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Abstract

The full-size MLPs and the projection layers001
in attention introduce tremendous model sizes002
of large language models (LLMs), imposing003
extremely demanding needs of computational004
resources in the pre-training stage. However,005
we empirically observe that the activations of006
pre-trained LLMs exhibit low-rank property.007
Motivated by such observations, we propose008
CoLA and its memory-efficient implementa-009
tion, CoLA-M, to replace these full-size lay-010
ers with compute-efficient auto-encoders that011
naturally enforce low-rank activations through-012
out training. This fundamental architectural013
change eliminates the activation redundancy014
and significantly boosts model capacity and015
training efficiency. Experiments on LLaMA016
models with 60 million to 7 billion parameters017
show that CoLA reduces the computing cost018
by 2××× and improves training throughput by019
1.86××× while maintaining full-rank level per-020
formance. CoLA-M further squeezes memory021
cost without sacrificing throughput, offering a022
pre-training approach with collectively superior023
parameter, computing, and memory efficiency.024
The LLMs produced are also 2××× smaller, en-025
abling faster inference with lower memory cost026
on resource-constrained platforms. 1027

1 Introduction028

Large foundation models have revolutionized the029

landscape of artificial intelligence, achieving un-030

precedented success in the language, vision, and031

scientific domains. In a quest to improve accuracy032

and capability, foundation models have become033

huge. Several studies (Kaplan et al., 2020; Hoff-034

mann et al., 2022; Krajewski et al., 2024; Kumar035

et al., 2024) have highlighted a rapid increase in036

the size of the model and the number of training037

tokens. Models such as 175B GPT-3 (Brown et al.,038

2020), 405B LLaMA-3 (Dubey et al., 2024), and039

*Equal contribution
1Code available here.

Figure 1: Comparison between various pre-training
methods on a LLaMA-1B model with a token batch size
of 256. Among them, CoLA is the only one that reduces
both compute FLOPs and model size while demonstrat-
ing on par validation perplexity with full-rank training.

540B PaLM (Chowdhery et al., 2023) are just a few 040

examples of this trend. Under such circumstances, 041

a large number of GPUs are needed in order to pro- 042

vide the computational and high-bandwidth mem- 043

ory capacity needed to pre-train large fundation 044

models over long periods of time (months). The 045

staggering increase in cost results in an unsustain- 046

able trend, prompting the need to develop cost- 047

efficient pre-training techniques that reduce the 048

scale, FLOPs, and GPU memory cost. 049

Motivation: At the core of increasing resource uti- 050

lization and cost is the simple practice of scaling up 051

full-size linear layers in decoder-only architectures, 052

which has proven to be a viable and straightforward 053

strategy. Thus, to break free from this unsustain- 054

able trend, it is imperative to improve architecture 055

efficiency. This has been widely studied in the deep 056

learning community, involving different levels of 057

factorization of weight matrices: from simple ma- 058

trix factorizations, i.e., a singular value decompo- 059

sition (SVD), to higher-order tensor factorizations. 060

Extensive studies have shown that such factoriza- 061

tions can effectively reduce the total number of 062

parameters needed to achieve similar performance 063

in numerous domains (Jaderberg et al., 2014; Lebe- 064

dev et al., 2014; Novikov et al., 2015; Tjandra et al., 065

2017; Dao et al., 2021; Sui et al., 2024; Yang et al., 066
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2024; Zhang et al., 2024), especially when neural067

networks are overparameterized.068

Limitations of state-of-art: The techniques men-069

tioned above have been applied only to a limited070

degree to pre-training tasks, and their findings sug-071

gest that the pure low-rank or sparse structure often072

downgrades model performance (Khodak et al.,073

2021; Kamalakara et al., 2022; Chekalina et al.,074

2023; Zhao et al., 2024; Hu et al., 2024; Mozaffari075

et al., 2024). This has pivoted most recent work076

of efficient pre-training into two directions: 1) Ac-077

cumulating multiple low-rank updates (Huh et al.,078

2024; Lialin et al., 2023; Loeschcke et al., 2024);079

2) Enforcing low-rank structures in gradients rather080

than parameters (Zhao et al., 2024; Chen et al.,081

2024; Huang et al.; Liao et al., 2024; Hao et al.,082

2024; Zhu et al., 2024). Both approaches have083

their limitations. 1) The accumulation of low-rank084

updates requires instantiating a full-rank matrix085

and a deeply customized training strategy that peri-086

odically merges and restarts the low-rank compo-087

nents. This creates computing overhead in practice088

and can only achieve (if only) marginal comput-089

ing and memory reduction. 2) Enforcing low-rank090

gradients reduces only the optimizer memory and091

adds additional computation that downgrades train-092

ing throughput. Furthermore, the memory saving093

caused by gradient compression becomes negligi-094

ble as the training batch size increases, as activa-095

tions dominate the total memory cost. Recently096

SLTrain (Han et al., 2024) revisited the notion097

of parameter efficiency in foundation model pre-098

training, by having both low-rank factors and an099

unstructured sparse matrix. SLTrain effectively100

reduces the total number of parameters without sig-101

nificantly hurting model performance. However,102

it still introduces computing overhead on top of103

full-rank training due to the necessary reconstruc-104

tion of low-rank factors. We note that none of the105

above works has achieved superior efficiency of106

parameter, computing, and memory simultane-107

ously without performance drop in both training108

and inference for foundation model pre-training.109

Contributions: In this paper, we rethink the funda-110

mental architecture of LLMs and propose CoLA:111

Compute-Efficient Pre-Training of LLMs via Low-112

rank Activation, and its memory efficient imple-113

mentation CoLA-M, to achieve all the desirable114

properties mentioned above. We summarize our115

contributions as follows:116

• We propose CoLA, a novel architecture to en-117

CoLA(-M) SLTrain GaLore ReLoRA

Parameter ↓↓↓ ✓✓✓ ✓✓✓ ××× ×××

Compute ↓↓↓ Training ✓✓✓ ××× ××× ✓✓✓
Inference ✓✓✓ ××× ××× ×××

Memory ↓↓↓ Training ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Inference ✓✓✓ ✓✓✓ ××× ×××

Throughput ↑↑↑ Training ✓✓✓ ××× ××× ×××
Inference ✓✓✓ ××× ××× ×××

Table 1: Summary and comparison of different types of
efficiency across various pre-training methods.

force explicit low-rank activations. LLMs use 118

massive full-size MLP and linear layers. CoLA 119

replaces them with auto-encoders. Each auto- 120

encoder applies nonlinear activations between 121

two low-rank factors, greatly reducing the pa- 122

rameter counts and computing FLOPS while per- 123

forming on par with the full-rank pre-training. 124

• We provide a memory efficient implementation, 125

namely CoLA-M, to achieve superior memory 126

reduction without sacrificing throughput. 127

• We extensively pre-train LLaMA (with 60M to 128

7B parameters) and BERT-large. CoLA reduces 129

model size and computing FLOPs by 2×××, while 130

maintaining on-par performance to its full-rank 131

counterpart. At the system level, CoLA improves 132

1.86××× training and 1.64××× inference throughput. 133

CoLA-M reduces total pre-training memory by 134

2/3, while still manages to improve 1.3××× train- 135

ing throughput over full-rank baselines. 136

A high-level comparison of CoLA(-M) with main 137

baselines is provided in Table 1. 138

2 Related Work 139

Model Compression. Recent research on efficient 140

LLM pre-training primarily focuses on memory 141

savings. SLTrain (Han et al., 2024) is the first 142

method that reduces both trainable parameters and 143

total parameters in LLM pre-training, without sig- 144

nificantly hurting model performance. This also 145

reduces memory usage for model, gradients, and 146

optimizer states. However, the existence of its un- 147

structured sparse matrix S requires reconstructing 148

W̃ = BA + S, otherwise it will incur dense- 149

sparse multiplications that are still memory costly 150

(Fig. 3c). This causes additional computing than 151

the full-rank baseline. LoRA/ReLoRA (Hu et al., 152

2021; Lialin et al., 2023) reduces trainable param- 153

eters by freezing a full-rank W0 and training (at 154

least in a later stage) only low-rank factors, po- 155

tentially reducing memory needs. Yet, any com- 156

pute savings are limited because the forward pass 157
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yields a larger compute than its full-rank coun-158

terpart, especially when the rank must stay rela-159

tively large in pre-training tasks. LoQT (Loeschcke160

et al., 2024) further extends this formulation into161

quantized training. CoMERA (Yang et al., 2024)162

achieves higher model compression and FLOPs re-163

duction, yet its low-rank tensor operations are GPU164

unfriendly and can also cause a performance drop.165

Some works investigate pure structured sparsity or166

combined with low-rank factors (Hu et al., 2024;167

Mozaffari et al., 2024), but still show a significant168

performance drop during the pre-training stage.169

Gradient Compression. GaLore (Zhao et al.,170

2024) reduces memory by projecting gradients into171

a low-rank space, shrinking optimizer states be-172

low the typical 2× AdamW overhead (Loshchilov,173

2017). However, it increases computation by174

adding up/down projections on top of already175

compute-heavy full-rank training. As shown in176

Fig. 1, its estimated FLOPs surpass full-rank train-177

ing on the LLaMA-1B scale. Follow-up works178

(Chen et al., 2024; Huang et al.; Liao et al., 2024;179

Hao et al., 2024; Zhu et al., 2024) further explore180

low-rank gradient projection. While being promis-181

ing, these methods are mostly orthogonal to our fo-182

cus. Crucially, they are computing lower-bounded183

by the full-rank baseline. Our goal instead is to184

reduce computing cost to a fraction of full-rank185

LLM pre-training.186

Activation Compression. CompAct (Shamshoum187

et al., 2024) reduces memory of the computational188

graph using low-rank compression on saved acti-189

vations, which introduces similar computing cost,190

yet underperforms GaLore. ESPACE (Sakr and191

Khailany, 2024) explores a very similar idea by192

projecting activations based on well-trained weight193

matrices, thus only applicable to the post-training194

stage. Crucially, the projections in both methods195

introduce additional computing costs on top of the196

full-rank baseline. And both of them do not change197

the fundamental structure of LLMs.198

This paper presents an architectural innovation199

that explicitly enforces low-rank activations by200

adopting the bottleneck-shaped auto-encoders as201

the building brick of the transformer architecture.202

This is conceptually different from the above model203

compression methods despite of some similarities204

in their formulations. Our approach is mostly or-205

thogonal with gradient compression techniques,206

meaning that they could be combined to further207

boost efficiency.208

Figure 2: MLP Activation Spectrum of the pre-trained
GPT-2 small (Radford et al., 2019). Model activations
are evaluated on the WikiText2 dataset. a) The singular
value decay across different decoder blocks. b) The full
dimension vs. effective rank (α = 0.95) per block.

3 CoLA for Efficient LLM Pre-Training 209

3.1 A Motivating Example 210

Many works have observed the low-rank structure 211

of model activations in deep neural networks (Cui 212

et al., 2020; Huh et al., 2021). We also observe this 213

phenomenon in LLMs, i.e. the effective rank of 214

the activations is much smaller than their original 215

dimensionality. To quantify this, we define the 216

effective rank r(α) of activation as the minimal 217

number of singular values needed to preserve an 218

α-fraction of the total spectral energy. Formally: 219

r(α) = min

{
k

∣∣∣∣∣
∑k

i=1 σ
2
i∑n

i=1 σ
2
i

≥ α

}
, (1) 220

where σ1, σ2, . . . , σn are the singular values of the 221

activation matrix, and 0 < α ≤ 1 is the desired 222

ratio of preserved information. As shown in our 223

experiments, the rapid decay of singular values 224

[Fig. 2a] leads to much smaller r(α) compared to 225

the full dimension [Fig. 2b]. This highlights the 226

significant low-rank nature in the activations of 227

pre-trained LLMs. More results showing the same 228

pattern can be found in Appendix A. 229

3.2 Low-Rank Activation via Auto-Encoder 230

The above observation motivates us to ask one fun- 231

damental question: do we really need these full-size 232

MLP and linear layers in LLMs? To eliminate the 233

redundant activations, we propose to replace them 234

with bottleneck-structured auto-encoders that natu- 235

rally facilitate low-rank activations. 236

Let W ∈ Rdout×din be the weight matrix of an 237

arbitrary linear layer followed by a nonlinear acti- 238

vation in the transformer architecture: 239

h = σ (Wx) , with x ∈ Rdin . (2) 240
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Figure 3: Comparison between different efficient pre-training frameworks. a) LoRA/ReLoRA (Lialin et al., 2023)
freezes a full-rank weight; b) GaLore (Zhao et al., 2024) only reduces optimizer states by down and up projecting
gradients; c) SLTrain (Han et al., 2024) requires reconstruction of the low-rank and sparse matrices; d) CoLA (ours)
is a pure low-rank architecture involving only rank r weight matrices.

We replace this MLP layer with an auto-encoder241

layer which consists low-rank matrices A ∈ Rr×din242

and B ∈ Rdout×r and a non-linear activation σ in243

the middle. Rank r < min(din,out) is a design244

parameter that trades off between compute and per-245

formance. Formally, it can be written as:246

h′ = Bσ(Ax), (3)247

The auto-encoder layer naturally enforces a low-248

rank activation in training, offering a principled249

approach to eliminate the redundancy observed in250

Fig. 2. We have the following remarks251

• The auto-encoder layer fundamentally differs252

from performing low-rank weight compression in253

an MLP layer. The latter performs lossy compres-254

sion on model parameters but cannot eliminate255

the redundancy in activations.256

• The auto-encoder is not equivalent to using257

smaller feature dimensions in MLP layers, since258

B in the current layer cannot be merged with259

A in the next layer, due to the existence of vari-260

ous operations (e.g. residual connection) in the261

original dimension.262

Since the low-rank property is widely observed263

regardless of whether Wx being followed by non-264

linearity (see details in Appendix A), we also uni-265

formly adopt this auto-encoder structure to all pro-266

jection layers in the transformer architecture. We267

empirically find that adding the original nonlinear-268

ity on top of Eq. (3) does not harm the performance,269

nor necessarily brings benefit (c.f. Appendix E.1).270

Fig. 4 shows the architecture of each transformer271

block when adopting CoLA into the LLaMA archi-272

tecture. We highlight the fact that only the original273

linear layers and (if any) their follow-up non-linear274

transformation are modified to the CoLA formu-275

lation. Other computations such as the scaled-dot276

Figure 4: A decoder block in CoLA with LLaMA-like
architecture (layer norms, rotary positional embeddings
are omitted for simplicity). All MLP layers and projec-
tion layers in attention are replaced with auto-encoders.
Modules painted in sketch are the re-computations dur-
ing the backward step of CoLA-M (a memory efficient
implementation of CoLA).

product of the self-attention, as well as residual con- 277

nections and the element-wise product of LLaMA’s 278

MLP layers, remain unchanged. 279

3.3 Computing Efficiency 280

We analyze and compare the computational com- 281

plexity of CoLA with other efficient pre-training 282

methods based on the LLaMA architecture. We 283

adopt a similar notion from (Kaplan et al., 2020), 284

where a general matrix multiply (GEMM) between 285

an M ×N matrix and an N ×K matrix involves 286

roughly 2MNK add-multiply operations. We de- 287

note the model inner width as d, and the inner width 288

of the feed-forward layer as dff. For simplicity, we 289
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Operation FLOPs

Attention: Q, K, V 6nd2

Attention: SDP 4n2d

Attention: Project 2nd2

Feed-forward 6nddff

Total Forward 8nd2 + 4n2d+ 6nddff

Total Backward 16nd2 + 8n2d+ 12nddff

Table 2: Breakdown compute of a single LLaMA de-
coder layer in full-rank training. Lower-order terms
such as bias, layer norm, activation are omitted.

Methods FLOPs

Full-Rank CFull-Rank = 24nd2 + 12n2d+ 18nddff

CoLA CCoLA = 48ndr + 12n2d+ 18nr(d+ dff)

(Re)LoRA CLoRA = CCoLA + 16nd2 + 12n2d+ 12nddff

SLTrain CSLTrain = CFull-Rank + 24d2r + 18ddffr

GaLore CGaLore = CFull-Rank + 16d2r + 12ddffr

Table 3: Estimated compute of a single LLaMA decoder
layer for different pre-training methods. Results com-
bine forward, backward and any additional compute
occurred at optimizer step.

only show non-embedding calculations of a sin-290

gle sequence with token batch size of n for each291

decoder layer. This is because the total computa-292

tion scales only linearly with the number of layers293

nlayer and the number of sequences nseq. Further-294

more, lower-order cheap operations of complexity295

O(nd) or O(ndff) are omitted, such as bias, layer296

norm, non-linear function, residual connection, and297

element-wise product.298

We show the detailed cost of the full-rank train-299

ing in Table. 2. Notice that we apply the 2× rule300

when calculating the backward cost. This is be-301

cause for each forward GEMM that Eq. (2) de-302

scribes, two GEMMs are needed to compute gradi-303

ents for both the weight matrix W and the input x,304

and are of the same cost the forward GEMM, i.e.,305

∇x = WT∇h,∇W = ∇hx
T . (4)306

We apply the same analysis to all the following307

pre-training methods:308

• LoRA/ReLoRA (Hu et al., 2021; Lialin et al.,309

2023): hLoRA = W0x+BAx, with fixed W0.310

• SLTrain (Han et al., 2024): hSLTrain = BAx +311

Sx = (BA⊕IV)x, where ⊕ denotes the scatter-312

add operator, I and V are the indices and values313

of non-zero elements in the sparse matrix S.314

Figure 5: Memory breakdown for LLaMA-1B using
fairly large sequence batch sizes in pre-training. The
activation memory is at dominant place.

• GaLore (Zhao et al., 2024): Rt = PT
t Gt, G̃t = 315

PNt, where Pt projects the gradient Gt onto a 316

low-rank space, and then projects it back when 317

updating the full-rank weight W. 318

We summarize the computational costs of these 319

methods in Table 3 and observe that the costs of 320

SLTrain and GaLore are lower bounded by full- 321

rank training, while (Re)LoRA is lower bounded 322

by CoLA when choosing the same rank. In con- 323

trast, CoLA reduces the computation from full-rank 324

training when r < 0.62d, assuming dff ≈ 2.5d in 325

LLaMA-like architecture. The default rank choice 326

is set to r = 1
4d, leading to a reduction in compute 327

to about half the full-rank training. We refer all 328

details of compute analysis to Appendix B. 329

4 CoLA-M: A Memory-Efficient 330

Implementation 331

In this section, we design and develop CoLA- 332

M, a memory-efficient implementation to leverage 333

CoLA’s structural advantage to achieve superior 334

memory saving without sacrificing throughput. 335

4.1 Memory Breakdown in Pre-Training 336

We assume a common notion that training mod- 337

ern transformers with Adam (or AdamW) involves 338

four key memory components (Zhao et al., 2024; 339

Han et al., 2024): model parameters (1×), gradi- 340

ents (1×), optimizer states (2×), and activations 341

(1 ∼ 4×). We focus on the scenario where the 342

memory cost determined by the model size is not 343

on the extreme limit of the GPU. We argue that 344

this is rather realistic, since the model size and the 345

minimum required tokens should scale up simul- 346

taneously during pre-training (Kaplan et al., 2020; 347
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Figure 6: Memory breakdown of pre-training LLaMA-
1B on single GPU using different pre-training methods.

Methods Memory Re-Compute

Full-Rank 20nd+ 2n2h N/A

Vanilla GCP nd 23nd2 + 4n2d

CoLA 17.5nd+ 2n2h+ 14nr N/A

CoLA-M 2nd+ 7nr 18.5ndr + 4n2d

Table 4: Memory and re-computation analysis of full-
rank training with vanilla GCP vs. CoLA and CoLA-M.

Hoffmann et al., 2022; Krajewski et al., 2024; Ku-348

mar et al., 2024). A tiny batch size on a single349

GPU would be impractical. Therefore, we analyze350

memory usage on a 40-GB A100 or a 94-GB H100351

GPU with a fairly large sequence batch size. Fig. 5352

& 6 show that activations dominate memory usage353

in this setup.354

4.2 CoLA Enables Efficient Checkpointing355

Gradient checkpointing (GCP) (Chen et al., 2016)356

is a system-level technique that reduces memory357

usage by selectively storing (“checkpointing”) only358

a subset of intermediate activations during the for-359

ward pass. When the backward pass begins, the360

missing activations are recomputed on the fly in-361

stead of being stored in memory, thereby lowering362

the memory cost. A vanilla (also the most effec-363

tive) implementation of GCP in LLM pre-training364

is to save merely the input and output of each trans-365

former block, and re-compute everything within366

each block during the backward step. Some works367

have investigated the optimal selection of check-368

points through both empirical and compiler view369

(Feng and Huang, 2021; He and Yu, 2023). Such370

techniques can also be developed for CoLA, and371

are beyond the scope of this paper.372

Motivated by the bottleneck structure of CoLA,373

we implement CoLA-M as saving only the low-374

rank activations (red circles in Fig. 4), and re-375

compute the up projections, and (if applicable)376

the self-attention (painted in sketch in Fig. 4)377

Figure 7: We show how memory reduction scales with
the re-computation in full-rank training with GCP and
compare with CoLA-M. With similar gains on memory
efficiency, CoLA-M effectively reduces re-compute by
4.6×, enabling compute efficient checkpointing.

during the backward pass. This reduces the re- 378

computation cost to half of the CoLA forward. We 379

analyze the memory and re-computation cost using 380

the same notions as in Section 3.3 and denote h 381

as the number of attention heads. We further sim- 382

plify the analysis under LLaMA architecture by 383

uniformly assuming dff ≈ 2.5d. The memory and 384

re-computation overhead are shown in Table 4. We 385

refer the detailed analysis to Appendix C. 386

Although delicate optimizations of GCP is be- 387

yond our scope, we show in Fig. 7 the quantitative 388

results and scaling behavior of GCP on LLaMA- 389

1B when applying a heuristic checkpointing strat- 390

egy. We observe that CoLA-M greatly reduces 391

re-computation cost by 4.6××× while achieving sim- 392

ilar memory saving (18.94GB) as vanilla GCP 393

(20.25GB). 394

5 Experiments 395

5.1 Pre-Training within Compute-Optimal 396

We validate our proposed methods by extensively 397

pre-training LLaMA-like LLMs from 60M to 7B 398

scales following the exact experimental setup in 399

(Zhao et al., 2024; Han et al., 2024). Trainings were 400

done using C4 dataset (Raffel et al., 2020) with- 401

out data repetition on roughly compute-optimal2 402

amounts of tokens. We compare CoLA with base- 403

lines including full-rank pre-training, ReLoRA 404

(Hu et al., 2021), GaLore (Zhao et al., 2024), and 405

SLTrain (Han et al., 2024), with a focus on meth- 406

ods that explore model efficiency. 407

We implement CoLA and CoLA-M by parame- 408

terizing all MLP layers and all projection layers in 409

2Compute optimal regime refers to the token-to-parameter
(T2P) ratio being ~20 (Hoffmann et al., 2022).
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Table 5: Comparison across various efficient pre-training methods of validation perplexity (PPL (↓)), number of
parameters in millions (Param), and the estimated memory usage (Mem) including model, gradient and optimizer
states based on BF16 precision. We pre-train LLaMA models from 60M to 1B on the C4 dataset (Raffel et al., 2020)
following the same setup and compare results directly against those reported in (Zhao et al., 2024; Han et al., 2024).

60M 130M 350M 1B

r / d 128 / 512 256 / 768 256 / 1024 512 / 2048
Tokens 1.1B 2.2B 6.4B 13.1B

PPL Param (M) Mem (GB) PPL Param (M) Mem (GB) PPL Param (M) Mem (GB) PPL Param (M) Mem (GB)

Full-rank 34.06 58 0.43 24.36 134 1.00 18.80 368 2.74 15.56 1339 9.98
ReLoRA 37.04 58 0.37 29.37 134 0.86 29.08 368 1.94 18.33 1339 6.79
GaLore 34.88 58 0.36 25.36 134 0.79 18.95 368 1.90 15.64 1339 6.60
SLTrain 34.15 44 0.32 26.04 97 0.72 19.42 194 1.45 16.14 646 4.81

CoLA 34.04 43 0.32 24.48 94 0.70 19.40 185 1.38 15.52 609 4.54

Mem (GB) 10k 40k 80k 120k 150k

8-bit Adam 72.59 N/A 18.09 15.47 14.83 14.61

8-bit GaLore 65.16 26.87 17.94 15.39 14.95 14.65

SLTrain 60.91 27.59 N/A

CoLA-M 26.82 22.76 16.21 13.82 13.09 12.73

Table 6: Validation perplexity of LLaMA-7B pre-trained
on C4 dataset. 8-bit Adam/GaLore are collected from
(Zhao et al., 2024). SLTrain is collected from (Han et al.,
2024). No results of BF16 Adam reported.

60M 130M 350M

PPL FLOPs PPL FLOPs PPL FLOPs

Full-Rank 34.06 1× 24.36 1× 18.80 1×

Control 37.73 0.4× 27.05 0.5× 20.53 0.4×

CoLA 34.04 0.4× 24.48 0.5× 19.40 0.4×
31.52 0.7× 23.97 0.7× 18.32 0.7×

Table 7: Scaling behavior of CoLA and full-rank train-
ing. Control represents scaling down the full-rank train-
ing cost to be similar with CoLA in default, by reducing
number of layers and/or size down model width.

attention with auto-encoders [i.e. Eq. (3)], and keep410

all other parameters and operations unchanged. We411

use AdamW optimizer and cosine annealing learn-412

ing rate scheduler (Loshchilov and Hutter, 2016)413

with warm-up. We refer detailed configurations to414

Appendix D.415

Table 5 compares our methods and other efficient416

pre-training techniques in terms of validation per-417

plexity, parameter size, and estimated memory us-418

age of model, gradients and optimizer states. CoLA419

has the smallest model size, thereby consumes420

the least memory, and performs on-par with full-421

rank baselines. CoLA uniformly surpasses other422

efficient training baselines in both efficiency and423

performance. Table 6 compares the validation per-424

plexity on the 7B model for 150k steps3. CoLA(-425

M) significantly outperforms 8-bit Adam/GaLore426

by 12.73 vs ~14.6, while saving two-third memory.427

3Due to resources constraints, 7B models are trained below
compute optimal budget (Zhao et al., 2024; Han et al., 2024).

Scaling Behavior: Table 7 shows how CoLA 428

might be improved when compute is scaled up. 429

The default rank choices reduce half the comput- 430

ing cost, without harming the model performance. 431

Meanwhile, if we relax the computing restriction 432

and moderately increase the rank, then CoLA out- 433

performs full-rank training in all three scales, while 434

still being fairly smaller and reducing the comput- 435

ing cost. One might argue that full-rank training 436

can also be scaled down to a similar computing 437

cost of CoLA and might perform similarly. We 438

implement such baselines in Table 7 and refer this 439

setup to “Control". We typically reduce the number 440

of layers or the model width of full-rank models 441

to scale down their computing cost. We find em- 442

pirically that they reduce performance significantly 443

and dramatically underperform CoLA. 444

5.2 Pre-Training beyond Compute-Optimal 445

According to Chinchilla scaling law (Hoffmann 446

et al., 2022), compute-optimal training is at the effi- 447

cient frontier when given a fixed computing budget 448

or a target model size. However, leading industrial 449

groups with massive computing resources tend to 450

extensively overtrain smaller models for efficient 451

deployment, such as LLaMA-3 (Grattafiori et al., 452

2024) 1-3B models being trained up to 9 Trillion to- 453

kens. To evaluate CoLA’s effectiveness beyond the 454

compute-optimal regime, we further experiment 455

the following two over-training settings. 456

LLaMA-350M with 51B Tokens: We prolong 457

the training duration by 8× of the compute-optimal 458

budget for both CoLA4 and full-rank LLaMA 459

at 350M scale. This results in 51B total train- 460

ing tokens. CoLA continues outperforming full- 461

rank baseline on validation perplexity of 13.96 vs 462

14.47, consistent with results at compute-optimal 463

observed from Table 7. 464

4We choose CoLA at 0.7× compute of full-rank baseline,
as its superior performance observed in Table 7.
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Pre-Training Loss QQP SST-2 MRPC COLA QNLI MNLI RTE STS-B GLUE Avg

BERTLarge 1.263 91.1 92.1 90.7 53.1 91.6 84.3 69.9 88.9 82.7

CoLA 1.257 91.2 92.3 90.6 54.1 91.7 84.3 74.2 89.7 83.5

Table 8: Fine-tuning CoLA and BERTLarge on GLUE. Both models are trained from scratch following NVIDIA’s
faithful reproduction5, then fine-tuned for three epochs. F1 scores are reported for MRPC, Pearson correlations are
reported for STS-B, Matthews correlations are reported for COLA (task), accuracies are reported for all other tasks.
Reported metrics are the mean of 5 best out of 10 random seeds.

Figure 8: Comparison of throughput measured when
pre-training a LLaMA-1B on a 40 GB A100 GPU with
sequence batch size of 16 for different methods.

BERTLarge (350M) with 85B Tokens: We adopt465

the exact infrastructure and training configurations466

from NVIDIA’s faithful BERT (Devlin et al., 2019)467

reproduction5 and pre-train both CoLA4 and full-468

rank BERTLarge at 350M scale on Wikipedia for469

85B tokens. CoLA outperforms BERTLarge on470

training loss of 1.257 vs 1.263. We fine-tune both471

pre-trained models for three epochs following (De-472

vlin et al., 2019) on GLUE (Wang et al., 2018)473

benchmark and show results in Table 8. CoLA out-474

performs full-rank baseline across 7 out of 8 tasks,475

and on average score of 83.5 vs 82.7.476

These results further demonstrate CoLA’s ef-477

fectiveness across both encoder/decoder archi-478

tectures, both compute-optimal/over-train set-479

tings, and different activations (GeLU, Swish and480

SwiGLU).481

5.3 Training/Inference System Performance482

Superior Training Efficiency. We further vali-483

date CoLA’s efficiency from a practical perspective:484

CoLA delivers superior out-of-the-box system per-485

formance compared to full-rank and other efficient486

training methods. Fig. 8 compares pre-training487

throughput for the 1B-scale LLaMA model (batch488

size 16, fully utilizing A100 GPUs). Among evalu-489

ated methods, only CoLA and CoLA-M surpass the490

5See details at NVIDIA’s official Github repo.

1B (BZ = 64) 7B (BZ = 16)

Mem (GB) Token/s FLOPs Mem (GB) Token/s FLOPs

Full-Rank 69.84 12,365 1× 84.94 5,810 1×

Vanilla GCP 14.89 8,799 1.68× 52.49 4,357 1.67×

CoLA 66.46 22,979 0.40××× 55.52 9,638 0.40×××

CoLA-M 17.33 16,617 0.55× 26.82 7,026 0.54×

Table 9: Detailed measurements and comparison of
CoLA and CoLA-M against full-rank and vanilla GCP
on a 94 GB H100 GPU. CoLA-M consumes only one
third of the memory while achieving higher throughput
than full-rank training with only about half its compute.

full-rank baseline throughput. Notably, CoLA-M 491

maintains higher throughput despite recomputation 492

overhead, significantly outperforming vanilla GCP. 493

Table 9 provides detailed measurements, showing 494

CoLA-M cuts computing cost nearly by half and re- 495

duces memory usage by two-thirds, achieving great 496

balance between memory and compute efficiency. 497

Profiling details are available in Appendix F. 498

Superior Inference Efficiency. Not just for train- 499

ing, CoLA also speeds up inference and reduces 500

memory cost. Table 11 (Appendix E.2) shows that 501

CoLA off-the-shelf improves inference throughput 502

by up to 1.64××× while reducing memory cost by up 503

to 1.67×××. 504

6 Conclusions 505

We have proposed CoLA, and its memory efficient 506

variant CoLA-M, to achieve collectively param- 507

eter, computing and memory efficiency at both 508

training and inference time for large foundation 509

models. CoLA effectively reduces 2××× model size 510

and computing cost while preserving full-rank level 511

performance. CoLA-M trades minimum overhead 512

for state-of-the-art memory reduction, while still 513

improving training throughput over full-rank base- 514

lines. Crucially, CoLA is promising to save sub- 515

stantial GPU resources in LLM industry. This work 516

has been focused on dense architectures. In the 517

future, it is worth extending CoLA to the mixture- 518

of-expert (MoE) architecture. 519
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7 Limitations520

Most of our pre-training experiments follow the ex-521

act setup in (Zhao et al., 2024; Han et al., 2024) and522

are conducted in the widely accepted computing-523

optimal setting (Hoffmann et al., 2022) under aca-524

demic budget. Therefore, they are not trained with525

the same amount of tokens as industry-produced526

models. However, our BERTLarge experiment fol-527

lows NVIDIA’s faithful reproduction and is directly528

compared with the reproduced BERTLarge on stan-529

dard downstream tasks (e.g., GLUE). CoLA out-530

performs BERTLarge and shows great potential for531

producing competitive models. We have also pre-532

trained the LLaMA-350M with a high token-to-533

parameter ratio, showing that CoLA consistently534

outperform full-rank pre-training in terms of both535

accuracy and efficiency.536
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A Observation of Low-Rank Activation761

in Pre-Trained GPT2762

In this section, we further show the low-rank struc-763

ture in model activations evaluated on a pre-trained764

GPT-2 (Radford et al., 2019) small. The evaluation765

is conducted with sequence batch size of 64 and766

sequence length of 1024. We fix α = 0.95 through-767

out this section. Similar patterns are observed from768

the attention layers (Fig. 9, 10, 11). The low-rank769

nature of activations is evident across all the differ-770

ent components of the model. This suggests that771

despite the high-dimensional representations, the772

effective dimensionality of the activations remains773

constrained.

Figure 9: Activation Spectrum of Attention Layer (Q)

774

Figure 10: Activation Spectrum of Attention Layer (K)

Figure 11: Activation Spectrum of Attention Layer (V)

B Detailed Compute Analysis 775

According to Table. 2, the total compute of full- 776

rank training is simply combining forward and 777

backward as 778

CFull-Rank = 24nd2 + 12n2d+ 18nddff. (5) 779

In our proposed architecture, every single linear 780

layer is replaced by low rank matrices A, B, and 781

an activation function sandwiched in between. The 782

activation only introduces trivial compute thus can 783

be omitted in the calculation. For each d2 and ddff 784

in Eq. (5), CoLA effectively converts them into 785

2dr and r(d+ dff). Therefore the total compute of 786

CoLA is 787

CCoLA = 48ndr + 12n2d+ 18nr(d+ dff). (6) 788

Plugging in an actual setting of LLaMA/CoLA-1B, 789

in which r = 1
4d and r ≈ 1

10dff, we achieve a 790

compute reduction from Eq. (5) to approximately 791

CCoLA-1B = 16.5nd2 + 12n2d+ 1.8nddff. (7) 792

We now discuss and compare CoLA with other 793

efficient pre-training methods in terms of their com- 794

pute complexity. We start with LoRA (Hu et al., 795

2021) and ReLoRA (Lialin et al., 2023). They 796

share the same architecture that’s shown in Fig. 3 797
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a), in which low rank matrices A ∈ Rr×din and798

B ∈ Rdout×r are adapted onto a full rank matrix799

W0 ∈ Rdout×din . Hence modifies Eq. (2) into800

h = W0x+BAx. (8)801

This yields a consistently more expensive forward802

step than the full-rank training regardless the choice803

of r. During the backward step, since gradient804

does not flow into W0, only one GEMM that com-805

putes gradient w.r.t x is involved with the full-rank806

component W0x. Combining together both full-807

rank and low-rank components in both forward and808

backward step, the total compute of LoRA is809

CLoRA = 16nd2 + 12n2d+ 12nddff810

+ 48ndr + 18nr(d+ dff)︸ ︷︷ ︸
CCoLA

. (9)811

When choosing the same r for LoRA and CoLA,812

we have CLoRA > CCoLA always true.813

In ReLoRA (Lialin et al., 2023), the hybrid814

strategy that warms up with the full-rank training815

arises more uncertainties in analyzing its complex-816

ity. And such strategy needs delicate tuning of817

hyper-parameters such as the full rank warm-up818

ratio, the restart frequency of optimizer, etc, and819

the choice of rank might also be affected by these820

strategy-level hyper-parameters. Therefore, we fol-821

low the same notion in (Zhao et al., 2024) that only822

consider the pure low-rank training of ReLoRA,823

which simplifies the compute analysis of ReLoRA824

to be the same as LoRA.825

SLTrain (Han et al., 2024) proposes a low-rank826

+ sparse parameterization instead of having a fixed827

full-rank matrix W0. The architecture of SLTrain828

is shown in Fig. 3 c). We continue using the no-829

tation for the low-rank matrices, and denote the830

sparse matrix as S, with the sparsity level as δ.831

This modifies Eq. (2) into832

h = BAx+ Sx = (BA⊕I V)x, (10)833

where ⊕ denotes the scatter-add operator, I and V834

denote the indices and values of non-zero elements835

in S. This implementation avoids instantiating a836

full sized S, instead keeping only the non-zero837

elements. However, this introduces non-trivial re-838

construction cost of BA in every step. And if we839

further denote W̃ = BA⊕I V , then the forward840

data-flow that starts from W̃ is the same as in the841

full-rank training, as well as the backward data-842

flow that ends at W̃. Therefore, the total compute843

of SLTrain should be Cfull-rank plus reconstructing 844

W̃, and its corresponding 2× compute during back- 845

ward, i.e., 846

CSLTrain = Cfull-rank + 24d2r + 18ddffr. (11) 847

For the last class of method to discuss, GaLore 848

(Zhao et al., 2024) and it’s follow-ups such as Fira 849

(Chen et al., 2024) and APOLLO (Zhu et al., 2024), 850

all investigate the memory efficiency associated 851

with the AdamW optimizer. We only show the data- 852

flow GaLore in Fig. 3 b), others are similar except 853

some minor differences in how to manipulate gra- 854

dients. The model architecture is kept unchanged 855

in all these methods. Therefore, the complexity 856

analysis is on the additional compute for projecting 857

gradients into a low-rank space. GaLore proposes 858

the following update rules: 859

Rt = PT
t Gt, G̃t = α ·PNt,

Wt = Wt−1 + η · G̃t,
(12) 860

where the projector Pt ∈ Rd×r at time t is com- 861

puted by decomposing Gt ∈ Rd×d via singular 862

value decomposition (SVD) and is updated peri- 863

odically, Nt ∈ Rd×r is the low-rank optimizer 864

states, α is a scaling factor and η is the learning 865

rate. Therefore, the total compute of GaLore is 866

CGaLore = Cfull-rank + 16d2r + 12ddffr. (13) 867

We remark that the compute analysis for the 868

additional cost of SLTrain and GaLore (and its vari- 869

ants) is of limited scope and does not necessarily 870

reflect their actual overhead. The actual cost will 871

be dependent on other practical considerations on 872

both algorithm and system level, such as the spe- 873

cific use case of these methods (e.g., pre-training, 874

fine-tuning, etc), the actual number of the optimizer 875

steps performed, the actual number of forward and 876

backward steps performed when fixing total train- 877

ing tokens (i.e., if the hardware can afford larger 878

batch sizes then the actual steps are fewer). It is 879

almost impossible to give a unified notion while 880

being fair when comparing between them. Hence 881

we follow the similar setup used in (Zhao et al., 882

2024; Han et al., 2024; Chen et al., 2024; Zhu et al., 883

2024) when they analyze memory efficiency and 884

measure system-level performance. However, it is 885

rather safe to conclude that the overall cost intro- 886

duced by GaLore and its variants will be diluted in 887

real practices of pre-training due to the optimizer 888

step is not frequent as forward and backward steps, 889
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hence are less expensive than SLTrain. Nonethe-890

less, we highlight the fact that all the aforemen-891

tioned methods are non-trivially more expensive892

than CoLA in terms of compute, and are all (except893

LoRA/ReLoRA) lower bounded by the full-rank894

training.895

C Detailed Memory Analysis896

We continue using the notions defined in Section.897

4.2 and start with the activation memory of full-898

rank training:899

Mfull-rank = 3nd︸︷︷︸
Q,K,V

+2n2h+ 2nd︸ ︷︷ ︸
attention

+11nd︸ ︷︷ ︸
ffw

900

2nd︸︷︷︸
residual connection

+ 2nd︸︷︷︸
layer norm

= 20nd+ 2n2h. (14)901

When applying vanilla GCP, only the output of902

each block is saved, and all other activations are re-903

computed when needed. This dramatically reduces904

the total activation memory to only905

Mvanilla-GCP = nd. (15)906

However, such benefit comes with a cost equal to907

almost an entire forward step. From Table. 2, we908

have the cost of vanilla-GCP as909

Cvanilla-GCP = Cfull-rank + 23nd2 + 4n2d. (16)910

Although we mentioned that delicate optimization911

of vanilla-GCP is beyond the scope of our discus-912

sion, we show a heuristic strategy when selecting913

checkpoints. Refer to Eq. (14), activations that as-914

sociated with minimal re-compute are: layer norm,915

residual connection, and non-linear function (in-916

cluded in the ffw term). Then intuitively these acti-917

vations should always be re-computed when trying918

to save memory. In fact this can save a fair amount919

of memory. Note in this paper we analyze compute920

in pure theoretical notion that lower order terms921

does not bring noticeable effect hence are omitted.922

In practice, however, re-computation brings latency923

even for theoretically trivial operations, and will924

lower the overall GPU throughput. Other terms925

in Eq. (14) are all significant components when926

mapping to FLOPs change. One can gradually add927

more operations into the re-compute list and trade928

for more memory savings. We show the trend how929

they scale in Fig. 7.930

Now we discuss CoLA and how it enables com-931

pute efficient checkpointing. We first evaluate how932

much memory overhead introduced by the low-rank933

activations. Compared to Eq. (14), CoLA adds 2nr 934

for each of the low-rank layers, i.e., nr for Ax, 935

another nr for σ(Ax), thereby 936

MCoLA = Mfull-rank+ 14nr︸ ︷︷ ︸
low-rank σ

− 2.5nd︸ ︷︷ ︸
remove original σ

(17)

937

We notice that when model scales up, the origi- 938

nal LLaMA activation no longer brings benefit to 939

model performance, hence can be removed, which 940

corresponds to 2.5nd less activations. 941

As shown in Figure. 4, CoLA has multiple non- 942

linear functions injected along the normal data- 943

flow. This partitions the previously longer path, 944

i.e., the whole block, to significantly shorter paths 945

bounded by these low-rank activations. This pro- 946

vides a natural selection of checkpoints that are 947

of r-dimensional instead of d. More importantly, 948

these shorter paths halve the re-compute steps. We 949

show in Figure. 4 that only the weights that are 950

painted in sketch need re-computation during the 951

backward step of CoLA-M. This reduces signifi- 952

cantly the cost of implementing GCP in CoLA-like 953

architecture, results in the cost of only 954

CCoLA-M = CCoLA + 18.5ndr + 4n2d. (18) 955

Meanwhile, the memory saving of CoLA-M is 956

still significant. We have the activation memory 957

of CoLA-M as 958

MCoLA-M = 2nd+ 7nr. (19) 959

D Hyper-Parameters 960

D.1 LLaMA Pre-Training 961

For optimizer related hyper-parameters, we empir- 962

ically found 0.003 is a balanced choice of learn- 963

ing rate for most of the models we trained, this 964

is similar to the settings in (Han et al., 2024). For 965

CoLA-1B, this learning rate triggers a unstable loss 966

curve, thereby is reduced to 0.002, and is further 967

reduced to 0.001 for CoLA-7B as a conservative 968

practice. For smaller models like CoLA-60M, an 969

even larger learning rate such 0.006 can be adopted. 970

For the warm-up ratio, weight decay and gradient 971

clipping, we found the commonly adopted settings, 972

0.1, 0.01, 0.5, are proper choices for CoLA. Other 973

than the standard optimizer parameters, one needs 974

to pre-define a rank r when initializing CoLA. A 975

default choice is set to approximately one quarter 976

of the model inner width, i.e., r = 1
4d. 977
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60M 130M 350M

CoLA w/ Both σ 34.04 24.48 19.56

CoLA w/ Only Low-Rank σ 34.35 25.20 19.40

CoLA w/ Only Low-Rank σ
– Reduced 35.41 25.90 20.50

CoLA w/ Only Full-Rank σ 36.26 26.85 21.18

Table 10: Ablation study regarding where to place the
low-rank non-linear functions.

D.2 BERTLarge Pre-Training978

We directly adopted NVIDIA’s open-sourced repro-979

duction of BERT pre-training5, without changing980

any training configurations or hyper-parameters981

(including learning rate). We implemented CoLA982

onto this training pipeline and set CoLA as 0.7×983

compute of full-rank BERTLarge, which corre-984

sponds to rank 384 at attention layers and rank985

512 at MLP layers. We choose this setting due to986

its superior performance observed in Table 7.987

Both CoLA and BERTLarge are trained for 85B988

tokens using masked token prediction and next sen-989

tence prediction, with a composition of 128 tokens990

per sequence in 90% steps and 512 tokens per se-991

quence in the rest 10% steps. Most settings in this992

reproduction are identical to the original BERT993

(Devlin et al., 2019), except the adoption of LAMB994

optimizer (You et al., 2019) for large batch train-995

ing and the constraint of using only the Wikipedia996

corpus. We kept everything unchanged, and suc-997

cessfully reproduced BERTLarge as training loss of998

1.263, very close to the mean value 1.265 reported999

by NVIDIA. Meanwhile, we trained CoLA using1000

the exact same configurations and got the training1001

loss of 1.257, suggesting a slightly better outcome1002

despite of fewer parameter and compute.1003

E Additional Results1004

E.1 Ablation Study1005

We empirically found that keeping the original1006

LLaMA nonlinearity on top of our proposed formu-1007

lation Eq. (3) helps improve the model performance1008

at smaller scales, such as 60M and 130M. However,1009

when scaling up to 350M we no longer observe1010

such a benefit. Therefore, the default setting of pre-1011

training CoLA-1B/7B is set to use only low-rank1012

nonlinearity. We found also evident that applying1013

low-rank nonlinearity (i.e., Eq. (3)) regardless of1014

whether the original linear layer being followed by1015

nonlinearity is crucial to boost model performance.1016

1B (BZ=32) 7B (BZ=32)

Mem (GB) Token/s Mem (GB) Token/s

Full-rank 5.74 21,109 18.15 11,086

SLTrain 4.18 20,096 12.70 9,968

CoLA 3.84 34,697 10.87 16,012

Table 11: Comparison of memory (GB) and throughput
(Token/sec) at inference time on an A100 GPU.

Results are shown in Table. 10, in which "CoLA 1017

w/ Both σ" means keeping the original nonlinearity 1018

on top of proposed low-rank nonlinearity, "CoLA 1019

w/ Only Low-Rank σ" means applying Eq. (3) in 1020

an agnostic way to all linear layers, "CoLA w/ 1021

Only Low-Rank σ – Reduced" means only apply- 1022

ing Eq. (3) to the linear layers that are originally 1023

followed by nonlinearity, "CoLA w/ Only Full- 1024

Rank σ" means keeping the low-rank factorization 1025

but does not apply low-rank nonlinearity. 1026

E.2 Inference Efficiency 1027

We show CoLA’s system performance at inference 1028

stage in Table 11. CoLA reduces memory usage 1029

and improves inference throughput compared to 1030

full-rank baselines. 1031

F Detailed Profiling Setting 1032

This section provides a detailed explanation of the 1033

experimental setup for system-level measurements. 1034

For the memory breakdown in Fig. 6, we use a 1035

sequence batch size of 32. For throughput mea- 1036

surement in Fig. 8, we use a sequence batch size 1037

of 16 because the full-rank model cannot fit into 1038

40GB A100 when using a sequence batch size of 1039

32. Throughput is measured incorporating one for- 1040

ward pass, one backward pass, and one optimizer 1041

step. This setup reflects a realistic training sce- 1042

nario, particularly in a multi-GPU environment, 1043

such as an 8x A100 cluster utilizing simple data 1044

parallelism. For a fair comparison, we set the up- 1045

date step in GaLore/APOLLO to 200, ensuring that 1046

the computationally expensive SVD/random pro- 1047

jection is performed only once every 200 optimizer 1048

steps and is distributed across a single optimizer 1049

step. All experiments are conducted on a single 1050

GPU to isolate the effected of FLOP reduction on 1051

throughput improvement, without being influenced 1052

by multi-GPU framework settings or communica- 1053

tion overhead. For Table. 6, memory consumption 1054

is measured on a 94GB H100 with a sequence batch 1055

size of 16. For Table. 11, inference is performed 1056

using the same configuration as pre-training, with 1057

a sequence batch size of 32. 1058
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