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ABSTRACT

Despite many advances in Graph Neural Networks (GNNs), their training strategies
simply focus on minimizing a loss over nodes in a graph. However, such simplistic
training strategies may be sub-optimal as they neglect that certain nodes are much
harder to make accurate predictions on than others. Here we present TUNEUP, a
curriculum learning strategy for better training GNNs. Crucially, TUNEUP trains
a GNN in two stages. The first stage aims to produce a strong base GNN. Such
base GNNs tend to perform well on head nodes (nodes with large degrees) but
less so on tail nodes (nodes with small degrees). So, the second stage of TUNEUP
specifically focuses on improving prediction on tail nodes. Concretely, TUNEUP
synthesizes many additional supervised tail node data by dropping edges from
head nodes and reusing the supervision on the original head nodes. TUNEUP
then minimizes the loss over the synthetic tail nodes to finetune the base GNN.
TUNEUP is a general training strategy that can be used with any GNN architecture
and any loss, making TUNEUP applicable to a wide range of prediction tasks.
Extensive evaluation of TUNEUP on five diverse GNN architectures, three types of
prediction tasks, and both inductive and transductive settings shows that TUNEUP
significantly improves the performance of the base GNN on tail nodes, while
often even improving the performance on head nodes, which together leads up to
58.5% relative improvement in GNN predictive performance. Moreover, TUNEUP
significantly outperforms its variants without the two-stage curriculum learning,
existing graph data augmentation techniques, as well as other specialized methods
for tail nodes.

1 INTRODUCTION

Graph Neural Networks (GNNs) are one of the most successful and widely used paradigms for
representation learning on graphs, achieving state-of-the-art performance in a variety of prediction
tasks, such as semi-supervised node classification (Kipf & Welling, 2017; Velickovic et al., 2018), link
prediction (Hamilton et al., 2017; Kipf & Welling, 2016), and recommender systems (Ying et al., 2018;
He et al., 2020). There has been a surge of work on improving GNN model architectures (Velickovic
et al., 2018; Xu et al., 2019; 2018; Shi et al., 2020; Klicpera et al., 2019; Wu et al., 2019; Zhao &
Akoglu, 2019; Li et al., 2019; Chen et al., 2020; Li et al., 2021) and task-specific losses (Kipf &
Welling, 2016; Rendle et al., 2012; Verma et al., 2021; Huang et al., 2021). Despite all these advances,
strategies for training a GNN on a given supervised loss remain largely simplistic. Existing work has
focused on simply minimizing the given loss over nodes in a graph. While such a simplistic default
strategy already gives a strong performance, the strategy may still be sub-optimal as it neglects that
some nodes are much harder to make accurate predictions on than others. Consequently, a GNN
trained with the default strategy may significantly under-perform on those hard nodes, resulting in
overall sub-optimal predictive performance.

Here we present TUNEUP to better train a GNN on a given supervised loss. The key motivation
behind TUNEUP is that GNNs tend to under-perform on tail nodes, i.e., nodes with a small number
of neighbors (Liu et al., 2021). In practice, performing well on tail nodes is important since they
are prevalent in real-world scale-free graphs (Clauset et al., 2009) and newly-arriving cold-start
nodes (Lika et al., 2014). To better train a GNN on those hard-to-predict tail nodes, the key idea of
TUNEUP is to use a curriculum learning strategy (Bengio et al., 2009); TUNEUP first trains a GNN
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Figure 1: Degree-specific generalization performance of the base GNN and TUNEUP in the trans-
ductive setting. The x-axis represents the node degrees in the training graph, and the y-axis is the
generalization performance averaged over nodes with the specific degrees. We see from the dotted
blue curves that the base GNN tends to perform poorly on tail nodes, i.e., nodes with small degrees.
Our TUNEUP (denoted by the solid orange curves) improves or at least maintains the base GNN
performance on almost all node degrees. The improvement is more significant on tail nodes.

to perform well on relatively easy head nodes, i.e., nodes with a large number of neighbors. It then
proceeds to improve the performance on the hard tail nodes.

Specifically, TUNEUP uses the two-stage strategy to train a GNN. In the first stage, TUNEUP employs
the default training strategy, i.e., simply minimizing the given supervised loss, to produce a strong
base GNN to start with. The base GNN tends to perform well on head nodes, but poorly on tail nodes
(see the dotted blue curves in Figure 1). To mitigate this issue, the second stage of TUNEUP focuses
on improving the performance on the tail nodes. Specifically, TUNEUP synthesizes many additional
tail node inputs by dropping edges from head nodes. TUNEUP then adds target supervision (e.g.,
class labels for node classification, edges for link prediction) on the synthetic tail nodes by reusing
the supervision on the original head nodes (before dropping edges). Finally, TUNEUP finetunes the
base GNN by minimizing the loss over the increased supervised tail node data. The dedicated training
on the synthetic tail nodes allows the resulting GNN to perform much better on the real tail nodes,
while often even improving the performance on head nodes. TUNEUP is simple to implement on top
of the default training pipeline of GNNs, as shown in Algorithm 1. Moreover, TUNEUP can be used
to train any GNN model with any supervised loss, making it generally applicable to a broad range of
node and edge-level prediction tasks.

We extensively evaluate TUNEUP on a wide range of settings. We consider five diverse GNN
architectures, three types of key prediction tasks (semi-supervised node classification, link prediction,
and recommender systems) with a total of eight datasets, as well as both transductive (i.e., prediction
on nodes seen during training) and inductive (i.e., prediction on new nodes never seen during training)
settings. For the inductive setting, we additionally consider the challenging cold-start scenario (i.e.,
limited edge connectivity from new nodes) by randomly removing certain portions of edges from
new nodes.

Across all settings, TUNEUP produces consistent improvement on the generalization performance of
GNNs. In the transductive setting, TUNEUP significantly improves the performance of base GNNs on
tail nodes, while oftentimes even improving the performance on head nodes (see Figure 1). Moreover,
our ablation study shows that the two-stage curriculum training strategy of TUNEUP is critical
and gives significantly improved performance over its variant strategy without curriculum learning.
Finally, we extensively compare our TUNEUP against recent graph augmentation techniques (Rong
et al., 2020; Liu et al., 2022) and specialized methods for tail nodes (Liu et al., 2021; Zheng et al.,
2022; Zhang et al., 2022; Kang et al., 2022). Our TUNEUP outperforms all these methods in all
settings, while being simpler and more general. Overall, our work demonstrates that training strategies
can play an important role in improving generalization performance of GNNs.

2 GENERAL SETUP AND TUNEUP

TUNEUP is a curriculum learning strategy to train any GNN model with any supervised loss to solve
node or edge-level prediction tasks over graphs. We first provide a general task setup for machine
learning on graphs and review the default training strategy of GNNs to solve the task. We then present
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TUNEUP, which adds a few simple components to the default training strategy. Finally, we discuss
assumptions TUNEUP exploits to improve generalization performance of GNNs and why TUNEUP
even improves the performance on head nodes.

2.1 GENERAL TASK SETUP

We are given a graph G = (V,E), with a set of nodes V and edges E with potentially some features
associated with them. GNN Fθ, parameterized by θ, takes the graph G as input and makes prediction
Ŷ for the task of interest. The loss function L measures the discrepancy between the GNN’s prediction
Ŷ and the target supervision Y . In the default training, GNN parameter θ is learned to minimize
the loss L(Ŷ , Y ) using gradient descent. The setup is general to cover most graph machine learning
scenarios. Below, we describe three representative scenarios under the general task setup, which we
also consider in our experiments.

Semi-supervised node classification. The task is to predict class labels of unlabeled nodes given a
small set of labeled nodes in a graph, which can be formalized as follows.
• Graph G: A graph with input node features.
• Supervison Y : Class labels of labeled nodes Vlabeled ⊂ V .
• GNN Fθ: A model that takes G as input and predicts class probabilities over V .
• Prediction Ŷ : The GNN’s prediction over Vlabeled.
• Loss L: Cross-entropy loss.
Since input node features are available, the GNN Fθ can make not only transductive predictions, i.e.,
prediction over Vunlabeled ≡ V \ Vlabeled, but also inductive predictions (Hamilton et al., 2017), i.e.,
prediction over new nodes Vnew that are not in V but connected to V via new edges Enew.

Link prediction. The task is to predict new links in a graph given existing links. We consider the
node-centric formulation (You et al., 2021): given a source node, predict target nodes that the source
node is linked to.
• Graph G: A graph with input node features.
• Supervison Y : Whether node s ∈ V is linked to node t ∈ V in G (positive) or not (negative).
• GNN Fθ: A model that takes G as input and predicts the score for a pair of nodes (s, t) ∈ V × V .

Specifically, the model generates embedding zv for each node in v ∈ V and uses an MLP over the
concatenation of zs and zt to predict the score for the pair (s, t) (He et al., 2017).

• Prediction Ŷ : The GNN’s predicted scores over V × V .
• Loss L: The Bayesian Personalized Ranking (BPR) loss (Rendle et al., 2012), which encourages

the predicted score for the positive pair (s, tpos) to be higher than that for the negative pair (s, tneg)
for each source node s ∈ V .

As input node features are available, the GNN Fθ can naturally make inductive link prediction by
generating node embeddings on a new graph with new nodes and edges.

Recommender systems. A recommender system can be modeled as a bipartite graph between
user nodes Vuser and item nodes Vitem, where edges represent user-item interactions. The task is
essentially link prediction, i.e., given a user node u ∈ Vuser, predict a set of item nodes that u is
likely to interact with. In recommender systems, the most successful paradigm is collaborative
filtering (Schafer et al., 2007), where shallow embeddings (learnable embeddings for each node)
instead of input node features are used to achieve state-of-the-art performance (Wang et al., 2019; He
et al., 2020). As input node features are not available in many public recommender system datasets
anyway, we focus on the feature-less setting.
• Graph G: User-item bipartite graph without input node features.
• Supervison Y : Whether a user node u has interacted with an item node v in G (positive) or not

(negative).
• GNN Fθ: A model that takes G as input and predicts the score for a pair of nodes (u, v) ∈
Vuser × Vitem. Following Wang et al. (2019), GNN parameter θ contains the input shallow
embeddings in addition to the original message passing GNN parameter. To produce the score for
the pair of nodes (u, v), we generate the user and item embeddings, zu and zv , and take the inner
product z⊤

u zv to compute the score (Wang et al., 2019).
• Prediction Ŷ : The GNN’s predicted scores over Vuser × Vitem.
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Algorithm 1 TUNEUP. Compared to the default training of a GNN (L2–5), TUNEUP introduces the
two-stage training and only adds two components (L8 and L12) that are straightforward to implement.
Given: GNN Fθ , graph G, loss L, supervision Y , DropEdge ratio α.
1: # First stage: Default training to obtain a base GNN.
2: while θ not converged do
3: Make prediction Ŷ = Fθ(G)

4: Compute loss L(Ŷ , Y ), compute gradient ∇θL, and update parameter θ.
5: end while
6: # Set up for the second stage.
7: if task is semi-supervised node classification then
8: Use Fθ to predict pseudo labels on non-isolated, unlabeled nodes. Add the pseudo labels into Y .
9: end if

10: # Second stage: Fine-tuning the base GNN with increased tail supervision.
11: while θ not converged do
12: Synthesize tail nodes, i.e., randomly drop α of edges: G

DropEdge−−−−−−→ G̃.
13: Make prediction Ŷ = Fθ(G̃).
14: Compute loss L(Ŷ , Y ), compute gradient ∇θL, and update parameter θ.
15: end while

• Loss L: The BPR loss (Rendle et al., 2012).
As we learn the shallow embedding for each node, it is non-trivial to make inductive predictions on
new nodes. Therefore, we only consider the transductive setting for recommender systems.

2.2 DEFAULT GNN TRAINING

Given the graph G, supervision Y , GNN Fθ, its prediction Ŷ = Fθ(G), and the loss function
L(Ŷ , Y ), it is straightforward to train the GNN Fθ using gradient descent to minimize the loss. The
default training procedure of a GNN is described in L2–5 of Algorithm1.

Remark on mini-batch training. In practice, the prediction Ŷ and the loss computation L(Ŷ , Y )
can be made in a mini-batch manner for scalable training. For instance, in the case of semi-supervised
node classification, we can predict and compute the loss on a mini-batch of labeled nodes (Hamilton
et al., 2017; Zeng et al., 2020). In the case of link prediction and recommender systems, to compute
the BPR loss, the score prediction only needs to be made over positive links and randomly sampled
negative links. Moreover, the BPR loss can be computed in a mini-batch manner by subsampling the
source nodes and keeping only one positive link per source node. These mini-batch training tricks are
hidden in Algorithm 1 for simplicity, but should be implemented in practice. Our TUNEUP, which
we explain next, is fully compatible with mini-batching training.

2.3 TUNEUP

We are ready to present TUNEUP that uses a two-stage curriculum learning strategy (Bengio et al.,
2009) to better train a GNN. At high level, TUNEUP first trains a GNN to perform well on relatively
easy head nodes and then proceeds to finetune the GNN to also perform well on hard tail nodes.
Specifically, in the first stage (L2–5 in Algorithm 1), TUNEUP uses the default training of GNNs
to obtain a strong base GNN model. The base GNN model tends to perform well on head nodes,
but poorly on tail nodes. To remedy this issue, in the second training stage, TUNEUP finetunes the
base GNN with increased supervision on tail nodes (L7–L15 in Algorithm 1). TUNEUP increases the
supervised tail node data in two steps: (1) synthesizing additional tail node inputs and (2) adding
target supervision on the synthetic tail nodes, which we detail below.

(1) Synthesizing tail node inputs. TUNEUP synthesizes many additional tail nodes by removing
edges from the head nodes. Specifically, in this work, we directly adopt DropEdge (Rong et al.,
2020) for simplicity, where a certain portion (given by hyperparameter α) of edges are randomly
removed from the original graph G to obtain G̃ (L12 in Algorithm 1). The resulting G̃ contains more
nodes with low degrees, i.e., tail nodes, than the original graph G does. Hence, the GNN sees more
(synthetic) tail nodes as input during training. More advanced strategies to synthesize tail nodes (e.g.,
dropping more ratio of edges from head nodes) are left for future work.
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(2) Adding supervision on the synthetic tail nodes. After synthesizing the tail node inputs, TUNEUP
adds target supervision (e.g., class labels for node classification, edges for link prediction) on them so
that the supervised loss can be computed over the synthetic tail nodes.

For link prediction tasks, TUNEUP directly reuses the original edges E in G (before dropping) as the
target supervision on the synthetic tail nodes. To describe the effectiveness of the approach, suppose
we have a node v with six neighbors in the original training graph G. After dropping α = 0.5 of
edges in L12 of Algorithm 1, this node becomes a synthetic tail node ṽ with three neighbors in G̃.
Nevertheless, in the loss computation of L14, TUNEUP still reuses all original six edges from v in G
as target supervision on this synthetic node ṽ. Therefore, this synthetic tail node ṽ has twice as much
edge supervision as any degree-three real tail node (in the original graph G) has.

Similarly, for semi-supervised node classification, TUNEUP can also reuse the target labels of labeled
nodes in G for synthetic tail nodes in G̃. Specifically, for a labeled node v ∈ Vlabeled with ground-
truth class label yv , TUNEUP can reuse yv for the corresponding synthetic tail node ṽ in G̃. However,
in the semi-supervised setting, the number of labeled nodes Vlabeled is often very small, e.g., 1%–5%
of all nodes V , limiting the amount of target label supervision TUNEUP can reuse.

To resolve this issue, TUNEUP utilizes pseudo labels (Lee et al., 2013) in addition to the limited
ground-truth labels on Vlabeled. Specifically, TUNEUP applies the base GNN (obtained in the
first training stage) over G to predict pseudo labels on non-isolated (i.e., positive-degree) nodes in
Vunlabeled. In practice, the pseudo labels do not need to be directly predicted by the base GNN, e.g.,
we can apply post-processing, such as label smoothing and C&S, to refine the pseudo labels. We
leave the investigation to the future work.

TUNEUP then includes the pseudo labels as supervision Y in the second stage (L8 in Algorithm 1).
This would significantly increase the size of the supervision Y , e.g., by a factor of ≈100 if only 1%
of nodes are labeled. While the predicted pseudo labels are noisy in general, they are “best guesses”
in the sense that the base GNN uses the full graph information G to predict the labels. In the second
stage, TUNEUP essentially forces the base GNN to maintain its best guesses given sparser graph G̃
with limited neighborhood as input. This in turn allows the resulting GNN to make more accurate
prediction on real tail nodes with limited neighborhood in the original graph G.

2.4 ASSUMPTIONS TUNEUP EXPLOITS TO IMPROVE GENERALIZATION PERFORMANCE

As the no-free-lunch theorem suggests (Wolpert, 1996), improving generalization performance in-
volves exploiting additional assumptions on real-world prediction tasks, which may not be satisfied
by all possible tasks. Here we discuss three key assumptions TUNEUP exploits to improve general-
ization performance, which are (approximately) satisfied by many real-world tasks, including our
experimented benchmark datasets across three different task types in Section 4.

Tail nodes can be synthesized by dropping edges from head nodes. This assumption holds for
many real-world graph datasets, as head nodes often start off as tail nodes, e.g., well-cited paper
nodes are not cited at the beginning in a paper citation network, and warm users (users with many
item interactions) start off as cold-start users in recommender systems.

Target supervision on head nodes can be reused for synthetic tail nodes. This assumption holds
for tasks where prediction to be made on a given node is more or less a static property of the node.
For instance, papers’ subject areas in a paper citation network, products’ categories in a product
co-purchasing network, and users’ taste in recommender systems stay (mostly) the same regardless
of the number of edges we observe on the nodes.

More edges benefit GNNs to make accurate predictions. TUNEUP assumes that more edges are
useful for GNNs to make accurate predictions, and tail nodes are harder to predict due to the lack of
edges. This assumption is likely to hold for many tasks as GNNs can aggregate more neighboring
information with more edges, and is experimentally verified in Figure 1.

2.5 WHY TUNEUP IMPROVES PERFORMANCE ON HEAD NODES

It is counter-intuitive that TUNEUP improves performance not only on tail nodes but also on head
nodes, as seen in Figure 1. One reason may be that best-performing GNNs for node/edge-level tasks,
including our experimented ones, use (roughly) average-based schemes to aggregate neighboring
node features (Hamilton et al., 2017; Kipf & Welling, 2017; Wu et al., 2019; Velickovic et al.,
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2018). With the average-based GNNs, node embeddings obtained on the sparsified graph G̃ can be
thought of as the noisy version of the node embeddings obtained on the full graph G. If the base
GNN is finetuned to perform well on many realizations of the noisy embeddings (with different
realizations of G̃ in L12 of Algorithm 1), then the resulting GNN would most likely still perform well
on the noise-free embeddings (computed over the full graph G). Moreover, training with the noisy
embeddings can even improve the generalization performance on head nodes. We leave in-depth
empirical/theoretical investigation for future work.

3 RELATED WORK

Data augmentation for GNNs. The second stage of TUNEUP can be regarded as data augmentation
over graphs, on which there has been rich body of work (Ding et al., 2022). Some are specifically
designed for semi-supervised node classification (Zhao et al., 2021; Feng et al., 2020; Verma et al.,
2021), while others are designed for recommender systems (Verma et al., 2021) and graphs with
input node features (Liu et al., 2022). Different from these methods, TUNEUP is generally applicable
to any prediction tasks over nodes and edges. The general nature of TUNEUP also allows it to
be combined with any of the task-specific data augmentation techniques. As a general graph
augmentation technique, Kong et al. (2020) proposed FLAG, which adversarially perturbs input
node features (Shafahi et al., 2019). This is complementary to TUNEUP, which perturbs the edge
connectivity of the graph. DropEdge (Rong et al., 2020) randomly drops edges from graphs. It
was originally developed to overcome the over-smoothing issue of GNNs (Li et al., 2018) in semi-
supervised node classification. In contrast, in this work, we adopt DropEdge as a way to synthesize
additional tail node inputs for a wide range of prediction tasks over graphs. Methodologically,
TUNEUP is distinct from DropEdge in that it employs the two-stage curriculum learning strategy and
uses pseudo labels to add supervision on the synthetic tail nodes, both of which are important to yield
substantially better performance than the original DropEdge.

Curriculum learning for GNNs. A few works have explored curriculum learning for GNNs. Wang
et al. (2021) developed a curriculum learning approach for graph classification, while our work
focuses on node/edge-level prediction tasks. Ying et al. (2018) presented a curriculum learning
for negative sampling in link prediction, and Li et al. (2022) developed a curriculum learning for
tackling imbalanced class labels in node classification. TUNEUP is complementary to both of these
approaches while being more broadly applicable to any node/edge-level prediction tasks.

Pre-training GNNs. Pre-training GNNs has attracted huge attention (Veličković et al., 2019; Hu
et al., 2020b; Qiu et al., 2020; Hu et al., 2020c; You et al., 2020b). This line of work develops task-
agnostic strategies to pre-train a GNN such that the resulting GNN can be finetuned with task-specific
supervised losses to improve performance on diverse downstream tasks. Our work focuses on the
downstream stage and presents a strategy for training a GNN on a task-specific supervised loss.

Specialized methods for tail nodes. Recently, many methods have been developed for improving
generalization performance of GNNs on tail nodes (Liu et al., 2021; Zheng et al., 2022; Kang
et al., 2022; Zhang et al., 2022). These methods require augmenting a GNN with tail-node-specific
architectural components, while our work does not require any architectural modification and focuses
purely on a strategy for training a GNN that performs well on both tail and head nodes.

4 EXPERIMENTS

Here we extensively evaluate TUNEUP under a wide range of settings. We consider five diverse
GNN models and test them on the three prediction tasks described in Section 2.1 for three different
predictive settings: transuctive, inductive, and cold-start inductive predictions.

4.1 EXPERIMENTAL SETTINGS

Here we describe our experimental settings and datasets for evaluating TUNEUP. We noticed that the
standardized experimental protocols by Hu et al. (2020a); Wang et al. (2019) are not suitable for
evaluating TUNEUP because (1) inductive prediction (cold-start) settings are not provided and (2)
datasets are heavily pre-processed to eliminate tail nodes (e.g., recommender system benchmarks are
processsed with the 10-core algorithm to eliminate the cold-start users and items (Wang et al., 2019)),
which is the focus of this work. We therefore take their original realistic graph datasets and split
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them ourselves to create the realistic inductive (cold-start) prediction setting as well as the realistic
transductive setting with tail nodes. The dataset statistics are summarized in Table 5 in Appendix.
Below, we describe the split and the datasets for each task type.

Semi-supervised node classification. Given the entire nodes in the original dataset, we randomly
selected 95% of the nodes and used their subgraph induced as the graph G = (V,E) to train GNNs.
The remaining 5% of the entire nodes, Vnew, are used for inductive prediction. Within V , 10%
and 2% of the nodes are used as labeled nodes Vlabeled for arxiv and products, respectively. A
half of Vlabeled is used for computing the loss for supervised training, and another half is used as
the transductive validation set for tuning hyper-parameters. For the evaluation metric, we used
the standard classification accuracy. For the transductive performance, we report the accuracy on
the unlabeled nodes Vunlabeled ≡ V \ Vlabeled, while for the inductive performance, we report the
accuracy on Vnew. For the inductive prediction, we also consider the cold-start scenario, where
certain portions (30%, 60%, and 90%) of edges are randomly removed from the new nodes. We used
the following two datasets in our experiments.

• arxiv (Hu et al., 2020a): Given a paper citation network, the task is to predict the subject areas of
the papers. Each paper has abstract words as its feature.

• products (Hu et al., 2020a): Given a product co-purchasing network, the task is to predict the
categories of the products. Each product has the product description as its feature.

Link prediction. We follow the standard link prediction evaluation (Zhang & Chen, 2018; You
et al., 2021) and randomly split the edges in the original graph into training and validation edges
with the ratio of 50%/50%. We follow the same protocol as semi-supervised node classification to
obtain nodes for transductive and inductive settings. For the evaluation metric, we used the recall@50
averaged over nodes (Wang et al., 2019), where the positive target nodes are scored among all negative
nodes. For the transductive performance, we report the recall@50 computed over validation edges
within V , while for inductive setting, we report the recall@50 over validation edges from Vnew. For
the inductive setting, we also consider the cold-start scenario. We used the following three datasets in
our experiments.

• flickr (Zeng et al., 2020): Given an incomplete image-image common-property (e.g., same geo-
graphic location, same gallery, comments by the same user, etc.) network, the task is to predict the
new common-property links between images. Each image has its description has its feature.

• ppi (Chandak et al., 2022): Given an incomplete protein-protein interaction network, the task is to
predict new interactions. Each protein feature is generated with ESM protein language model (Rives
et al., 2021) applied to the protein sequence.

• arxiv (Hu et al., 2020a): Given an incomplete paper citation network, the task is to predict the
additional citation links. Each paper has words in its abstract as its feature.

Recommender systems. For recommender systems, we notice that widely-used benchmark datasets
are heavily processed to eliminate all tail nodes, e.g., via the 10-core algorithm (Wang et al., 2019).
For example, with the conventional 80%/20% train/validation split, the median training interactions
per user is 17, 26, and 27 for gowalla, yelp2018, and amazon-book, respectively, which clearly do not
reflect the realistic use case that involves many cold-start users and items (Lika et al., 2014). To reflect
the realistic use case, we use the small training edge ratio on top of the existing benchmark datasets.
Specifically, we randomly split the edges in the original graph into training and validation edges with
10%/90% ratio. For the evaluation metric, we used the recall@50 averaged over users (Wang et al.,
2019; He et al., 2020). For the transductive performance, we report the recall@50 computed over the
validation edges. We do not consider the inductive setting for recommender systems. We used the
following three datasets in our experiments.

• gowalla (Liang et al., 2016; Wang et al., 2019): Given an user-location check-in bipartite graph,
the task is to predict new check-in of users.

• yelp2018 (Wang et al., 2019): Given user-restaurant review graph, the task is to predict new reviews
by users.

• amazon-book (He & McAuley, 2016; Wang et al., 2019): Given user-product reviews, the task is
to predict new reviews by users.

7



Under review as a conference paper at ICLR 2023

Table 1: Semi-supervised node classification performance with GraphSAGE as the backbone archi-
tecture. The metric is classification accuracy. For the “Inductive (cold)”, 90% of edges are randomly
removed from new nodes. For the results with other edge removal ratios, refer to Table 7 in Appendix.
Refer to Table 6 in Appendix for the performance with GCN, where a similar trend is observed.

Method arxiv products
Transductive Inductive Inductive (cold) Transductive Inductive Inductive (cold)

Base 0.6738±0.0006 0.6689±0.0009 0.4748±0.0053 0.8408±0.0007 0.8424±0.0006 0.7226±0.0012

DropEdge 0.6756±0.0013 0.6692±0.0029 0.5446±0.0060 0.8463±0.0005 0.8471±0.0005 0.7710±0.0014

LocalAug 0.6824±0.0004 0.6773±0.0023 0.4976±0.0049 0.8445±0.0004 0.8461±0.0006 0.7256±0.0007

ColdBrew 0.6726±0.0009 0.6480±0.0018 0.5080±0.0085 0.8378±0.0007 0.8385±0.0006 0.7417±0.0028

GraphLessNN 0.6074±0.0009 0.5457±0.0036 0.5457±0.0036 0.6670±0.0011 0.6640±0.0006 0.6640±0.0006

Tail-GNN 0.6613±0.0016 0.6557±0.0022 0.5389±0.0023 OOM OOM OOM

TUNEUP w/o curriculum 0.6753±0.0013 0.6688±0.0025 0.5474±0.0119 0.8456±0.0004 0.8466±0.0008 0.7573±0.0018

TUNEUP w/o syn-tails 0.6785±0.0011 0.6758±0.0008 0.4900±0.0048 0.8434±0.0002 0.8450±0.0001 0.7255±0.0011

TUNEUP w/o pseudo-labels 0.6747±0.0009 0.6681±0.0026 0.5332±0.0116 0.8461±0.0006 0.8471±0.0007 0.7630±0.0055

TUNEUP (ours) 0.6867±0.0011 0.6784±0.0032 0.6006±0.0010 0.8554±0.0002 0.8564±0.0004 0.8054±0.0007

Rel. gain over base +1.9% +1.4% +26.5% +1.7% +1.7% +11.5%

Table 2: Link prediction performance with GraphSAGE as the backbone architecture. The metric is
recall@50. For the “Inductive (cold)”, 60% of edges are randomly removed from new nodes. For
other edge removal ratios, refer to Table 10 in Appendix, where TUNEUP consistently outperforms
the baselines. Refer to Table 9 in Appendix for the performance with GCN, where we see a similar
trend.

Method flickr ppi arxiv
Transductive Inductive Inductive (cold) Transductive Inductive Inductive (cold) Transductive Inductive Inductive (cold)

Base 0.1100±0.0020 0.1030±0.0025 0.0606±0.0020 0.1165±0.0028 0.1061±0.0076 0.0835±0.0028 0.1326±0.0037 0.1255±0.0047 0.0722±0.0031

DropEdge 0.1437±0.0008 0.1297±0.0011 0.1007±0.0017 0.1750±0.0017 0.1492±0.0073 0.1282±0.0042 0.2015±0.0036 0.1753±0.0040 0.1204±0.0027

LocalAug 0.1117±0.0025 0.1058±0.0027 0.0619±0.0035 0.1265±0.0050 0.1186±0.0041 0.0950±0.0063 0.1365±0.0037 0.1294±0.0028 0.0750±0.0033

ColdBrew 0.0697±0.0174 0.0611±0.0178 0.0413±0.0073 0.1011±0.0031 0.0934±0.0047 0.0761±0.0033 0.1161±0.0048 0.1095±0.0058 0.0630±0.0042

Tail-GNN 0.0950±0.0014 0.0804±0.0014 0.0746±0.0018 0.1150±0.0011 0.1002±0.0025 0.0929±0.0030 0.1081±0.0025 0.0866±0.0039 0.0643±0.0039

TUNEUP w/o curriculum 0.1477±0.0011 0.1333±0.0020 0.1024±0.0015 0.1688±0.0013 0.1458±0.0027 0.1215±0.0023 0.1995±0.0031 0.1760±0.0030 0.1159±0.0040

TUNEUP w/o syn-tails 0.1101±0.0021 0.1029±0.0024 0.0603±0.0017 0.1172±0.0031 0.1057±0.0071 0.0824±0.0021 0.1341±0.0028 0.1273±0.0031 0.0738±0.0021

TUNEUP (ours) 0.1508±0.0023 0.1379±0.0037 0.1092±0.0039 0.1819±0.0017 0.1577±0.0066 0.1328±0.0043 0.2101±0.0041 0.1837±0.0031 0.1252±0.0044

Rel. gain over base +37.2% +33.8% +80.1% +56.1% +48.7% +59.1% +58.5% +46.4% +73.3%

4.2 BASELINES AND ABLATIONS

We compare our TUNEUP against the following strong baselines.

• Base: Trains a GNN with the default strategy, i.e., L2–5 of Algorithm 1. The accuracy of pseudo
labels coincides with the accuracy of the base GNN.

• DropEdge (Wang et al., 2019): Randomly drops edges during training, i.e., L11–15 of Algorithm 1.
• Local augentation (LocalAug) (Liu et al., 2022): Uses a conditional generative model to generate

neighboring node features and use them as additional input to a GNN.
• ColdBrew (Zheng et al., 2022): Distills head node embeddings computed by the base GNN into an

MLP. Uses the resulting MLP to obtain higher-quality tail node embeddings.
• GraphLessNN (Zhang et al., 2022): Distills the pseudo labels predicted by the base GNN into an

MLP. Uses the resulting MLP to make prediction.
• Tail-GNN (Liu et al., 2021): Adds a tail-node specific component inside the original GNN.
• RAWLS-GCN (Kang et al., 2022): Modifies the GCN’s adjacency matrix to be doubly-stochastic

(i.e., all rows and columns sum to 1).

Note that GraphLessNN is only applicable for node classification. LocalAug and ColdBrew require
input node features to be available; hence, not applicable to recommender systems. RAWLS-GCN is
only applicable to the GCN architecture.

In addition to the existing baselines, we consider the following three direct ablations of TUNEUP.

• TUNEUP w/o curriculum: Interleaves the first stage prediction (L3 in Algorithm 1) and the second
stage prediction (L12–13 in Algorithm 1) in every parameter update. It is close to TUNEUP except
that it does not follow the two-stage curriculum learning strategy.

• TUNEUP w/o syn-tails: No L12 in Algorithm 1.
• TUNEUP w/o pseudo-labels: No L8 in Algorithm 1.
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Table 3: Transductive performance on the recommender systems datasets. The metric is recall@50.

Method gowalla yelp2018 amazon-book
SAGE GCN SAGE GCN SAGE GCN

Base 0.0856±0.0005 0.0911±0.0006 0.0864±0.0005 0.0791±0.0003 0.0559±0.0003 0.0540±0.0002

DropEdge 0.0835±0.0004 0.0827±0.0012 0.0814±0.0003 0.0719±0.0013 0.0543±0.0003 0.0556±0.0004

Tail-GNN 0.0806±0.0005 0.0815±0.0016 0.0713±0.0004 0.0713±0.0005 0.0562±0.0002 0.0542±0.0003

RAWS-GCN – 0.0632±0.0006 – 0.0684±0.0004 – 0.0476±0.0002

TUNEUP w/o curriculum 0.0849±0.0004 0.0874±0.0038 0.0837±0.0006 0.0755±0.0021 0.0549±0.0001 0.0539±0.0004

TUNEUP w/o syn-tails 0.0859±0.0006 0.0917±0.0005 0.0866±0.0004 0.0797±0.0003 0.0561±0.0003 0.0542±0.0002

TUNEUP (ours) 0.1043±0.0020 0.1102±0.0013 0.0866±0.0004 0.0885±0.0006 0.0577±0.0005 0.0630±0.0004

Relative gain over base +21.8% +21.0% +0.2% +11.9% +3.1% +16.7%

Table 4: The improvement with TUNEUP over the base GNNs for diverse GNN model architectures.
We used the same set of datasets as Figure 1. †For semi-supervised node classification, GAT gave
Out-Of-Memory (OOM) on the products dataset; so we report the performance on arxiv instead.

Task Config Setting SAGE(-mean) GCN SAGE-max SAGE-sum GAT

Transductive Base 0.8408±0.0007 0.8432±0.0007 0.8134±0.0008 0.7607±0.0029 OOM / 0.6864±0.0021†

Semi-sup TUNEUP 0.8554±0.0002 0.8523±0.0007 0.8371±0.0008 0.7615±0.0036 OOM / 0.6968±0.0010†

node Inductive Base 0.8424±0.0006 0.8447±0.0008 0.8133±0.0011 0.7613±0.0029 OOM / 0.6800±0.0026†

classification TUNEUP 0.8564±0.0004 0.8535±0.0005 0.8369±0.0012 0.7619±0.0048 OOM / 0.6936±0.0009†

(products) Inductive (cold) Base 0.7226±0.0012 0.7461±0.0034 0.6908±0.0007 0.5315±0.0059 OOM / 0.5411±0.0035†

TUNEUP 0.8054±0.0007 0.7925±0.0049 0.7873±0.0016 0.5490±0.0129 OOM / 0.5932±0.0053†

Transductive Base 0.1326±0.0037 0.2152±0.0014 0.1618±0.0033 0.0730±0.0017 0.2295±0.0035

Link TUNEUP 0.2101±0.0041 0.2417±0.0018 0.2397±0.0031 0.1168±0.0056 0.2569±0.0014
prediction Inductive Base 0.1255±0.0047 0.2077±0.0014 0.1503±0.0026 0.0703±0.0023 0.2080±0.0029

(arxiv) TUNEUP 0.1837±0.0031 0.2254±0.0022 0.2140±0.0040 0.1031±0.0053 0.2360±0.0022

Inductive (cold) Base 0.0722±0.0031 0.1192±0.0019 0.0998±0.0031 0.0547±0.0018 0.1316±0.0034

TUNEUP 0.1252±0.0044 0.1440±0.0017 0.1559±0.0030 0.0788±0.0056 0.1627±0.0034

Recsys Transductive Base 0.0856±0.0005 0.0911±0.0006 0.0870±0.0005 0.0896±0.0003 0.0814±0.0005

(gowalla) TUNEUP 0.1043±0.0020 0.1102±0.0013 0.1063±0.0026 0.1129±0.0025 0.0834±0.0008

Another possible ablation, TUNEUP w/o the first stage training (i.e., only performing the second
stage training of L2–5 in Algorithm 1), is essentially covered as DropEdge in our experiments.

4.3 GNN MODEL ARCHITECTURES

We mainly experimented with two classical yet strong GNN models: the mean-pooling variant of
GraphSAGE (or SAGE for short) (Hamilton et al., 2017) and GCN (Kipf & Welling, 2017). In Table 4,
we additionally experimented with the max- and sum-pooling variants of GraphSAGE as well as the
Graph Attention Network (GAT) (Velickovic et al., 2018) to demonstrate the applicability of TUNEUP
on diverse GNN architectures to improve their performance. In total, we have five diverse GNN
architectures that cover representative aggregation schemes (i.e., mean, renormalized-mean (Kipf &
Welling, 2017), max, sum, and attention) that many recent advanced GNN architectures are based
on (Corso et al., 2020; Shi et al., 2021; You et al., 2020b; Wu et al., 2019; Rossi et al., 2020; Li et al.,
2018; You et al., 2020a).

4.4 HYPER-PARAMETERS

We used 3-layer GNNs and the Adam optimizer (Kingma & Ba, 2015) for all GNN models and
datasets, which we found to perform well in our preliminary experiments. For all methods, we
performed the early stopping and tuned their hyper-parameters based on the transductive validation
performance. We used the resulting models for both transductive and inductive prediction. For
the drop edge ratio α, we tuned it from [0.25, 0.5, 0.75] for all the datasets. We repeated all the
experiments with 5 different training seeds to report the mean and the standard deviation. More
details are described in Appendix A.

4.5 RESULTS

We first compare TUNEUP against the base GNNs that are trained with the default strategy. The
last rows of Tables 1, 2, and 3 highlight the relative improvement of TUNEUP over the base GNNs.
TUNEUP improves over the base GNNs across the transductive settings, giving up to 1.9%, 58.5%,
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and 21.8% relative improvement in the semi-supervised node classification, link prediction, and
recommender systems, respectively. TUNEUP gives even larger improvement on the challenging
cold-start inductive prediction setting, yielding up to 26.5% and 80.1% relative improvement on the
node classification and link prediction, respectively. In Appendix, we provide Tables 7, 8, 10, and 11
to show the full results on the cold-start inductive prediction with the different edge removal ratios
from new nodes. The larger the ratio is, the more cold-start the setting becomes. We observe that
TUNEUP provides larger relative gain on larger edge removal ratios, demonstrating its effectiveness
on the highly cold-start prediction setting.

We also analyze the degree-specific generalization improvement and highlight the results in Figure 1.
The full results (two GNN architectures times the eight datasets) are available in Figures 2, 3, and
4 in Appendix. Across all datasets, architectures, and node degrees, TUNEUP produces consistent
improvement over the base GNNs. Not surprisingly, improvement is most significant on tail nodes.

Finally, we compare TUNEUP against the strong baselines and ablation methods described in
Section 4.2. Tables 1, 2, and 3 show the results. We summarize our findings below.

• TUNEUP outperforms the graph augmentation methods (DropEdge and LocalAug) as well as the
specialized methods for tail nodes (ColdBrew, GraphLessNN, and Tail-GNN), establishing its
superior performance against the existing strong baseline methods.

• TUNEUP outperforms TUNEUP w/o curriculum, which highlights the importance of the two-stage
curriculum learning strategy in TUNEUP.

• TUNEUP also outperforms TUNEUP w/o syn-tails and TUNEUP w/o pseudo-labels, which suggests
that both of the ablated components are necessary for TUNEUP to achieve the high performance.

• On semi-supervised node classification (Table 1), TUNEUP w/o syn-tails, i.e., conventional semi-
supervised training with the pseudo labels (Lee et al., 2013), gives limited improvement over the
base GNN. In contrast, TUNEUP trains the GNN to predict pseudo labels with limited neighbor-
hood, which gives significant improvement over the base GNN. Moreover, TUNEUP significantly
outperforms DropEdge, suggesting the importance of using DropEdge together with pseudo labels.

• On link prediction (Table 2), DropEdge (TUNEUP without the first stage) already gives significant
performance improvement over the base GNN, implying the unrealized potential of DropEdge
on this task, beyond node classification (Rong et al., 2020). Nonetheless, TUNEUP still gives
consistent improvement over DropEdge, suggesting the benefit of the two-stage training.

• On recommender systems (Table 3), TUNEUP is the only method that produced the significantly
better performance than the base GNN. DropEdge and TUNEUP w/ curriculum even gave worse
performance than the base GNN. This is possibly because jointly learning the GNN and shallow
embeddings is hard without the two-stage training.

• Overall, TUNEUP, despite its simplicity, is the only method that yielded consistent improvement
across the three prediction tasks.

• From Table 4, we see that TUNEUP improves the performance on the five diverse GNN architectures.
Although the performance improvement with the sum aggregation is limited for semi-supervised
node classification, the sum aggregation gave the poor base GNN performance anyway due to the
poor inductive bias and unstable training (Wu et al., 2019; Hamilton et al., 2017).

5 CONCLUSIONS

In this paper, we presented TUNEUP, a curriculum learning strategy to train a GNN to improve its
generalization performance. TUNEUP first trains a GNN to produce a strong base GNN that performs
well on easy head nodes. It then proceeds to improve the prediction over hard tail nodes by finetuning
the base GNN with additional synthetic tail nodes. TUNEUP is a general strategy that can be used to
train any GNN model with any supervised loss. Through extensive experiments, we demonstrated
the effectiveness of TUNEUP on a wide range of settings, including five GNN architectures, three
types of prediction tasks, and both transductive and inductive settings. Overall, our work suggests
that training strategies matter in improving generalization of GNNs and can be complementary to
advances in model architectures and task-specific losses.
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Table 5: Statistics of nodes used for the transductive evaluation. For link prediction and the recom-
mender system graphs (user-item bipartite graphs), we only evaluate on nodes/users that have at least
one edge in the validation set.

Task Dataset #Nodes Avg deg. Feat. dim

Node cls. arxiv 143,941 12.93 128
products 2,277,597 48.01 100

Link pred.

flickr 82,981 4.81 500
ppi 15,390 17.30 1,280
arxiv 141,917 7.20 128

Recsys
gowalla 29,858 3.44 –
yelp2018 31,668 4.93 –
amazon-book 52,643 5.67 –

Table 6: Semi-supervised node classification performance with GCN as the backbone architecture.
The evaluation metric is classification accuracy. For the “Inductive (cold)”, 90% of edges are
randomly removed from new nodes. For the results with other edge removal ratios, refer to Table 8 in
Appendix.

Method arxiv products
Transductive Inductive Inductive (cold) Transductive Inductive Inductive (cold)

Base 0.6922±0.0003 0.6893±0.0021 0.5497±0.0038 0.8432±0.0007 0.8447±0.0008 0.7461±0.0034

DropEdge 0.6961±0.0008 0.6939±0.0011 0.5630±0.0019 0.8486±0.0003 0.8497±0.0007 0.7671±0.0020

LocalAug 0.6987±0.0012 0.6962±0.0023 0.5660±0.0017 0.8488±0.0004 0.8501±0.0005 0.7526±0.0011

ColdBrew 0.6867±0.0009 0.6732±0.0023 0.5369±0.0039 0.8399±0.0008 0.8406±0.0007 0.7371±0.0025

GraphLessNN 0.6129±0.0012 0.5462±0.0028 0.5462±0.0028 0.6669±0.0007 0.6648±0.0007 0.6648±0.0007

RAWLS-GCN 0.6708±0.0013 0.6698±0.0025 0.5324±0.0025 0.8209±0.0010 0.8220±0.0011 0.7096±0.0053

Tail-GNN 0.6437±0.0008 0.6423±0.0020 0.5371±0.0043 OOM OOM OOM

TUNEUP w/o curriculum 0.6961±0.0008 0.6924±0.0027 0.5593±0.0032 0.8481±0.0005 0.8490±0.0003 0.7624±0.0030

TUNEUP w/o syn-tails 0.6940±0.0005 0.6924±0.0020 0.5607±0.0037 0.8452±0.0006 0.8468±0.0006 0.7549±0.0026

TUNEUP w/o pseudo-labels 0.6967±0.0009 0.6936±0.0015 0.5534±0.0039 0.8488±0.0007 0.8497±0.0003 0.7676±0.0024

TUNEUP (ours) 0.6988±0.0006 0.6973±0.0014 0.5923±0.0053 0.8523±0.0007 0.8535±0.0005 0.7925±0.0049

Relative gain over base +1.0% +1.1% +7.8% +1.1% +1.0% +6.2%

A DETAILS OF HYPER-PARAMETERS

Here we present the details of hyper-parameters we used in our experiments.

Semi-supervised node classification. We used the hidden dimensionality of 256 and 64 for arxiv
and products, respectively. We trained GNNs in a full-batch manner, and for products, we used the
reduced dimensionality of 64 so that the entire graph can be fit into the limited GPU memory of
45GB. Mini-batch training is left for future work. We used 1500 epochs for both the default training
and finetuning. The learning rate is set to 0.001.

Link prediction. We used the hidden dimensionality of 256 for all datasets. We added the L2
regularization on the node embeddings and tuned its weight for each dataset and GNN architecture.
For both the default training and finetuning, we used 1000 epochs and the learning rate of 0.0001.

Recommender systems. We used the shallow embedding dimensionality of 64 and the hidden
embedding dimensionality of 256. Similar to the link prediction, we added the L2 regularization to
the node embeddings and tuned its weight for each dataset and GNN architecture. For the default
training, we trained the model for 2000 epochs with the initial learning rate of 0.001, which is
multiplied by 0.1 at the 1000th and 1500th epoch. For finetuning, we used 500 epochs with the
learning rate of 0.0001.

For training strategies without curriculum learning, we used the same configuration as the default
training.
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Figure 2: Degree-specific generalization performance of the base GNN and TUNEUP in transductive
semi-supervised node classification. The evaluation metric is classification accuracy.

Figure 3: Degree-specific generalization performance of the base GNN and TUNEUP in transductive
link prediction. The evaluation metric is recall@50.
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Figure 4: Degree-specific generalization performance of the base GNN and TUNEUP in transductive
recommender systems. The evaluation metric is recall@50.

Table 7: Cold-start inductive node classification performance with GraphSAGE as the backbone
architecture. The larger the edge removal ratio is, the more cold-start the prediction task becomes.
The evaluation metric is classification accuracy.

Method
arxiv products

Edge removal ratio Edge removal ratio
30% 60% 90% 30% 60% 90%

Base 0.6452±0.0017 0.6000±0.0012 0.4748±0.0053 0.8334±0.0010 0.8129±0.0009 0.7226±0.0012

DropEdge 0.6532±0.0019 0.6247±0.0040 0.5446±0.0060 0.8409±0.0005 0.8280±0.0005 0.7710±0.0014

LocalAug 0.6552±0.0024 0.6158±0.0014 0.4976±0.0049 0.8370±0.0008 0.8166±0.0008 0.7256±0.0007

ColdBrew 0.6289±0.0022 0.5943±0.0042 0.5080±0.0085 0.8314±0.0009 0.8142±0.0010 0.7417±0.0028

GraphLessNN 0.5457±0.0036 0.5457±0.0036 0.5457±0.0036 0.6640±0.0006 0.6640±0.0006 0.6640±0.0006

Tail-GNN 0.6393±0.0023 0.6131±0.0017 0.5389±0.0023 OOM OOM OOM

TUNEUP w/o curriculum 0.6530±0.0026 0.6270±0.0036 0.5474±0.0119 0.8395±0.0006 0.8243±0.0006 0.7573±0.0018

TUNEUP w/o syn-tails 0.6523±0.0020 0.6103±0.0024 0.4900±0.0048 0.8361±0.0004 0.8161±0.0005 0.7255±0.0011

TUNEUP w/o pseudo-labels 0.6505±0.0015 0.6198±0.0051 0.5332±0.0116 0.8404±0.0009 0.8260±0.0015 0.7630±0.0055

TUNEUP (ours) 0.6673±0.0018 0.6507±0.0027 0.6006±0.0010 0.8523±0.0004 0.8434±0.0003 0.8054±0.0007

Relative gain over base +3.4% +8.4% +26.5% +2.3% +3.8% +11.5%

Table 8: Cold-start inductive node classification performance with GCN as the backbone architecture.
The larger the edge removal ratio is, the more cold-start the prediction task becomes. The evaluation
metric is classification accuracy.

Method
arxiv products

Edge removal ratio Edge removal ratio
30% 60% 90% 30% 60% 90%

Base 0.6715±0.0018 0.6400±0.0028 0.5497±0.0038 0.8375±0.0008 0.8210±0.0011 0.7461±0.0034

DropEdge 0.6753±0.0021 0.6475±0.0031 0.5630±0.0019 0.8438±0.0006 0.8301±0.0009 0.7671±0.0020

LocalAug 0.6785±0.0018 0.6491±0.0021 0.5660±0.0017 0.8429±0.0003 0.8267±0.0004 0.7526±0.0011

ColdBrew 0.6505±0.0020 0.6180±0.0037 0.5369±0.0039 0.8330±0.0009 0.8156±0.0011 0.7371±0.0025

GraphLessNN 0.5462±0.0028 0.5462±0.0028 0.5462±0.0028 0.6648±0.0007 0.6648±0.0007 0.6648±0.0007

RAWLS-GCN 0.6488±0.0015 0.6115±0.0026 0.5324±0.0025 0.8124±0.0015 0.7916±0.0022 0.7096±0.0053

Tail-GNN 0.6283±0.0018 0.6032±0.0013 0.5371±0.0043 OOM OOM OOM

TUNEUP w/o curriculum 0.6755±0.0012 0.6448±0.0023 0.5593±0.0032 0.8427±0.0005 0.8285±0.0007 0.7624±0.0030

TUNEUP w/o syn-tails 0.6741±0.0018 0.6468±0.0025 0.5607±0.0037 0.8398±0.0006 0.8246±0.0011 0.7549±0.0026

TUNEUP w/o pseudo-labels 0.6750±0.0020 0.6439±0.0014 0.5534±0.0039 0.8439±0.0005 0.8300±0.0010 0.7676±0.0024

TUNEUP (ours) 0.6808±0.0019 0.6604±0.0007 0.5923±0.0053 0.8489±0.0006 0.8385±0.0013 0.7925±0.0049

Relative gain over base +1.4% +3.2% +7.8% +1.4% +2.1% +6.2%
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Table 9: Link prediction performance with the GCN as the backbone architecture. The evaluation
metric is recall@50. For the “Inductive (cold)”, 60% of edges are randomly removed from new nodes.
For the results with other edge removal ratios, refer to Table 11 in Appendix.

Method flickr ppi arxiv
Transductive Inductive Inductive (cold) Transductive Inductive Inductive (cold) Transductive Inductive Inductive (cold)

Base 0.1431±0.0011 0.1369±0.0022 0.0882±0.0022 0.1491±0.0020 0.1178±0.0033 0.0909±0.0037 0.2152±0.0014 0.2077±0.0014 0.1192±0.0019

DropEdge 0.1543±0.0007 0.1425±0.0033 0.1006±0.0020 0.1903±0.0009 0.1712±0.0096 0.1364±0.0066 0.2306±0.0012 0.2116±0.0017 0.1346±0.0010

LocalAug 0.1487±0.0017 0.1445±0.0020 0.0936±0.0030 0.1460±0.0030 0.1321±0.0062 0.0920±0.0046 0.2210±0.0010 0.2134±0.0008 0.1216±0.0015

ColdBrew 0.1201±0.0019 0.1154±0.0019 0.0686±0.0035 0.1133±0.0082 0.0383±0.0272 0.0376±0.0223 0.1783±0.0017 0.1723±0.0017 0.0927±0.0015

Tail-GNN 0.1282±0.0007 0.1230±0.0019 0.0830±0.0030 0.1564±0.0016 0.1294±0.0088 0.0971±0.0053 0.1253±0.0005 0.1144±0.0014 0.0811±0.0014

RAWLS-GCN 0.0704±0.0015 0.0448±0.0018 0.0430±0.0017 0.1280±0.0017 0.0653±0.0045 0.0453±0.0010 0.1010±0.0009 0.0816±0.0010 0.0408±0.0014

TUNEUP w/o curriculum 0.1571±0.0007 0.1466±0.0011 0.1048±0.0016 0.1827±0.0020 0.1511±0.0048 0.1241±0.0039 0.2341±0.0007 0.2169±0.0008 0.1356±0.0017

TUNEUP w/o syn-tails 0.1458±0.0010 0.1398±0.0016 0.0883±0.0015 0.1553±0.0012 0.1240±0.0091 0.0916±0.0053 0.2197±0.0009 0.2123±0.0010 0.1195±0.0014

TUNEUP (ours) 0.1637±0.0015 0.1517±0.0008 0.1080±0.0027 0.2009±0.0012 0.1857±0.0036 0.1430±0.0073 0.2417±0.0018 0.2254±0.0022 0.1440±0.0017

Relative gain over base +14.4% +10.8% +22.5% +34.8% +57.7% +57.4% +12.3% +8.5% +20.9%

Table 10: Cold-start inductive link prediction performance with GraphSAGE. The evaluation metric
is recall@50. The larger the edge removal ratio is, the more cold-start the prediction task becomes.

Method
flickr ppi arxiv

Edge removal ratio Edge removal ratio Edge removal ratio
30% 60% 90% 30% 60% 90% 30% 60% 90%

Base 0.0830±0.0021 0.0606±0.0020 0.0186±0.0026 0.0990±0.0058 0.0835±0.0028 0.0708±0.0035 0.1021±0.0046 0.0722±0.0031 0.0240±0.0025

DropEdge 0.1159±0.0015 0.1007±0.0017 0.0602±0.0037 0.1401±0.0072 0.1282±0.0042 0.0999±0.0043 0.1531±0.0045 0.1204±0.0027 0.0579±0.0019
LocalAug 0.0855±0.0028 0.0619±0.0035 0.0185±0.0026 0.1110±0.0049 0.0950±0.0063 0.0717±0.0162 0.1051±0.0031 0.0750±0.0033 0.0261±0.0045

ColdBrew 0.0497±0.0129 0.0413±0.0073 0.0356±0.0086 0.0846±0.0038 0.0761±0.0033 0.0597±0.0077 0.0887±0.0042 0.0630±0.0042 0.0318±0.0045

Tail-GNN 0.0767±0.0011 0.0746±0.0018 0.0521±0.0018 0.0939±0.0032 0.0929±0.0030 0.0842±0.0072 0.0771±0.0037 0.0643±0.0039 0.0410±0.0034

TUNEUP w/o curriculum 0.1192±0.0015 0.1024±0.0015 0.0624±0.0023 0.1374±0.0017 0.1215±0.0023 0.0905±0.0053 0.1516±0.0038 0.1159±0.0040 0.0567±0.0067
TUNEUP w/o syn-tails 0.0829±0.0020 0.0603±0.0017 0.0184±0.0026 0.0988±0.0046 0.0824±0.0021 0.0710±0.0031 0.1036±0.0024 0.0738±0.0021 0.0273±0.0041

TUNEUP (ours) 0.1247±0.0032 0.1092±0.0039 0.0715±0.0041 0.1513±0.0070 0.1328±0.0043 0.1045±0.0074 0.1593±0.0041 0.1252±0.0044 0.0594±0.0046

Rel. gain over base +50.3% +80.1% +285.1% +52.8% +59.1% +47.5% +56.0% +73.3% +147.5%

Table 11: Cold-start inductive link prediction performance with GCN. The evaluation metric is
recall@50. The larger the edge removal ratio is, the more cold-start the prediction task becomes.

Method
flickr ppi arxiv

Edge removal ratio Edge removal ratio Edge removal ratio
30% 60% 90% 30% 60% 90% 30% 60% 90%

Base 0.1144±0.0023 0.0882±0.0022 0.0261±0.0012 0.1083±0.0030 0.0909±0.0037 0.0381±0.0031 0.1717±0.0017 0.1192±0.0019 0.0376±0.0015

DropEdge 0.1241±0.0027 0.1006±0.0020 0.0604±0.0047 0.1610±0.0067 0.1364±0.0066 0.0765±0.0037 0.1822±0.0011 0.1346±0.0010 0.0597±0.0018

LocalAug 0.1222±0.0026 0.0936±0.0030 0.0282±0.0024 0.1151±0.0027 0.0920±0.0046 0.0400±0.0044 0.1772±0.0011 0.1216±0.0015 0.0378±0.0012

ColdBrew 0.0937±0.0023 0.0686±0.0035 0.0483±0.0028 0.0388±0.0265 0.0376±0.0223 0.0328±0.0142 0.1399±0.0015 0.0927±0.0015 0.0415±0.0018

Tail-GNN 0.1059±0.0015 0.0830±0.0030 0.0541±0.0050 0.1189±0.0071 0.0971±0.0053 0.0560±0.0018 0.1001±0.0009 0.0811±0.0014 0.0468±0.0016

RAWLS-GCN 0.0437±0.0020 0.0430±0.0017 0.0421±0.0019 0.0575±0.0031 0.0453±0.0010 0.0394±0.0033 0.0623±0.0005 0.0408±0.0014 0.0239±0.0013

TUNEUP w/o curriculum 0.1272±0.0022 0.1048±0.0016 0.0661±0.0021 0.1437±0.0046 0.1241±0.0039 0.0754±0.0053 0.1852±0.0015 0.1356±0.0017 0.0557±0.0023

TUNEUP w/o syn-tails 0.1166±0.0021 0.0883±0.0015 0.0284±0.0010 0.1110±0.0078 0.0916±0.0053 0.0347±0.0036 0.1737±0.0008 0.1195±0.0014 0.0368±0.0010

TUNEUP (ours) 0.1308±0.0021 0.1080±0.0027 0.0661±0.0028 0.1714±0.0051 0.1430±0.0073 0.0786±0.0090 0.1933±0.0018 0.1440±0.0017 0.0627±0.0015

Relative gain over base +14.4% +22.5% +153.2% +58.2% +57.4% +106.4% +12.6% +20.9% +67.0%
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