al., 2019).
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Figure 1: Grimm’s BERT: our ADG pipeline implementation. Solid and . . . . . . .dotted arrows indicate
obligatory and . . . . . . . . .optional connections, respectively.

In contrast to the WSD task, we do not assume that we have a set of known senses for every given
word. Instead we attempt to derive the number of senses by building clusters. To the best of our
knowledge there are currently no approaches to automatically build a dictionary from plain text
without further annotations.

3 AUTOMATIC DICTIONARY GENERATION

Informally, automatic dictionary generation (ADG) is the process of creating a dictionary from raw
text, containing a list of senses with reference sentences for each token. While this description
appears obvious for common languages like English, there are a couple of choices to make, which we
detail next.

More formally, a text is given as a sequence of characters, i.e., as a string. The first step is to split
the string into a sequence of tokens. A trivial choice is to split at whitespace characters. However,
many so-called tokenizers split words even further into stem and ending. Punctuation marks and
numbers are most often tokens themselves. The second step is to split the sequence of tokens into
subsequences called sentences. Sentences give context to a token and should be characteristic of the
token’s sense. Based on these choices, a dictionary is a set of one dictionary entry per unique token.
Each entry consists of a list of senses, where each sense has a list of reference sentences assigned.
Some tokens are possibly excluded from the dictionary, e.g., word endings.

Thus to implement ADG, we have to specify how we define tokens and sentences, since these choices
determine what the generated dictionary will contain. For most common languages, the dictionary
entries contain an additional human-understandable description called gloss, which we exclude from
our pipeline for now.

Note that in contrast to WSD, the ADG task does not assume any knowledge about the number of
senses a token occurring in a text corpus has. Consequently, ADG is different from WSD since we
not only assign occurrences of tokens to predefined word senses, but we also have to find those senses
for each token.

To solve the task of ADG, we employ contextualized representations of each token that capture
semantic and syntactic features. Several studies show that BERT embeddings capture syntactic
information (Rogers et al., 2020). They contain a kind of a syntactic tree structure in addition to
the word order information (Lin et al., 2019). Wiedemann et al. (2019) also compared different
contextualized word embeddings for WSD and found that BERT uncased embeddings perform best
for this task. Motivated by these results, we use BERT embeddings to tackle the task of ADG.

3.1 GRIMM’S BERT FOR ADG

Next, we propose a method for the ADG task, which we call “Grimm’s BERT”. Figure 1 shows the
complete pipeline of our approach. The general steps that are performed for ADG are also written
down as Algorithm 1. To give further explanation we next discuss each step separately:
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Algorithm 1: ADG Pipeline
1 Tokenize the input.
2 Generate one contextualized word vector per token.
3 Perform token-wise sense disambiguation by clustering the contextualized word vectors.

1. Tokenization. BERTLarge solves the task of WSD better than other contextualized word embed-
dings (Wiedemann et al., 2019). However, the used WordPiece tokenizer (Wu et al., 2016) cuts words
into so-called word pieces. As our dictionary should contain only human-readable words, we decided
to use a BERT model that is pretrained using a word level tokenizer.

We choose CharacterBERT (El Boukkouri et al., 2020), more precisely CharacterBERTGeneral which
is a pretrained variant of the uncased BERTBase model that uses ELMo’s (Peters et al., 2018) word
level Character-CNN module instead of WordPiece embeddings.

2. Generate contextualized Word Embeddings. We calculate one contextualized word vector
per token with a pretrained CharacterBERTGeneral model, forward the tokenized input and extract the
768 dimensional output from the model’s last hidden layer.

3. Token-wise sense Disambiguation. Each token has at least one word sense. We perform
agglomerative hierarchical clustering (AHC) to related word vectors to detect and discriminate
different word senses for polysemous words. AHC is a bottom-up method that starts with single
objects and successively merges the closest objects to build a binary merge tree (Nielsen, 2016).
A linkage criterion determines the relevant distance between clusters for the process of merging.
Average linkage clustering uses the average distance between all pairs of objects in two clusters (Sokal
& Michener, 1958), complete linkage takes the maximum distances between all objects of two
clusters (Defays, 1977) and single linkage uses the minimum distance between all objects of the two
sets (Sibson, 1973).

There are several ways to cut the binary merge tree into subtrees to get different clusters. One option
is a fixed distance threshold that determines connections to cut and leaves the resulting number of
clusters open. Another option is a fixed cluster count that maximizes the linkage criterion but ignores
the absolute value of the cut connections. Grimm’s BERT builds one dendrogram per token using the
average linkage criterion with the Euclidean distance as linkage distance. It applies a fixed linkage
distance threshold, which is a hyperparameter, to cut the dendrograms into subtrees representing
different groups of senses. For our choices of the linkage and cut criterion, we performed extensive
experiments presented in the Appendix.

3.2 EVALUATION

While WSD is a classification task, ADG is a clustering problem. The following section discusses how
to evaluate an automatically created dictionary for the case where we have ground truth information
about the number of word senses.We choose the Adjusted Rand Index (ARI) (Hubert & Arabie, 1985)
as an objective evaluation metric to quantify the quality of the resulting clusters. Classical metrics for
WSD like the accuracy or the F1 score are not applicable, as forming clusters of senses can rather be
seen as a separation of unnamed senses than a selection from a fixed dictionary.

Rand (1971) defined the Rand Index (RI) to measure the similarity of two clusterings by calculating
the agreement between two different partitions. The index considers every pair of the given data
points in the obtained and correct clustering and counts how many pairs are in the same clusters and
how many are in different clusters. The ARI (Hubert & Arabie, 1985) is the Rand Index, corrected
for chance using the hypergeometric function.

As the ARI compares a clustering with some ground truth, we cannot use it to evaluate a dictionary
for corpora without any semantic annotations. In that case, we measure the density and separation of
clusters using the Silhouette Coefficient (Rousseeuw, 1987) to find a sensible cluster count k for a set
of n objects. In our context, objects are tokens and clusters are senses.
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3.3 IMPLEMENTATION DETAILS

We transform corpora into lists of sentences, where each sentence is a list of tokens. We save these
lists into an archive file to avoid repeated preprocessing steps like tokenization and lower casing. For
the actual WSD per token, we apply the implementation of AHC from the machine learning library
scikit-learn1. We choose the Euclidean distance between word vectors as affinity and the average
linkage criterion (see Table 4 in the appendix for a comparison of different linkage criteria and Cosine
vs Euclidean distance).

4 EXPERIMENTS

We conduct several experiments to evaluate how well our pipeline works. To numerically measure
the performance of our approach, we perform ADG on different annotated corpora and measure the
ARI of our obtained clusters.

4.1 DATASETS

Corpora Docs. Sents. Tokens Annotations per POS

Senseval2 (Edmonds & Cotton, 2001) 3 242 5, 766 ADJ, ADV, NOUN, VERB
Senseval3 (Snyder & Palmer, 2004) 3 352 5, 541 ADJ, ADV, NOUN, VERB
SemEval2007 (Pradhan et al., 2007) 3 135 3, 201 NOUN, VERB
SemEval2013 (Navigli et al., 2013) 13 306 8, 391 NOUN
SemEval2015 (Moro & Navigli, 2015) 4 138 2, 604 ADJ, ADV, NOUN, VERB

SemCor Miller et al. (1993) 352 37, 176 802, 443 ADJ, ADV, NOUN, VERB

Table 1: Overview of WSDEval Corpora. POS tags are adjectives (ADJ), adverbs (ADV), nouns
(NOUN) and verbs (VERB) (adapted from Table 1 in Miller et al. (1994)).

For the evaluation of our model, we use textual corpora with token-level sense annotations to evaluate
the performance of semantic tasks. Please note that many corpora do not contain sense tags for every
token, as semantic tagging by hand is a tedious and costly process. So-called all-words corpora
contain tags for every token with certain part-of-speech (POS) tags but usually omit closed-class
words (Snyder & Palmer, 2004; Moro & Navigli, 2015). All datasets used for evaluation are shortly
described in the following.

• Senseval2 (Edmonds & Cotton, 2001): Data from the Second International Workshop on
Evaluating Word Sense Disambiguation Systems English all-words task.

• Senseval3 task 1 (Snyder & Palmer, 2004): Data from the Third International Workshop on
the Evaluation of Systems for the Semantic Analysis of Text English all-words task.

• SemEval2007 task 17 (Pradhan et al., 2007): Data from the Fourth International Workshop
on Semantic Evaluations WSD English all-words task.

• SemEval2013 task 12 (Navigli et al., 2013): Data from the English WSD task of the Seventh
International Workshop on Semantic Evaluation.

• SemEval2015 task 13 (Moro & Navigli, 2015): Data from the Ninth International Workshop
on Semantic Evaluation English WSD task.

• Semcor Miller et al. (1993): The semantic concordance (SemCor) corpus, is the combination
of a textual dataset and lexicographical information. Semcor includes 103 passages from
the Brown Corpus (Kucera & Francis, 1967) with semantic information from the lexical
database WordNet (Miller et al., 1990).

Senseval and SemEval are part of WSDEval (Raganato et al., 2017) which is a unified evaluation
framework that offers several annotated corpora in the same XML format with sense annotations
from WordNet (Miller et al., 1990) version 3.0. Raganato et al. (2017) applied the XML schema

1https://scikit-learn.org/stable/
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Figure 2: ARI scores for varying linkage distance thresholds.

of the SemEval2013 all-words WSD task (Navigli et al., 2013), remove annotations for auxiliary
verbs, semi-automatically update WordNet senses to version 3.0, lemmatize and POS tag all tokens to
standardize the corpora. Table 1 lists the number of documents, sentences and tokens per corpus and
indicates the kind of POS for tokens with semantic tags. Some datasets like Senseval2 and Senseval3
do not contain semantic tags for all words of a POS. Sometimes, multiple sense tags exist in the case
of ambiguity or if no suitable WordNet sense was available (Navigli et al., 2013).

4.2 PERFORMANCE EVALUATION OF OUR APPROACH

ARI

Distance Unique No Single ADG
Corpus Threshold Senses Cluster Cluster (ours)

SemCor 14.50 54,806 0.0000 0.6521 0.6522
Senseval2 14.00 1,626 0.0000 0.9136 0.9137
Senseval3 10.30 2,144 0.0000 0.8395 0.8671
SemEval2007 9.60 1,685 0.0000 0.7109 0.8632
SemEval2013 15.00 2,376 0.0000 0.9377 0.9377
SemEval2015 10.60 876 0.0000 0.9464 0.9509

Table 2: ARI scores for two baselines “No Cluster” and “Single Cluster” vs our results “ADG (ours)”
using Grimm’s BERT. Overall the improvements are small.

We compare the performance of our approach with two different baselines (see Table 2) to assess
its value in practice. The first baseline assigns a distinct sense to each token, called “No Cluster”-
baseline. The second baseline assigns all occurrences of the same token to a single sense, called
“Single Cluster”-baseline. We perform our ADG pipeline with average linkage and the Euclidean
distance (see Table 4 in the Appendix for other options). Table 2 presents our results with linkage
distance thresholds, which we optimized within a range of 8− 16 (see Appendix A.4). Please note
that all ARI scores are slightly better than our baselines (see Table 2), except for the SemEval2013
task for which our best result is equal to the “Single Cluster”-baseline. As a proof of concept, we
were able to improve over the baselines with some parameter tuning of the distance threshold.

To study how the ARI scores depend on the distance threshold, we show the distribution of ARI
scores in Figure 2 for every dataset for varying distance thresholds. For large distance thresholds,
the ARI score matches the “Single Cluster”-baseline, since all occurring tokens end up in a single
cluster. Unfortunately, the scores converge to the baseline. However, this might be due to selective
annotations in the corpora. Note that for SemEval2007 we can see a peak before reaching the ARI
for the “Single Cluster”-baseline, which shows that for that particular dataset, the token embeddings
can give meaningful clusterings.
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Figure 3: Results only for the SemEval2007 dataset. ARI score for different thresholds and linkage
criteria and the “Single Cluster”-baseline (left) and ARI score per sense count and different linkage
criteria (right).

To further analyze the SemEval2007 dataset we show the distribution of the ARI for different linkage
criteria in the left panel, together with the “Single Cluster”-baseline and the ARI for different sense
counts in the right panel in Figure 3. We see that the exact choice of the linkage criterion is not
critical and that for the SemEval2007 corpus the clustering works well for tokens with a single and
more than three unique senses. For the other datasets the corresponding plots are in the Figure 7 in
the Appendix.

5 ADG FOR SHAKESPEARE’S WORKS

So far, we defined the ADG problem and proposed a simple pipeline to solve it. In the experiments
above, we generate contextualized word vectors with a general CharacterBERT model pretrained
on the English Wikipedia and the OpenWebText corpus2. However, ADG is much more interesting
and becomes more complicated if raw text is the only available training resource for the particular
language to create a dictionary. In that case we have to pretrain a language model on the exact text that
is the input for the complete pipeline. Note that such an approach is also applicable to unannotated
low resource languages.

To investigate this scenario, we apply our method to generate a dictionary for all works of the famous
English poet William Shakespeare (1564 – 1616). The vocabulary and grammar from Early Modern
English (used in late 15th to mid-to-late 17th century) is different from today’s Modern English (used
since mid-to-late 17th century). Nevertheless, his works have been widely studied and understood
and are readable without too much effort. As the manual creation of appropriate dictionaries is
time-consuming and computationally expensive, the result of our automated pipeline (see Algorithm
1) could be a useful starting point for generating such a dictionary.

Training Data. We use an open corpus with sonnets and plays from Shakespeare3. For preprocess-
ing, we remove stage directions beginning with “<”. We delete all lines that contain only a number,
e.g., years of publication or enumerations of sonnets. Additionally, we remove repeated line breaks.
The resulting corpus constists of 112,521 sentences with 1,152,400 total and 23,547 unique tokens. It
is small compared to typical datasets used to train CharacterBERT, but larger than SemCor (802,443
total tokens, see Table 1).

CharacterBERT Model for Shakespearean English. We train a CharacterBERT model with the
original pretraining code4 and our Shakespeare corpus. The used hyperparameters for pretraining can
be found in Table 8 in the Appendix.

Shakespearean Dictionary from Grimm’s BERT. We perform our ADG pipeline with average
linkage and the Euclidean distance, as this setup worked best for most corpora, particularly for the

2https://skylion007.github.io/OpenWebTextCorpus/
3https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.

shakespeare.txt
4https://github.com/helboukkouri/character-bert-pretraining
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Linkage Distance Threshold 8.0 9.0 10.0

Unique Senses 52,797 51,070 49,272

Table 3: Number of unique senses for different thresholds in our Shakespeare Dictionary.

large SemCor (see Table 4). We run the pipeline with threshold 8.0, 9.0, and 10.0. Table 3 shows
that different numbers of senses are found as expected. Since we have no ground truth we arbitrarily
choose the threshold 9.0 for the following examples.

Qualitative Evaluation. The raw text from Shakespeare does not provide semantic annotations. So
we can not use metrics like the ARI for quantitative evaluation. Please note that we present all tokens
lowercase and separated with single spaces. The enumerator styles indicate the assigned senses.

Our created dictionary offers for the token eyed two different senses. Looking at the sentence
examples, the first example is an adjective but the second is a verb.

• it is the green - eyed monster , which doth mock

� for as you were when first your eye i eyed ,

Our dictionary correctly lists only one sense for both occurrences of writer.

• i ’ ll haste the writer , and withal

• drive some of them to a non - come . only get the learned writer to

However, for wrongful, we incorrectly get two different senses.

• that i despise thee for thy wrongful suit ,

� in wrongful quarrel you have slain your son .

Curiously, tokens with more reference sentences tend to have outliers. For example, the word
englishman only has one meaning, however our dictionary assigns eight reference sentences to the
same sense but assigns two occurrences to another.

The token major is an interesting dictionary entry. The first two references form a sense, while the
other two occurrences belong to a second cluster. At first glance, the division appears correct since
the first sense is a noun, and the second sense is an adjective. However, major means “matter” in
the first example, but refers to a constellation in the second one. A correct distinction might require
background knowledge and logical reasoning. Nevertheless, the entry is almost correct.

• fal . i deny your major . if you will deny the sheriff , so ; if not ,

• nativity was under ursa major , so that it follows i am rough and

� the major part of your syllables ; and though i must be content to

� my major vow lies here , this i ’ ll obey .

In this experiment, the most difficult challenges are the corpus size, which is small for training a
language model and large for clustering methods. Contexts in our Shakespeare corpus are often short
and incomplete, since we defined a sentence to be limited to a single line, but many sentences extend
over several lines. While our generated dictionary tends to list too many senses per token, it also
contains valuable groupings and correct entries.

6 CONCLUSION

In this paper, we examine whether the brothers Grimm could create a dictionary using a language
models like BERT. To achieve this, we propose the ADG task and a first simple approach to
automatically generate a dictionary from raw text using a language model and AHC.

At its core, ADG is a clustering problem, and it is possible to evaluate it with ARI scores if sense
annotations are available. Thus, (partially) labeled corpora for WSD are suitable for comparing
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different ADG approaches. Other metrics like the Silhouette Coefficient (see Appendix) measure the
cluster quality without any ground truth but usually have strong assumptions and miss some crucial
edge cases.

In addition, we consider a scenario with texts from Shakespeare’s works. We train a CharacterBERT
model on it and use our pipeline to generate a customized dictionary. Many dictionary entries are
reasonable but sometimes list too many senses per token.

While our first simple approach to ADG does not give perfect results yet, we see great potential
for this task and believe that our contribution is a starting point that could be used by linguists who
want to create new dictionaries. It might be reasonably assumed that the quality of the resulting
clusters of our pipeline will further increase with the further improvement of state-of-the-art language
models. We assume that with today’s technologies, the brothers Grimm would likely have witnessed
the completion of their German dictionary during their lifetime.

OPEN QUESTIONS AND KEY CHALLENGES

In this work, we defined the task of ADG and proposed one method to solve it. Nevertheless, there
are many open questions emphasizing the key challenges and proposing new ideas beyond our
experiments.

1. How can we train language models even for low resource languages? Our ADG pipeline
can be used for low resource languages to build a preliminary dictionary, but requires to
pretrain a language model from scratch on the available data. As we have seen in our
experiments with the works of William Shakespeare, our approach generates reasonable
outcomes, but the small corpora are challenging for learning language models.

2. Is there a better way to evaluate automatically generated dictionaries? The evaluation
of dictionaries without any ground truth remains partially open, mainly because the Silhou-
ette coefficient is not applicable to situations where only one cluster exists. Other metrics
and techniques to analyze high-dimensional clusters might be useful.

3. How can we determine the correct number of senses for a token? We analyze the search
range for the linkage thresholds in Appendix A.4. Our experiments show that the optimal
threshold is different for every dataset. It is still unclear how the optimal cut criterion can be
determined in an unsupervised manner.

4. How can we find relations between words? We discuss the detection of relations like
synonyms in Appendix A.5 but do not deliver a concrete implementation. Maybe this is
possible using by clustering the centroids and could lead to a reasonable extension of our
pipeline.

5. What is the best way to visualize the learned dictionaries? Our generated dictionaries
contain fixed groups of senses. Therefore, we can save them in data frames or render static
but clickable HTML files. A more interactive approach could directly access the binary
merge trees from AHC. The user might inspect one hierarchy of contextualized word vectors
per token and set individual criteria to find clusters.

6. Can we automatically generate descriptions for the tokens? Generating glosses (aka
descriptions) for each extracted sense is a challenging task. Currently we are only able to
assign senses to each token in a text, together with references to sentences. In the future it
will be interesting to automatically generate short descriptions for each word and each sense
respectively and find a meaningful way to evaluate automatically generated glosses.

Our work has shown the potential of ADG, yet some aspects of the approach remain unsolved and
for future work. Nevertheless, we believe that ADG can lead to powerful practically useful tools for
dictionary generation which will profit from new and more powerful language models and additional
input created by the deep learning community.
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A APPENDIX

Our design choices for the ADG pipeline are based on extensive experiments that we conducted.
These are described in the following sections. Namely, we compare different linkage criteria and
metrics for clustering.

A.1 ARI FOR CLUSTERINGS WITH DIFFERENT AFFINITIES AND LINKAGE CRITERIA

As the geometry of clusters in the embedding space is not trivial, we empirically search for the best
linkage criterion with the WSDEval corpora. Therefore, we perform AHC with average linkage,
complete linkage and single linkage and aid it with the true number of clusters it should find.
More precisely, we cluster the word vectors for each distinct, sense annotated token based on all
corresponding word vectors and the total, unique number of its annotated senses. We compute the
ARI to measure the quality of the clustering and omit generated senses.

While the cosine distance measures angles between vectors, the Euclidean distance compares their
lengths. Even if we usually use the cosine distance for NLP tasks, we also set both affinities side by
side.

Average Linkage Complete Linkage Single Linkage
Corpus Cosine Euclidean Cosine Euclidean Cosine Euclidean

Semcor 0.6615 0.6627 0.4899 0.4958 0.6561 0.6558
Senseval2 0.9594 0.9596 0.9553 0.9558 0.9541 0.9540
Senseval3 0.9322 0.9326 0.9280 0.9261 0.9287
SemEval2007 0.9457 0.9612 0.9687 0.9844 0.9457 0.9612
SemEval2013 0.9700 0.9632 0.9694
SemEval2015 0.9712 0.9723 0.9734 0.9711 0.9681

Table 4: ARI for Clusterings with Different Affinities and Linkage Criteria using known sense counts.
Underline indicates the best result per corpus. Joined cells indicate identical ARIs for both affinities.
We ignore all tokens with generated senses.

Table 4 presents the ARIs for sense clusterings with different affinities and linkage criteria and
underline indicates the best performance for each corpus. All runs but for SemCor with complete
linkage outperform our baselines from Table 4, indicating that our pipeline extracts meaningful word
senses. Average linkage works best for SemCor, Senseval2, Senseval3 and SemEval2013. Complete
linkage yields the highest ARI for SemEval2007 and SemEval2015. Often, the three criteria perform
similarly well and SemCor is the only corpus for which complete linkage works significantly worse
than the other two criteria. SemCor contains not only far more tokens and sense annotations but also
some tokens with a higher disambiguity with up to 57 unique senses, whereas the other corpora only
hold tokens with at most 5 unique senses.

We expect marginally better results for the Euclidean distance DEuc(A,B) with A,B ∈ Rd and d ∈
N>0, because the cosine distance Dcos(A,B) is equivalent to the Euclidean distance of normalized
vectors. By expansion, it holds

D2
Euc(A−B) = (A−B) · (A−B) = D2

Euc(A) + D2
Euc(B)− 2(A ·B).

With normalized vectors D2
Euc(A) = D2

Euc(B) = 1, this term is equal to 2(1 − cos(A,B)) and

therefore Dcos(A,B) =
D2

Euc(A,B)
2 .

However, the Euclidean distance usually produces slightly stronger results, but yields the same
ARI as the cosine distance for SemEval2013 and SemEval2015 with average linkage, Senseval3
and SemEval2013 with complete linkage and SemEval2013 with single linkage. Senseval2 with
single linkage is the only setup for which the cosine distance moderately outperforms the Euclidean
distance. This experiment suggests a setup with the Euclidean distance and average linkage. Possible
explanations for the results are rounding errors and word vectors that are not exactly normalized to
length one.

Please note that Yenicelik et al. (2020) investigate the organization of BERT’s word vectors for
polysemous words. More precisely, they use the semantic annotations in SemCor (Miller et al., 1993)
to analyze the separability and clusterability of the 768 dimensional output of BERT’s last layer.
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Figure 4: Sense-Count-Level ARI for Clusterings with Different Linkage Criteria using known sense
counts and the Euclidean distance as affinity. Each bar plot shows the average ARI for all tokens that
have the same number of true unique senses and no generated senses. We analyze the dictionaries
from Section A.1.

They perform a dimensionality reduction via principal component analysis (PCA) (Pearson, 1901)
and predict a semantic class per token with a linear classifier (Yenicelik et al., 2020). They interpret
its accuracy as a measure of linear separability. Results for frequently occurring words show that
individual semantic classes are reasonably linearly separable and contextual word embeddings form
closed semantic regions (Yenicelik et al., 2020).

For clusterability, they apply several clustering algorithms on word vectors for sampled words from
SemCor and the news.2007.corpus (Bojar et al., 2014) and measure the quality of the resulting
clusters with the ARI (Rand, 1971; Hubert & Arabie, 1985) (Yenicelik et al., 2020). No clustering
method was able to distinguish between multiple semantic classes on a satisfying level (Yenicelik
et al., 2020). For several words, resulting clusters differ not only in meanings but also in other
linguistic properties like sentiment (Yenicelik et al., 2020). BERT’s word embeddings form closed
but overlapping semantic regions (Yenicelik et al., 2020).

We perform the analysis on the whole SemCor corpus with AHC and without PCA. In contrast,
Yenicelik et al. (2020) use more complex clustering methods and sample polysemous words.

A.2 SENSE-COUNT-LEVEL ARI FOR CLUSTERINGS WITH DIFFERENT LINKAGE CRITERIA

While Table 4 presents the overall performance of our approach with one ARI per corpus, Figure
4 shows bar plots with one average ARI per unique sense count. We analyze the dictionaries from
Table 4 and completely omit tokens with generated senses in our plots again.

The results for monosemous tokens are almost perfect for all corpora and linkage criteria, because we
provide the true number as we generate these dictionaries (see Section A.1). For polysemous tokens,
the average ARI is usually smaller but clearly positive, indicating clusterings that are better than
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Figure 5: Sense-Count-Level Silhouette Coefficient for Clusterings with Different Linkage Criteria
using known sense counts and the Euclidean distance as affinity. Each bar plot shows the average
Silhouette Score for all tokens that have the same number of true unique senses and no generated
senses. We analyze the dictionaries from Section A.1.

random choice. Especially for larger corpora like SemCor or SemEval2013, the drop is more evident.
Please note that the total number of tokens per bar usually decreases with higher unique sense counts.

A.3 SENSE-COUNT-LEVEL SILHOUETTE COEFFICIENT FOR CLUSTERINGS WITH DIFFERENT
LINKAGE CRITERIA

Now we calculate one average Silhouette coefficient per sense count for the dictionaries from Table 4
to investigate the quality of sense clusterings. Please note that the score requires 2 ≤ k ≤ n− 1 with
the sense count k and token count n (Rousseeuw, 1987). Thus, we omit all annotated tokens that
do not fulfil the condition and cannot provide any measurements for n = 1. Similar to Figure 4, the
significance of the bars decreases with higher unique sense counts. As the SemEval corpora provide
very few polysemous tokens, their plots are less representative.

The cluster quality decreases with increasing sense counts, starting at a score of approximately
0.15 for n = 2 and approaching values near 0.1 for most configurations and corpora. Average and
complete linkage usually yield similar scores, whereas single linkage often performs worse and even
gets some negative scores for SemCor.

A.4 LINKAGE DISTANCES AT THE CUT

The sensible prediction of sense counts per token is problematic due to the fact that we need to
evaluate multiple clusterings per token and do not have any reliable information for single senses.
Choosing one linkage distance threshold above which we do not merge any clusters avoids the choice
of a suitable number of senses and requires only one clustering per token. Therefore, we investigate
the linkage distances at the last cuts that occur during our clusterings with known sense counts (see
Table A.1).
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As the linkage criterion optimizes a certain distance between clusters, there are n− 1 distances for n
samples. AHC is a bottom-up approach that starts with clusters that contain only one sample and
successively builds a binary merge tree. We investigate the exact linkage distance at the tree node
that marks the last merge. If all linkage distances differ, we can generate the same clustering by
setting the distance threshold to the exact distance at the last merge and add a small number. In cases
with no available distance, for example, if we merge all samples into one cluster, we pick the closest
obtainable distance in the tree. For tokens with a single occurrence, we do not consider any distances.

Average Linkage Complete Linkage Single Linkage
Corpus Avg. Std. Avg. Std. Avg. Std.

SemCor 9.6395 2.0394 10.0726 2.1631 9.1755 2.0249
Senseval2 8.4796 1.8256 8.7032 1.9295 8.2633 1.7940
Senseval3 7.7612 2.0223 7.9206 2.0855 7.5898 2.0015
SemEval2007 8.5086 1.7495 8.5396 1.7577 8.4842 1.7464
SemEval2013 8.5505 2.0034 8.7958 2.1140 8.3034 1.9379
SemEval2015 7.4175 2.4254 7.6239 2.5386 7.2192 2.3627

Table 5: Average and Standard Deviation of Euclidean Linkage Distances at the Last Merge using
known sense counts. We analyze the dictionaries from Section A.1 and ignore tokens with generated
senses or only one occurrence.

Average Linkage Complete Linkage Single Linkage
Corpus Avg. Std. Avg. Std. Avg. Std.

SemCor 0.3624 0.1469 0.3960 0.1610 0.3285 0.1423
Senseval2 0.2900 0.1198 0.3060 0.1304 0.2753 0.1156
Senseval3 0.2464 0.1183 0.2566 0.1234 0.2358 0.1165
SemEval2007 0.2928 0.1156 0.2947 0.1161 0.2912 0.1152
SemEval2013 0.2946 0.1297 0.3125 0.1410 0.2771 0.1224
SemEval2015 0.2357 0.1306 0.2497 0.1404 0.2229 0.1257

Table 6: Average and Standard Deviation of Cosine Linkage Distances at the Last Merge using known
sense counts. We analyze the dictionaries from Section A.1 and consider all tokens with at least two
occurrences and no generated senses.

Table 5 and Table 6 show the averages and standard deviations of the Euclidean and cosine linkage
distances at the last performed merge in the merge tree. Again, we analyze the dictionaries from
Table A.1 and only consider tokens with known senses. The averages are fairly similar for all corpora
and the standard deviations are rather small. Our results for SemEval2015 are clearly the worst due
to lower averages and higher standard deviations, possibly because it contains comparatively few
samples.

Figure 6 exhibits histograms for Euclidean linkage distances at the cut corresponding to Table 5.
Considering the averages and standard deviations of linkage distances in combination with their
distributions from the histograms, we propose that most last merges occur near a Euclidean linkage
distance of about 8.5− 9.0 with a standard deviation of about 1.7. This observation holds for most
examined corpora and even accross different linkage criteria. Due to the sample size of SemCor, the
related results are most representative and suggest a bell curve with said parameters. Therefore, a
linkage distance threshold slightly above the maximum of the bell curves should yield a reasonable
dictionary. The similarities in our experiments suggest that 8.0− 9.5 is a reasonable initial search
space in hyperparameter optimization.
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(f) SemEval2015

Figure 6: Euclidean Linkage Distances at the Last Merge using known sense counts. Each histogram
shows frequencies for all tokens that have no generated senses. We analyze the dictionaries from
Section A.1.
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Average Linkage Complete Linkage Single Linkage
Corpus Avg. Std. Avg. Std. Avg. Std.

SemCor 10.1048 2.0594 10.6219 2.1876 9.5731 2.0454
Senseval2 8.7927 1.7905 9.0681 1.9032 8.5312 1.7627
Senseval3 8.0880 2.1119 8.2969 2.2062 7.8749 2.0615
SemEval2007 8.8758 2.0199 8.9492 2.0532 8.7969 1.9871
SemEval2013 8.7354 2.0456 9.0253 2.1949 8.4543 1.9713
SemEval2015 7.7537 2.3858 8.0112 2.5202 7.5166 2.3156

Table 7: Average and Standard Deviation of Euclidean Linkage Distances after the Last Merge using
known sense counts. We analyze the dictionaries from Section A.1 and ignore tokens with generated
senses or only one occurrence.

Table 7 offers the averages and standard deviations of the Euclidean linkage distances at the successor
of the last merge in the tree. We need to cut the tree between the last performed merge and its
successor to obtain the same clustering. The latter distances are significantly higher than those from
Table 7 and the standard deviations indicate minor overlaps of both distributions. These results
indicate clear gaps and further suggest the existence of a reasonable linkage distance threshold.

A.5 RELATION DETECTION

Often, terms and names consist of more than one token, for example, the “White House”. We could
use syntactic knowledge to find related words in the sentences. For instance, the contextualized word
embedding BERT encodes some syntactic rules (Clark et al., 2019; Jawahar et al., 2019). In contrast,
there are syntactic correlations between different words, e.g., for the combination of an auxiliary
verb and its participle like “has finished”. Some approaches mitigate such problems with semantic
knowledge about existing entities and phrases. Inflections help determine syntax and context in a
sentence. Usually, only one entry per infinitive exists in resources like dictionaries. Mapping inflected
forms to their infinitives is challenging and may require prior knowledge. We need to pick a distance
criterion to separate clusters of word vectors. The criterion could be a fixed threshold or a relative
factor for distances. Some methods might depend on more sophisticated geometric criteria or estimate
the number of clusters or objects. Its choice might depend on the given corpus.

Similar contexts yield word vectors close in the embedding space, so similar word vectors for different
tokens might indicate synonyms. In contrast, word vectors that point in the opposite direction might
reveal antonyms.

However, performing clustering methods on all tokens is more computationally expensive. Clustering
the centroids of sense clusters might also reveal related tokens. In this setting, the definition of
negative concepts like antonyms is less obvious. We could measure the strength of the relation
between two clusters via the distance between their centroids. The closer any two centroids are,
the stronger their relation is and vice versa. We could choose thresholds or ranges to define certain
concepts like synonyms and antonyms.

A.6 ARI SCORES FOR DIFFERENT LINKAGE DISTANCE THRESHOLDS

In Figure 7 we show the details for every dataset on the distribution of the ARI score next to the
“Single Cluster”-baseline. As described before, for large thresholds the ARI converges to the ARI
of our “Single Cluster”-baseline. For both the Senseval3 and the SemEval2007 corpus a clear peak
before converging to the baseline. To gain further insights why our method works better for some
corpora than for others, an analysis of the corpora and the tagged annotations is necessary.

19



Under review as a conference paper at ICLR 2023

(a) SemCor (b) Senseval2

(c) Senseval3 (d) SemEval2007

(e) SemEval2013 (f) SemEval2015

Figure 7: Linkage distance thresholds per dataset
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A.7 DETAILS ON CREATING SHAKESPEAREAN DICTIONARY

Hyperparameter Phase 1 Phase 2

Learning Rate 6× 10−3 4× 10−3

Warm-Up Proportion 0.2843 0.128
Warm-Up Rate 0.01
Weight Decay 0.01

Target Batch Size 2, 048
Accumulation Steps 256 1, 024
Total Batch Size 8 2

Update Steps 1, 800 800
Max. Input Sequence Size 128 512
Max. Masked Tokens per Input 20 80

Table 8: Hyper-Parameters for Training CharacterBERT on Shakespeare’s Works, based on the
hyper-parameters for the general CharacterBERT model (El Boukkouri et al., 2020).

Table 8 shows all hyperparameters we used to pretrain CharacterBERT for creating a Shakespearean
dictionary.
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