CoLA: Compute-Efficient Pre-Training of LLLMs via Low-Rank Activation

Anonymous ACL submission

Abstract

The full-size MLPs and the projection layers
in attention introduce tremendous model sizes
of large language models (LLMs), imposing
extremely demanding needs of computational
resources in the pre-training stage. However,
we empirically observe that the activations of
pre-trained LL.Ms exhibit low-rank property.
Motivated by such observations, we propose
CoLA and its memory-efficient implementa-
tion, CoLA-M, to replace these full-size lay-
ers with compute-efficient auto-encoders that
naturally enforce low-rank activations through-
out training. This fundamental architectural
change eliminates the activation redundancy
and significantly boosts model capacity and
training efficiency. Experiments on LLaMA
models with 60 million to 7 billion parameters
show that CoL A reduces the computing cost
by 2x and improves training throughput by
1.86x while maintaining full-rank level per-
formance. CoLA-M further squeezes memory
cost without sacrificing throughput, offering a
pre-training approach with collectively superior
parameter, computing, and memory efficiency.
The LLMs produced are also 2x smaller, en-
abling faster inference with lower memory cost
on resource-constrained platforms. !

1 Introduction

Large foundation models have revolutionized the
landscape of artificial intelligence, achieving un-
precedented success in the language, vision, and
scientific domains. In a quest to improve accuracy
and capability, foundation models have become
huge. Several studies (Kaplan et al., 2020; Hoff-
mann et al., 2022; Krajewski et al., 2024; Kumar
et al., 2024) have highlighted a rapid increase in
the size of the model and the number of training
tokens. Models such as 175B GPT-3 (Brown et al.,
2020), 405B LLaMA-3 (Dubey et al., 2024), and

*Equal contribution
'Code available here.

19.0 - 1400
18.5 | 1300
18.0 - 1200
>17.5 - 1100
=
2 17.0
=

& 165

. @ @

15.0

-
5]
=]
o

Param Size (M)

3.0e+10 7.0e+10

FLOPS/giock, step

1.5e+11 2.2e+11

Figure 1: Comparison between various pre-training
methods on a LLaMA-1B model with a token batch size
of 256. Among them, CoLA is the only one that reduces
both compute FLOPs and model size while demonstrat-
ing on par validation perplexity with full-rank training.

540B PaLLM (Chowdhery et al., 2023) are just a few
examples of this trend. Under such circumstances,
a large number of GPUs are needed in order to pro-
vide the computational and high-bandwidth mem-
ory capacity needed to pre-train large fundation
models over long periods of time (months). The
staggering increase in cost results in an unsustain-
able trend, prompting the need to develop cost-
efficient pre-training techniques that reduce the
scale, FLOPs, and GPU memory cost.

Motivation: At the core of increasing resource uti-
lization and cost is the simple practice of scaling up
full-size linear layers in decoder-only architectures,
which has proven to be a viable and straightforward
strategy. Thus, to break free from this unsustain-
able trend, it is imperative to improve architecture
efficiency. This has been widely studied in the deep
learning community, involving different levels of
factorization of weight matrices: from simple ma-
trix factorizations, i.e., a singular value decompo-
sition (SVD), to higher-order tensor factorizations.
Extensive studies have shown that such factoriza-
tions can effectively reduce the total number of
parameters needed to achieve similar performance
in numerous domains (Jaderberg et al., 2014; Lebe-
dev et al., 2014; Novikov et al., 2015; Tjandra et al.,
2017; Dao et al., 2021; Sui et al., 2024; Yang et al.,

https://anonymous.4open.science/r/CoLA-EE10/

2024; Zhang et al., 2024), especially when neural
networks are overparameterized.

Limitations of state-of-art: The techniques men-
tioned above have been applied only to a limited
degree to pre-training tasks, and their findings sug-
gest that the pure low-rank or sparse structure often
downgrades model performance (Khodak et al.,
2021; Kamalakara et al., 2022; Chekalina et al.,
2023; Zhao et al., 2024; Hu et al., 2024; Mozaffari
et al., 2024). This has pivoted most recent work
of efficient pre-training into two directions: 1) Ac-
cumulating multiple low-rank updates (Huh et al.,
2024; Lialin et al., 2023; Loeschcke et al., 2024);
2) Enforcing low-rank structures in gradients rather
than parameters (Zhao et al., 2024; Chen et al.,
2024; Huang et al.; Liao et al., 2024; Hao et al.,
2024; Zhu et al., 2024). Both approaches have
their limitations. 1) The accumulation of low-rank
updates requires instantiating a full-rank matrix
and a deeply customized training strategy that peri-
odically merges and restarts the low-rank compo-
nents. This creates computing overhead in practice
and can only achieve (if only) marginal comput-
ing and memory reduction. 2) Enforcing low-rank
gradients reduces only the optimizer memory and
adds additional computation that downgrades train-
ing throughput. Furthermore, the memory saving
caused by gradient compression becomes negligi-
ble as the training batch size increases, as activa-
tions dominate the total memory cost. Recently
SLTrain (Han et al., 2024) revisited the notion
of parameter efficiency in foundation model pre-
training, by having both low-rank factors and an
unstructured sparse matrix. SLTrain effectively
reduces the total number of parameters without sig-
nificantly hurting model performance. However,
it still introduces computing overhead on top of
full-rank training due to the necessary reconstruc-
tion of low-rank factors. We note that none of the
above works has achieved superior efficiency of
parameter, computing, and memory simultane-
ously without performance drop in both training
and inference for foundation model pre-training.

Contributions: In this paper, we rethink the funda-
mental architecture of LLMs and propose CoLA:
Compute-Efficient Pre-Training of LLMs via Low-
rank Activation, and its memory efficient imple-
mentation CoLA-M, to achieve all the desirable
properties mentioned above. We summarize our
contributions as follows:

* We propose CoLLA, a novel architecture to en-

| COLA(-M) | SLTrain | GaLore | ReLoRA

Parameter | ‘ v ‘ v ‘ X ‘ =
Compuey | Tt [0
wewrt [es] 2 | 2 1L S
— R

Table 1: Summary and comparison of different types of
efficiency across various pre-training methods.

force explicit low-rank activations. LLMs use
massive full-size MLP and linear layers. CoLA
replaces them with auto-encoders. Each auto-
encoder applies nonlinear activations between
two low-rank factors, greatly reducing the pa-
rameter counts and computing FLOPS while per-
forming on par with the full-rank pre-training.

* We provide a memory efficient implementation,
namely CoLA-M, to achieve superior memory
reduction without sacrificing throughput.

* We extensively pre-train LLaMA (with 60M to
7B parameters) and BERT-large. CoL A reduces
model size and computing FLOPs by 2%, while
maintaining on-par performance to its full-rank
counterpart. At the system level, CoLA improves
1.86x training and 1.64 X inference throughput.
CoLA-M reduces total pre-training memory by
2/3, while still manages to improve 1.3X train-
ing throughput over full-rank baselines.

A high-level comparison of CoLA(-M) with main
baselines is provided in Table 1.

2 Related Work

Model Compression. Recent research on efficient
LLM pre-training primarily focuses on memory
savings. SLTrain (Han et al., 2024) is the first
method that reduces both trainable parameters and
total parameters in LLM pre-training, without sig-
nificantly hurting model performance. This also
reduces memory usage for model, gradients, and
optimizer states. However, the existence of its un-
structured sparse matrix S requires reconstructing
W = BA + S, otherwise it will incur dense-
sparse multiplications that are still memory costly
(Fig. 3¢). This causes additional computing than
the full-rank baseline. LoORA/ReLLoRA (Hu et al.,
2021; Lialin et al., 2023) reduces trainable param-
eters by freezing a full-rank Wy and training (at
least in a later stage) only low-rank factors, po-
tentially reducing memory needs. Yet, any com-
pute savings are limited because the forward pass

yields a larger compute than its full-rank coun-
terpart, especially when the rank must stay rela-
tively large in pre-training tasks. LoQT (Loeschcke
et al., 2024) further extends this formulation into
quantized training. COMERA (Yang et al., 2024)
achieves higher model compression and FLOPs re-
duction, yet its low-rank tensor operations are GPU
unfriendly and can also cause a performance drop.
Some works investigate pure structured sparsity or
combined with low-rank factors (Hu et al., 2024;
Mozaffari et al., 2024), but still show a significant
performance drop during the pre-training stage.

Gradient Compression. Gal.ore (Zhao et al.,
2024) reduces memory by projecting gradients into
a low-rank space, shrinking optimizer states be-
low the typical 2x AdamW overhead (Loshchilov,
2017). However, it increases computation by
adding up/down projections on top of already
compute-heavy full-rank training. As shown in
Fig. 1, its estimated FLOPs surpass full-rank train-
ing on the LLaMA-1B scale. Follow-up works
(Chen et al., 2024; Huang et al.; Liao et al., 2024;
Hao et al., 2024; Zhu et al., 2024) further explore
low-rank gradient projection. While being promis-
ing, these methods are mostly orthogonal to our fo-
cus. Crucially, they are computing lower-bounded
by the full-rank baseline. Our goal instead is to
reduce computing cost to a fraction of full-rank
LLM pre-training.

Activation Compression. CompAct (Shamshoum
et al., 2024) reduces memory of the computational
graph using low-rank compression on saved acti-
vations, which introduces similar computing cost,
yet underperforms Galore. ESPACE (Sakr and
Khailany, 2024) explores a very similar idea by
projecting activations based on well-trained weight
matrices, thus only applicable to the post-training
stage. Crucially, the projections in both methods
introduce additional computing costs on top of the
full-rank baseline. And both of them do not change
the fundamental structure of LLMs.

This paper presents an architectural innovation
that explicitly enforces low-rank activations by
adopting the bottleneck-shaped auto-encoders as
the building brick of the transformer architecture.
This is conceptually different from the above model
compression methods despite of some similarities
in their formulations. Our approach is mostly or-
thogonal with gradient compression techniques,
meaning that they could be combined to further
boost efficiency.

Spectrum of Activation Effective Rank of Activation

x10

800

Blocks
— Block 1
Block 2

B Full Activation
Bl Effective Activation

IS

—— Block 3
—— Block 4
— Block 5
\ — Block 6
Block 7
Block 8
Block 9
Block 10

— Block 11

Block 12

0 200 400 600 800
Singular Value Index

(a) (b)

w

N
Num of Activation
B
o
o

Singular Value

-

(=]

01234567891011
Block Index

Figure 2: MLP Activation Spectrum of the pre-trained
GPT-2 small (Radford et al., 2019). Model activations
are evaluated on the WikiText2 dataset. a) The singular
value decay across different decoder blocks. b) The full
dimension vs. effective rank (o« = 0.95) per block.

3 ColLA for Efficient LLM Pre-Training
3.1 A Motivating Example

Many works have observed the low-rank structure
of model activations in deep neural networks (Cui
et al., 2020; Huh et al., 2021). We also observe this
phenomenon in LLMs, i.e. the effective rank of
the activations is much smaller than their original
dimensionality. To quantify this, we define the
effective rank r(«) of activation as the minimal
number of singular values needed to preserve an
a-fraction of the total spectral energy. Formally:

k
> ie10;
Yo

where 01,09, . .., 0y are the singular values of the
activation matrix, and 0 < « < 1 is the desired
ratio of preserved information. As shown in our
experiments, the rapid decay of singular values
[Fig. 2a] leads to much smaller r(«) compared to
the full dimension [Fig. 2b]. This highlights the
significant low-rank nature in the activations of
pre-trained LLMs. More results showing the same
pattern can be found in Appendix A.

r(a) = min {k:

3.2 Low-Rank Activation via Auto-Encoder

The above observation motivates us to ask one fun-
damental question: do we really need these full-size
MLP and linear layers in LLMs? To eliminate the
redundant activations, we propose to replace them
with bottleneck-structured auto-encoders that natu-
rally facilitate low-rank activations.

Let W € R%u*dn be the weight matrix of an
arbitrary linear layer followed by a nonlinear acti-
vation in the transformer architecture:

h = ¢ (Wx), with x € R%n.)

Learnable Params I:I Frozen/Reconstructed Params I:I Input/Intermediate Results ==3» Compute in Forward Pass

=3 Compute in Backward Pass

d
Gradient Projection

B eR>" S
AV

A € R\

a) LoRA/ReLoRA

W, € R

b) GalLore

c) SLTrain d) CoLA (ours)

Figure 3: Comparison between different efficient pre-training frameworks. a) LoORA/ReLoRA (Lialin et al., 2023)
freezes a full-rank weight; b) GaLore (Zhao et al., 2024) only reduces optimizer states by down and up projecting
gradients; c) SLTrain (Han et al., 2024) requires reconstruction of the low-rank and sparse matrices; d) CoLA (ours)
is a pure low-rank architecture involving only rank weight matrices.

We replace this MLP layer with an auto-encoder
layer which consists low-rank matrices A € R”* %
and B € R%«*" and a non-linear activation ¢ in
the middle. Rank r < min(dipou) is a design
parameter that trades off between compute and per-
formance. Formally, it can be written as:

h' = Bo(Ax), 3)

The auto-encoder layer naturally enforces a low-
rank activation in training, offering a principled
approach to eliminate the redundancy observed in
Fig. 2. We have the following remarks

* The auto-encoder layer fundamentally differs
from performing low-rank weight compression in
an MLP layer. The latter performs lossy compres-
sion on model parameters but cannot eliminate
the redundancy in activations.

* The auto-encoder is not equivalent to using
smaller feature dimensions in MLP layers, since
B in the current layer cannot be merged with
A in the next layer, due to the existence of vari-
ous operations (e.g. residual connection) in the
original dimension.

Since the low-rank property is widely observed
regardless of whether Wx being followed by non-
linearity (see details in Appendix A), we also uni-
formly adopt this auto-encoder structure to all pro-
jection layers in the transformer architecture. We
empirically find that adding the original nonlinear-
ity on top of Eq. (3) does not harm the performance,
nor necessarily brings benefit (c.f. Appendix E.1).

Fig. 4 shows the architecture of each transformer
block when adopting CoLA into the LLaMA archi-
tecture. We highlight the fact that only the original
linear layers and (if any) their follow-up non-linear
transformation are modified to the CoLA formu-
lation. Other computations such as the scaled-dot

%

W \‘,/ *./
Q? @ ()
i. B

He'-;:oTnV;;ute in
CoLA-M
@
CoLA Activation
(o

LLaMA Activation

7]

Residual
Connection

b2

Element-wise
Product

Figure 4: A decoder block in CoLA with LLaMA-like
architecture (layer norms, rotary positional embeddings
are omitted for simplicity). All MLP layers and projec-
tion layers in attention are replaced with auto-encoders.
Modules painted in sketch are the re-computations dur-
ing the backward step of CoLA-M (a memory efficient
implementation of CoLA).

product of the self-attention, as well as residual con-
nections and the element-wise product of LLaMA’s
MLP layers, remain unchanged.

3.3 Computing Efficiency

We analyze and compare the computational com-
plexity of CoLA with other efficient pre-training
methods based on the LLaMA architecture. We
adopt a similar notion from (Kaplan et al., 2020),
where a general matrix multiply (GEMM) between
an M x N matrix and an NV x K matrix involves
roughly 2M N K add-multiply operations. We de-
note the model inner width as d, and the inner width
of the feed-forward layer as dg. For simplicity, we

Operation | FLOPs
Attention: Q, K, V ‘ 6nd?
Attention: SDP ‘ 4n2d
Attention: Project \ 2nd?
Feed-forward | 6ndds

Total Forward ‘ 8nd? + 4n’d + 6nddy

| 16nd® + 8n’d + 12ndds

Total Backward

Table 2: Breakdown compute of a single LLaMA de-
coder layer in full-rank training. Lower-order terms
such as bias, layer norm, activation are omitted.

Methods | FLOPs
FullRank | Crurank = 24nd” + 12n°d + 18nddy
CoLA | CeoLa = 48ndr + 12n°d + 18nr(d + dir)

(Re)LoRA | CLora = CooLa + 16nd” + 12n*d + 12ndds
SLTrain ‘ Csttmin = Crul-Rank + 24d°r + 18ddgr
GalLore ‘ Carore = Crulrank + 16d%r + 12ddger

Table 3: Estimated compute of a single LLaMA decoder
layer for different pre-training methods. Results com-
bine forward, backward and any additional compute
occurred at optimizer step.

only show non-embedding calculations of a sin-
gle sequence with token batch size of n for each
decoder layer. This is because the total computa-
tion scales only linearly with the number of layers
Niayer and the number of sequences ngeq. Further-
more, lower-order cheap operations of complexity
O(nd) or O(ndg) are omitted, such as bias, layer
norm, non-linear function, residual connection, and
element-wise product.

We show the detailed cost of the full-rank train-
ing in Table. 2. Notice that we apply the 2x rule
when calculating the backward cost. This is be-
cause for each forward GEMM that Eq. (2) de-
scribes, two GEMMs are needed to compute gradi-
ents for both the weight matrix W and the input x,
and are of the same cost the forward GEMM, i.e.,

Vyx = WV, Vw = Vix!. 4)

We apply the same analysis to all the following
pre-training methods:

¢ LoRA/ReLLoRA (Hu et al., 2021; Lialin et al.,
2023): hyora = Wox + BAXx, with fixed Wy,

¢ SLTrain (Han et al., 2024): hgirin = BAx +
Sx = (BA®7V)x, where @ denotes the scatter-
add operator, Z and V are the indices and values
of non-zero elements in the sparse matrix S.

—— 94GB H100

1204 ==~ 40GB A100

m Weight

mm Grad

100 Optimizer

| mmm Others
Activation

Memory Cost (GB)

1 2 4 8 16 32 64 128
Sequence Batch Size

Figure 5: Memory breakdown for LLaMA-1B using
fairly large sequence batch sizes in pre-training. The
activation memory is at dominant place.

« GaLore (Zhao et al., 2024): R; = PTG, G, =
PN, where P, projects the gradient G, onto a
low-rank space, and then projects it back when
updating the full-rank weight W.

We summarize the computational costs of these
methods in Table 3 and observe that the costs of
SLTrain and Galore are lower bounded by full-
rank training, while (Re)LoRA is lower bounded
by CoLA when choosing the same rank. In con-
trast, CoLA reduces the computation from full-rank
training when r < 0.62d, assuming dg ~ 2.5d in
LLaMA-like architecture. The default rank choice
issettor = id, leading to a reduction in compute
to about half the full-rank training. We refer all
details of compute analysis to Appendix B.

4 CoLA-M: A Memory-Efficient
Implementation

In this section, we design and develop CoLA-
M, a memory-efficient implementation to leverage
CoLA’s structural advantage to achieve superior
memory saving without sacrificing throughput.

4.1 Memory Breakdown in Pre-Training

We assume a common notion that training mod-
ern transformers with Adam (or AdamW) involves
four key memory components (Zhao et al., 2024;
Han et al., 2024): model parameters (1x), gradi-
ents (1x), optimizer states (2x), and activations
(1 ~ 4x). We focus on the scenario where the
memory cost determined by the model size is not
on the extreme limit of the GPU. We argue that
this is rather realistic, since the model size and the
minimum required tokens should scale up simul-
taneously during pre-training (Kaplan et al., 2020;

BN Weight W Grad Optimizer ~ WEE Others Activation
Full-Rank]
Galore .
APOLLO B
ReLoRA [|
SLTrain I
ColLA l
Vanilla GCP 1
CoLA-M []

[10 20 30 40
Memory Breakdown (GB)

Figure 6: Memory breakdown of pre-training LLaMA-
1B on single GPU using different pre-training methods.

Methods | Memory | Re-Compute
Full-Rank | 20nd + 2n*h \ N/A
Vanilla GCP ‘ nd ‘ 23nd? 4 4n’d
CoLA | 17.5nd + 2n°h + l4nr | N/A
CoLA-M ‘ 2nd + Tnr ‘ 18.5ndr + 4n*d

Table 4: Memory and re-computation analysis of full-
rank training with vanilla GCP vs. CoLA and CoLA-M.

Hoffmann et al., 2022; Krajewski et al., 2024; Ku-
mar et al., 2024). A tiny batch size on a single
GPU would be impractical. Therefore, we analyze
memory usage on a 40-GB A100 or a 94-GB H100
GPU with a fairly large sequence batch size. Fig. 5
& 6 show that activations dominate memory usage
in this setup.

4.2 CoLA Enables Efficient Checkpointing

Gradient checkpointing (GCP) (Chen et al., 2016)
is a system-level technique that reduces memory
usage by selectively storing (“checkpointing”) only
a subset of intermediate activations during the for-
ward pass. When the backward pass begins, the
missing activations are recomputed on the fly in-
stead of being stored in memory, thereby lowering
the memory cost. A vanilla (also the most effec-
tive) implementation of GCP in LLM pre-training
is to save merely the input and output of each trans-
former block, and re-compute everything within
each block during the backward step. Some works
have investigated the optimal selection of check-
points through both empirical and compiler view
(Feng and Huang, 2021; He and Yu, 2023). Such
techniques can also be developed for CoLLA, and
are beyond the scope of this paper.

Motivated by the bottleneck structure of CoLA,
we implement CoLA-M as saving only the low-
rank activations (red circles in Fig. 4), and re-
compute the up projections, and (if applicable)
the self-attention (painted in sketch in Fig. 4)

CoLA-M-1B vs LLaMA-1B w/ GCP

Vanilla GCP

| —— LLaMA-1B w/ GeP
% ColA-M-1B

*

[4.5x compute reduction

™
=}

=
o
L

-
@
L

Activation Memeory Saving (GB)
= —
(=] ~
1

=
o
L

-
i

T
6x 1012 1013 2 x 1013

FLOPs

4x 1012

Figure 7: We show how memory reduction scales with
the re-computation in full-rank training with GCP and
compare with CoLA-M. With similar gains on memory
efficiency, CoLA-M effectively reduces re-compute by
4.6 x, enabling compute efficient checkpointing.

during the backward pass. This reduces the re-
computation cost to half of the CoLA forward. We
analyze the memory and re-computation cost using
the same notions as in Section 3.3 and denote h
as the number of attention heads. We further sim-
plify the analysis under LLaMA architecture by
uniformly assuming dg ~ 2.5d. The memory and
re-computation overhead are shown in Table 4. We
refer the detailed analysis to Appendix C.

Although delicate optimizations of GCP is be-
yond our scope, we show in Fig. 7 the quantitative
results and scaling behavior of GCP on LLaMA-
1B when applying a heuristic checkpointing strat-
egy. We observe that CoLA-M greatly reduces
re-computation cost by 4.6x while achieving sim-
ilar memory saving (18.94GB) as vanilla GCP
(20.25GB).

5 Experiments

5.1 Pre-Training within Compute-Optimal

We validate our proposed methods by extensively
pre-training LLaMA-like LLMs from 60M to 7B
scales following the exact experimental setup in
(Zhao et al., 2024; Han et al., 2024). Trainings were
done using C4 dataset (Raffel et al., 2020) with-
out data repetition on roughly compute-optimal®
amounts of tokens. We compare CoLLA with base-
lines including full-rank pre-training, ReLoRA
(Hu et al., 2021), GaLore (Zhao et al., 2024), and
SLTrain (Han et al., 2024), with a focus on meth-
ods that explore model efficiency.

We implement CoLLA and CoLLA-M by parame-
terizing all MLP layers and all projection layers in

2Compute optimal regime refers to the token-to-parameter
(T2P) ratio being ~20 (Hoffmann et al., 2022).

Table 5: Comparison across various efficient pre-training methods of validation perplexity (PPL ()), number of
parameters in millions (Param), and the estimated memory usage (Mem) including model, gradient and optimizer
states based on BF16 precision. We pre-train LLaMA models from 60M to 1B on the C4 dataset (Raffel et al., 2020)
following the same setup and compare results directly against those reported in (Zhao et al., 2024; Han et al., 2024).

\ 60M \ 130M \ 350M \ IB
r/d 128/512 256/ 768 256/ 1024 512/2048
Tokens LIB 228 6.4B 13.1B
| PPL Param (M) Mem (GB) | PPL Param (M) Mem(GB) | PPL Param (M) Mem (GB) | PPL Param (M) Mem (GB)
Full-rank | 34.06 58 043 | 2436 134 100 | 1880 368 274 [1556 1339 9.98
ReLoRA | 37.04 58 037 | 2937 134 086 | 2908 368 194 | 1833 1339 6.79
GaLore | 34.88 58 036 | 2536 134 079 | 1895 368 190 | 1564 1339 6.60
SLTrain | 34.15 44 032 | 2604 97 072 | 1942 194 145 | 1614 646 481
CoLA | 34.04 43 032 | 2448 94 070 | 1940 185 138 | 1552 609 4.54
| Mem (GB) | 10k | 40k | 80k | 120k | 150k Scaling Behavior: Table 7 shows how CoLA
SbitAdm | 7259 | NA [1809 | 1547 | 1483 | 1461 might be improved when compute is scaled up.
SbitGalore | 6516 | 2687 | 17.94 | 1539 | 1495 | 1465 The default rank choices reduce half the comput-
SLTrain | 6091 | 27.59 | N/A . . i
ing cost, without harming the model performance.
CoLA-M | 2682 | 2276 | 1621 | 13.82 | 13.09 | 1273

Table 6: Validation perplexity of LLaMA-7B pre-trained
on C4 dataset. 8-bit Adam/GaLore are collected from
(Zhao et al., 2024). SLTrain is collected from (Han et al.,
2024). No results of BF16 Adam reported.

\ 60M \ 130M | 350M
| PPL FLOPs | PPL FLOPs | PPL FLOPs
FullRank | 3406 1x | 2436 1x | 1880 1x
Control | 37.73 0.4x | 27.05 05x | 2053 0.4x
CoLA | 3404 0.4x | 2448 05x | 1940 0.4x
3152 0.7x | 2397 0.7x | 1832 0.7

Table 7: Scaling behavior of CoLA and full-rank train-
ing. Control represents scaling down the full-rank train-
ing cost to be similar with CoLA in default, by reducing
number of layers and/or size down model width.

attention with auto-encoders [i.e. Eq. (3)], and keep
all other parameters and operations unchanged. We
use AdamW optimizer and cosine annealing learn-
ing rate scheduler (Loshchilov and Hutter, 2016)
with warm-up. We refer detailed configurations to
Appendix D.

Table 5 compares our methods and other efficient
pre-training techniques in terms of validation per-
plexity, parameter size, and estimated memory us-
age of model, gradients and optimizer states. CoLA
has the smallest model size, thereby consumes
the least memory, and performs on-par with full-
rank baselines. CoLA uniformly surpasses other
efficient training baselines in both efficiency and
performance. Table 6 compares the validation per-
plexity on the 7B model for 150k steps’. CoLA(-
M) significantly outperforms 8-bit Adam/Gal.ore
by 12.73 vs ~14.6, while saving two-third memory.

3Due to resources constraints, 7B models are trained below
compute optimal budget (Zhao et al., 2024; Han et al., 2024).

Meanwhile, if we relax the computing restriction
and moderately increase the rank, then CoL A out-
performs full-rank training in all three scales, while
still being fairly smaller and reducing the comput-
ing cost. One might argue that full-rank training
can also be scaled down to a similar computing
cost of CoLA and might perform similarly. We
implement such baselines in Table 7 and refer this
setup to “Control". We typically reduce the number
of layers or the model width of full-rank models
to scale down their computing cost. We find em-
pirically that they reduce performance significantly
and dramatically underperform CoLA.

5.2 Pre-Training beyond Compute-Optimal

According to Chinchilla scaling law (Hoffmann
et al., 2022), compute-optimal training is at the effi-
cient frontier when given a fixed computing budget
or a target model size. However, leading industrial
groups with massive computing resources tend to
extensively overtrain smaller models for efficient
deployment, such as LLaMA-3 (Grattafiori et al.,
2024) 1-3B models being trained up to 9 Trillion to-
kens. To evaluate CoLA’s effectiveness beyond the
compute-optimal regime, we further experiment
the following two over-training settings.
LLaMA-350M with 51B Tokens: We prolong
the training duration by 8 x of the compute-optimal
budget for both CoLA* and full-rank LLaMA
at 350M scale. This results in 51B total train-
ing tokens. CoLA continues outperforming full-
rank baseline on validation perplexity of 13.96 vs
14.47, consistent with results at compute-optimal
observed from Table 7.

“We choose CoLA at 0.7x compute of full-rank baseline,
as its superior performance observed in Table 7.

| Pre-Training Loss | QQP | SST-2 | MRPC | COLA | QNLI | MNLI | RTE | STS-B | GLUE Avg

BERTLue | 1.263 | 911 | 921 | 907

531 | 916 | 843 | 699 | 889 | 827

CoLA | 1.257 | 912 | 923 | 90.6

541 | 917 | 843 | 742 | 897 | 835

Table 8: Fine-tuning CoLA and BERT 4;e on GLUE. Both models are trained from scratch following NVIDIA’s

faithful reproduction’

, then fine-tuned for three epochs. F1 scores are reported for MRPC, Pearson correlations are

reported for STS-B, Matthews correlations are reported for COLA (task), accuracies are reported for all other tasks.
Reported metrics are the mean of 5 best out of 10 random seeds.

Throughput Comparison Across Methods

12000 11506

10000
8569

©
o
=}
©

7161

6838 6942 6770

3
o
=
©

5278
4!

Throughput (Token/sec)
8
(=}
o

N
o
=3
©

“&p 0

°

556
\\v@ o 0»\,0 °$F “a\o

Figure 8: Comparison of throughput measured when
pre-training a LLaMA-1B on a 40 GB A100 GPU with
sequence batch size of 16 for different methods.

BERT | arge (350M) with 85B Tokens: We adopt
the exact infrastructure and training configurations
from NVIDIA’s faithful BERT (Devlin et al., 2019)
reproduction® and pre-train both CoLA* and full-
rank BERT 3¢ at 350M scale on Wikipedia for
85B tokens. CoLA outperforms BERTy ;e On
training loss of 1.257 vs 1.263. We fine-tune both
pre-trained models for three epochs following (De-
vlin et al., 2019) on GLUE (Wang et al., 2018)
benchmark and show results in Table 8. CoLLA out-
performs full-rank baseline across 7 out of 8 tasks,
and on average score of 83.5 vs 82.7.

These results further demonstrate CoLA’s ef-
fectiveness across both encoder/decoder archi-
tectures, both compute-optimal/over-train set-
tings, and different activations (GeLU, Swish and
SwiGLU).

5.3 Training/Inference System Performance

Superior Training Efficiency. We further vali-
date CoLA’s efficiency from a practical perspective:
CoLA delivers superior out-of-the-box system per-
formance compared to full-rank and other efficient
training methods. Fig. 8 compares pre-training
throughput for the 1B-scale LLaMA model (batch
size 16, fully utilizing A100 GPUs). Among evalu-
ated methods, only CoLA and CoLA-M surpass the

5See details at NVIDIA’s official Github repo.

| 1B (BZ = 64) | 7B (BZ = 16)
| Mem (GB) Token/s FLOPs | Mem (GB) Token/s FLOPs
FulRank | 69.84 12365 1x | 8494 5810 Ix
VanillaGCP | 1489 8799 1.68x | 5249 4357 167x
CoLA ‘ 66.46 22,979 0.40x ‘ 55.52 9,638 0.40x
CoLA-M ‘ 17.33 16,617 0.55% ‘ 26.82 7,026 0.54x

Table 9: Detailed measurements and comparison of
CoLA and CoLA-M against full-rank and vanilla GCP
on a 94 GB H100 GPU. CoLA-M consumes only one
third of the memory while achieving higher throughput
than full-rank training with only about half its compute.

full-rank baseline throughput. Notably, CoLA-M
maintains higher throughput despite recomputation
overhead, significantly outperforming vanilla GCP.
Table 9 provides detailed measurements, showing
CoLA-M cuts computing cost nearly by half and re-
duces memory usage by two-thirds, achieving great
balance between memory and compute efficiency.
Profiling details are available in Appendix F.

Superior Inference Efficiency. Not just for train-
ing, CoLA also speeds up inference and reduces
memory cost. Table 11 (Appendix E.2) shows that
CoLA off-the-shelf improves inference throughput
by up to 1.64 X while reducing memory cost by up
to 1.67x.

6 Conclusions

We have proposed CoLLA, and its memory efficient
variant CoLA-M, to achieve collectively param-
eter, computing and memory efficiency at both
training and inference time for large foundation
models. CoLA effectively reduces 2x model size
and computing cost while preserving full-rank level
performance. CoLA-M trades minimum overhead
for state-of-the-art memory reduction, while still
improving training throughput over full-rank base-
lines. Crucially, CoLA is promising to save sub-
stantial GPU resources in LLM industry. This work
has been focused on dense architectures. In the
future, it is worth extending CoL A to the mixture-
of-expert (MoE) architecture.

https://github.com/NVIDIA/DeepLearningExamples

7 Limitations

Most of our pre-training experiments follow the ex-
act setup in (Zhao et al., 2024; Han et al., 2024) and
are conducted in the widely accepted computing-
optimal setting (Hoffmann et al., 2022) under aca-
demic budget. Therefore, they are not trained with
the same amount of tokens as industry-produced
models. However, our BERT ;e €xperiment fol-
lows NVIDIA’s faithful reproduction and is directly
compared with the reproduced BERTY 4r¢¢ On stan-
dard downstream tasks (e.g., GLUE). CoLA out-
performs BERTY ¢ and shows great potential for
producing competitive models. We have also pre-
trained the LLaMA-350M with a high token-to-
parameter ratio, showing that CoLA consistently
outperform full-rank pre-training in terms of both
accuracy and efficiency.

References

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proceedings of the 34th International
Conference on Neural Information Processing Sys-
tems, pages 1877-1901.

Viktoriia Chekalina, Georgiy Novikov, Julia Gusak,
Alexander Panchenko, and Ivan Oseledets. 2023. Ef-
ficient gpt model pre-training using tensor train ma-
trix representation. In Proceedings of the 37th Pacific
Asia Conference on Language, Information and Com-
putation, pages 600—608.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174.

Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xi-
angyu Yue, Ye Yuan, and Guoren Wang. 2024. Fira:
Can we achieve full-rank training of llms under low-
rank constraint? arXiv preprint arXiv:2410.01623.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Chunfeng Cui, Kaiqi Zhang, Talgat Daulbaev, Julia
Gusak, Ivan Oseledets, and Zheng Zhang. 2020. Ac-
tive subspace of neural networks: Structural analysis
and universal attacks. STAM Journal on Mathematics
of Data Science, 2(4):1096-1122.

Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang,
Zhao Song, Atri Rudra, and Christopher Re. 2021.

Pixelated butterfly: Simple and efficient sparse train-
ing for neural network models. arXiv preprint
arXiv:2112.00029.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171-4186.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Jianwei Feng and Dong Huang. 2021. Optimal gra-
dient checkpoint search for arbitrary computation
graphs. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
11433-11442.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong,
Akiko Takeda, Pratik Jawanpuria, and Bamdev
Mishra. 2024. Sltrain: a sparse plus low-rank ap-
proach for parameter and memory efficient pretrain-
ing. arXiv preprint arXiv:2406.02214.

Yongchang Hao, Yanshuai Cao, and Lili Mou. 2024.
Flora: low-rank adapters are secretly gradient com-
pressors. In Proceedings of the 41st International
Conference on Machine Learning, pages 17554—
17571.

Horace He and Shangdi Yu. 2023. Transcending
runtime-memory tradeoffs in checkpointing by being
fusion aware. Proceedings of Machine Learning and

Systems, 5:414-427.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, et al. 2022. Training compute-
optimal large language models. In Proceedings of the
36th International Conference on Neural Information
Processing Systems, pages 30016-30030.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yuezhou Hu, Kang Zhao, Weiyu Huang, Jianfei Chen,
and Jun Zhu. 2024. Accelerating transformer pre-
training with 2: 4 sparsity. In Proceedings of the
41st International Conference on Machine Learning,
pages 19531-19543.

Weihao Huang, Zhenyu Zhang, Yushun Zhang, Zhi-
Quan Luo, Ruoyu Sun, and Zhangyang Wang.
Galore-mini: Low rank gradient learning with fewer
learning rates. In NeurIPS 2024 Workshop on Fine-
Tuning in Modern Machine Learning: Principles and
Scalability.

Minyoung Huh, Brian Cheung, Jeremy Bernstein,
Phillip Isola, and Pulkit Agrawal. 2024. Training
neural networks from scratch with parallel low-rank
adapters. arXiv preprint arXiv:2402.16828.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian
Cheung, Pulkit Agrawal, and Phillip Isola. 2021. The
low-rank simplicity bias in deep networks. arXiv
preprint arXiv:2103.10427.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Speeding up convolutional neural net-

works with low rank expansions. arXiv preprint
arXiv:1405.3866.

Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat
Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N
Gomez. 2022. Exploring low rank training of deep
neural networks. arXiv preprint arXiv:2209.13569.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Mikhail Khodak, Neil Tenenholtz, Lester Mackey, and
Nicolo Fusi. 2021. Initialization and regulariza-
tion of factorized neural layers. arXiv preprint
arXiv:2105.01029.

Jakub Krajewski, Jan Ludziejewski, Kamil Adam-
czewski, Maciej Piéro, Michat Krutul, Szymon
Antoniak, Kamil Ciebiera, Krystian Krél, Tomasz
Odrzygézdz, Piotr Sankowski, et al. 2024. Scal-
ing laws for fine-grained mixture of experts. arXiv
preprint arXiv:2402.07871.

Tanishq Kumar, Zachary Ankner, Benjamin F Spector,
Blake Bordelon, Niklas Muennighoff, Mansheej Paul,
Cengiz Pehlevan, Christopher Ré, and Aditi Raghu-
nathan. 2024. Scaling laws for precision. arXiv
preprint arXiv:2411.04330.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba,
Ivan Oseledets, and Victor Lempitsky. 2014.
Speeding-up convolutional neural networks us-
ing fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553.

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2023. Relora: High-
rank training through low-rank updates. In The
Twelfth International Conference on Learning Repre-
sentations.

Xutao Liao, Shaohui Li, Yuhui Xu, Zhi Li, Yu Liu,
and You He. 2024. Galore +: Boosting low-rank
adaptation for llms with cross-head projection. arXiv
preprint arXiv:2412.19820.

10

Sebastian Loeschcke, Mads Toftrup, Michael Kasto-
ryano, Serge Belongie, and Vésteinn Snabjarnarson.
2024. Logqt: Low-rank adapters for quantized pre-
training. Advances in Neural Information Processing

Systems, 37:115282—-115308.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983.

Mohammad Mozaffari, Amir Yazdanbakhsh, Zhao
Zhang, and Maryam Mehri Dehnavi. 2024. Slope:
Double-pruned sparse plus lazy low-rank adapter pre-
training of llms. arXiv preprint arXiv:2405.16325.

Alexander Novikov, Dmitrii Podoprikhin, Anton Os-
okin, and Dmitry P Vetrov. 2015. Tensorizing neural
networks. Advances in neural information process-
ing systems, 28.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Charbel Sakr and Brucek Khailany. 2024. Espace: Di-
mensionality reduction of activations for model com-
pression. arXiv preprint arXiv:2410.05437.

Yara Shamshoum, Nitzan Hodos, Yuval Sieradzki, and
Assaf Schuster. 2024. Compact: Compressed ac-
tivations for memory-efficient llm training. arXiv
preprint arXiv:2410.15352.

Yang Sui, Miao Yin, Yu Gong, Jinqi Xiao, Huy Phan,
and Bo Yuan. 2024. Elrt: Efficient low-rank training
for compact convolutional neural networks. arXiv
preprint arXiv:2401.10341.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura.
2017. Compressing recurrent neural network with
tensor train. In 2017 International Joint Confer-
ence on Neural Networks (IJCNN), pages 4451-4458.
IEEE.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353-355.

Zi Yang, Ziyue Liu, Samridhi Choudhary, Xinfeng Xie,
Cao Gao, Siegfried Kunzmann, and Zheng Zhang.
2024. Comera: Computing-and memory-efficient

training via rank-adaptive tensor optimization. arXiv
preprint arXiv:2405.14377.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2019. Large batch optimization for deep learn-
ing: Training bert in 76 minutes. arXiv preprint
arXiv:1904.00962.

Qiaozhe Zhang, Ruijie Zhang, Jun Sun, and Yingzhuang
Liu. 2024. How sparse can we prune a deep net-
work: A fundamental limit perspective. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: memory-efficient llm training by gra-
dient low-rank projection. In Proceedings of the
41st International Conference on Machine Learning,
pages 61121-61143.

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu,
Sem Park, Vikas Chandra, Bo Long, David Z Pan,
Zhangyang Wang, and Jinwon Lee. 2024. Apollo:
Sgd-like memory, adamw-level performance. arXiv
preprint arXiv:2412.05270.

A Observation of Low-Rank Activation
in Pre-Trained GPT2

In this section, we further show the low-rank struc-
ture in model activations evaluated on a pre-trained
GPT-2 (Radford et al., 2019) small. The evaluation
is conducted with sequence batch size of 64 and
sequence length of 1024. We fix o = 0.95 through-
out this section. Similar patterns are observed from
the attention layers (Fig. 9, 10, 11). The low-rank
nature of activations is evident across all the differ-
ent components of the model. This suggests that
despite the high-dimensional representations, the
effective dimensionality of the activations remains
constrained.

Spectrum of Activation Effective Rank of Activation

x10%
8

800
Blocks

— Block 1
Block 2
—— Block 3
— Block 4
—— Block 5
—— Block 6
Block 7
—— Block 8
Block 9
—— Block 10

|
p— Block 11
0 —_— Block 12
0 200 400 600 800
Singular Value Index

BN Full Activation
W Effective Activation

@
=3
o

Singular Value
> o
Num of Activation
B
o
o

N
N
=3
o

0
0123456 7891011

Block Index

Figure 9: Activation Spectrum of Attention Layer (Q)

11

%pectrum of Activation Effective Rank of Activation
x10'

800
Blocks

— Block 1

I Full Activation
Em Effective Activation

Block 2 =
g 1.25 — Block 3 8 600
< 1.00 —— Block 4 g
> —— Block5 | 5
5 075 — Block6 | & 400
= Block7 | 45
g 0.50 —— Block 8 £
0 Block 9 S 200
0.25 —— Block10 | 2
\ — Block 11
0.00] S=—0 — Block12
0 200 400 600 800 012345673891011

Singular Value Index Block Index

Figure 10: Activation Spectrum of Attention Layer (K)

?pectrum of Activation Effective Rank of Activation

x10

800
Blocks

— Block 1
3 Block 2
—— Block 3
—— Block 4
—— Block 5
—— Block 6
Block 7
—— Block 8
Block 9
—— Block 10
— Block 11
Block 12

(0] 200 400 600 800
Singular Value Index

B Full Activation
W Effective Activation

Singular Value

Num of Activation

01234567 891011
Block Index

Figure 11: Activation Spectrum of Attention Layer (V)

B Detailed Compute Analysis

According to Table. 2, the total compute of full-
rank training is simply combining forward and
backward as

Crull-Rank = 24nd” + 12n°d + 18nddg. (5)

In our proposed architecture, every single linear
layer is replaced by low rank matrices A, B, and
an activation function sandwiched in between. The
activation only introduces trivial compute thus can
be omitted in the calculation. For each d? and ddy
in Eq. (5), CoLA effectively converts them into
2dr and r(d + dg). Therefore the total compute of
CoLA is

CcoLa = 48ndr + 12n*d + 18nr(d + dir). (6)

Plugging in an actual setting of LLaMA/CoLA-1B,
in which r = %d and r =~ %dff, we achieve a
compute reduction from Eq. (5) to approximately

Coolas = 16.5nd? + 12n%d + 1.8nddg. (7)

We now discuss and compare CoLLA with other
efficient pre-training methods in terms of their com-
pute complexity. We start with LoRA (Hu et al.,
2021) and ReLoRA (Lialin et al., 2023). They
share the same architecture that’s shown in Fig. 3

a), in which low rank matrices A € R"*%n and
B € R%«*" are adapted onto a full rank matrix
Wy € Réouxdin Hence modifies Eq. (2) into

h = Wyx + BAx. 8)

This yields a consistently more expensive forward
step than the full-rank training regardless the choice
of r. During the backward step, since gradient
does not flow into Wy, only one GEMM that com-
putes gradient w.r.t x is involved with the full-rank
component Wyx. Combining together both full-
rank and low-rank components in both forward and
backward step, the total compute of LoRA is

ClLora = 16nd? + 12n2d + 12ndds
+ 48ndr + 18nr(d + dg) . (9)

CcoLA

When choosing the same r for LORA and CoLA,
we have Cora > CeorLa always true.

In ReLoRA (Lialin et al., 2023), the hybrid
strategy that warms up with the full-rank training
arises more uncertainties in analyzing its complex-
ity. And such strategy needs delicate tuning of
hyper-parameters such as the full rank warm-up
ratio, the restart frequency of optimizer, etc, and
the choice of rank might also be affected by these
strategy-level hyper-parameters. Therefore, we fol-
low the same notion in (Zhao et al., 2024) that only
consider the pure low-rank training of ReLoRA,
which simplifies the compute analysis of ReLoRA
to be the same as LoRA.

SLTrain (Han et al., 2024) proposes a low-rank
+ sparse parameterization instead of having a fixed
full-rank matrix Wy. The architecture of SLTrain
is shown in Fig. 3 c). We continue using the no-
tation for the low-rank matrices, and denote the
sparse matrix as S, with the sparsity level as 4.
This modifies Eq. (2) into

h =BAx+ Sx = (BA @7 V)x, (10)

where @ denotes the scatter-add operator, Z and V
denote the indices and values of non-zero elements
in S. This implementation avoids instantiating a
full sized S, instead keeping only the non-zero
elements. However, this introduces non-trivial re-
construction cost of BA in every step. And if we
further denote W = BA @7 V, then the forward
data-flow that starts from W is the same as in the
full-rank training, as well as the backward data-
flow that ends at W. Therefore, the total compute

12

of SLTrain should be Ctypj.rank plus reconstructing
W, and its corresponding 2x compute during back-
ward, i.e.,

Csitrain = Chullrank + 24d%r + 18ddgr. (11)

For the last class of method to discuss, GaLore
(Zhao et al., 2024) and it’s follow-ups such as Fira
(Chen et al., 2024) and APOLLO (Zhu et al., 2024),
all investigate the memory efficiency associated
with the AdamW optimizer. We only show the data-
flow GaLore in Fig. 3 b), others are similar except
some minor differences in how to manipulate gra-
dients. The model architecture is kept unchanged
in all these methods. Therefore, the complexity
analysis is on the additional compute for projecting
gradients into a low-rank space. GalLore proposes
the following update rules:

R; = P/'G;,G; = o - PNy,

~ (12)
Wi =W 1 +1n-Gy,
where the projector P; € R%*" at time ¢ is com-
puted by decomposing G; € R¥*¢ via singular
value decomposition (SVD) and is updated peri-
odically, N; € R%" is the low-rank optimizer
states, « is a scaling factor and 7 is the learning
rate. Therefore, the total compute of Gal.ore is

CGaLore = Chull-rank + 16d2"" + 12ddgr. (13)

We remark that the compute analysis for the
additional cost of SLTrain and GaLore (and its vari-
ants) is of limited scope and does not necessarily
reflect their actual overhead. The actual cost will
be dependent on other practical considerations on
both algorithm and system level, such as the spe-
cific use case of these methods (e.g., pre-training,
fine-tuning, etc), the actual number of the optimizer
steps performed, the actual number of forward and
backward steps performed when fixing total train-
ing tokens (i.e., if the hardware can afford larger
batch sizes then the actual steps are fewer). It is
almost impossible to give a unified notion while
being fair when comparing between them. Hence
we follow the similar setup used in (Zhao et al.,
2024; Han et al., 2024; Chen et al., 2024; Zhu et al.,
2024) when they analyze memory efficiency and
measure system-level performance. However, it is
rather safe to conclude that the overall cost intro-
duced by GalLore and its variants will be diluted in
real practices of pre-training due to the optimizer
step is not frequent as forward and backward steps,

hence are less expensive than SLTrain. Nonethe-
less, we highlight the fact that all the aforemen-
tioned methods are non-trivially more expensive
than CoLA in terms of compute, and are all (except
LoRA/ReLoRA) lower bounded by the full-rank
training.

C Detailed Memory Analysis

We continue using the notions defined in Section.
4.2 and start with the activation memory of full-
rank training:

_ 2
Mtallrank = 3nd, +2n°h + 2nd + 11nd
QK,V attention ftw
+ 2nd =20nd + 2n%h. (14)

layer norm

2nd
<~

residual connection

When applying vanilla GCP, only the output of
each block is saved, and all other activations are re-
computed when needed. This dramatically reduces
the total activation memory to only

Mianitla-Gep = nd. (15)

However, such benefit comes with a cost equal to
almost an entire forward step. From Table. 2, we
have the cost of vanilla-GCP as

CuanillaGcp = Chullrank + 23nd” + 4n’d. (16)

Although we mentioned that delicate optimization
of vanilla-GCP is beyond the scope of our discus-
sion, we show a heuristic strategy when selecting
checkpoints. Refer to Eq. (14), activations that as-
sociated with minimal re-compute are: layer norm,
residual connection, and non-linear function (in-
cluded in the ffw term). Then intuitively these acti-
vations should always be re-computed when trying
to save memory. In fact this can save a fair amount
of memory. Note in this paper we analyze compute
in pure theoretical notion that lower order terms
does not bring noticeable effect hence are omitted.
In practice, however, re-computation brings latency
even for theoretically trivial operations, and will
lower the overall GPU throughput. Other terms
in Eq. (14) are all significant components when
mapping to FLOPs change. One can gradually add
more operations into the re-compute list and trade
for more memory savings. We show the trend how
they scale in Fig. 7.

Now we discuss CoLA and how it enables com-
pute efficient checkpointing. We first evaluate how
much memory overhead introduced by the low-rank

13

activations. Compared to Eq. (14), CoLA adds 2nr
for each of the low-rank layers, i.e., nr for Ax,
another nr for o (Ax), thereby

M = Mpulrank+ l4nr — 2.5nd
CoLA full-rank
low-rank ¢ remove original o

(17)

We notice that when model scales up, the origi-
nal LLaMA activation no longer brings benefit to
model performance, hence can be removed, which
corresponds to 2.5nd less activations.

As shown in Figure. 4, CoLA has multiple non-
linear functions injected along the normal data-
flow. This partitions the previously longer path,
i.e., the whole block, to significantly shorter paths
bounded by these low-rank activations. This pro-
vides a natural selection of checkpoints that are
of r-dimensional instead of d. More importantly,
these shorter paths halve the re-compute steps. We
show in Figure. 4 that only the weights that are
painted in sketch need re-computation during the
backward step of CoLA-M. This reduces signifi-
cantly the cost of implementing GCP in CoLA-like
architecture, results in the cost of only

Ccoram = Ceora + 18.5ndr + 4n2d. (18)
Meanwhile, the memory saving of CoLA-M is
still significant. We have the activation memory
of CoLA-M as

McoLaMm = 2nd + Tnr. (19)

D Hyper-Parameters
D.1 LLaMA Pre-Training

For optimizer related hyper-parameters, we empir-
ically found 0.003 is a balanced choice of learn-
ing rate for most of the models we trained, this
is similar to the settings in (Han et al., 2024). For
CoLA-1B, this learning rate triggers a unstable loss
curve, thereby is reduced to 0.002, and is further
reduced to 0.001 for CoLA-7B as a conservative
practice. For smaller models like CoLA-60M, an
even larger learning rate such 0.006 can be adopted.
For the warm-up ratio, weight decay and gradient
clipping, we found the commonly adopted settings,
0.1, 0.01, 0.5, are proper choices for CoLA. Other
than the standard optimizer parameters, one needs
to pre-define a rank r when initializing CoLA. A
default choice is set to approximately one quarter
of the model inner width, i.e., 7 = 1d.

| 60M | 130M | 350M
CoLAw/Botho | 34.04 | 24.48 | 19.56
CoLA w/ Only Low-Rank o | 34.35 | 2520 | 19.40

CoLA w/ Only Low-Rank o
— Reduced

CoLA w/ Only Full-Rank o | 36.26 | 26.85 | 21.18

3541 ‘ 25.90 ‘ 20.50

Table 10: Ablation study regarding where to place the
low-rank non-linear functions.

D.2 BERT}y age Pre-Training

We directly adopted NVIDIA’s open-sourced repro-
duction of BERT pre-training’, without changing
any training configurations or hyper-parameters
(including learning rate). We implemented CoL A
onto this training pipeline and set CoLA as 0.7x
compute of full-rank BERT} ae, which corre-
sponds to rank 384 at attention layers and rank
512 at MLP layers. We choose this setting due to
its superior performance observed in Table 7.

Both CoL A and BERT 4 are trained for 85B
tokens using masked token prediction and next sen-
tence prediction, with a composition of 128 tokens
per sequence in 90% steps and 512 tokens per se-
quence in the rest 10% steps. Most settings in this
reproduction are identical to the original BERT
(Devlin et al., 2019), except the adoption of LAMB
optimizer (You et al., 2019) for large batch train-
ing and the constraint of using only the Wikipedia
corpus. We kept everything unchanged, and suc-
cessfully reproduced BERTY ;g as training loss of
1.263, very close to the mean value 1.265 reported
by NVIDIA. Meanwhile, we trained CoL A using
the exact same configurations and got the training
loss of 1.257, suggesting a slightly better outcome
despite of fewer parameter and compute.

E Additional Results

E.1 Ablation Study

We empirically found that keeping the original
LLaMA nonlinearity on top of our proposed formu-
lation Eq. (3) helps improve the model performance
at smaller scales, such as 60M and 130M. However,
when scaling up to 350M we no longer observe
such a benefit. Therefore, the default setting of pre-
training CoLA-1B/7B is set to use only low-rank
nonlinearity. We found also evident that applying
low-rank nonlinearity (i.e., Eq. (3)) regardless of
whether the original linear layer being followed by
nonlinearity is crucial to boost model performance.

14

| 1B (BZ=32) | 7B (BZ=32)

| Mem (GB) Token/s | Mem (GB) Token/s
Full-rank | 5.74 2,109 | 1815 11,086
SLTrain ‘ 4.18 20,096 ‘ 12.70 9,968
CoLA ‘ 3.84 34,697 ‘ 10.87 16,012

Table 11: Comparison of memory (GB) and throughput
(Token/sec) at inference time on an A100 GPU.

Results are shown in Table. 10, in which "CoLA
w/ Both 0" means keeping the original nonlinearity
on top of proposed low-rank nonlinearity, "CoLA
w/ Only Low-Rank ¢" means applying Eq. (3) in
an agnostic way to all linear layers, "CoLA w/
Only Low-Rank o — Reduced" means only apply-
ing Eq. (3) to the linear layers that are originally
followed by nonlinearity, "CoLA w/ Only Full-
Rank o" means keeping the low-rank factorization
but does not apply low-rank nonlinearity.

E.2 Inference Efficiency

We show CoLA’s system performance at inference
stage in Table 11. CoLA reduces memory usage
and improves inference throughput compared to
full-rank baselines.

F Detailed Profiling Setting

This section provides a detailed explanation of the
experimental setup for system-level measurements.
For the memory breakdown in Fig. 6, we use a
sequence batch size of 32. For throughput mea-
surement in Fig. 8, we use a sequence batch size
of 16 because the full-rank model cannot fit into
40GB A100 when using a sequence batch size of
32. Throughput is measured incorporating one for-
ward pass, one backward pass, and one optimizer
step. This setup reflects a realistic training sce-
nario, particularly in a multi-GPU environment,
such as an 8x A100 cluster utilizing simple data
parallelism. For a fair comparison, we set the up-
date step in GaLore/APOLLO to 200, ensuring that
the computationally expensive SVD/random pro-
jection is performed only once every 200 optimizer
steps and is distributed across a single optimizer
step. All experiments are conducted on a single
GPU to isolate the effected of FLOP reduction on
throughput improvement, without being influenced
by multi-GPU framework settings or communica-
tion overhead. For Table. 6, memory consumption
is measured on a 94GB H100 with a sequence batch
size of 16. For Table. 11, inference is performed
using the same configuration as pre-training, with
a sequence batch size of 32.

