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ABSTRACT

Synthetic LiDAR datasets offer a scalable alternative to costly real-world an-
notations, but still exhibit a significant domain gap when applied to real-world
data. Previous unsupervised domain adaptation (UDA) methods mainly rely on
general adaptation strategies, without directly addressing the LiDAR-specific fac-
tors causing this gap. In this work, we analyze the synthetic-to-real domain gap
from a root-cause-driven perspective. We decompose the components of this gap
into three distinct granularities: scene-level, class-level, and signal-level. At the
scene-level, we address the point structure distortions caused by real-world sensor
effects, such as motion blur and rolling shutter. At the class-level, we consider that
the domain gap varies depending on the structural complexity and dynamicity of
each object class. Finally, at the signal-level, we tackle the lack of direct, realis-
tic semantic information that corresponds to the synthetic input. To address these
challenges, we propose a multi-level adaptation framework. Motivated by our
finding that encoder feature statistics (mean and variance) capture point structural
domain gap, we propose to employ a style embedding. Built from the feature mean
and variance, this embedding serves as a domain cue for adversarial learning at
the scene-level and extends to the class-level for category-dependent shifts. At the
signal-level, we complement this with an intensity-guided self-training scheme
for handling non-structural gaps, leveraging real LiDAR intensity as weak super-
vision for synthetic inputs. On SynLiDAR→SemanticKITTI, our method achieves
44.7 mIoU, and on SynLiDAR→SemanticPOSS, it reaches 51.2 mIoU, setting a
new state of the art on both benchmarks. Extensive ablation studies validate each
component, confirming our style embedding captures the structural domain gap
while our self-training scheme significantly improves adaptation.

1 INTRODUCTION
LiDAR semantic segmentation (LSS), which aims to assign a semantic label to each 3D point cap-
tured by LiDAR, is a fundamental task for scene understanding in autonomous driving. By providing
dense and geometrically accurate representations of the environment, LSS plays a key role in en-
abling high-level decision-making processes such as path planning and obstacle avoidance. Despite
its importance, the development of high-performing LSS models remains challenging due to the
significant annotation cost associated with acquiring large-scale, labeled real-world data.

Unlike other data domain, collecting LiDAR data for outdoor driving scenes requires extensive
physical driving across diverse environments while recording high-frequency 3D point clouds. This
process is inherently time-consuming and must be conducted under real traffic conditions, where
safety risks are persistently present due to the unpredictable behavior of surrounding agents. Fur-
thermore, the annotation of LiDAR point clouds is labor-intensive, as it often involves manual cross-
referencing with RGB images to determine point-wise semantic labels (Behley et al., 2019).

To alleviate the need for physical data acquisition and human annotation, synthetic LiDAR datasets
have gained popularity. These datasets enable scalable supervision through simulation, allowing
models to be trained on fully annotated synthetic data and then adapted to real domains. However,
bridging the synthetic-to-real domain gap is uniquely difficult for LiDAR, as the discrepancies are
not limited to texture or appearance (as in images). In particular, the domain shift in LiDAR stems
from physical signal formation and sensor characteristics. This makes LiDAR adaptation a different
and more complex challenge compared to other modalities.

Specifically, real-world LiDAR data is affected by phenomena such as beam attenuation, scattering,
and occlusion (Manivasagam et al., 2023; Hahner et al., 2021; 2022), leading to sparse, noisy, and
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Figure 1: (Left) Point structure difference between (a) SynLiDAR and (b) SemanticKITTI. Objects
in the first and second row are inherently more dynamic and structurally complex than objects in the
third row. As a result, they experience greater point structure distortion, leading to class-dependent
variations in the domain gap. (Right) Intensity distribution on (a) SynLiDAR & SemanticKITTI and
(b) SynLiDAR & SemanticPOSS. A significant difference in intensity distribution can be observed
between synthetic and real data.

irregular point distributions. In contrast, synthetic data, typically generated via uniform ray casting,
tends to exhibit overly dense and artifact-free geometry. Moreover, real LiDAR sensors introduce
temporal distortions such as rolling shutter effects and motion blur (Manivasagam et al., 2020; 2023;
Hess et al., 2025), which are rarely modeled in simulation. Intensity distributions also diverge: real
beams decay over distance and vary by surface reflectance (Vacek et al., 2021), whereas synthetic
intensities are often simplified for efficiency. These observations indicate that the LiDAR domain
gap has deeper structural and semantic roots than previously considered.

While recent efforts have proposed various unsupervised domain adaptation (UDA) techniques to
bridge this gap, most existing approaches fall short in fully addressing the underlying challenges.
Several methods augment inputs with noise (Li et al., 2023), others utilize entropy-based adversarial
learning (Yuan et al., 2024), others regress intensity from the target data to create an additional
learning signal (Yuan et al., 2023), and a few adopt teacher-student frameworks with self-training.
However, these approaches share three key limitations. (L1) They rely on indirect domain cues, such
as noise and entropy, that reflect consequences of the domain gap rather than its root cause. (L2)
They apply domain adaptation uniformly across the entire scene, overlooking the fact that domain
shifts are often class-dependent. As shown on the left of Fig.1, the severity of the gap varies across
object categories, making global adaptation insufficient. (L3) Although the intensity value of the
target data implicitly contains the semantics of real data, this information is not utilized for learning
from synthetic data inputs.

In this paper, we take a root-cause-driven perspective and propose a coarse-to-fine LiDAR adaptation
framework that systematically addresses the domain gap along three levels of granularity: scene-
level, class-level, and signal-level.

In scene-level, inspired by prior findings that feature statistics in encoder layers capture the “style” of
the input (Huang & Belongie, 2017) and our findings, we hypothesize that such feature statistics of a
LiDAR segmentation model can effectively represent point structure differences–such as variations
in point density, motion blur, and rolling shutter artifacts–as a form of style.

In class-level, following prior work (Manivasagam et al., 2023), we observed that variations in
object motion and geometric structure across semantic categories lead to class-dependent domain
shifts (the left of Fig. 1). To address this, we extend the use of feature statistics from a scene-level
representation to a class-wise formulation. This design allows the model to more precisely cap-
ture class-specific structural differences, thereby improving its ability to mitigate class-dependent
domain shifts. Moreover, semantic similarity among classes naturally implies similarity in their
complexity and dynamics. Thus, to effectively address class-dependent domain gaps, style represen-
tations should be aligned among visually similar classes. To this end, we adopt a class-hierarchical
formulation that aligns styles within superclasses (e.g., bicycle and motorcycle), thereby cap-
turing structural similarities among related classes. This formulation ensures more consistent adap-
tation and improves model generalization. Note that in row 1 and row 2 on the left of Fig. 1, we
visualize examples belonging to the same superclass to illustrate this concept.
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In signal-level, overfitting to synthetic data arises primarily from the absence of supervision in the
real domain in UDA setting. To compensate for the lack of real labels, prior works (Yuan et al., 2023;
Viswanath et al., 2025) leverage intensity measurements from real LiDAR scans as an auxiliary
learning signal. However, given the fact that intensity contains implicit semantic information (Song
et al., 2002; Naich & Carrión, 2024; Viswanath et al., 2025), utilizing this information for synthetic
data supervision could be more effective in reducing the domain gap. We advance prior work in this
direction. We construct a self-training mechanism that encourages the synthetic data input to follow
the real LiDAR intensity distribution, which mitigates the synthetic-to-real gap.

We validate these hypotheses through extensive experiments. Our method achieves state-of-the-art
performance, reaching 44.7 mIoU on the SynLiDAR-to-SemanticKITTI benchmark and 51.2 mIoU
on the SynLiDAR-to-SemanticPOSS benchmark. Ablation studies further confirm the effectiveness
of each component, and the method shows robustness to hyperparameter choices.

In summary:

• We define the domain gap using feature statistics extracted from the encoder of the seg-
mentation model.

• We introduce class-wise style embeddings to account for class-dependent point structure
distortions.

• Through our intensity-guided self-training strategy, we encouraged the synthetic data input
to follow the real intensity distribution.

• Our one-stage framework achieves state-of-the-art performance on two major synthetic-to-
real benchmarks.

2 RELATED WORKS
2.1 LIDAR SEMANTIC SEGMENTATION

LiDAR semantic segmentation (LSS) methods can be categorized into three groups: point-based,
projection-based, and voxel-based approaches.

Point-based methods Qi et al. (2017); Thomas et al. (2019); Zhao et al. (2021); Thomas et al.
(2024); Choe et al. (2022) directly process LiDAR points. Despite preserving geometric details,
these methods are computationally intensive and slow at inference, limiting suitability for dynamic
scenes.

Projection-based methods Milioto et al. (2019); Ando et al. (2023); Kong et al. (2023a); Xu et al.
(2025) convert 3D LiDAR points into 2D representations, typically via spherical projection, allowing
efficient use of 2D CNNs. Milioto et al. (2019) pioneered using spherical-projected range images
for semantic segmentation. Ando et al. (2023) improved performance by fine-tuning a ViT pre-
trained on images. Kong et al. (2023a) enhanced projection-based methods with specialized data
augmentation. Xu et al. (2025) edited spherical projection with an MLP-based approach, preserving
all input point information.

Voxel-based methods Choy et al. (2019); Zhou et al. (2020); Lai et al. (2023) voxelize 3D points
for computational efficiency and parallel processing. Choy et al. (2019) introduced sparse 3D con-
volution, and Tang et al. (2020) integrated point-wise features to reduce information loss. Zhou
et al. (2020) proposed cylindrical voxelization to address varying point densities. Lai et al. (2023)
employed radial window partitioning to capture long-range context. Voxel-based methods balance
segmentation quality and inference speed effectively, making them popular for LiDAR segmenta-
tion.

2.2 SYNTHETIC LIDAR SIMULATIONS

To address the difficulty of collecting large-scale driving scene LiDAR data in the real world, ex-
isting studies have attempted to simulate realistic LiDAR data (Manivasagam et al., 2020; 2023;
Xiao et al., 2022; Vacek et al., 2021). Manivasagam et al. (2020) proposed a method for generating
realistic synthetic LiDAR data by pairing each sample with corresponding real LiDAR data. Mani-
vasagam et al. (2023) generated realistic outdoor LiDAR data by transforming spherical-projected
range images to match real data, incorporating effects such as motion blur and rolling shutter. Xiao
et al. (2022) used Unreal Engine to synthesize LiDAR data and applied a generative model to sim-
ulate point drops, producing more realistic patterns. Vacek et al. (2021) focused on the intensity
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gap between synthetic and real data, and used a neural network to generate realistic intensity dis-
tributions for ray-casted LiDAR points. Despite these efforts, simulating realistic LiDAR remains
computationally expensive and requires modeling all relevant domain gap components. Therefore,
synthetic-to-real unsupervised domain adaptation is essential for practical deployment.

2.3 SYNTHETIC-TO-REAL UNSUPERVISED DOMAIN ADAPTATION FOR LIDAR SEMANTIC
SEGMENTATION

Previous works have addressed domain adaptation by adding noise to the input data (Li et al., 2023),
interpreting entropy as a cue for domain gap and minimizing it through adversarial learning, or en-
hancing teacher-student architectures via self-training mechanisms (Yuan et al., 2024). Additionally,
other studies have sought to learn implicit semantic information by training on the intensity values of
the target dataset (Yuan et al., 2023). Rather than relying on noise or entropy as the primary source of
the domain gap, we extract style embeddings from the segmentation model to directly characterize
structural discrepency and reduce the domain gap. Furthermore, unlike prior approaches, we incor-
porate point intensity within a self-training strategy to be aware of implicit semantic information of
the real domain from synthetic input and to prevent overfitting to the synthetic domain.

3 MOTIVATION
As discussed in Sec. 1, we take a root-cause-driven perspective and propose a novel LiDAR adap-
tation framework that systematically addresses the domain gap along three levels of granularity:
scene-level, class-level, and signal-level. We must address three key challenges to achieve this:
(scene-level) discovering domain cues that explicitly capture point structure differences, the main
cause of the synthetic-to-real domain gap. (class-level) modeling these domain cues from the scene
level to the class level to capture class-dependent domain shifts. (signal-level) finding a way to
utilize intensity, which contains implicit semantic information, for synthetic data input.

Scene-level Domain Cues from “Style”. Input data for UDA task in LSS is typically limited to
xyz coordinates. This provides no appearance information. We decompose LiDAR input into two
conceptual components: “content” and “style”. Content refers to the object’s identity, whereas style
defines its structural representation, like point density, motion blur, and rolling shutter distortion.
Inspired by Huang & Belongie (2017), we find that feature statistics effectively capture this style in-
formation through toy experiments. We compute the mean and standard deviation at various feature
levels to form a compact “style embedding”. This embedding serves as a transferable domain cue,
reflecting the synthetic-to-real domain gap. We conducted toy experiments to validate the rationale,
and details are provided in the supplementary material.

Scene-level Domain Cues to Class-level Domain Cues. As shown in the left Fig. 1, classes such
as person, bicyclist, bicycle, and motorcycle exhibit greater point structure distortion
than classes like road or building. This is because these classes are typically dynamic and
geometrically complex, making them more susceptible to motion blur and rolling shutter artifacts
compared to static objects, as mentioned in Manivasagam et al. (2023). This motivates the use
of class-aware domain cues to better capture class-specific structural differences. Additionally, se-
mantically similar classes tend to share similar levels of dynamicness and complexity. For instance,
classes like car and truck share visual and structural properties, thus also share similar dynamics
and complexity. Consequently, features of synthetic car points should align not only with real car
points but also with real truck points, facilitating more effective domain adaptation. Motivated
by this observation, we introduce class-hierarchical domain cues that leverage semantic similarity
among classes, enabling more precise modeling of class-dependent point structure discrepancies be-
yond global scene-level domain cues. We conducted toy experiments to validate the rationale behind
these two domain cues. Further details are provided in the supplementary material.

Utilizing LiDAR Intensity for Synthetic Inputs. In conventional UDA settings, label supervision
is applied only to the synthetic domain. This imbalance in learning signal often causes the seg-
mentation model to overfit to synthetic data, and addressing this issue is non-trivial due to the lack
of annotations in real data. However, LiDAR sensors naturally capture point-wise intensity values,
which can serve as auxiliary information without requiring manual annotation. Since intensity val-
ues inherently reflect class-specific characteristics through their dependence on distance and object
reflectivity, they implicitly encode semantic class information (Song et al., 2002; Naich & Carrión,
2024; Viswanath et al., 2025). Accordingly, treating intensity from real scans as labels allows the
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Figure 2: (a) Overview of our method. (b) Process of computing style embeddings. Our method
extracts scene-wise, class-wise style embeddings (SSE,CSE) for adversarial learning. In parallel,
we add an intensity prediction head to the feature extractor, enabling intensity self-training by pre-
dicting LiDAR point intensities. This head produces outputs isyn, iLM , and ireal, corresponding
to synthetic, LaserMix-ed, and real inputs, respectively. fsyn, fLM , and freal are the original out-
puts obtained from the classifier head. PSreal

cls denotes the pseudo-labels obtained from the teacher
model for real data, and PSsyn

int represents the pseudo-intensities generated by the teacher model for
synthetic data. GT syn

cls is the ground-truth class label from the synthetic dataset, and GT real
int is the

ground-truth intensity from real data.

model to learn implicit semantic information. Thus, prior works have utilized intensity to generate
additional learning signals (Yuan et al., 2023; Viswanath et al., 2025). However, these studies did
not attempt to adapt synthetic inputs using an intensity-based learning signal. This is because syn-
thetic and real data have noticeably different intensity distributions, as shown in the right of Fig. 1.
Consequently, using raw synthetic intensity of synthetic data as a learning signal can interfere with
learning semantic cues from real data. To address this limitation, we extend prior work by proposing
a self-training mechanism. This mechanism generates real-like pseudo-intensity for synthetic inputs
and utilizes it during training. The strategy enables the model to learn semantic cues from real data
and prevents overfitting to synthetic data.

4 METHODS
4.1 OVERVIEW

Fig. 2 shows the overview of the proposed framework. We build upon SAC-LM (Yuan et al., 2024),
a recent self-training-based domain adaptation framework for LSS. SAC-LM, an extension of Laser-
Mix (Kong et al., 2023b), is a method for 3D segmentation that reduces the domain gap. It achieves
this by mixing target scans with synthetic source-like scans generated through point drop. A KL-
based loss ensures consistency between predictions on raw and source-like target inputs. For a com-
prehensive methodology, please refer to Yuan et al. (2024). To enable intensity-guided adaptation,
we augment the baseline with an additional MLP head dedicated to intensity prediction. This head
produces outputs isyn, iLM , and ireal, corresponding to synthetic, LaserMix-ed, and real inputs,
respectively. In parallel, fsyn, fLM , and freal are the original outputs obtained from the classifier
head.

During self-training, we extract two types of style embeddings, scene-wise and class-wise from
synthetic, real, and LaserMix-ed data. These embeddings are then used in an adversarial learning
framework to align domain-specific styles across domains. The teacher model is updated as the
exponential moving average (EMA) of the student model

4.2 ADVERSARIAL LEARNING WITH STYLE EMBEDDINGS

4.2.1 SCENE-WISE STYLE EMBEDDING (SSE).
This embedding aims to capture domain gap factors that are class-agnostic and scene-wise, such as
motion blur and rolling shutter distortions. As shown in Fig. 2(b), we divide the 3D points into radial
distance bins, using a maximum distance threshold d and a binning interval b. Since point sparsity
significantly varies with depth, we explicitly consider this variability by extracting style embeddings
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separately for each distance bin. For each encoder block, we track the downsampled point features
and retrieve their corresponding xyz coordinates. Within each distance bin bi, we compute the
mean and standard deviation of point features and concatenate them across all encoder blocks to
form the final style embeddings SSEmean ∈ Rd/b,D and SSEstd ∈ Rd/b,D. These embeddings are
then passed to a domain discriminator to facilitate adversarial learning. The formulation is expressed
as follows:

SSEi
mean =

B⊕
k=1

Ep[fk(x)] , SSEi
std =

B⊕
k=1

stdp[fk(x)] . (1)

B is the number of encoder blocks.
⊕

denotes the concatenation of the mean and standard devia-
tion from each encoder block. i ∈ {real,LM, syn} indicates data domains. D represents the total
dimension after concatenation. fk(·) refers to the k-th encoder block, and p represents an individual
point.

4.2.2 CLASSWISE STYLE EMBEDDING (CSE).
As discussed in Sec. 3, point structure distortions differ across semantic classes. To capture such
class-specific variations, we extend the scene-wise style embedding by also incorporating label in-
formation. For each encoder block, we downsample the labels consistently with the downsam-
pling of point features, thereby tracking labels corresponding to each point feature. Then the mean
and standard deviation of point features are computed within each class. Finally, we concatenate
these statistics across all classes to obtain the classwise style embeddings CSEcls

mean ∈ RC,D and
CSEcls

std ∈ RC,D. Fig. 2 (b) visualizes this process. The formulation is expressed as follows:

CSEcls,i
mean =

B⊕
k=1

Ep∈c[fk(x)] , CSEcls,i
std =

B⊕
k=1

stdp∈c[fk(x)] . (2)

C is number of classes and p ∈ c indicates that point p belongs to a specific class c. In the real
domain, encoder features are grouped by class using the pseudo-labels.

As mentioned in Sec. 3, semantically similar classes share dynamics and structural complexity.
By leveraging this fact, we assume that classes within the same superclass exhibit similar domain
gaps, which enables more effective compensation of class-dependent point structure differences
during domain adaptation. In this reason, we further introduce class-hierarchical style embeddings
to extend class-dependent feature alignment at the superclass level. To implement this, we define a
class hierarchy automatically through GPT-4o. We filtered contradictory findings based on previous
research that utilized class hierarchies (Kim et al., 2023; Park et al., 2025). The resulting hierarchy is
presented in Table 1. Then, we aggregate features across superclass groups using the same mean and
standard deviation computation used for CSE. This results in class-hierarchical style embeddings
CSEhier

mean ∈ RH,D and CSEhier
std ∈ RH,D. The formulation is expressed as follows:

CSEhier,i
mean =

B⊕
k=1

Ep∈h[fk(x)] , CSEhier,i
std =

B⊕
k=1

stdp∈h[fk(x)] . (3)

H is the number of superclasses, defined in class hierarchy. p ∈ h indicates that point p belongs to
a specific superclass h. Unlike Park et al. (2025), our method does not directly utilize the class as
supervision. Instead, our approach extends the scene-wise domain gap to a class-wise domain gap.

4.2.3 STYLE EMBEDDING-BASED ADVERSARIAL LEARNING.
We perform adversarial learning using the previously described scene-wise and classwise, which
are extracted from each synthetic, real, and LaserMix-ed data pipeline. By performing adversarial
learning on these style embeddings, we obtain segmentation features that are invariant to domain
gaps caused by differences in point structure. The formulation is expressed as follows:

Ladv = − 1

N real

∑
i

∥D(SEreal
i )∥2 − 1

NLM

∑
i

∥D(SELM
i )∥2, (4)

LD = − 1

N syn

∑
i

∥D(SEsyn
i )∥2 − 1

N real

∑
i

∥D(SEreal
i )− 1∥2 − 1

NLM

∑
i

∥D(SELM
i )− 1∥2. (5)

SE ∈ {SSE,CSE} denotes the chosen style-embedding type, and i ∈ {mean, std} selects either
the mean or standard-deviation branch. For the discriminator architecture and adversarial loss, we
adopt the same settings as in Yuan et al. (2024).
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Superclass SemanticKITTI Classes
Vehicle car, bicycle, motorcycle, truck, other-vehicle
Person pedestrian, bicyclist, motorcyclist
Traffic Element pole, traffic-sign
Pavement road, parking, sidewalk, other-ground
Natural vegetation, trunk, terrain
Structure building, fence

Superclass SemanticPOSS Classes
Vehicle car, bike
Person rider, pedestrian
Traffic Element traffic-sign, pole
Object trash-can, cone-stone
Pavement ground
Natural trunk, plant
Structure building, fence

Table 1: Superclass hierarchy for the SynLiDAR-to-SemanticKITTI (top) and SynLiDAR-to-
SemanticPOSS (bottom) setups.

4.3 INTENSITY-GUIDED SELF-TRAINING

To mitigate overfitting to synthetic data and to enable the model to learn implicit semantic infor-
mation of real data from synthetic inputs, we propose a self-training mechanism based on LiDAR
intensity. An intensity prediction head is appended to the student and teacher models, respectively.
Both networks adopt the same segmentation architecture, with the teacher model updated as the ex-
ponential moving average (EMA) of the student model. During training, the student model learns to
predict real intensity values using ground-truth labels from real LiDAR data. For synthetic data, the
teacher model predicts pseudo-intensity values, which the student model then learns to match. The
overall training pipeline is illustrated in Fig. 2(a). The formulation is expressed as follows:

LIS =
∑

k∈{real,LM,Syn}

∥∥IH(f(x))− ik
∥∥2. (6)

IH denotes the intensity head, and f denotes the final output of the feature extractor. i denotes the
intensity corresponding to the ground-truth intensity of real data, the pseudo-intensity of synthetic
data, and the intensity values of LaserMix-ed points.

4.4 OPTIMIZATION AND INFERENCE

The total loss for student model combines classification, intensity, and adversarial terms mentioned
above:

L = Lcls + λintLIS + λadvLadv. (7)
λint and λadv were 10 and 1e-4 for main experiments, respectively. The teacher updates by EMA
of the student. At test time, we use the student alone without an intensity head.

5 EXPERIMENTS
5.1 EXPERIMENTS SETTINGS

We use the SynLiDAR dataset (Xiao et al., 2022) as our synthetic source domain. SynLiDAR is
a large-scale synthetic point cloud dataset generated from diverse urban driving scenes built on
the Unreal Engine 4 platform. The LiDAR sensor is simulated based on the Velodyne HDL-64E,
producing high-resolution point clouds with up to 64 beams. For real target domains, we use the
SemanticKITTI (Behley et al., 2019) and SemanticPOSS (Pan et al., 2020) datasets. SemanticKITTI
is collected using the Velodyne HDL-64E sensor with 60 beams and contains real-world point cloud
data collected across 22 driving sequences in urban environments. SemanticPOSS uses the Velodyne
Alpha Prime sensor with 40 beams and contains point clouds captured within a university campus.
Following the adaptation setup in previous work (Yuan et al., 2024), we downsample the SynLiDAR
point clouds to 40 beams when training on the SemanticPOSS target. Consistent with Yuan et al.
(2024), we adopt MinkUnet32 (Choy et al., 2019) as base segmentation architecture. We train our
models for 200,000 iterations, consistent with DGT-ST. Each experiment is conducted on a single
NVIDIA A6000 GPU.
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Source only - 35.9 7.5 10.7 0.6 2.9 13.3 44.7 3.4 21.8 6.9 29.6 0.0 34.1 7.4 62.9 26.0 35.5 30.3 14.1 20.4

AdaptSegNet Tsai et al. (2018) A 52.1 10.8 11.2 2.6 9.6 15.1 35.9 2.6 62.2 10.4 41.3 0.1 58.1 17.1 68.0 38.4 38.7 35.9 20.4 27.9
CLAN Luo et al. (2019) A 51.0 15.8 16.8 2.2 7.8 18.7 46.8 3.0 68.9 11.1 44.9 0.1 59.6 17.5 71.7 41.1 44.0 37.7 19.8 30.5
ADVENT Vu et al. (2019) A 59.9 13.8 14.6 3.0 8.0 17.7 45.8 3.0 67.6 11.3 45.6 0.1 61.7 15.8 72.4 41.5 47.0 34.5 15.3 30.5
FADA Wang et al. (2020) A 49.9 6.7 5.1 2.5 10.0 5.7 26.6 2.3 65.8 10.8 37.8 0.1 60.3 21.5 60.4 37.2 31.9 35.4 17.4 25.6
MRNet Zheng & Yang (2019) A 49.5 11.0 12.2 2.2 8.6 16.0 46.4 2.7 60.0 10.5 41.9 0.1 55.1 16.5 68.1 38.0 40.7 36.5 20.8 28.3
PMAN Yuan et al. (2023) A 71.0 14.9 24.8 1.6 6.6 23.6 61.1 5.5 75.3 10.5 54.1 0.1 47.9 17.4 69.6 38.6 61.5 37.0 18.6 33.7
PCAN Yuan et al. (2024) A 85.0 17.5 27.4 10.4 11.9 27.5 63.7 2.6 78.1 13.5 50.1 0.1 68.5 20.0 76.2 41.3 45.7 41.0 21.8 37.0

CoSMix Saltori et al. (2022) S 56.4 10.2 20.8 2.1 13.0 25.6 41.3 2.2 67.4 8.2 43.4 0.0 57.9 12.2 68.4 44.8 35.0 42.1 17.0 29.9
LaserMix Kong et al. (2023b) S 90.3 7.8 37.2 2.3 2.4 40.6 49.1 5.1 80.5 9.9 57.4 0.0 57.6 3.4 77.6 46.6 60.1 42.0 13.6 36.0
DGT-ST Yuan et al. (2024) S 92.9 17.3 43.4 15.0 6.1 49.2 54.2 4.2 86.4 19.1 62.3 0.0 78.2 9.2 83.3 56.0 59.1 51.2 32.3 43.1
Ours A+S 90.6 14.4 51.9 11.3 4.3 59.9 66.7 3.2 88.8 27.4 64.7 0.0 69.9 11.7 79.5 60.1 55.0 51.3 39.2 44.7

Table 2: Comparison results on SynLiDAR → SemanticKITTI benchmark. Bold=highest,
underline=second highest in each column. A/S denotes adversarial training (A) / self-training (S).

Methods Mech. bi.clst car trunk veget. traf. pole garb. build. cone. fence bi.cle ground pers. mIoU

Source only - 47.2 43.6 37.8 70.3 11.1 33.8 19.5 67.9 11.2 19.9 9.6 77.9 47.8 38.3

AdaptSegNet Tsai et al. (2018) A 43.9 48.2 39.0 69.6 15.5 33.6 21.3 64.3 12.7 25.0 11.6 76.0 49.9 39.3
CLAN Luo et al. (2019) A 43.9 46.6 41.3 71.0 15.1 34.3 20.4 69.6 9.5 23.2 12.0 75.1 51.3 39.5
ADVENT Vu et al. (2019) A 44.6 47.6 40.3 71.2 15.6 35.6 22.0 68.4 10.6 25.9 10.4 76.7 52.3 40.1
FADA Wang et al. (2020) A 39.6 41.2 38.8 69.2 16.3 32.1 18.1 67.9 11.5 22.0 13.0 71.4 47.9 37.6
MRNet Zheng & Yang (2019) A 43.5 47.2 39.1 70.4 15.5 32.8 22.0 66.1 13.2 24.2 11.2 76.8 50.0 39.4
PMAN Yuan et al. (2023) A 52.6 61.5 46.8 75.1 18.8 36.5 21.4 74.7 18.3 25.8 37.5 73.7 61.9 46.5
PCAN Yuan et al. (2024) A 48.6 62.1 37.5 74.0 23.9 31.4 22.2 76.9 6.5 41.9 11.9 79.1 61.2 44.4

CoSMix Saltori et al. (2022) S 53.6 47.6 44.8 75.1 16.8 37.9 25.3 72.7 19.9 39.7 10.8 80.0 56.5 44.6
LaserMix Kong et al. (2023b) S 58.4 61.3 47.7 69.0 21.9 39.5 30.9 61.0 16.1 36.5 7.1 79.5 62.6 45.5
DGT-ST Yuan et al. (2024) S 55.1 70.7 46.1 74.2 30.1 36.3 44.1 81.0 4.3 62.8 10.3 78.5 67.2 50.8
Ours A+S 63.5 71.2 50.4 75.3 21.7 37.0 47.1 81.4 1.0 60.6 7.5 79.0 69.7 51.2

Table 3: Comparison results on SynLiDAR → SemanticPOSS benchmark. Bold=highest,
underline=second highest in each column. A/S denotes adversarial training (A) / self-training (S).

5.2 MAIN EXPERIMENTS

SynLiDAR-to-SemanticKITTI. As shown in Table 2, our method achieves 44.7 mIoU on the
SynLiDAR-to-SemanticKITTI benchmark, outperforming the previous state-of-the-art DGT-ST by
+1.6 mIoU. Notably, we observe substantial gains in complex and dynamic object classes such as
person (+10.7), motorcycle (+8.5), and bicyclist (+12.5) mIoU. These classes are char-
acterized by irregular motion and geometrically complex shapes, which typically result in larger
domain gaps. The consistent improvements on these classes indicate that our method effectively
captures point structure differences, a key factor in the domain gap. This also confirms that the
classwise style embeddings successfully reduce the additional domain shift caused by class-specific
complex and dynamic natures. In addition, we observe gains of +9.7, +3.2, and +1.9 mIoU in
classes such as parking, sidewalk, and road, respectively. These results indicate that our
method leads to performance improvements across most semantic classes.

SynLiDAR-to-SemanticPOSS. As shown in Table 3, our method achieves 51.2 mIoU on the
SynLiDAR-to-SemanticPOSS benchmark, surpassing the previous state-of-the-art by +0.4 mIoU.
Compared to SemanticKITTI, the SemanticPOSS dataset uses a 40-beam LiDAR sensor, resulting
in sparser point clouds during data acquisition. Consequently, reducing the domain gap is harder and
yields modest gains, yet absolute scores stay high because the dataset contains fewer samples and
classes. Moreover, SemanticPOSS (Pan et al., 2020) contains mostly static and few scenes and only
a few classes, leading to a high baseline mIoU and leaving little room for further improvement. De-
spite this, our method still achieves substantial improvements in complex object classes, including
bicyclist (+8.4), garbage can (+3.0), and person (+2.5) mIoU. We also observe gains in
trunk (+4.3), ground (+0.5), and vegetation (+1.1), demonstrating consistent performance
benefits across various semantic classes.

5.3 ABLATION STUDY

As shown in Table 4, we conduct an ablation study by incrementally adding our proposed compo-
nents on baseline model, SAC-LM (Yuan et al., 2024). Applying scene-wise adversarial learning
yields a +5.6 mIoU gain, demonstrating that the scene-wise style embedding effectively captures
global domain gaps, such as those caused by noise, rolling shutter or motion blur. Adding classwise
adversarial learning provides an additional +1.1 mIoU gain, indicating the importance of modeling
class-specific domain gaps in addition to scene-level shifts and considering dynamicity similarity
between classes during adaptation is beneficial, even across domains. Finally, applying intensity

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ID S-wise C-wise Int. mIoU Increments

0 37.0 -
1 ✓ 42.6 +5.6
2 ✓ ✓ 43.7 +1.1
3 ✓ ✓ ✓ 44.7 +1.0

Table 4: Ablation study on the effect of each component. The base model, SAC-LM Yuan et al.
(2024), gradually adds Scene-wise (S-wise), Class-wise(C-wise) style embedding-based adversarial
learning, and Intensity self-training (Int.) losses.

GT Ours DGT-ST GT Ours DGT-ST

car

trunk

vegetation

terrain

person

road building

bicylist

sidewalk

motorcycle

Figure 3: Qualitative results on SynLiDAR → SemanticKITTI benchmark. Red=incorrect,
Gray=correct. Our method shows improved performance on structurally complex and dynamic ob-
jects such as motorcycle, person, and bicyclist.

self-training results in a +1.0 mIoU gain, showing that learning implicit semantic information from
synthetic inputs, via pseudo-intensity, is beneficial for domain adaptation.

5.4 QUALITATIVE RESULTS

Qualitative results on the SynLiDAR-to-SemanticKITTI benchmark are presented in Fig. 3. As shown
in the left of row 1, our method achieves better segmentation on the motorcycle class compared
to previous methods, consistent with the analysis in Sec. 5.2. Additionally, improvements on the
person class can be observed in the left of row 2 and the right of row 1. In the right of row 2, our
method also shows better performance on the bicyclist class. These results support our findings
in Sec. 5.2, where we highlighted that our method yields more accurate predictions for dynamic,
and structurally complex objects compared to prior approaches.

6 CONCLUSION

We presented a unified framework to address the synthetic-to-real LiDAR domain gap, a key chal-
lenge for annotation-efficient semantic segmentation. Unlike general UDA methods, our approach
directly targets sensor-induced structural distortions and class-dependent variability, while extend-
ing intensity learning to the synthetic data pipeline via self-training. We proposed scene-wise and
class-wise style embeddings for adversarial learning and an intensity-guided self-training strategy.
Our method achieved state-of-the-art results on two major adaptation benchmarks, highlighting its
potential for label-efficient LiDAR segmentation.
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