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ABSTRACT

The existing unsupervised domain adaptation methods rely on aligning the fea-
tures from the source and target domains explicitly or implicitly in a common
space (i.e., the domain invariant space). Explicit distribution matching ignores the
discriminability of the learned features, while implicit counterpart such as self-
supervised learning suffers from pseudo-label noises. With distribution alignment,
it is challenging to acquire a common space which maintains fully the discrimi-
native structure of both source and target domains. We propose a novel Homeo-
morphisM Alignment (HMA) approach characterized by aligning the source and
target data in two separate spaces. Specifically, an invertible neural network based
homeomorphism is constructed. Distribution matching is then used as a sewing
up tool for connecting this homeomorphism mapping between the source and tar-
get feature spaces. Theoretically, we show that this mapping can preserve data
topological structure (e.g., the cluster/group structure). This property allows us
to adapt the model by leveraging simply the original and transformed features of
source data in a supervised manner (e.g., cross entropy loss), and those of target
domain in an unsupervised manner (e.g., prediction consistency loss). Extensive
experiments demonstrate that our method can achieve the state-of-the-art results.

1 INTRODUCTION

Deep learning has revolutionized the progress of machine learning and computer vision (e.g., object
recognition (He et al., 2016)). However, this advance relies heavily on a large quantity of manually
labeled data, which could be prohibitively expensive or even impossible to collect in many scenarios.
To mitigate this issue, there is a strong motivation to exploit pre-existing labeled data (i.e., the source
domain) for a target domain without any label annotation. Due to the domain shift challenge (Pan
& Yang, 2009), a model pretrained on a source domain often suffers from drastic performance
degradation when directly applied on a target domain. This gives rise to the research attention of
Unsupervised Domain Adaptation (UDA).

Existing UDA methods can be roughly divided into two categories. One is based on distribution
alignment (Long et al., 2015; Kang et al., 2019; Ganin et al., 2016; Long et al., 2018) which mini-
mizes domain discrepancy by aligning the distributions between two domains. They usually match
two different distributions to a single distribution. Doing so could distort the original structural in-
formation, potentially hurting the final model generalization (Chen et al., 2019; Ge et al., 2022; Tang
et al., 2020). Another is self-supervised learning (French et al., 2018; Liang et al., 2021a; Sun et al.,
2019) which also learns a common space by using pseudo labels or other supervision information.
The self-supervised learning faces the same limitation. Since the label noise is inevitable, it is dif-
ficult to obtain such a common feature space while keeping discriminative structure. As shown in
Fig. 1(a), adapting a model in a common space cannot guarantee better classification performance.

To address the aforementioned problem, a natural strategy is to align the target and source data in two
spaces. There are a limited works on this line. For example, CyCADA (Hoffman et al., 2018) uses
two different networks to transform the images of the source domain to the target domain and vice
versa. However, its learned two networks are not strictly inverse mappings, making the transformed
images not necessarily semantically consistent through the transformation. As a result, data topo-
logical structure can not be well preserved. Homeomorphism is a concept from Topology (Munkres,
2000). If a bijection satisfies the definition of homeomorphism, i.e., one-to-one correspondence and
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Figure 1: Comparison between previous unsupervised domain adaptation methods and our homeo-
morphism alignment. (a) Previous methods align the distributions between two domains in a com-
mon space, with data discriminative structure is not well preserved. (b) Our method uses a home-
omorphism mapping to align the training data in the source and target feature spaces. Since the
homeomorphism mapping can preserve data topological structure, the adapted model achieves bet-
ter performance in both spaces.

continuous, theoretically, we prove that the data topological structure is well preserved in the pro-
jected space, i.e., the samples in the same cluster is still in the same projected cluster. As shown
in Fig.1(b), by homeomorphism mapping, the adapted model works well in both source and target
feature spaces.

Based on the above analysis, we propose a novel unsupervised domain adaptation method, called
HomeomorphisM Alignment (HMA). Our method consists of three parts. The first is the construc-
tion of homeomorphism mapping to connect the source and target feature spaces. Fortunately, the
recently proposed Invertible Neural Network (INN) (Kingma & Dhariwal, 2018) can naturally help
us find a pair of mutually invertible functions through the forward process and invertible process of
the network, which also greatly saves the memory space. We therefore adopt INN for realizing a
homeomorphism. Then, distribution matching method is used as a sewing up tool. At both ends of
the homeomorphism mapping, we require that the transformed features be aligned with the features
of the corresponding domain. Intuitively, if we can stitch them by category semantically, the home-
omorphic mapping will be able to better implement the transformation between two spaces while
keeping the topological structure. Subsequently, the model is further trained in the source and target
feature spaces concurrently by the preserved topological structure; The optimization can be facili-
tated by the constraints that for the source domain the transformed samples share the same labels
as the original ones, and for the target domain the original and transformed samples could share the
same predictions.

Our contributions can be summarized as follows: (1) We theoretically prove that homeomorphism
mapping can guarantee the topological structure of the mapped data; This is an important property
yet ignored in the existing researches. We also show that INN implements a homeomorphism. (2)
We propose a novel UDA method with homeomorphism, the first attempt to consider the UDA
problem from the viewpoint of topology and conduct the domain alignment in two spaces. This is in
contrast to the previous methods relying on learning a common space to align the source and target
features. (3) Extensive experiments demonstrate the superiority over the existing state-of-the-art
alternatives, along with in-depth ablation studies.

2 RELATED WORK

Unsupervised Domain Adaptation. UDA aims to improve the generalization ability of a model
on an unlabeled target domain by leveraging the labeled source domain. Existing methods can be
roughly divided into two categories.
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The first category adopts the idea of distribution alignment that trains the model by minimizing the
source error and the discrepancy between source and target domains concurrently. There exist two
main strategies: statistic moment matching and adversarial learning. The methods based on statistic
moment matching minimize the statistic discrepancy to align the distributions between two domains.
DAN (Long et al., 2015) proposes multiple kernels Maximum Mean Discrepancy (MK-MMD) for
adapting marginal distribution between two domains. CORAL (Sun et al., 2017) minimizes the do-
main shift by aligning the second-order statistics of the source and target distributions. CAN (Kang
et al., 2019) proposes Constrastive Domain Discrepancy (CDD) to minimize the intra-class discrep-
ancy and maxmize the inter-class discrepancy, which aligns the conditional distributions between
two domains. The methods based on adversarial learning are inspired by GAN (Goodfellow et al.,
2014), which plays a minimax game between feature extractor and discriminator to learn domain
invariant features. DANN (Ganin et al., 2016) directly uses the features of the source and target
domains from the same feature extractor as the input of the discriminator for domain classification.
ADDA (Tzeng et al., 2017) uses two different feature extractors for the source and target domains
respectively and uses a discriminator to identify the domain labels of the features. Both of discrim-
inators used in DANN and ADDA only focus on the domain information of features and ignore the
category information, which only achieves the marginal distribution alignment. Therefore, CDAN
(Long et al., 2018) takes the prediction of classifier and features as the input of the discriminator,
which conduct conditional distribution alignment between two domains.

The second category of methods regards domain adaptation as a self-supervised learning problem.
The key is to obtain more accurate pseudo-labels or supervision information to tune the source
model. In fact, in the training process, such methods are also trying to find a common space to im-
plicitly align the source and target features such that the source and target domain features projected
by the feature extractor have better discriminability. For example, SE (French et al., 2018) uses the
mean teacher framework with a student network and a teacher network. For the update of the student
network, it uses the cross-entropy of the source samples and the consistency constraints of the target
samples. While the teacher network is updated by exponential moving average of student network.
ATDOC (Liang et al., 2021a) assigns a pseudo-label for each target sample by employing a memory
mechanism. ssUDA (Sun et al., 2019) performs self-supervised tasks (e.g., rotation, flip and patch
location predictions) to improve the model generalization.

3 ANALYSIS OF DISTRIBUTION ALIGNMENT

Problem statements. In the UDA setting, there is a source domain Ds = {(xs
i ,y

s
i )}

ns
i=1 consisting

of ns labeled samples and a target domain Dt = {(xt
i)}

nt
i=1 consisting of nt unlabeled samples.

The source domain and target domain share the same label space {1, 2, · · · ,K}, but with different
distributions. Suppose the source model Γs, pretrained by labeled source data, is composed of a
feature extractor F and a classifier C. The goal of UDA is to adapt the source model such that it
works well in the unlabeled target domain.

Ideally, given the ground-truth labels, the trained model can work well in both the source and target
domains. To verify this, we conduct experiments on the Office-31 dataset. Based on the real labels
in both source and target domains, supervised training is performed. 100% accuracy on the source
and target domains can be achieved. Next, we will check the adapted model based on distribution
alignment approaches. See Appendix for more algorithm details.

Can previous distribution alignment methods really achieve 100% accuracy given ground-
truth labels? As mentioned earlier, current domain adaptation methods usually adapt the source
domain model to the target domain through two approaches: explicit distribution alignment based
on statistic moment matching or adversarial learning, and implicit alignment based self-supervised
learning. Essentially, these alignment methods implement domain adaptation by projecting source
and target domain samples into a common space, i.e., the domain invariant space. We conduct an
experiment on the top-4 challenging adaptation tasks of Office-31 dataset. We use the ground-truth
target domain labels to perform different kinds of distribution alignment to show what will happen.
The results are shown in Table 1. The first row shows the results of CAN (Kang et al., 2019) which
aligns feature distributions based on the real target labels. The second row in Table 1 shows the
performance based on adversarial learning method CDAN (Long et al., 2018). From these two rows,
it can be observed that the explicit distribution alignment methods cannot achieve 100% accuracy

3



Under review as a conference paper at ICLR 2023

Table 1: Up-bound performance probing: Comparing different distribution alignment strategies on
Office-31 using the ground-truth target sample labels.

Component A→D A→W D→A W→A
Statistic moment matching 99.9±0.1 99.9±0.0 92.6±0.2 93.8±0.1
Adversarial learning 99.2±0.1 99.8±0.1 90.9±0.2 92.3±0.1
Self-supervised learning 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Bijection alignment 97.8±0.2 98.9±0.1 90.7±0.1 93.2±0.2
Ours 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

which means that the discriminative data structure is not well preserved when they align the source
and target domain samples in a common space. The third row shows the results of self-supervised
learning approach using the real target sample labels. It works very well which means the feature
extractor can find the domain invariant space while keeping data discriminative structure. However,
in practice the label noisy cannot be eliminated.

Can double mapping achieve 100% accuracy? Since it is difficult to find a feature extractor to
obtain a common space while keeping data discriminative structure, naturally whether the source
and target domain samples can be aligned in two feature spaces in a way of double mapping, so
as to achieve accurate classification for target domain samples. The fourth row in Table 1 shows
the performance that uses two different networks to map the source features to the target feature
space and vice versa. We use the real target sample labels to train these two networks and align
the conditional distributions between the transformed features and original features. This bijection
composed of these two networks is not a homeomorphism. The data topological structure can not be
preserved in the process of bidirectional projections between the source and target domains. Despite
the access to all the real labels of the target domain, this method still cannot achieve 100% accuracy.

Homeomorphism alignment can achieve 100% accuracy. A homeomorphism, also known as
a continuous transformation, is a one-to-one correspondence mapping between the points in two
topological spaces that is continuous in both directions. For more details please refer to (Munkres,
2000). Let M and N be two topological spaces, and g : M → N be a bijection. If both the function
g and its inverse function g−1 : N → M are continuous, then g is called a homeomorphism. That
is to say, a homeomorphism is a bijective correspondence g : M → N such that g(U) is open if and
only if U is open. By the definition above, it is easy to say that g is a homeomorphism if and only if
g−1 is a homeomorphism. Based on this definition, the following theorem can be easily derived.

Theorem 1. The set boundary corresponds to the set boundary by homeomorphism. More
precisely, let (M,dM ) and (N, dN ) be two metric spaces where dM and dN are the metrics on
M,N respectively. Suppose there is a homeomorphism g : M → N , and A is an open subset in
(M,dM ), we have that its image B := g(A) is an open subset in (N, dN ), and

g(∂A) = ∂B = ∂g(A).

where ∂ means the boundary.

As shown in Theorem 1, data topological structure is preserved by homeomorphism mapping, i.e.,
the samples in the same cluster are still in the same projected cluster. Fortunately, in the community
of machine learning, there exists a network satisfying homeomorphism definition which is called
Invertible Neural Network (INN) (Kingma & Dhariwal, 2018). It is easy to validate that INN satisfies
the following theorem.

Theorem 2. Invertible Neural Network is a homeomorphism.

As shown in the last row of Table 1, we use INN to connect two domains at the feature level. With
the real target sample labels, the homeomorphism alignment can achieve 100% accuracy thanks to
the topological structure preserving property.

4 METHOD OF HOMEOMORPHISM ALIGNMENT

Overview: Based on the analysis of distribution alignment, as shown in Fig. 2, the proposed Homeo-
morphisM Alignment (HMA) method consists of three parts. The first part is about homeomorphism
mapping construction based on INN. The second part is sewing up which uses the homeomorphism
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Figure 2: The framework of the proposed HomeomorphisM Alignment (HMA). (a) We cascade m
invertible neural networks to implement a homeomorphism. (b) The transformed features are sewed
up with the corresponding feature spaces by category. (c) The source model is iteratively trained in
the two spaces concurrently.

mapping to connect the source and target feature spaces. The final part is retraining the pretrained
source model in the source and target feature spaces by using the property of homeomorphism.

4.1 HOMEOMORPHISM IMPLEMENTED BY INVERTIBLE NEURAL NETWORK (INN)

In each iteration, we randomly sample a batch of source and target samples. We use ResNet (He
et al., 2016) as the feature extractor F to map a sample x to the feature space: fs/t = F (xs/t)
where s/t represents the source and target domain respectively. Due to the distribution discrepancy
between the source and target domains, we consider that the source and target features reside on two
different spaces (manifolds) respectively.

A homeomorphism g consists of m blocks of INN. m is a hyperparameter discussed in Appendix.
In each block, we use an affine network to implement the INN (Dinh et al., 2017), as shown in
Fig. 2. For the i-th block, we denote the input µi

1:2d with 2d dimension. In the forward process,
we transform from the source feature space fs to the target feature space f t. Specifically, we
split evenly µi

1:2d to two parts [µi
1:d, µ

i
d+1:2d], and further transform them with two respective linear

neural networks s(·), t(·). The output of i-th block µi+1
1:2d is then obtained with residual as follows:

µi+1
1:d = µi

1:d + s(µi
d+1:2d), µi+1

d+1:2d = µi
d+1:2d + t(µi+1

1:d ), µi+1
1:2d = [µi+1

1:d , µi+1
d+1:2d]. (1)

The output µi+1
1:2d will be set as the input of the next block.

In the inverse projection process, we map µi+1
1:2d to µi

1:2d in the opposite away around. According to
equation 1, we can get the following equation:

µi
d+1:2d = µi+1

d+1:2d − t(µi+1
1:d ), µi

1:d = µi+1
1:d − s(µi

d+1:2d), µi
1:2d = [µi

1:d, µ
i
d+1:2d]. (2)

We similarly split µi+1
1:2d into two parts [µi+1

1:d , µi+1
d+1:2d] and follow equation 2 to get the original input

µi
1:2d. Obviously equation 1 and equation 2 are inverse functions of each other. We denote the

forward process of the m INNs as the function g, while the inverse process as g−1. Hence, the
function g is a bijection. Since the functions s(·), t(·) are implemented by two linear connected
neural networks, they are continuous; This means both g and g−1 are continuous, too. According to
the definition of homeomorphism, this INN is a homeomorphism.
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4.2 SEWING UP

Now we will sew up homeomorphism mapping g to the source and target feature spaces such that
the corresponding classes are aligned. Suppose the transformed feature fs2t = g(fs) according
to the source feature fs and the transformed feature f t2s = g−1(f t) according to target feature
f t. According to the property of homeomorphism mapping g, fs = g−1(fs2t) and f t = g(f t2s).
To guarantee that the transformed features are the correct places, i.e., they are aligned with the
corresponding classes, the distribution matching method is used for sewing up. The loss function is
defined as follows,

min
g

LossSew = DM(fs2t,f t) +DM(f t2s,fs), (3)

where DM(·, ·) refer to the existing distribution matching methods, such as DAN (Long et al.,
2015), CAN (Kang et al., 2019), DANN (Ganin et al., 2016) and CDAN (Long et al., 2018), etc.

It should be noted that only using marginal distribution matching method, such as DAN and DANN,
cannot achieve satisfactory results, because these methods only focus on overall distribution align-
ment instead of class-wise alignment. Although our homeomorphism mapping g can ensure that
the transformed features retain topological structure, if not stitched correctly according to the cor-
responding category, then the source domain and target domain can not achieve the discriminate
feature lossless transformation. So class conditional distribution matching becomes a better choice.
This is also confirmed in the experiment section.

4.3 MODEL TRAINING

A model often suffers performance degradation from the domain shift. To address this problem,
we leverage the homeomorphic property. Specifically, after training the homeomorphism mapping,
we perform distribution alignment between fs and f t2s, and between f t and fs2t. As proved by
Theorem 1, fs has the same structural information as fs2t. Concretely, for a specific labeled source
sample x, the corresponding feature fs and fs2t share the same label. The following loss function
is applied to the supervised training of feature extractor F and classifier C,

min
F,C

LossS = Lce(C(fs),ys) + Lce(C(fs2t),ys), (4)

where ys is the corresponding label of the source sample xs, and Lce(·, ·) denotes the cross entropy
function. In particular, the term Lce(C(fs),ys) focuses on the classification of the source domain,
whilst Lce(C(fs2t),ys) is concerned with the classification of the target domain since fs2t and f t

have been aligned.

Considering that our homeomorphism preserves the structure across the mapping and no label infor-
mation in the target domain, unsupervised consistency constraint is a natural strategy for optimiza-
tion. Formally, for an unlabeled target sample xt, we formulate the consistency constraint on the
predictions between f t and f t2s as:

min
F,C

LossT = LC(C(f t), C(f t2s)), (5)

where LC(·, ·) is a consistency constraint such as L1-Norm and L2-Norm. In practice, we found
L2-Norm suffices. By combining equation 4 and equation 5, the overall loss is defined as follows,

min
F,C

LossS + LossT . (6)

Summary. At the training phase, in each iteration, we first train an INN based homeomorphism
mapping, followed by model training in two spaces concurrently. At the inference phase, both the
target features f t and the transformed target features f t2s can be used to make the prediction. Also,
average based ensemble can be used to obtain the final prediction.

Remarks. Our model is trained in the source and target feature spaces concurrently. Compared with
the existing alignment based UDA methods in a common space, this design naturally overcomes the
intrinsic challenges of projecting the source and target domain samples into a single shared feature
space using a feature extraction network while keeping their respective discriminative structures.
When the distributions between the two feature spaces are not originally aligned typical in practice
(e.g., due to domain-specific characteristics such as different background, viewing conditions, etc.),
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Table 2: Comparison with the state-of-the-art methods on Office-31 dataset. Metric: classification
accuracy (%); Backbone: ResNet-50.

Method Venue A→D A→W D→A D→W W→A W→D avg
ResNet-50 CVPR16 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DAN ICML15 78.6 80.5 63.6 97.1 62.8 99.6 80.4
CAN CVPR19 95.0 94.5 78.0 99.1 77.0 99.8 90.6
TSA CVPR21 92.6 94.8 74.9 99.1 74.4 100.0 89.3
DANN JMLR16 79.7 82.0 68.2 96.9 67.4 99.1 82.2
CDAN NIPS18 89.8 93.1 70.1 98.2 68.0 100.0 86.5
DADA AAAI20 93.9 92.3 74.4 99.2 74.2 100.0 89.0
MDD+IA ICML20 92.1 90.3 75.3 98.7 74.9 99.8 88.8
BCDM AAAI21 93.8 95.4 73.1 98.6 73.0 100.0 89.0
ILA CVPR21 93.4 95.7 72.1 99.3 75.4 100.0 89.3
MetaAlign CVPR21 94.5 93.0 75.0 98.6 73.6 100.0 89.2
DWL CVPR21 91.2 89.2 73.1 99.2 69.8 100.0 87.1
DALN CVPR22 95.4 95.2 76.4 99.1 76.5 100.0 90.4
ALDA AAAI20 94.0 95.6 72.2 97.7 72.5 100.0 88.7
ATDOC CVPR21 94.4 94.5 75.6 98.9 75.2 99.6 89.7
CaCo CVPR22 91.7 89.7 73.1 98.4 72.8 100.0 87.6
SUDA CVPR22 91.2 90.8 72.2 98.7 71.4 100.0 87.4
HMA(DANN) Ours 83.9±0.1 83.5±0.2 70.5±0.1 98.2±0.1 70.1±0.2 100.0±0.0 84.4
HMA(CDAN) Ours 92.4±0.2 95.1±0.2 73.7±0.1 99.2±0.1 72.8±0.2 100.0±0.0 88.9
HMA(DAN) Ours 85.1±0.2 84.5±0.2 67.9±0.3 98.9±0.2 66.7±0.3 100.0±0.0 83.9
HMA(CAN) Ours 95.8±0.3 95.1±0.1 79.3±0.3 99.3±0.1 77.6±0.2 100.0±0.0 91.2

Table 3: Comparisons with the state-of-the-art methods on Office-Home dataset. Metric: classifica-
tion accuracy (%); Backbone: ResNet-50.

Method Venue A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P avg
ResNet-50 CVPR16 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN ICML15 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
CAN CVPR19 58.7 78.1 82.1 67.4 75.7 78.1 67.2 54.2 82.5 73.4 60.9 83.5 71.8
TSA CVPR21 53.6 75.1 78.3 64.4 73.7 72.5 62.3 49.4 77.5 72.2 58.8 82.1 68.3
DANN JMLR16 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN NIPS18 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
MDD+IA ICML20 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
MetaAlign CVPR21 59.3 76.0 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
DALN CVPR22 57.8 79.9 82.0 66.3 76.2 77.2 66.7 55.5 81.3 73.5 60.4 85.2 71.8
ALDA AAAI20 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
ATDOC CVPR21 58.3 78.8 82.3 69.4 78.2 78.2 67.1 56.0 82.7 72.0 58.2 85.5 72.2
HMA(DANN) Ours 48.2 65.1 75.4 57.0 65.0 68.3 55.6 45.2 73.5 66.6 54.3 78.4 62.7
HMA(CDAN) Ours 58.7 78.1 81.6 67.4 75.8 78.1 66.8 54.2 82.5 73.4 59.7 83.5 71.7
HMA(DAN) Ours 46.2 63.5 73.9 58.1 65.3 68.3 55.3 43.9 74.8 67.2 53.4 78.4 62.4
HMA(CAN) Ours 60.6 79.1 82.9 68.9 77.5 79.3 69.1 55.9 83.5 74.6 62.3 84.4 73.2

the homeomorphism provides a flexible non-invasive means for cross-domain relating via trans-
forming their individual features from each other externally. Critically, this alignment in two spaces
allows to fully keep the original per-domain characteristics including some discriminative informa-
tion. Compared with the self-supervised learning methods suffering the noises of pseudo-labeling,
our transformed source features in the target domain can directly use the ground-truth source la-
bels, in addition to additionally exploiting the topological structure of the source domain. Further,
our consistency constraint can exploit the unlabeled target training data (i.e., the original and trans-
formed target features with shared topological structure) in an unsupervised manner, without the
notorious pseudo-label noise issue.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets: In our experiments, three standard datasets are used. Office-31 (Saenko et al., 2010)
is a popular benchmark. It contains a total of 4110 images of 31 office environment objects from
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Table 4: Comparison with the state-of-the-art methods on Visda-17 dataset. Metric: per-class clas-
sification accuracy (%); Backbone: ResNet-101.

Method Venue plane bcycl bus car horse knife mcycl person plant sktbrd train truck avg
ResNet-101 CVPR16 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN ICML15 84.8 42.1 75.4 53.0 77.9 62.6 86.6 50.7 59.7 52.9 82.5 26.0 62.9
CAN CVPR19 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
TSA CVPR21 - - - - - - - - - - - - 78.6
DANN JMLR16 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN NIPS18 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
BCDM AAAI21 95.1 87.6 81.2 73.2 92.7 95.4 86.9 82.5 95.1 84.8 88.1 39.5 83.4
DWL CVPR21 90.7 80.2 86.1 67.6 92.4 81.5 86.8 78.0 90.6 57.1 85.6 28.7 77.1
CLS ICCV21 92.6 84.5 73.7 72.7 88.5 83.3 89.1 77.6 89.5 89.2 85.8 72.7 81.6
DALN CVPR22 - - - - - - - - - - - - 80.6
ALDA AAAI20 93.8 74.1 82.4 69.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8
ATDOC CVPR21 93.7 83.0 76.9 58.7 89.7 95.1 84.4 71.4 89.4 80.0 86.7 55.1 80.3
CaCo CVPR22 90.4 80.7 78.8 57.0 88.9 87.0 81.3 79.4 88.7 88.1 86.8 63.9 80.9
SUDA CVPR22 88.3 79.3 66.2 64.7 87.4 80.1 85.9 78.3 86.3 87.5 78.8 74.5 79.8
HMA(DANN) Ours 86.9 79.1 83.5 50.5 86.7 47.3 86.1 55.1 64.6 59.8 84.6 36.2 68.4
HMA(CDAN) Ours 88.3 71.2 85.1 66.4 86.3 79.3 88.8 87.6 83.9 79.3 83.4 46.2 78.8
HMA(DAN) Ours 87.5 49.2 80.2 53.8 81.8 71.8 87.8 57.6 60.9 57.0 85.3 32.8 67.1
HMA(CAN) Ours 97.6 88.4 84.3 76.0 98.4 97.1 91.3 81.4 97.0 96.7 88.8 60.7 88.1

3 domains: Amazon (A), Webcam (W), Dslr(D). Office-Home (Venkateswara et al., 2017) is a
more challenging dataset which contains 15588 images within 65 classes from 4 domains: Artistic
images (A), Clip-Art images (C), Product images (P) and RealWorld images (R). Visda-17 (Peng
et al., 2017) is a widely used benchmark for domain adaptation with focus on a 12-class synthesis-to-
real object classification task. The source domain contains 152,397 synthetic images and the target
domain has 55,388 real object images.

Implementation details: Our experiment is performed in Pytorch. Each task is run 5 times to
enhance the robustness of the results. The same backbone network is selected as other compared
methods for fair comparison. Specifically, Resnet-50 is selected as the backbone on Office-31 and
Office-Home, and Resnet-101 is selected on Visda-17. It is worth noting that the output dimension
of the classifier in the original backbone is replaced by the number of categories to fit each task. The
SGD optimizer is chosen to update the network and the CosineAnnealingLR (Loshchilov & Hutter,
2016) is used to update the learning rate of the SGD optimizer.

Competitors: To verify the effectiveness of our method, we compare it with the following three
types of state-of-the-art methods. The first type based on distribution alignment, such as statis-
tic moment matching methods DAN (Long et al., 2015), CAN (Kang et al., 2019), and TSA (Li
et al., 2021c). The second type based on adversarial learning including DANN (Ganin et al., 2016),
CDAN (Long et al., 2018), MDD+IA (Jiang et al., 2020), DADA (Tang & Jia, 2020), BCDM (Li
et al., 2021a), CLS (Liu et al., 2021), ILA (Sharma et al., 2021), MetaAlign (Wei et al., 2021),
DWL (Xiao & Zhang, 2021), and DALN (Chen et al., 2022). The third type based on self-supervised
learning: ALDA (Chen et al., 2020), ATDOC (Liang et al., 2021a), CaCo (Huang et al., 2022), and
SUDA (Zhang et al., 2022).
5.2 COMPARISONS TO STATE-OF-THE-ART

The performance comparison with other state-of-the-art methods on Office-31, Office-home and
Visda-17 are shown in Table 2, Table 3 and Table 4 respectively. The methods HMA(DANN) and
HMA(CDAN) mean the sewing up tool is the distribution matching method based on adversarial
learning where DANN and CDAN focus on marginal distribution alignment and conditional dis-
tribution alignment respectively. While HMA(DAN) and HMA(CAN) apply the statistic moment
matching methods as the sewing up tool, where DAN and CAN focus on marginal distribution align-
ment and conditional distribution alignment respectively.

It can be observed that HMA(CAN) yields the best average performance on both three datasets. This
also confirms our previous analysis. Different sewing up methods will affect the final performance.
In general, conditional distribution alignment is better than marginal distribution alignment on the
two kinds of methods based on adversarial learning strategy and statistic moment matching strategy
because conditional distribution alignment can stitch homeomorphism mapping with two spaces by
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Table 5: Homeomorphism mapping vs double mapping on Office-31. DoubleMAP(CAN) means
double mapping sewed by the distribution matching method CAN.

Component A→D A→W D→A W→A Parameters
HMA(CAN) 95.8±0.3 95.1±0.1 79.3±0.3 77.6±0.2 20992000
DoubleMAP(CAN) 90.3±0.3 91.7±0.2 76.6±0.1 75.8±0.2 33603584

Table 6: Ablation study on Office-31.
Component A→D A→W D→A W→A
CAN 95.0±0.3 94.5±0.3 78.0±0.3 77.0±0.3
INN(CAN) 94.8±0.3 94.1±0.2 77.3±0.4 76.7±0.2
INN(CAN)+S2T 95.6±0.2 94.9±0.3 78.9±0.2 77.4±0.2
HMA(CAN) 95.8±0.3 95.1±0.1 79.3±0.3 77.6±0.2

category. Furthermore, for condition distribution matching method, statistic moment matching strat-
egy is better than adversarial learning strategy. The reason is that statistic moment matching strategy
stitches homeomorphism mapping with two feature spaces explicitly by category. Interestingly, the
alignment method CAN published in 2019 still achieves SOTA results. It can be seen that alignment
by category is very important for extracting domain invariant features. Our method HMA(CAN) fur-
ther boosts the CAN performance, because we realize the difficulty of extracting a domain invariant
space and we do alignment in the two spaces by homeomorphism mapping.

5.3 ABLATION ANALYSIS AND DISCUSSION

Homeomorphism map is better than double mapping. As mentioned in Section 3, there does not
exist many methods which do alignments in two feature spaces based on bijection. In this experi-
ment, we will apply the double mapping method in Section 3 to top-4 challenging tasks on Office-31
dataset, the difference between INN and double mapping method is mainly reflected in topological
structure maintenance. The results are shown in Table 5. It is obvious that homeomorphism map-
ping is superior to the normal double mapping method in accuracy and model parameters. For the
model size, the INN based homeomorphism mapping uses almost half of the parameters compared
to using two neural networks.

Ablation study. To show the effectiveness of alignment in two spaces, we conduct an experiment on
top-4 challenging tasks of Office-31 dataset. The results are shown in Table 6. The method CAN is
considered as the baseline. INN(CAN) means just sewing up homeomorphism mapping to the two
feature spaces and the source model is retrained based on the source labels. INN(CAN)+S2T means
the transformed source features are used to learn the model in the target feature space compared
with INN(CAN). HMA(CAN) uses all features in two spaces. From Table 6, we can find that simply
using INN can achieve similar performance as the feature distribution alignment method CAN. As
shown in the third row in Table 6, by transferring the source features to the target feature space, the
performance is greatly improved. For this case, the data topological structure and label information
from source domain can be correctly transformed to the target domain, which allows that the learned
model works well in the target domain. The last row in Table 6 shows that the performance can be
further improved if both transformed features are used. Because our homeomorphism mapping
keeps the corresponding relationship by category, with the help of supervision information in the
source feature spaces, the generalization performance of the model in the two domains is improved.

6 CONCLUSION

In this paper, we have proposed a new unsupervised domain adaptation method, termed as Home-
omorphisM Alignment in two spaces (HMA). By analyzing previous alignment based methods, we
argue that it is difficult to find a common space or domain invariant space to adapt the pretrained
source model. So the alignment is performed in two spaces. The extracted source and target features
can be further transformed respectively by a homeomorphism mapping so that they can be aligned
semantically. Our method consists of three steps, i.e., constructing an INN based homeomorphism
mapping, sewing up by category and retraining iteratively training the model in two spaces. In this
way, the source labels can be fully used even in the target feature space for improving the model
generalization for the target domain. Extensive experimental results demonstrate the effectiveness
of our method.
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A APPENDIX

A.1 MORE RELATED WORKS

Unsupervised Domain Adaptation. In addition to statistic moment matching and adversarial
learning as mentioned in the paper, the methods based on distribution alignment also benefit from
the following strategies: adversarial generation framework, bi-classifier adversarial learning and
optimal transport. Specifically, with the adversarial generation framework, existing methods (Liu
& Tuzel, 2016; Shrivastava et al., 2017; Zhu et al., 2017)) often combine the domain discriminator
and a generator, and generate fake data to align the distributions across domains at the pixel level.

Based on bi-classifier adversarial learning, prior methods play a minimax game with a single feature
extractor and two distinct classifiers during domain adaptation (Saito et al., 2018; Lee et al., 2019;
Li et al., 2021b; Lu et al., 2020; Zhou et al., 2022). Commonly, they maximize the prediction
discrepancy when training the classifiers and minimize the prediction discrepancy when training the
feature extractor. Specifically, MCD (Saito et al., 2018) uses L1-Norm to calculate the prediction
discrepancy. SWD (Lee et al., 2019) proposes the slide wasserstein distance. BCDM (Li et al.,
2021b) proposes the classifier determinacy disparity distance. CDAL (Zhou et al., 2022) proposes
an expertise-aware classifier interference strategy to solve the ambiguous samples during domain
adaptation. STAR (Lu et al., 2020) integrates an approximately infinite number of classifiers by
sampling from a distribution, whilst keeping the model size the same as those with two classifiers.

With the assist of optimal transport, previous methods instead learn a transformation between two
domains (Damodaran et al., 2018; Xu et al., 2020; Li et al., 2020). Their pipelines generally consist
of two steps: the first step is to find a coupling matrix for connecting each source sample and
target sample; The second step is to minimize the cost of these pair-wise connections. Specifically,
DeepJDOT (Damodaran et al., 2018) minimizes the discrepancy of the features and predictions
simultaneously using the Wasserstein distance. RWOT (Xu et al., 2020) exploits spatial prototypical
information and intra-domain structure in a precise-pair-wise optimal transport procedure. ETD (Li
et al., 2020) builds an attention-aware transport distance, which can be viewed as the prediction
feedback of the iteratively learned classifier, to measure the domain discrepancy.

The previous optimal transport based methods are mostly similar to our model in the sense of finding
a transformation for cross-domain distribution alignment. However, there are several key conceptual
differences. First, they use a common space for distribution alignment. Instead, our method keeps
per-domain distributions in two separate spaces while preserving their original structures. Second,
they assume rigidly one-to-one (pairwise) mapping across domains which is not necessarily valid
in practice. Favorably, our model does not make such strong assumptions by considering more
relaxed coarse class-wise alignment between two distributions during the sewing up process. Third,
they exploit the optimal transport to compute the transformation by solving a linear programming
problem. In contrast, we construct a homeomorphism mapping that could be learned end-to-end
more flexibly and scalably (e.g., by using invertible neural networks).

Invertible Neural Network (INN). INN is a flow-based model, which transforms a probability
distribution into another distribution by a sequence of invertible and differentiable mappings. It
has been applied in image super-resolution, lossless compression, style transfer, privacy protection
and so on. For example, HCFlow (Liang et al., 2021b) utilizes the hierarchical conditional flow as
a unified framework for image super-resolution and image rescaling. NCSR (Kim & Son, 2021)
proposes noise conditional flow model for super-resolution, which increases the visual quality and
diversity of images through noise conditional layer. In lossless compression, derived from general
volume preserving flows, iVPF (Zhang et al., 2021b) achieves an exact bijective mapping without
any numerical error and then proposes a lossless compression algorithm. iFlow (Zhang et al., 2021a)
achieves efficient lossless compression by a modular scale transform combining numerically invert-
ible flow transformations. DIST (Chen et al., 2021) designs a diverse image style transfer framework
by enforcing an invertible cross-space mapping. Additionally, invertible networks play an important
role in protecting privacy, such as invertible de-identification and image hiding (Jing et al., 2021;
Cao et al., 2021). Although have been widely and effectively used in image processing, no work has
applied INN in domain adaptation.
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A.2 PROOF OF THEOREM 1

Theorem 1. Let (M,dM ) and (N, dN ) be two metric spaces with a homeomorphism

g : M → N,

and A is an open subset in (M,dM ), we have that its image B := g(A) is an open subset in (N, dN ),
and

g(∂A) = ∂B = ∂g(A),

where ∂ means the boundary.

Proof. It is sufficient to show that
g(∂A) ⊂ ∂B. (7)

If this is true, then we can implied equation 7 to g−1, and obtain

g−1(∂B) ⊂ ∂A.

Hence we have ∂B ⊂ g(∂A). Combing this with equation 7, we have g(∂A) = ∂B.

Now we want to show equation 7, that is, for any x ∈ ∂A, we have g(x) ∈ ∂B. Since x ∈ ∂A,
but x /∈ A, then g(x) /∈ B, and there is a sequence {xi} ⊂ A such that limi→∞ xi = x. By the
continuity of the function g, we have

g(x) = g( lim
i→∞

xi) = lim
i→∞

g(xi).

Noting that g(xi) ∈ B, we get g(x) ∈ ∂B. This completes the proof. □

A.3 PROOF OF THEOREM 2

Theorem 2. Invertible Neural Network is a homeomorphism.

Proof. The definition of homeomorphism is that a function g : M → N between two topological
spaces is a homeomorphism if it has the following properties: 1. g is a bijection; 2. g is continuous;
3. the inverse function g−1 is continuous.

For any invertible neural network, assuming that its forward process is g, then its invertible process
can be represent g−1, so g is a bijection. Because the function of each part of the invertible neural
network is continuous, such as s(·) and t(·) in our method, so both g and g−1 are continuous. To
sum up, the invertible network is a homeomorphism. □

A.4 ALGORITHM

Algorithm 1 HMA
Input: Source domain Ds = {(xs

i ,y
s
i )}

ns
i=1, target domain Dt = {(xt

i)}
nt
i=1, the epoch number T ,

the mini-batch number M .
Output: An adapted model.
Procedure:

1: for t = 1:T do
2: for m = 1:M do
3: Forward a mini-batch through the feature extractor F and get source features fs and

target features f t;
4: Generate transformed source features f t2s and transformed target features fs2t by INN;
5: Select a domain adaptation method and train INN based on equation 3;
6: Train the backbone network based on equation 6;
7: end for
8: end for
9: return Adapted model.

Our method is summarized in Algorithm 1. In each iteration, the INN and backbone network,
which consists of feature extractor and classifier, are both trained. The loss functions are shown in
equation 3 and equation 6 respectively.
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A.5 IMPLEMENTATION DETAILS OF METHODS IN TABLE 1

In Table 1, we report the results of several classical domain adaptation strategies given ground-truth
labels. Since the real labels are used, so we need to make simple modifications to these algorithms,
which are shown below.

For the first line in Table 1, CAN (Kang et al., 2019) is selected to test the statistic moment matching
strategy, which is almost the best statistical moment matching method in recent years. It uses the
clustering algorithm to pseudo-label the all target domain samples, and then uses the CAS strategy
to sample target domain samples with high-confidence pseudo-label and source samples, finally,
it minimizes the inter-class cross domain discrepancy and maximizes the intra-class cross domain
discrepancy, which is shown as follows:

min
F

LossCAN
ALIGN =

C∑
c=1

MMD(fs,c,f t,ĉ)−
C∑

c1=1

C∑
c2 ̸=c1

MMD(fs,c1 ,f t,ĉ2), (8)

where MMD(A,B) represents the MMD discrepancy between A and B, fs,c represents the source
features with true label c and f t,ĉ represents the target features with pesudo label c. When we giving
the ground-truth labels to target domain, we do not need to pseudo label target samples, and directly
sample all target samples to perform distribution alignment as follows:

min
F

LossCANours
ALIGN =

C∑
c=1

MMD(fs,c,f t,c)−
C∑

c1=1

C∑
c2 ̸=c1

MMD(fs,c1 ,f t,c2), (9)

where f t,c represents the target features with true label c. In this case, the feature extractor is
retrained by equation 9; the source classifier is retrained by source samples.

For the second line in Table 1, CDAN (Long et al., 2018) is selected to test adversarial learning
strategy. CDAN thinks the prediction of the classifier carry the discriminative information which can
be used to align the conditional distribution between two domains. Specifically, it first introduces a
domain discriminator D to perform domain classification. The input of the domain discriminator is
the outer product of features and predictions and the loss function is defined as follows:

min
F

max
D

LossCDAN
ALIGN = Exs

i∼Ds log[D(fs
i ⊗ ps

i )] + Ext
i∼Dt

log[1−D(f t
i ⊗ pt

i)], (10)

where ⊗ is the outer product, ps
i is the prediction of i-th source sample and pt

i is the prediction of
i-th target sample. While in our test, ground-truth label are available during the training, we perform
an one-hot operation on the ground-truth labels ys

i and yt
i to get lsi and lti , and train the feature

extraction network and the discrimination network in the following way:

min
F

max
D

LossCDANours
ALIGN = Exs

i∼Ds
log[D(fs

i ⊗ lsi )] + Ext
i∼Dt

log[1−D(f t
i ⊗ lti)]. (11)

In this case, the feature extractor is retrained by equation 11; the source classifier is retrained by
source samples.

For the third line in Table 1, it reports the self-supervised training strategy. Tradition methods based
on this strategy (Liang et al., 2021a) usually assign target sample a pseudo-label ŷt

i , and use pseudo-
label to train the model as follows:

min
F,C

LossSELF = Exs
i∼DsLce(ps

i ,y
s
i ) + Ext

i∼Dt
Lce(pt

i, ŷ
t
i), (12)

where C means classifier. When the true target labels yt
i are given, it can directly supervised train

the model as follows:

min
F,C

LossSELFours = Exs
i∼Ds

Lce(ps
i ,y

s
i ) + Ext

i∼Dt
Lce(pt

i,y
t
i), (13)

In this case, the feature extractor and source classifier are retrained by equation 13.

For the fourth line in Table 1, which uses two different networks to learn two transformations, which
maps the source features to the target feature space and vice versa. Specifically, two linear networks
Fs2t(·) and Ft2s(·) are introduced, and we have fs2t = Fs2t(f

s), f t2s = Ft2s(f
t). We hope the

transformed features can be aligned to original features in their feature spaces respectively. In this

16



Under review as a conference paper at ICLR 2023

Table 7: Comparisons with the state-of-the-art methods on DomainNet dataset. Metric: classifica-
tion accuracy (%); Backbone: ResNet-50. For each cross-domain pair, the source/target domains
are specified in the corresponding row/column fields.
ResNet clp inf pnt qdr rel skt Avg. MCD clp inf pnt qdr rel skt Avg. BNM clp inf pnt qdr rel skt Avg.

clp - 14.2 29.6 9.5 43.8 34.3 26.3 clp - 15.4 25.5 3.3 44.6 31.2 24.0 clp - 12.1 33.1 6.2 50.8 40.2 28.5
inf 21.8 - 23.2 2.3 40.6 20.8 21.7 inf 24.1 - 24.0 1.6 35.2 19.7 20.9 inf 26.6 - 28.5 2.4 38.5 18.1 22.8
pnt 24.1 15.0 - 4.6 45.0 29.0 23.5 pnt 31.1 14.8 - 1.7 48.1 22.8 23.7 pnt 39.9 12.2 - 3.4 54.5 36.2 29.2
qdr 12.2 1.5 4.9 - 5.6 5.7 6.0 qdr 8.5 2.1 4.6 - 7.9 7.1 6.0 qdr 17.8 1.0 3.6 - 9.2 8.3 8.0
rel 32.1 17.0 36.7 3.6 - 26.2 23.1 rel 39.4 17.8 41.2 1.5 - 25.2 25.0 rel 48.6 13.2 49.7 3.6 - 33.9 29.8
skt 30.4 11.3 27.8 3.4 32.9 - 21.2 skt 37.3 12.6 27.2 4.1 34.5 - 23.1 skt 54.9 12.8 42.3 5.4 51.3 - 33.3

Avg. 24.1 11.8 24.4 4.7 33.6 23.2 20.3 Avg. 28.1 12.5 24.5 2.4 34.1 21.2 20.5 Avg. 37.6 10.3 31.4 4.2 40.9 27.3 25.3
SWD clp inf pnt qdr rel skt Avg. CGDM clp inf pnt qdr rel skt Avg. HMA(CAN) clp inf pnt qdr rel skt Avg.
clp - 14.7 31.9 10.1 45.3 36.5 27.7 clp - 16.9 35.3 10.8 53.5 36.9 30.7 clp - 18.9 43.4 9.9 54.7 45.4 34.5
inf 22.9 - 24.2 2.5 33.2 21.3 20.0 inf 27.8 - 28.2 4.4 48.2 22.5 26.2 inf 35.9 - 37.2 5.7 54.5 30.8 32.8
pnt 33.6 15.3 - 4.4 46.1 30.7 26.0 pnt 37.7 14.5 - 4.6 59.4 33.5 30.0 pnt 42.6 14.9 - 10.8 61.4 35.1 33.0
qdr 15.5 2.2 6.4 - 11.1 10.2 9.1 qdr 14.9 1.5 6.2 - 10.9 10.2 8.7 qdr 31.0 5.8 15.0 - 15.9 16.2 16.8
rel 41.2 18.1 44.2 4.6 - 31.6 27.9 rel 49.4 20.8 47.2 4.8 - 38.2 32.0 rel 53.1 18.8 47.0 4.1 - 43.0 33.2
skt 44.2 15.2 37.3 10.3 44.7 - 30.3 skt 50.1 16.5 43.7 11.1 55.6 - 35.4 skt 55.8 18.3 47.3 17.5 59.3 - 39.6

Avg. 31.5 13.1 28.8 6.4 36.1 26.1 23.6 Avg. 36.0 14.0 32.1 7.1 45.5 28.3 27.2 Avg. 43.7 15.3 38.0 9.6 49.2 34.1 31.7

test, we also have true labels from both source domain and target domain and use CAN to align the
distributions between transformed features and original features, which is shown as follows:

min
Fs2t,Ft2s

LossDoublemap
ALIGN =

C∑
c=1

MMD(fs,c,f t2s,c)−
C∑

c1=1

C∑
c2 ̸=c1

MMD(fs,c1 ,f t2s,c2)

+

C∑
c=1

MMD(fs2t,c,f t,c)−
C∑

c1=1

C∑
c2 ̸=c1

MMD(fs2t,c1 ,f t,c2).

(14)

In this case, the feature extractor is retrained by equation 14; the source classifier is retrained by
source samples.

For the fifth line in Table 1, which is our method based on ground-truth label, we introduce invert-
ible neural network g to connect two feature spaces. Specifically, the transformed features can be
obtained by g as fs2t = g(fs) and f t2s = g−1(f t). Due to the ground-truth label are available.
Therefore, We just need to modify our sewing up operation to the following:

min
g

LossHMA
ALIGN =

C∑
c=1

MMD(fs,c,f t2s,c)−
C∑

c1=1

C∑
c2 ̸=c1

MMD(fs,c1 ,f t2s,c2)

+

C∑
c=1

MMD(fs2t,c,f t,c)−
C∑

c1=1

C∑
c2 ̸=c1

MMD(fs2t,c1 ,f t,c2).

(15)

In this case, the feature extractor and source classifier are retrained in two spaces.

A.6 COMPARISONS TO STATE-OF-THE-ART ON DOMAINNET

DomainNet (Peng et al., 2019) is one of the most challenging datasets in domain adaptation. It
contains about 600 thousand images in 345 categories from 6 domains: Clipart (C), Infograph (I),
Painting (P), Quickdraw (Q), Real (R) and Sketch (S). We compare our method HMA(CAN) with
existing state-of-the-art methods: MCD (Saito et al., 2018), BNM (Cui et al., 2020), SWD (Lee
et al., 2019) and CGDM (Du et al., 2021). ResNet-50 is used as backbone for all methods. As
shown in Table 7, our method surpasses all the previous alternatives by a large margin. This verifies
the generic advantage of our approach in this more challenging larger-scale benchmark.

A.7 MODEL ANALYSIS

An empirical visualization of homeomorphism.

For conceptual illustration of homeomorphism, we experiment with hand-designed toy data. Con-
cretely, we first construct 6 2-dimensional feature points from two different clusters, as shown in
Figure 3(a) in red and blue. We then transform these points with an INN based homeomorphism
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Figure 3: The empirical visualization of homeomorphism.

mapping. As we observed in Figure 3(b), the transformed points still preserve the structural clus-
ter/group information.

Table 8: Different loss functions for consistency constraint on Office-31. CE: Cross Entropy; L2:
L2-Norm.

Loss function A→D A→W D→A D→W W→A W→D
CE 95.8 94.9 79.4 99.1 77.8 100.0
L2 95.8 95.1 79.3 99.3 77.6 100.0

Loss function for consistency constraint.

In equation 5, we use L2-Norm to implement the consistency constraint on the unlabeled target
features f t and f t2s. To evaluate the effect of this loss function selection, we further test cross
entropy on office-31. As shown in 8, the performance of our method is marginally affected by the
loss function selection, suggesting the stability and flexibility of our model.

Table 9: Block number analysis on Office-31. HMA(DAN): Sewing up by DAN; HMA(CAN):
Sewing up by CAN.

Number 1 2 3 4 5
HMA(DAN) 78.2 82.4 82.9 83.5 83.9
HMA(CAN) 87.6 89.4 90.3 90.7 91.2

How many blocks of INN do we need?

The forward and invertible process of INN for each block are shown in equation 1 and equation 2,
so we need to discuss how many INN blocks we need. As shown in Table 9, the average accuracy
on Office-31 are reported. It can be found that when the block number is changed from 1 to 2,
the performance of both HMA(DAN) and HMA(CAN) has been greatly improved, while when the
number of blocks is increased from 2 to 5, the performance increase is relatively slow. This is
because when the block number is 1, the y1 in the output of the INN and the x1 in the input are
linearly related, i.e. ∂y1

∂x1
= I where I is the identity matrix. When the block number becomes

2, there is no such linear relationship, which makes the network has more capacity. In addition,
as the number of blocks in the network increases, the nonlinearity of the network also becomes
stronger, resulting in better results. Of course, before the learning ability is saturated, more blocks
will definitely have better learning ability, but considering the computational overhead, we finally
chose 5 blocks.

Unilateral sewing up or bilateral sewing up?

Obviously, in our method, when the distributions between f t and fs2t are aligned, the discrepancy
between fs and f t2s can also be minimized due to the reversibility of the INN, and vice versa. But
in our method, we do not use this unilateral sewing up but bilateral sewing up, i.e., fs and f t2s;
f t and fs2t are aligned as shown in equation 3. We compare three strategies: unilateral sewing up:
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(a) A → D (b) D → A

Figure 4: The accurary of different sewing up strategies using INN on Ofiice-31. The curves named
Target space and Source space are unilateral sewing up strategies which are performed in the target
feature space and source feature space respectively. The curve named Bi-alignment means the bilat-
eral sewing up strategy.

only alignment between f t and fs2t in target feature space or only alignment fs and f t2s in source
feature space; and bilateral sewing up where the above mentioned pairs are all aligned. We select
HMA(CAN) as the baseline and conduct experiments on A→D and D→A tasks of Office-31. From
the experimental results, the bilateral sewing up can make training faster than other two strategies. In
addition, we also find that bilateral sewing up can get better performance compared with unilateral
sewing up.

Table 10: Test on Office-31. f t: classify f t directly; f t2s: transform f t to f t2s then classify f t2s;
f t+f t2s: ensemble these two strategies.

Strategy A→D A→W D→A D→W W→A W→D
f t 95.3 94.7 78.5 98.9 77.2 100.0
f t2s 95.1 94.7 78.7 99.2 76.9 100.0
f t+f t2s 95.8 95.1 79.3 99.3 77.6 100.0

How to use our model?

Our method do alignment in two spaces, it is natural to ask a problem in which space using our
model. There are three strategies: using our model in the target feature space f t, or in the source
feature space f t2s or in both source and target feature spaces where the average prediction is consid-
ered as the final result. We test these three strategies on Office-31 dataset using HMA(CAN), which
is shown in Table 10. From the experimental results, the effect of adopting the ensemble strategy is
slightly better than others, so for using our model, we adopt this ensemble strategy.

A.8 VISUAL ANALYSIS BY T-SNE

To intuitively understand the proposed HMA, we use t-SNE (Van der Maaten & Hinton, 2008) to
visualize the classification results on Office-31 based on two baselines, DAN and CAN, as shown
in Fig. 5 and Fig.6, respectively. For both figures, the first row represents the results on tasks
A → D, and the second row shows the results on tasks W → A. From left to right, the visualization
images represent the visualization results of the baseline method, the alignment results using INN
on the baseline method, and the visualization results of our final proposed method, respectively.
From Fig. 5 and Fig.6, it can be seen that only using INN to sew up two domains can achieve
similar results with the previous alignment method. HMA shows a huge improvement over other
visualization results. This is because in addition to the distribution alignment using INN, our HMA
approach further applies the property of INN to train the feature extractor and classifier and yields
better performance.
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A → 𝐷

𝑊 → 𝐴

a DAN b INN(DAN) c HMA(DAN)

Figure 5: Visualization of ablation study using t-SNE on Office-31 with DAN as the baseline. The
first row is for task A → D and the second row represents the task W → A. Left: DAN. Center:
INN(DAN). Right: HMA(DAN).

A → 𝐷

𝑊 → 𝐴

a CAN

A → 𝐷

𝑊 → 𝐴

b INN(CAN) c HMA(CAN)

Figure 6: Visualization of ablation study using t-SNE on Office-31 with CAN as the baseline. The
first row represents the task A → D and the second row shows the result of task W → A. Left:
CAN. Center: INN(CAN). Right: HMA(CAN).

A.9 VISUAL ANALYSIS BY GRAD-CAM

We show the visualization of Grad-CAM (Selvaraju et al., 2017) on Office-31 task W → A, shown
in Fig.7 and Fig.8. We randomly select 8 categories. For each category, one image is showed
for activation mapping visualization. For both figures, from top to bottom, the images represent
the results of original image, HMA(DAN), doublemap, CAN, HMA(CAN), respectively. From
the visualization results, the focus of HMA(DAN) and doublemap is mostly on local points, while
ignoring the characteristics of the whole object. Compared with the above two methods, CAN is
slightly improved, but it still lacks certain accuracy. Our proposed HMA(CAN) better estimates the
attention.
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Original

image

HMA(DAN)

Doublemap

CAN

HMA(CAN)

back_pack bike              bike_helmet bookcase

Figure 7: Visualization using CAM on Office-31 task W → A.

A.10 NETWORK STRUCTURE

In this section, we will go into detail about the neural network we use. For the feature extractor,
Resnet (He et al., 2016) is used, but its original last layer which is a fully connected linear layer for
classification is removed. It is worth noting that the dimension size of features yielded by feature
extractor of both Resnet-50 and Resnet-101 is 2048. The structure is shown as follows.

For classifier, a fully connected linear layer is constructed for suit our tasks, which maps features to
predictions. The dimension size of predictions are category number which are different in different
datasets. Specifically, the dimensions of prediction are 31, 65, 12 in Office-31, Office-home and
Visda-17 respectively. For the INN, the affine network is used. Specifically, it consists of two two-
layers linear networks s(·) and t(·). The structure of s(·) and t(·) are the same. Specifically, the
network s(·) consists of two fully connected neural networks and a ReLU function. The detail is
shown in Fig.10(a).

We also discuss that using two different linear networks Fs2t(·) and Ft2s(·) to learn the mappings
between two feature spaces. The structures of Fs2t(·) and Ft2s(·) are same, which consists of four
blocks. Each block consists of a fully connected neural networks a batchnorm and a relu function.
The specific structure is shown in Fig.10(b).
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desk_chair file_cabinet keyboard            letter_tray

Original

image

HMA(DAN)

Doublemap

CAN

HMA(CAN)

Figure 8: Visualization using CAM on Office-31 task W → A.
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Figure 9: Network structure of Resnet-50.
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FC

BatchNorm

ReLU

(2048)

(2048)

FC

ReLU

FC

(1024)

(1024)

(1024) (2048)

(a) (b)

FC

FC

FCFC

FC ReLU

ReLU

Figure 10: (a) Network structure of s(·) and t(·) in HMA. (b) Network structure of double mapping
Fs2t(·) and Ft2s(·).
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