
Multimodal Virtual Point 3D Detection

Tianwei Yin
UT Austin

yintianwei@utexas.edu

Xingyi Zhou
UT Austin

zhouxy@cs.utexas.edu

Philipp Krähenbühl
UT Austin

philkr@cs.utexas.edu

Abstract

Lidar-based sensing drives current autonomous vehicles. Despite rapid progress,
current Lidar sensors still lag two decades behind traditional color cameras in terms
of resolution and cost. For autonomous driving, this means that large objects close
to the sensors are easily visible, but far-away or small objects comprise only one
measurement or two. This is an issue, especially when these objects turn out to
be driving hazards. On the other hand, these same objects are clearly visible in
onboard RGB sensors. In this work, we present an approach to seamlessly fuse
RGB sensors into Lidar-based 3D recognition. Our approach takes a set of 2D
detections to generate dense 3D virtual points to augment an otherwise sparse 3D
point cloud. These virtual points naturally integrate into any standard Lidar-based
3D detectors along with regular Lidar measurements. The resulting multi-modal
detector is simple and effective. Experimental results on the large-scale nuScenes
dataset show that our framework improves a strong CenterPoint baseline by a
significant 6.6 mAP, and outperforms competing fusion approaches. Code and
more visualizations are available at https://tianweiy.github.io/mvp/.

1 Introduction

3D perception is a core component in safe autonomous driving [1, 55]. A 3D Lidar sensor provides
accurate depth measurements of the surrounding environment [23, 49, 75], but is costly and has
low resolution at long range. A top-of-the-line 64-lane Lidar sensor can easily cost more than a
small car with an input resolution that is at least two orders of magnitude lower than a $50 RGB
sensor. This Lidar sensor receives one or two measurements for small or far away objects, whereas a
corresponding RGB sensor sees hundreds of pixels. However, the RGB sensor does not perceive the
depth and cannot directly place its measurements into a scene.

In this paper, we present a simple and effective framework to fuse 3D Lidar and high-resolution
color measurements. We lift RGB measurements into 3D virtual points by mapping them into the
scene using close-by depth measurements of a Lidar sensor (See Figure 1 for an example). Our
Multi-modal Virtual Point detector, MVP, generates high-resolution 3D point-cloud near target
objects. A center-based 3D detector [66] then identifies all objects in the scene. Specifically, MVP
uses 2D object detections to crop the original point cloud into instance frustums. MVP then generates
dense 3D virtual points near these foreground points by lifting 2D pixels into 3D space. We use depth
completion in image space to infer the depth of each virtual point. Finally, MVP combines virtual
points with the original Lidar measurements as input to a standard center-based 3D detector [66].

Our multi-modal virtual point method has several key advantages: First, 2D object detections are
well optimized [17, 74] and highly accurate even for small objects. See Figure 2 for a comparison
of two state-of-the-art 2D and 3D detectors on the same scene. The 2D detector has a significantly
higher 2D detection accuracy but lacks the necessary 3D information used in the downstream driving
task. Secondly, virtual points reduce the density imbalance between close and faraway objects.
MVP augments objects at different distances with the same number of virtual points, making the
point cloud measurement of these objects more consistent. Finally, our framework is a plug-and-

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://tianweiy.github.io/mvp/

Figure 1: We augment sparse Lidar point cloud with dense semantic virtual points generated from 2D
detections. Left: the augmented point-cloud in the scene. We show the original points in gray and
augmented points in red. Right: three cutouts with the origial points on top and virtual points below.
The virtual points are up to two orders of magnitude denser.

play module to any existing or new 2D or 3D detectors. We test our model on the large-scale
nuScenes dataset [2]. Adding multi-modal virtual points brings 6.6 mAP improvements over a strong
CenterPoint baseline [66]. Without any ensembles or test-time augmentation, our best model achieves
66.4 mAP and 70.5 NDS on nuScenes, outperforming all competing non-ensembled methods on the
nuScenes leaderboard at the time of submission.

2 Related work

2D Object Detection has great progress in recent years. Standard approaches include the RCNN
family [13, 17, 43] which first predict class-agnostic bounding boxes based on predefined anchor
boxes and then classify and refine them in a two-stage fashion with deep neural networks. YOLO [42],
SSD [33], and RetinaNet [30] predicts the class specific bounded boxes in one shot. Recent anchor-
free detectors like CornerNet [24] and CenterNet [74] directly localize objects through keypoints
without the need of predefined anchors. In our approach, we use CenterNet [74] as our 2D detector
for its simplicity and superior performance for detecting small objects. See Figure 2 for an example
of a 2D detectors output.

Lidar-based 3D Object Detection estimates rotated 3D bounding boxes from 3D point clouds [7,
12, 23, 37, 60–63, 65, 76]. 3D detectors share a common output representation and network structure
with 2D detectors but encode the input differently. VoxelNet [75] uses a PointNe-based feature
extractor to generate a voxel-wise feature representation from which a backbone consisted of sparse
3D convolutions and bird-eye view 2D convolution produces detection outputs. SECOND [60]
introduces more efficient sparse convolution operations. PIXOR [61] and PointPillars [23] directly
process point clouds in bird-eye view, further improving efficiency. Two-stage 3D detectors [8, 45–
47, 63] use a PointNet-based set abstraction layer [39] to aggregate RoI-specifc features inside first
stage proposals to refine outputs. Anchor-free approaches [5, 36, 57, 59, 61, 66] remove the need
for axis-aligned bird-eye view anchor boxes. VoteNet [36] detects 3D objects through Hough voting
and clustering. CenterPoint [66] proposes a center-based representation for 3D object detection and
tracking and achieved state-of-the-art performance on nuScenes and Waymo benchmarks. However,
as Figure 2 shows a Lidar-only detector still misses small or far-away objects due to the sparsity
of depth measurements. In this work, we build upon the CenterPoint detector and demonstrate
significant 6.6 mAP improvements by adding our multi-modal virtual point approach.

Camera-based 3D Object Detection Camera-based 3D object detection predicts 3D bounding
boxes from camera images. Mono3D [6] uses the ground-plane assumption to generate 3D candidate
boxes and scores the proposals using 2D semantic cues. CenterNet [74] first detects 2D objects in
images and predicts the corresponding 3D depth and bounding box attributes using center features.
Despite rapid progress, monocular 3D object detectors still perform far behind the Lidar-based

2

Figure 2: Comparison between state-of-the-art image-based 2D detector [73] and point cloud based
3D detector [66]. We show detection from the 2D detector in blue and detection from 3D detector
in green. For the 3D detector, we project the predicted 3D bounding boxes into images to get the
2D detections. For the 2D detector, we train the model using projected 2D boxes from 3D annota-
tions. Compared to 2D detector, 3D detector often misses faraway or small objects.A quantitative
comparison between 2D and 3D detectors is included in Section 5.2.

methods. On state-of-the-art 3D detection benchmarks [2, 12], state-of-the-art monocular methods [26,
41] achieve about half the mAP detection accuracy, of standard Lidar based baselines [60]. Pseudo-
Lidar [56] based methods produce a virtual point cloud from RGB images, similar to our approach.
However, they rely on noisy stereo depth estimates [25, 40, 56] while we use more accurate Lidar
measurements. Again, the performance of purely color-based approaches lags slightly behind Lidar
or fusion-based methods [2, 12].

Multi-modal 3D Object Detection fuses information of Lidar and color cameras [20, 28, 28, 29,
35, 37, 53, 67, 71, 72]. Frustum PointNet [38] and Frustum ConvNet [58] first detect objects in image
space to identify regions of interest in the point cloud for further processing. It improves the efficiency
and precision of 3D detection but is fundamentally limited by the quality of 2D detections. In contrast,
we adopt a standard 3D backbone [75] to process the augmented Lidar point cloud, combining the
benefit of both sensor modalities. MV3D [7] and AVOD [22] performs object-centric fusion in a
two-stage framework. Objects are first detected in each sensor and fused at the proposal stage using
RoIPooling [43]. Continuous fusion [20, 29] shares image and Lidar features between their backbones.
Closest to our approach are MVX-Net [48], PointAugmenting [54], and PointPainting [52], which
utilize point-wise correspondence to annotate each lidar point with image-based segmentation or
CNN features. We instead augment the 3D lidar point cloud with additional points surrounding 3D
measurements. These additional points make full use of the higher dimensional RGB measurements.

Point Cloud Augmentation generates denser point clouds from sparse Lidar measurements. Lidar-
based methods like PUNet [69], PUGAN [27], and Wang et al. [64] learn high level point-wise
features from raw Lidar scans. They then reconstruct multiple upsampled point clouds from each high
dimensional feature vector. Image-based methods [18, 21, 51] perform depth completion from sparse
measurements. We build upon these depth completion methods and demonstrate state-of-the-art 3D
detection results through point upsampling.

3 Preliminary

Our framework relies on both 2D detection, existing 3D detectors, and a mapping between 2D and
3D. We introduce the necessary concepts and notations below.

2D Detection. Let I be a camera image. A 2D object detector aims to localize and classify all
objects in I . A bounding-box bi ∈ R4 describes the objects location. A class score si(c) predicts
the likelihood of detection bi to be of class c. An optional instance mask mi ∈ [0, 1]W×H predicts a
pixel-level segmentation of each object. In this paper, we use the popular CenterNet [74] detector.
CenterNet detects objects through keypoint estimation. It takes the input image I and predicts a

3

heatmap for each class c. Peaks (local maxima) of the heatmap corresponds to an object. The model
regresses to other bounding box attributes using peak features with an L1 [74] or box IoU [44]
objective. For instance segmentation, we use CenterNet2 [73] which adds a cascade RoI heads [3]
on top of the first stage proposal network. The overall network runs at 40 FPS and achieves 43.3
instance segmentation mAP on the nuScenes image dataset [2].

3D Detection. Let P = {(x, y, z, r)i} be a point cloud with 3D location (x, y, z) and reflectance r.
The goal of a 3D detector is to predict a set of 3D bounding boxes {bi} from the point cloud P . The
bounding box b = (u, v, o, w, l, h, θ) includes the 3D center location (u, v, o), object size (w, l, h)
and the yaw rotation along z axis θ. In this paper, we build upon the state-of-the-art CenterPoint [66]
detector. We experiment with two popular 3D backbones: VoxelNet [75] and PointPillars [23].
VoxelNet quantizes the irregular point clouds into regular bins followed by a simple average pooling
to extract features from all points inside a bin [60]. After that, a backbone consisted of sparse 3D
convolutions [14] processes the quantized 3D feature volumes and the output is a map view feature
map M ∈ RW×H×F . PointPillar directly processes point clouds as bird-eye view pillar, a single
elongated voxel per map location, and extracts features with fast 2D convolution to get the map view
feature map M .

With the map view features, a detection head inspired by CenterNet [74] localizes objects in bird-eye
view and regress to other box parameters using center features.

2D-3D Correspondence. Multi-modal fusion approaches [48, 52, 53, 72] often rely on a point-
wise correspondence between 3D point clouds and 2D pixels. In absence of calibration noise, the
projection from the 3D Lidar coordinate into a 2D image coordinate involves an SE(3) transformation
from the Lidar measurement to the camera frame and a perspective projection from the camera frame
into image coordinates. All transformations may be described with homogeneous, time-dependent
transformations. Let t1 and t2 be the capture time of the Lidar measurement and RGB image
respectively. Let T(car←lidar) be the transformation from the Lidar sensor to the reference frame
of the car. Let T(t1←t2) be the transformation of the car between t2 and t1. Let T(rgb←car) be the
transformation from the cars reference frame to the RGB sensor. Finally, let Prgb be the projection
matrix of the RGB camera defined by the camera intrinsic. The transformation from the Lidar to
RGB sensor is then defined by

T t1←t2rgb←lidar = T(rgb←car)T(t1←t2)T(car←lidar), (1)

followed by a perspective projection with camear matrix Prgb and a perspective division. The
perspective division makes the mapping from Lidar to RGB surjective and non-invertible. In the next
section, we show how to recover an inverse mapping by using depth measurements of Lidar when
mapping RGB to Lidar.

4 Multimodal Virtual Point

Given a set of 2D object detections, we want to generate dense virtual points vi = (x, y, z, e) where
(x, y, z) is the 3D location and e is the semantic feature from the 2D detector. For simplicity, we use
the 2D detectors class scores as semantic features. For each detection bj with associated instance
mask mj we generate a fixed number τ multimodal virtual points.

Virtual Point Generation. We start by projecting the 3D Lidar point cloud onto our detection.
Specifically, we transform each Lidar point (x, y, z, r)i into the reference frame of the RGB camera
following Equation (1), then project it into image coordinates pi with associated depth di using
a perspective projection. Let the collection of all projected points and depth values for a single
detection j be the objects frustum Fj = {(pi, di)|pi ∈mj∀i}. The frustum only considers projected
3D points pi that fall within a detection mask mj . Any Lidar measurement outside detection masks
is discarded. Next, we generate virtual points from each frustum Fj .

We start by randomly sampling 2D points s ∈m from each instance mask m. We sample τ points
uniformly at random without repetition. For each sampled point sk, we retrieve a depth estimate dk
from its nearest neighbor in the frustum Fj : dk = argmindi ‖pi − sk‖. Given the depth estimate,
we unproject the point back into 3D and append the object’s semantic feature ej to the virtual point.
We concatenate the one-hot encoding of the detected class and the detections objectness score in the
semantic feature.

4

Algorithm 1: Multi-modal Virtual Point Generation
Input :Lidar point cloud L = {(x, y, z, r)i}.

Instance masks {m1, . . . ,mn} for n objects.
Semantic features {e1, . . . , en} with ej ∈ RD
Transformation T t1←t2rgb←lidar ∈ R4×4 and camera projection Prgb ∈ R4×4.

Hyper parameters :Number of virtual points per object τ
Output : Multi-modal 3D virtual points V ∈ Rn×τ×(3+D)

Fj ← ∅ ∀j∈{1...n}; // Point cloud instance frustums
for (xi, yi, zi, ri) ∈ L do

/* Perspective projection to 2D point p depth d */

p, d← Project
(
PrgbT

t1←t2
rgb←lidar(xi, yi, zi, 1)

>
)

;

for j ∈ {1 . . . n} do
if p ∈mj then

Fj ← Fj ∪ {(p, d)}; // Add point to frustum
end

end
end
for j ∈ {1 . . . n} do

S← Sampleτ (mj); // Uniformly sample τ 2d points in instance mask
for s ∈ S do

(p, d)← NN(s,Fj); // Find closest projected 3D point
/* Unproject the 2D point s using the nearest neighbors depth d */

q←
(
PrgbT

t1←t2
rgb←lidar

)−1
Unproject(s, d);

Add (q, ej) to Vj ;
end

end

The virtual point generation is summarized in Algorithm 1 and Figure 3. Next, we show how to
incorporate virtual points into a point-based 3D detector.

Virtual Point 3D detection. Voxel-based 3D detectors [60, 66] first voxelize 3D points (x, y, z)i
and average all point features (x, y, z, t, r)i within a voxel. Here ri is a reflectance measure and ti
is the capture time. A standard 3D convolutional network uses these voxelized features in further
processing. For virtual points, this creates an issue. The feature dimensions of real points (x, y, z, t, r)
and virtual points differ (x, y, z, t, e). A simple solution could be to either concatenate virtual and
real points into a larger feature (x, y, z, t, r, e) and set any missing information to zero. However,
this is both wasteful, as the dimension of real points grows by 3×, and it creates an imbalanced ratio
between virtual and real points in different parts of the scene. Furthermore, real measurements are
often a bit more precise than virtual points and simple averaging of the two blurs out the information
contained in real measurements. To solve this, we modify the average pooling approach by separately
averaging features of virtual and real points and concatenating the final averaged features together as
input to 3D convolution. For the rest of the architecture, we follow CenterPoint [66].

We further use virtual points in a second-stage refinement. Our MVP model generates dense virtual
points near target objects which help two-stage refinement [45, 66]. Here, we follow Yin et al. [66] to
extract bird-eye view features from all outward surfaces of the predicted 3D box. The main difference
to Yin et al. is that our input is much denser around objects, and hence the second stage refinement
has access to richer information.

5 Experiments

We evaluate our proposed multimodal virtual point method on the challenging nuScenes benchmark.

nuScenes [2] is a popular multimodal autonomous driving datasets for 3D object detection in urban
scenes. The dataset contains 1000 driving sequences, with each 20s long and annotated with 3D

5

(a) 2D instance segmentation (b) Lidar point cloud projection

(c) Sampling and nearest neighbor matching
(d) Reprojected virtual points

Figure 3: Overview of our mlutimodal virtual point generation framework. We start by extracting 2D
instance masks for each object in a color image (a). We then project all Lidar measurements into
the reference frame of the RGB camera (b). For visualization purposes, points inside the objects
are black, other points are grey. We then sample random points inside each 2D instance mask and
retrieve a depth estimate from their nearest neighbor Lidar projection (c). For visualization clarity,
(c) only shows a subset of virtual points. Finally, all virtual points are reprojected into the original
point-cloud (d).

bounding boxes. The Lidar frequency is 20Hz and the dataset provides sensor and vehicle pose
information for each Lidar frame but only includes object annotation every ten frames (0.5s). The
dataset hides any personally identifiable information, blurs faces and license plates in color images.
There are in total 6 RGB cameras at a resolution of 1600× 900 and a capture frequency of 12Hz. We
follow the official dataset split to use 700, 150, 150 sequences for training, validation, and testing.
This in total results in 28130 frames for training, 6019 frames for validation, and 6008 frames for
testing. The annotations include a fine-grained label space of ten classes with a long-tail distribution.
For 3D object detection, the official evaluation metrics include the mean Average Precision (mAP)[11]
and nuScenes detection score (NDS) [2]. mAP measures the localization precision using a threshold
based on the birds-eye view center distance < 0.5m, 1m, 2m, 4m. NDS is a weighted combination of
mAP and regression accuracy of other object attributes including box size, orientation, translation,
and class-specific attributes [2]. NDS is the main ranking metric for the benchmark.

Implementation Details. Our implementation is based on the opensourced code of Center-
Point 1 [66] for 3D detection and CenterNet2 2[73] for 2D Detection.

For 2D detection, we train a CenterNet [74] detector on the nuScenes image dataset [2]. We use
the DLA-34 [68] backbone with deformable convolutions [10]. We add cascade RoI heads [3] for
instance segmentation following Zhou et al. [73]. We train the detector on the nuScenes dataset using
the SGD optimizer with a batch size of 16 and a learning rate of 0.02 for 90000 iterations.

For 3D detection, we use the same VoxelNet [75] and PointPillars [23] architectures following [23, 66,
76]. For VoxelNet, the detection range is [−54m, 54m] for the X , Y axis and [−5m, 3m] for the Z
axis while the range is [−51.2m, 51.2m] for the X , Y axis for the PointPillar architecture. The voxel

1https://github.com/tianweiy/CenterPoint
2https://github.com/xingyizhou/CenterNet2

6

https://github.com/tianweiy/CenterPoint
https://github.com/xingyizhou/CenterNet2

Table 1: Comparisons with previous methods on nuScenes test set. We show the NDS, mAP, and
mAP for each class. Abbreviations are construction vehicle (CV), pedestrian (Ped), motorcycle
(Motor), and traffic cone (TC).

Method mAP NDS Car Truck Bus Trailer CV Ped Motor Bicycle TC Barrier

PointPillars [23] 30.5 45.3 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
WYSIWYG [19] 35.0 41.9 79.1 30.4 46.6 40.1 7.1 65.0 18.2 0.1 28.8 34.7
3DSSD [62] 42.6 56.4 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9
PMPNet [65] 45.4 53.1 79.7 33.6 47.1 43.1 18.1 76.5 40.7 7.9 58.8 48.8
PointPainting [52] 46.4 58.1 77.9 35.8 36.2 37.3 15.8 73.3 41.5 24.1 62.4 60.2
CBGS [76] 52.8 63.3 81.1 48.5 54.9 42.9 10.5 80.1 51.5 22.3 70.9 65.7
CVCNet [4] 55.3 64.4 82.7 46.1 46.6 49.4 22.6 79.8 59.1 31.4 65.6 69.6
HotSpotNet [5] 59.3 66.0 83.1 50.9 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6
CenterPoint [66] 58.0 65.5 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9
MVP (Ours) 66.4 70.5 86.8 58.5 67.4 57.3 26.1 89.1 70.0 49.3 85.0 74.8

size is (0.075m, 0.075m, 0.2m) and (0.2m, 0.2m, 8m) for VoxelNet and PointPillar respectively.
For data augmentation, we follow CenterPoint and use global random rotations between [−π/4, π/4],
global random scaling between [0.9, 1.1] and global translations between [−0.5m, 0.5m]. To deal
with the long-tail class distribution in nuScenes, we use the ground truth sampling in [60] to randomly
paste objects into the current frame [60, 76]. We also adopt the class-balanced resampling and
class-grouped heads in [76] to improve the average density of rare classes. We train the model for 20
epochs with the AdamW [34] optimizer using the one-cycle policy [16], with a max learning rate of
3e-3 following [66]. The training takes 2.5 days on 4 V100 GPUs with a batch size of 16 (4 frames
per GPU).

During the testing, we set the output threshold to be 0.05 for the 2D detector and generate 50 virtual
points for each 2D object in the scene. We use an output threshold of 0.1 for the 3D detector after
performing non-maxima suppression with an IoU threshold of 0.2 following CenterPoint [66].

5.1 State-of-the-art Comparison

We first compare with state-of-the-art approaches on the nuScenes test set. We obtain all results on the
public leaderboard by submitting our predictions to an online evaluation server. The submission uses
a single MVP model without any ensemble or test-time augmentations. We compare to other methods
under the same setting. Table 1 summarizes our results. On the nuScenes dataset, MVP achieves
state-of-the-art results of 66.4 mAP and 70.5 NDS, outperforming the strong CenterPoint baseline
by 8.4 mAP and 5.0 NDS. MVP shows consistent improvements across all object categories with
significant 11 mAP accuracy boosts for small objects (+20.6 for Bicycle and +16.3 for motorcycle).
These results clearly verify the effectiveness of our multi-modal virtual point approach.

5.2 Ablation Studies

Comparison of 2D and 3D Detector. We first validate the superior detection performance of the
camera-based 2D detector compared to the Lidar-based 3D detector. Specifically, we use two state-of-
the-art object detectors: CenterPoint [66] for Lidar-based 3D detection, and CenterNet [74] for image-
based 2D detection. To compare the performance of detectors working in different modalities, we
project the predicted 3D bounding boxes into the image space to get the corresponding 2D detections.
The 2D CenterNet detector is trained with projected 2D boxes from ground truth 3D annotations.
Table 2 summarizes the results over the whole nuScenes validation set. 2D CenterNet [74] significantly
outperforms the CenterPoint model by 9.8 mAP (using 2D overlap). The improvements are larger for
smaller objects with a 12.6 mAP improvement for objects of medium size and more than 3× accuracy
improvements for small objects (6.9 mAP vs. 1.6 mAP). See Figure 2 for a qualitative visualization
of these two detectors’ outputs. These results support our motivations for utilizing high-resolution
image information to improve 3D detection models with sparse Lidar input.

7

Table 2: Quantitative comparison between state-of-the-art image-based 2D detector [74] and point
cloud based 3D detector [66] on the nuScenes validation set measuring 2D detection accuracy (AP).
The comparison use the COCO [31] style mean average precision with 2D IoU threshold between
0.5 and 0.95 in image coordinates. For 3D CenterPoint [66] detector, we project the predicted 3D
bounding boxes into images to get the 2D detections. The results show that the 2D detector performs
significantly better than Lidar-based 3D detector at localizing small or medium size objects due to
high resolution camera input.

Method APsmall APmedium APlarge AP

CenterPoint [66] 1.6 11.7 34.5 22.7
CenterNet [74] 6.9 24.3 42.6 32.5

Table 3: Component analysis of our MVP model with VoxelNet [60, 75] and PointPillars [23]
backbones on nuScenes validation set.

Encoder Baseline Virtual Point Split Voxelization Two-stage mAP↑ NDS↑

VoxelNet

X 59.6 66.8
X X 60.5 67.4
X X 65.9 69.6
X X X 66.0 70.0
X X X X 67.1 70.8

PointPillars X 52.3 61.3
X X 62.7 66.1

Component Analysis. Next, we ablate our contributions on the nuScenes validation set. We use
the Lidar-only CenterPoint [74] model as our baseline. All hyperparameters and training procedures
are the same between all baselines. We change inputs (MVP or regular points), voxelization, or
an optional second stage. Table 3 shows the importance of each component of our MVP model.
Simply augmenting the Lidar point cloud with multi-modal virtual points gives a 6.3 mAP and
10.4 mAP improvements for VoxelNet and PointPillars encoder, respectively. For the VoxelNet
encoder, split voxelization gives another 0.4 NDS improvements due to the better modeling of
features inside a voxel. Moreover, two-stage refinement with surface center features brings another
1.1 mAP and 0.8 NDS improvements over our first stage models with small overheads (1-2ms).
The improvement of two-stage refinement is slightly larger with virtual points than without. This
highlights the effectiveness of our virtual point method to create a finer local structure for better
localization and regression using two-stage point-based detection.

Performance Breakdown. To better understand the improvements of our MVP model, we show the
performance comparisons on different subsets of the nuScenes validation set based on object distances
to the ego-vehicle. We divide all ground truth annotations and predictions into three ranges: 0-15m,
15-30m, and 30-50m. The baselines include both the Lidar-only two-stage CenterPoint [66] model
and the state-of-the-art multi-modal fusion method PointPainting [52]. We reimplement PointPainting
using the same 2D detections, backbones, and tricks (including two-stage) as our MVP approach.
The main difference to PointPainting [52] is our denser Lidar inputs with multimodal virtual points.
Table 4 shows the results. Our MVP model outperforms the Lidar-only baseline by 6.6 mAP while
achieving a significant 10.1 mAP improvement for faraway objects. Compared to PointPainting [52],
our model achieve a 1.1 mAP improvement for faraway objects and performs comparatively for
closer objects. This improvement comes from the dense and fine-grained 3D structure generated from
our MVP framework. Our method makes better use of the higher dimensional RGB measurements
than the simple point-wise semantic feature concatenation as used in prior works [48, 52].

Robustness to 2D Detection We investigate the impact of 2D instance segmentation quality on
the final 3D detection performance. With the same image network, we simulate the degradation of
2D segmentation performance with smaller input resolutions. We show the results in Table 5. Our

8

MVP model is robust to the quality of 2D instance segmentation. The 3D detection performance only
decreases by 0.8 NDS with a 9 point worse instance segmentation inputs.

Depth Estimation Accuracy We further quantify the depth estimation quality of our nearest
neighbor-based depth interpolation algorithm. We choose objects with at least 15 lidar points and
randomly mask out 80% of the points. We then generate virtual points from the projected locations
of the masked out lidar points and compute the a bi-directional pointwise chamfer distance between
virtual points and masked out real lidar points. Our nearest neighbor approach has bi-directional
chamfer distance of 0.33 meter on the nuScenes validation set. We believe more advanced learning
based approaches like [18] and [21] may further improve the depth completion and 3D detection
performance.

KITTI Results To test the generalization of our method, we add an experiment on the popular
KITTI dataset [12]. For 2D detection, we use a pretrained MaskFormer [9] model to generate the
instance segmentation masks and create 100 virtual points for each 2D object in the scene. For 3D
detection, we use the popular PointPillars [23] detector with augmented point cloud inputs. All other
parameters are the same as the default PointPillars model. As shown in Table 6, augmenting the
Lidar point cloud with our multimodal virtual points gives a 0.5 mAP and 2.3 mAP for vehicle and
cyclist class, respectively. We didn’t notice an improvement for the pedestrian class, presumable due
to inconsistent pedestrian definition between our image model (trained on COCO [32]) and the 3D
detector. On COCO, people inside a vehicle or on top of a bike are all considered to be pedestrians
while KITTI 3D detectors treat them as vehicle or cyclist.

Table 4: Comparisons between Lidar-only CenterPoint [66] method, fusion-based PointPainting [52]
method (denoted as CenterPoint + Ours(w/o virtual)), and our multimodal virtual point method
for detecting objects of different ranges. All three entries use the VoxelNet backbone. We split the
nuScenes validation set into three subsets containing objects at different ranges.

Method nuScenes mAP
0-15m 15-30m 30-50m Overall

CenterPoint [66] 76.2 60.3 37.2 60.5
CenterPoint + Ours(w/o virtual) 78.2 67.4 46.2 66.5
CenterPoint + Ours 78.1 67.7 47.3 67.1

Table 5: Influence of 2D instance segmentation quality for the final 3D detection performance. We
show the input resolution, 2D detection mAP, and 3D detection nuScenes detection score (NDS).

Resolution 2D mAP NDS
900 43.3 70.0
640 39.5 69.6
480 34.2 69.2

Table 6: Comparison between Lidar-only PointPillars detector and our multimodal virtual point
method for 3D detection on KITTI dataset. We show the 3D detection mean average precision for
each class under the moderate difficulty level.

Method Car Cyclist Pedestrian
PointPillars [23] 77.3 62.7 52.3
PointsPillars+Ours 77.8 65.0 50.5

6 Discussion and conclusions

We proposed a simple multi-modal virtual point approach for outdoor 3D object detection. The main
innovation is a multi-modal virtual point generation algorithm that lifts RGB measurements into

9

Figure 4: Example qualitative results of MVP on the nuScenes validation set. We show the raw
point-cloud in blue, our detected objects in green bounding boxes, and Lidar points inside bounding
boxes in red. Best viewed on screen.

3D virtual points using close-by measurements of a Lidar sensor. Our MVP framework generates
high-resolution 3D point clouds near target objects and enables more accurate localization and
regression, especially for small and faraway objects. The model significantly improves the strong
Lidar-only CenterPoint detector and sets a new state-of-the-art on the nuScenes benchmark. Our
framework seamlessly integrates into any current or future 3D detection algorithms.

There are still certain limitations with the current approach. Firstly, we assume that virtual points have
the same depth as close-by Lidar measurements. This may not hold in the real world. Objects like cars
don’t have a planar shape vertical to the ground plane. In the future, we plan to apply learning-based
methods [50, 70] to infer the detailed 3D shape and pose from both Lidar measurements and image
features. Secondly, our current two-stage refinement modules only use features from the bird-eye view
which may not take full advantage of the high-resolution virtual points generated from our algorithm.
We believe point or voxel-based two-stage 3D detectors like PVRCNN [45] and M3Detr [15] may
give more significant improvements. Finally, the point-based abstraction connecting 2D and 3D
detection may introduce too large of a bottleneck to transmit information from 2D to 3D. For example,
no pose information is contained in our current position + class based MVP features.

Overall, we believe future methods for scalable 3D perception can benefit from the interplay of
camera and Lidar sensor inputs via dense semantic virtual points.

Societal Impacts. First and foremost better 3D detection and tracking will lead to safer autonomous
vehicles. However, in the short term, it may lead to earlier adoption of potentially not-yet safe
autonomous vehicles, and misleading error rates in 3D detection may lead to real-world accidents.
Fusing multiple modalities may also increase the iteration cycle and safety testing requirements
of autonomous vehicles, as different modalities clearly adapt differently to changes in weather,
geographic locations, or even day-night cycles. A low sun may uniquely distract an RGB sensor, and
hence unnecessarily distract a 3D detector through MVPs.

Furthermore, increasing the reliance of autonomous vehicles on color sensors introduces privacy
issues. While most human beings look indistinguishable in 3D Lidar measurements, they are
clearly identifiable in color images. In the wrong hands, this additional data may be used for mass
surveillance.

Acknowledgement We thank the anonymous reviewers for the constructive comments. This mate-
rial is based upon work supported by the National Science Foundation under Grant No. IIS-1845485
and IIS-2006820.

10

References
[1] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by

imitating the best and synthesizing the worst. RSS, 2019.

[2] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. CVPR, 2020.

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection.
CVPR, 2018.

[4] Qi Chen, Lin Sun, Ernest Cheung, Kui Jia, and Alan Yuille. Every view counts: Cross-view
consistency in 3d object detection with hybrid-cylindrical-spherical voxelization. NeurIPS,
2020.

[5] Qi Chen, Lin Sun, Zhixin Wang, Kui Jia, and Alan Yuille. Object as hotspots: An anchor-free
3d object detection approach via firing of hotspots. ECCV, 2020.

[6] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel Urtasun.
Monocular 3d object detection for autonomous driving. CVPR, 2016.

[7] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network
for autonomous driving. CVPR, 2017.

[8] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast point r-cnn. ICCV, 2019.

[9] Bowen Cheng, Alexander G Schwing, and Alexander Kirillov. Per-pixel classification is not all
you need for semantic segmentation. arXiv preprint arXiv:2107.06278, 2021.

[10] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei.
Deformable convolutional networks. ICCV, 2017.

[11] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. IJCV, 2010.

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the
kitti vision benchmark suite. CVPR, 2012.

[13] Ross Girshick. Fast r-cnn. ICCV, 2015.

[14] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic segmentation
with submanifold sparse convolutional networks. CVPR, 2018.

[15] Tianrui Guan, Jun Wang, Shiyi Lan, Rohan Chandra, Zuxuan Wu, Larry Davis, and Dinesh
Manocha. M3detr: Multi-representation, multi-scale, mutual-relation 3d object detection with
transformers. arXiv preprint arXiv:2104.11896, 2021.

[16] Sylvain Gugger. The 1cycle policy. https://sgugger.github.io/the-1cycle-policy.
html, 2018.

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. ICCV, 2017.

[18] Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xiaojin Gong. Penet: Towards precise
and efficient image guided depth completion. 2021.

[19] Peiyun Hu, Jason Ziglar, David Held, and Deva Ramanan. What you see is what you get:
Exploiting visibility for 3d object detection. CVPR, 2020.

[20] Tengteng Huang, Zhe Liu, Xiwu Chen, and Xiang Bai. Epnet: Enhancing point features with
image semantics for 3d object detection. ECCV, 2020.

[21] Saif Imran, Xiaoming Liu, and Daniel Morris. Depth completion with twin surface extrapolation
at occlusion boundaries. pages 2583–2592, 2021.

11

https://sgugger.github.io/the-1cycle-policy.html
https://sgugger.github.io/the-1cycle-policy.html

[22] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven L Waslander. Joint 3d
proposal generation and object detection from view aggregation. IROS, 2018.

[23] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.
Pointpillars: Fast encoders for object detection from point clouds. CVPR, 2019.

[24] Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. ECCV, 2018.

[25] Peiliang Li, Xiaozhi Chen, and Shaojie Shen. Stereo r-cnn based 3d object detection for
autonomous driving. CVPR, 2019.

[26] Peixuan Li, Huaici Zhao, Pengfei Liu, and Feidao Cao. Rtm3d: Real-time monocular 3d
detection from object keypoints for autonomous driving. arXiv preprint arXiv:2001.03343, 2,
2020.

[27] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-gan: a point
cloud upsampling adversarial network. pages 7203–7212, 2019.

[28] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urtasun. Multi-task multi-sensor fusion
for 3d object detection. CVPR, 2019.

[29] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. Deep continuous fusion for
multi-sensor 3d object detection. ECCV, 2018.

[30] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense
object detection. ICCV, 2017.

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. ECCV,
2014.

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. ECCV,
2014.

[33] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C Berg. Ssd: Single shot multibox detector. ECCV, 2016.

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2019.

[35] Su Pang, Daniel Morris, and Hayder Radha. Clocs: Camera-lidar object candidates fusion for
3d object detection. arXiv preprint arXiv:2009.00784, 2020.

[36] Charles R. Qi, Or Litany, Kaiming He, and Leonidas Guibas. Deep hough voting for 3d object
detection in point clouds. ICCV, 2019.

[37] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frustum pointnets for
3d object detection from rgb-d data. CVPR, 2018.

[38] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum pointnets for 3d
object detection from rgb-d data. CVPR, 2018.

[39] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. NeurIPS, 2017.

[40] Rui Qian, Divyansh Garg, Yan Wang, Yurong You, Serge Belongie, Bharath Hariharan, Mark
Campbell, Kilian Q Weinberger, and Wei-Lun Chao. End-to-end pseudo-lidar for image-based
3d object detection. CVPR, 2020.

[41] Cody Reading, Ali Harakeh, Julia Chae, and Steven L Waslander. Categorical depth distribution
network for monocular 3d object detection. arXiv preprint arXiv:2103.01100, 2021.

[42] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. CVPR, 2017.

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. NIPS, 2015.

12

[44] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized intersection over union: A metric and a loss for bounding box regression.
CVPR, 2019.

[45] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng
Li. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. CVPR, 2020.

[46] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal generation
and detection from point cloud. CVPR, 2019.

[47] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From points
to parts: 3d object detection from point cloud with part-aware and part-aggregation network.
TPAMI, 2020.

[48] Vishwanath A Sindagi, Yin Zhou, and Oncel Tuzel. Mvx-net: Multimodal voxelnet for 3d
object detection. ICRA, 2019.

[49] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul
Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for
autonomous driving: An open dataset benchmark. CVPR, 2020.

[50] Shubham Tulsiani, Abhishek Kar, João Carreira, and Jitendra Malik. Learning category-specific
deformable 3d models for object reconstruction. TPAMI, 2017.

[51] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and Andreas Geiger.
Sparsity invariant cnns. pages 11–20, 2017.

[52] Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Beijbom. Pointpainting: Sequential
fusion for 3d object detection. CVPR, 2020.

[53] Chunwei Wang, Chao Ma, Ming Zhu, and Xiaokang Yang. Pointaugmenting: Cross-modal
augmentation for 3d object detection. CVPR, 2021.

[54] Chunwei Wang, Chao Ma, Ming Zhu, and Xiaokang Yang. Pointaugmenting: Cross-modal
augmentation for 3d object detection. pages 11794–11803, June 2021.

[55] Dequan Wang, Coline Devin, Qi-Zhi Cai, Philipp Krähenbühl, and Trevor Darrell. Monocular
plan view networks for autonomous driving. IROS, 2019.

[56] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, and Kilian Q
Weinberger. Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection
for autonomous driving. CVPR, 2019.

[57] Yue Wang, Alireza Fathi, Abhijit Kundu, David Ross, Caroline Pantofaru, Tom Funkhouser,
and Justin Solomon. Pillar-based object detection for autonomous driving. ECCV, 2020.

[58] Zhixin Wang and Kui Jia. Frustum convnet: Sliding frustums to aggregate local point-wise
features for amodal 3d object detection. arXiv preprint arXiv:1903.01864, 2019.

[59] Kelvin Wong, Shenlong Wang, Mengye Ren, Ming Liang, and Raquel Urtasun. Identifying
unknown instances for autonomous driving. CORL, 2019.

[60] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,
2018.

[61] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object detection from point
clouds. CVPR, 2018.

[62] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd: Point-based 3d single stage object
detector. CVPR, 2020.

[63] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Std: Sparse-to-dense 3d
object detector for point cloud. ICCV, 2019.

13

[64] Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and Olga Sorkine-Hornung. Patch-based
progressive 3d point set upsampling. pages 5958–5967, 2019.

[65] Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, and Ruigang Yang. Lidar-based online
3d video object detection with graph-based message passing and spatiotemporal transformer
attention. CVPR, 2020.

[66] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-based 3d object detection and
tracking. CVPR, 2021.

[67] Jin Hyeok Yoo, Yecheol Kim, Ji Song Kim, and Jun Won Choi. 3d-cvf: Generating joint camera
and lidar features using cross-view spatial feature fusion for 3d object detection. arXiv preprint
arXiv:2004.12636, 3, 2020.

[68] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation. CVPR,
2018.

[69] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-net: Point
cloud upsampling network. pages 2790–2799, 2018.

[70] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn: Point
completion network. 3DV, 2018.

[71] Haolin Zhang, Dongfang Yang, Ekim Yurtsever, Keith A Redmill, and Ümit Özgüner. Faraway-
frustum: Dealing with lidar sparsity for 3d object detection using fusion. arXiv preprint
arXiv:2011.01404, 2020.

[72] Wenwei Zhang, Zhe Wang, and Chen Change Loy. Multi-modality cut and paste for 3d object
detection. arXiv preprint arXiv:2012.12741, 2020.

[73] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Probabilistic two-stage detection. arXiv
preprint arXiv:2103.07461, 2021.

[74] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. arXiv:1904.07850,
2019.

[75] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object
detection. CVPR, 2018.

[76] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. Class-balanced grouping
and sampling for point cloud 3d object detection. arXiv:1908.09492, 2019.

14

	Introduction
	Related work
	Preliminary
	Multimodal Virtual Point
	Experiments
	State-of-the-art Comparison
	Ablation Studies

	Discussion and conclusions

