
SOLUTION: BYZANTINE CLUSTER-SENDING IN

EXPECTED CONSTANT COST AND CONSTANT TIME

Anonymous authors
Paper under double-blind review

Abstract
Traditional resilient systems operate on fully-replicated fault-
tolerant clusters, which limits their scalability and perfor-
mance. One way to make the step towards resilient high-
performance systems that can deal with huge workloads is by
enabling independent fault-tolerant clusters to efficiently com-
municate and cooperate with each other, as this also enables
the usage of high-performance techniques such as sharding.
Recently, such inter-cluster communication was formalized as
the Byzantine cluster-sending problem. Unfortunately, exist-
ing worst-case optimal protocols for cluster-sending all have
linear complexity in the size of the clusters involved.

In this paper, we propose probabilistic cluster-sending tech-
niques as a solution for the cluster-sending problem with only
an expected constant message complexity, this independent
of the size of the clusters involved and this even in the pres-
ence of highly unreliable communication. Depending on the
robustness of the clusters involved, our techniques require
only two-to-four message round-trips (without communica-
tion failures). Furthermore, our protocols can support worst-
case linear communication between clusters. Finally, we have
put our techniques to the test in an in-depth experimental eval-
uation that further underlines the exceptional low expected
costs of our techniques in comparison with other protocols.
As such, our work provides a strong foundation for the further
development of resilient high-performance systems.

1 Introduction

The promises of resilient data processing, as provided by
private and public blockchains [14, 21, 27], has renewed inter-
est in traditional consensus-based Byzantine fault-tolerant re-
silient systems [5,6,24]. Unfortunately, blockchains and other
consensus-based systems typically rely on fully-replicated
designs, which limits their scalability and performance. Con-
sequently, these systems cannot deal with the ever-growing
requirements in data processing [29, 30].

One way to improve on these limitations is by building com-
plex system designs that consist of independently-operating
resilient clusters that can cooperate to provide certain services.
To illustrate this, one can consider a sharded resilient design.
In a traditional resilient systems, resilience is provided by
a fully-replicated consensus-based Byzantine fault-tolerant
cluster in which all replicas hold all data and process all re-
quests. This traditional design has only limited performance,

even with the best consensus protocols, and lacks scalability.
To improve on the design of traditional systems, one can em-
ploy the sharded design of Figure 1. In this sharded design,
each cluster only holds part of the data. Consequently, each
cluster only needs to process requests that affect data they
hold. In this way, this sharded design improves performance
by enabling parallel processing of requests by different clus-
ters, while also improving storage scalability. To support
arbitrary general-purpose workloads that can affect data in
several clusters in such a sharded design, the clusters need to
be able to coordinate their operations, however [1,7,15,18].1

Central to such complex system designs is the ability to
reliably and efficiently communicate between independently-
operating resilient clusters. Recently, this problem of commu-
nication between Byzantine fault-tolerant clusters has been
formalized as the cluster-sending problem [17, 19]. We be-
lieve that efficient solutions to this problem have a central
role towards bridging resilient and high-performance data
processing.

E1 E2

E3 E4

Cluster
(European Data)

A1 A2

A3 A4

Cluster
(American Data)

Cluster Sending

(coordination)

Requests
(European Data)

Requests
(Mixed Data)

Requests
(American Data)

Figure 1: A sharded design in which each resilient cluster of
four replicas holds only a part of the data. Local decisions
within a cluster are made via consensus (), whereas
multi-shard coordination to process multi-shard transactions
requires cluster-sending ().

Although the cluster-sending problem has received
some attention (e.g., as part of the design of AHL [7],
BYSHARD [18], GEOBFT [15], and CHAINSPACE [1]), and

1Strict ordering as provided by consensus is necessary to support arbitrary
general-purpose workloads. There are classes of operations for which strict
consensus-based ordering of (sharding) steps is unnecessary, however. Exam-
ples include balance changes and, more generally, operations on CRDTs [31].

2022

cluster-sending protocols that solve the cluster-sending prob-
lem with worst-case optimal complexity are known [17, 19],
we believe there is still much room for improvement.

In this paper, we introduce a new solution to the cluster-
sending problem: we introduce cluster-sending protocols
that use probabilistic cluster-sending techniques and are able
to provide low expected-case message complexity (at the
cost of higher communication latencies, a good trade-off in
systems where inter-cluster network bandwidth is limited).
To simplify presentation, we first show how probabilistic
cluster-sending works when communication is reliable and
synchronous. Then, we generalize these synchronous solu-
tions to practical environments in which communication can
be unreliable and asynchronous. Our main contributions are
as follows:

1. First, in Section 3, we introduce the cluster-sending step
CS-STEP that attempts to send a value from a replica in
the sending cluster to a replica in the receiving cluster
in a verifiable manner and with a constant amount of
inter-cluster communication. This step is guaranteed to
perform cluster-sending if communication is reliable and
the step is performed by non-faulty replicas.

2. Then, in Section 4, we illustrate the working of a ba-
sic probabilistic cluster-sending protocol by introducing
the Synchronous Probabilistic Cluster-Sending protocol
CSP. CSP uses CS-STEP with randomly selected sending
and receiving replicas to provide cluster-sending in ex-
pected constant steps. In addition, we show how pruned-
CSP (CSPP), a fine-tuned variant of CSP, can guarantee
cluster-sending in expected constant steps while also
guaranteeing termination.

3. Next, in Section 5, we propose the Synchronous Prob-
abilistic Linear Cluster-Sending protocol CSPL. CSPL
not only guarantees cluster-sending in expected constant
steps, but also guarantees a worst-case optimal linear
upper-bound on communication. To achieve this worst-
case optimal upper-bound, we introuce a specialized
randomized scheme via which CSPL selects replicas. To
prove the complexity bounds of CSPL, we provide an
in-depth analysis of the expected behavior of the ran-
domized scheme we introduce.

4. Next, in Section 6, we generalize CSP, CSPP, and CSPL
to practical environments in which communication can
be unreliable and asynchronous.

5. Finally, in Section 7, we evaluate the behavior of the
proposed probabilistic cluster-sending protocols via an
in-depth evaluation. In this evaluation, we show that
probabilistic cluster-sending protocols has exceptionally
low communication costs in comparison with existing
cluster-sending protocols, this even in the presence of
communication failures.

A summary of our findings in comparison with existing
techniques can be found in Figure 2. In Section 2, we intro-
duce the necessary terminology and notation, in Section 8,
we compare with related work, and in Section 9, we conclude
on our findings.

2 The Cluster-Sending Problem

Before we present our probabilistic cluster-sending tech-
niques, we first introduce all necessary terminology and no-
tation. The formal model we use is based on the formaliza-
tion of the cluster-sending problem provided by Hellings et
al. [17, 19]. If S is a set of replicas, then f(S) ⊆ S denotes
the faulty replicas in S, whereas nf(S) = S\ f(S) denotes the
non-faulty replicas in S. We write nS = |S|, fS = |f(S)|, and
nfS = |nf(S)|= nS−fS to denote the number of replicas, faulty
replicas, and non-faulty replicas in S, respectively. A cluster
C is a finite set of replicas. We consider clusters with Byzan-
tine replicas that behave in arbitrary manners. In specific,
if C is a cluster, then any malicious adversary can control
the replicas in f(C) at any time, but adversaries cannot bring
non-faulty replicas under their control.

Definition 2.1. Let C1,C2 be disjoint clusters. The cluster-
sending problem is the problem of sending a value v from C1
to C2 such that

1. each non-faulty replica in R ∈ nf(C2) decides RECEIVE
for the value v, which indicates that v was received by R;

2. all non-faulty replicas in nf(C1) decide CONFIRM for
the value v, which indicates that v was received by all
non-faulty replicas in nf(C2); and

3. non-faulty replicas in nf(C2) only decide RECEIVE for
value v if all non-faulty replicas in nf(C1) decided AGREE
upon sending v.

We assume that there is no limitation on local communica-
tion within a cluster, while global communication between
clusters is costly. This model is supported by practice, where
communication between wide-area deployments of clusters
is up-to-two orders of magnitude more expensive than com-
munication within a cluster [7, 15].

We assume that each cluster can make local decisions
among all non-faulty replicas, e.g., via a consensus proto-
col such as PBFT (when Byzantine fault tolerance is required)
or PAXOS [6, 24] (when crash-fault tolerance suffices). Fur-
thermore, we assume that the replicas in each cluster can
certify such local decisions via a signature scheme. E.g., a
cluster C can certify a consensus decision on some message
m by collecting a set of signatures for m of fC + 1 replicas
in C , guaranteeing one such signature is from a non-faulty
replica (which would only signs values on which consensus
is reached). We write ⟨m⟩C to denote a message m certified
by C . To minimize the size of certified messages, one can

2

2022

Figure 2: A comparison of cluster-sending protocols that send a value from cluster C1 with nC1 replicas, of which fC1 are faulty,
to cluster C2 with nC2 replicas, of which fC2 are faulty. For each protocol P, Protocol specifies its name; Robustness specifies the
conditions P puts on the clusters; Message Steps specifies the number of messages exchanges P performs; Optimal specifies
whether P is worst-case optimal; and Unreliable specifies whether P can deal with unreliable communication.

Protocol Robustnessa Message Steps Optimal Unreliable
(expected-case) (worst-case)

PBS-CS [17, 19] min(nC1 ,nC2)> fC1 + fC2 fC1 + fC2 +1 Ë é
PBS-CS [17, 19] nC1 > 3fC1 , nC2 > 3fC2 max(nC1 ,nC2) Ë é

GEOBFT [15] nC1 = nC2 > 3max(fC1 , fC2) fC2 +1b Ω(fC1 nC2) é Ë

CHAINSPACE [1] nC1 > 3fC1 , nC2 > 3fC2 nC1 nC2 é é

T
hi

s
Pa

pe
r CSPP nC1 > 2fC1 , nC2 > 2fC2 4 (fC1 +1)(fC2 +1) é Ë

CSPP nC1 > 3fC1 , nC2 > 3fC2 2 1
4 (fC1 +1)(fC2 +1) é Ë

CSPL min(nC1 ,nC2)> fC1 + fC2 4 fC1 + fC2 +1 Ë Ë

CSPL min(nC1 ,nC2)> 2(fC1 + fC2) 2 1
4 fC1 + fC2 +1 Ë Ë

CSPL nC1 > 3fC1 , nC2 > 3fC2 3 max(nC1 ,nC2) Ë Ë

aProtocols that have different message step complexities depending on the robustness assumptions have been included for each of the robustness assumptions.
bComplexity when the coordinating primary in C1 is non-faulty and communication is reliable.

utilize a threshold signature scheme [32]. To enable deci-
sion making and message certification, we assume, for every
cluster C , nC > 2fC , a minimal requirement [9, 25]. Lastly,
we assume that there is a common source of randomness for
all non-faulty replicas of each cluster, e.g., via a distributed
fault-tolerant random coin [3, 4].

3 The Cluster-Sending Step

As the first step toward a probabilistic cluster-sending pro-
tocol, we introduce the cluster-sending step which tries to
perform cluster-sending between a pair of replicas.

If communication is reliable and one knows non-faulty
replicas R1 ∈ nf(C1) and R2 ∈ nf(C2), then cluster-sending
a value v from C1 to C2 can be done via a straightforward
cluster-sending step: one can simply instruct R1 to send v
to R2. When R2 receives v, it can disperse v locally in C2.
Unfortunately, we do not know which replicas are faulty and
which are non-faulty. Furthermore, it is practically impos-
sible to reliably determine which replicas are non-faulty, as
non-faulty replicas can appear faulty due to unreliable com-
munication, while faulty replicas can appear well-behaved to
most replicas, while interfering with the operations of only
some non-faulty replicas.

To deal with faulty replicas when utilizing the above cluster-
sending step, one needs a sufficient safeguards to detect fail-
ure of R1, of R2, or of the communication between them. To
do so, we add receive and confirmation phases to the sketched
cluster-sending step. During the receive phase, the receiv-
ing replica R2 must construct a proof P that it received and
dispersed v locally in C2 and then send this proof back to R1.
Finally, during the confirmation phase, R1 can utilize P to
prove to all other replicas in C1 that the cluster-sending step
was successful. The pseudo-code of this cluster-sending step

protocol CS-STEP can be found in Figure 3. We have the
following:

Proposition 3.1. Let C1,C2 be disjoint clusters with R1 ∈ C1
and R2 ∈ C2. If C1 satisfies the pre-conditions of CS-STEP(R1,
R2, v), then execution of CS-STEP(R1, R2, v) satisfies the post-
conditions and will exchange at most two messages between
C1 and C2.

Proof. We prove the three post-conditions separately. (i)
We assume that communication is reliable, R1 ∈ nf(C1), and
R2 ∈ nf(C2). Hence, R1 sends message m := ⟨send : v, C2⟩C1
to R2 (Line 1 of Figure 3). In the receive phase (Lines 2–6 of
Figure 3), replica R2 receives message m from R1. Replica R2
uses local consensus on m to replicate m among all replicas
C2 and, along the way, to constructs a proof of receipt mp :=
⟨proof : m⟩C2 . As all replicas in nf(C2) participate in this
local consensus, all replicas in nf(C2) will decide RECEIVE
on v from C1. Finally, the proof mp is returned to R1. In
the confirmation phase (Lines 7–10 of Figure 3), replica R1
receives the proof of receipt mp. Next, R1 uses local consensus
on mp to replicate mp among all replicas in nf(C1), after which
all replicas in nf(C1) decide CONFIRM on sending v to C2

(ii) A replica in nf(C2) only decides RECEIVE on v after
consensus is reached on a message m := ⟨send : v, C2⟩C1
(Line 5 of Figure 3). This message m not only contains the
value v, but also the identity of the recipient cluster C2. Due
to the usage of certificates and the pre-condition, the message
m cannot be created without the replicas in nf(C1) deciding
AGREE on sending v to C2.

(iii) A replica in nf(C1) only decides CONFIRM on v after
consensus is reached on a proof of receipt message mp :=
⟨proof : m⟩C2 (Line 10 of Figure 3). This consensus step
will complete for all replicas in C1 whenever communication
becomes reliable. Hence, all replicas in nf(C1) will eventually

3

2022

Protocol CS-STEP(R1, R2, v), with R1 ∈ C1 and R2 ∈ C2:

Pre: Each replica in nf(C1) decided AGREE on sending v to C2 (and
can construct ⟨send : v, C2⟩C1).

Post: (i) If communication is reliable, R1 ∈ nf(C1), and R2 ∈ nf(C2),
then R1 decides CONFIRM on v. (ii) If a replica in nf(C2) decides
RECEIVE on v, then all replicas in nf(C1) decided AGREE on
sending v to C2. (iii) If a replica in nf(C1) decides CONFIRM

on v, then all replicas in nf(C2) decided RECEIVE on v and all
replicas in nf(C1) eventually decide CONFIRM on v (whenever
communication becomes reliable).

The cluster-sending step for R1 and R2:
1: Instruct R1 to send ⟨send : v, C2⟩C1 to R2.

The receive role for C2:
2: event R2 ∈ nf(C2) receives message m := ⟨send : v, C2⟩C1

from R1 ∈ C1 do
3: if R2 does not have consensus on m then
4: Use local consensus on m and construct ⟨proof : m⟩C2 .
5: {Each replica in nf(C2) decides RECEIVE on v.}
6: Send ⟨proof : m⟩C2 to R1.

The confirmation role for C1:
7: event R1 ∈ nf(C1) receives message mp := ⟨proof : m⟩C2

with m := ⟨send : v, C2⟩C1 from R2 ∈ C2 do
8: if R1 does not have consensus on mp then
9: Use local consensus on mp.

10: {Each replica in nf(C1) decides CONFIRM on v.}

Figure 3: The Cluster-sending step protocol CS-STEP(R1, R2,
v). In this protocol, R1 tries to send v to R2, which will succeed
if both R1 and R2 are non-faulty.

decide CONFIRM on v. Due to the usage of certificates, the
message mp cannot be created without cooperation of the
replicas in nf(C2). The replicas in nf(C2) only cooperate in
constructing mp as part of the consensus step of Line 4 of
Figure 3. Upon completion of this consensus step, all replicas
in nf(C2) will decide RECEIVE on v.

In the following sections, we show how to use the cluster-
sending step in the construction of cluster-sending protocols.
In Section 4, we introduce synchronous protocols that provide
expected constant message complexity. Then, in Section 5,
we introduce synchronous protocols that additionally provide
worst-case linear message complexity, which is optimal. Fi-
nally, in Section 6, we show how to extend the presented
techniques to asynchronous communication.

4 Probabilistic Cluster-Sending with
Random Replica Selection

In the previous section, we introduced CS-STEP, the cluster-
sending step protocol that succeeds whenever the participating

Protocol CSP(C1, C2, v):

1: Use local consensus on v and construct ⟨send : v, C2⟩C1 .
2: {Each replica in nf(C1) decides AGREE on v.}
3: repeat
4: Choose replicas (R1,R2) ∈ C1 ×C2, fully at random.
5: CS-STEP(R1, R2, v)
6: Wait three global pulses.
7: until C1 reaches consensus on ⟨proof : ⟨send : v, C2⟩C1⟩C2 .

Figure 4: The Synchronous Probabilistic Cluster-Sending
protocol CSP(C1, C2, v) that cluster-sends a value v from C1
to C2.

replicas are non-faulty and communication is reliable. In this
section, we introduce a basic probabilistic cluster-sending
protocol that utilizes CS-STEP to perform cluster-sending
with expected constant costs.

Using CS-STEP, we build a three-step protocol that cluster-
sends a value v from C1 to C2:

1. First, the replicas in nf(C1) reach agreement and decide
AGREE on sending v to C2.

2. Then, the replicas in nf(C1) perform a probabilistic
cluster-sending step by electing replicas R1 ∈ C1 and
R2 ∈ C2 fully at random, after which CS-STEP(R1, R2, v)
is executed.

3. Finally, each replica in nf(C1) waits for the completion
of CS-STEP(R1, R2, v). If the waiting replicas decided
CONFIRM on v during this wait, then cluster-sending is
successful. Otherwise, we repeat the previous step.

To simplify presentation, we first present the above proto-
col assuming synchronous inter-cluster communication: in
this sectiom, we assume that messages sent by non-faulty
replicas will be delivered within some known bounded delay.
Synchronous systems can be modeled by pulses [10, 11]:

Definition 4.1. A system is synchronous if all inter-cluster
communication happens in pulses such that every message
sent in a pulse will be received in the same pulse.

We refer to Section 6 on how to generalize the results of
this section to practical environments with asynchronous and
unreliable communication.

The pseudo-code of the resultant Synchronous Probabilistic
Cluster-Sending protocol CSP can be found in Figure 4. Next,
we prove that CSP is correct and has expected-case constant
message complexity:

Theorem 4.2. Let C1,C2 be disjoint clusters. If communica-
tion is synchronous, then CSP(C1, C2, v) results in cluster-
sending v from C1 to C2. The execution performs two local

4

2022

consensus steps in C1, one local consensus step in C2, and is
expected to make (nC1 nC2)/(nfC1nfC1) cluster-sending steps.2

Proof. Due to Lines 1–2 of Figure 4, CSP(C1, C2, v) estab-
lishes the pre-conditions for any execution of CS-STEP(R1,
R2, v) with R1 ∈ C1 and R2 ∈ C2. Using the correctness of CS-
STEP (Proposition 3.1), we conclude that CSP(C1, C2, v) re-
sults in cluster-sending v from C1 to C2 whenever the replicas
(R1,R2)∈ C1×C2 chosen at Line 4 of Figure 4 are non-faulty.
As the replicas (R1,R2) ∈ C1 ×C2 are chosen fully at random,
we have probability pi = nfCi/nCi , i∈{1,2}, of choosing Ri ∈
nf(Ci). The probabilities p1 and p2 are independent of each
other. Consequently, the probability of choosing (R1,R2) ∈
nf(C1)×nf(C2) is p = p1 p2 = (nfC1nfC2)/(nC1 nC2). As such,
each iteration of the loop at Line 3 of Figure 4 can be mod-
eled as an independent Bernoulli trial with probability of
success p, and the expected number of iterations of the loop
is p−1 = (nC1nC2)/(nfC1nfC1).

Finally, we prove that each local consensus step needs to
be performed only once. To do so, we consider the local
consensus steps triggered by the loop at Line 3 of Figure 4.
These are the local consensus steps at Lines 4 and 9 of Fig-
ure 3. The local consensus step at Line 4 can be initiated
by a faulty replica R2. After this single local consensus step
reaches consensus on message m := ⟨send : v, C2⟩C1 , each
replica in nf(C2) reaches consensus on m, decides RECEIVE
on v, and can construct mp := ⟨proof : m⟩C2 , this independent
of the behavior of R2. Hence, a single local consensus step for
m in C2 suffices, and no replica in nf(C2) will participate in
future consensus steps for m. An analogous argument proves
that a single local consensus step for mp in C1, performed at
Line 9 of Figure 3, suffices.

Remark 4.3. Although Theorem 4.2 indicates local consen-
sus steps in clusters C1 and C2, these local consensus steps
typically come for free as part of the protocol that uses cluster-
sending as a building block. To see this, we consider a multi-
shard transaction τ processed by clusters C1 and C2.

The decision of cluster C1 to send a value v to cluster C2
is a consequence of the execution of τ in C1. Before the
replicas in C1 execute τ, they need to reach consensus on the
order in which τ is executed in C1. As part of this consensus
step, the replicas in C1 can also construct ⟨send : v, C2⟩C1
without additional consensus steps. Hence, no consensus
step is necessary in C1 to send value v. Likewise, if value
v is received by replicas in C2 as part of some multi-shard
transaction execution protocol, then the replicas in C2 need to
perform their portion of the necessary transaction execution
steps to execute τ as a consequence of receiving v. To do
so, the replicas in C2 need to reach consensus on the order
in which these transaction execution steps are performed.

2Throughout this paper, the number of consensus steps in the presented
cluster-sending protocols refers to the single consensus step necessary to
reach agreement in the sending cluster on sending a value v and all consensus
steps performed in all invocations of CS-STEP by the protocol.

As part of this consensus step, the replicas in C2 can also
constructing a proof of receipt for v.

In typical fault-tolerant clusters, more than half of the repli-
cas are non-faulty (e.g., in synchronous systems with Byzan-
tine failures that use digital signatures, or in systems that only
deal with crashes) or more than two-third of the replicas are
non-faulty (e.g., asynchronous systems). In these systems,
CSP is expected to only performs a few cluster-sending steps:

Corollary 4.4. Let C1,C2 be disjoint clusters. If communi-
cation is synchronous, then the expected number of cluster-
sending steps performed by CSP(C1, C2, v) is upper bounded
by 4 if nC1 > 2fC1 and nC2 > 2fC2; and by 2 1

4 if nC1 > 3fC1
and nC2 > 3fC2 .

In CSP, the replicas (R1,R2) ∈ C1 ×C2 are chosen fully at
random and with replacement, as CSP does not retain any
information on failed probabilistic steps. In the worst case,
this prevents termination, as the same pair of replicas can be
picked repeatedly. Furthermore, CSP does not prevent the
choice of faulty replicas whose failure could be detected. We
can easily improve on this, as the failure of a probabilistic
step provides some information on the chosen replicas. In
specific, we have the following technical properties:

Lemma 4.1. Let C1,C2 be disjoint clusters. We assume syn-
chronous communication and assume that each replica in
nf(C1) decided AGREE on sending v to C2.

1. Let (R1,R2) ∈ C1 ×C2. If CS-STEP(R1, R2, v) fails to
cluster-send v, then either R1 ∈ f(C1), R2 ∈ C2, or both.

2. Let R1 ∈ C1. If CS-STEP(R1, R2, v) fails to cluster-send
v for fC2 +1 distinct replicas R2 ∈ C2, then R1 ∈ f(C1).

3. Let R2 ∈ C2. If CS-STEP(R1, R2, v) fails to cluster-send
v for fC1 +1 distinct replicas R1 ∈ C1, then R2 ∈ f(C2).

Proof. The statement of this Lemma assumes that the pre-
conditions for any execution of CS-STEP(R1, R2, v) with R1 ∈
C1 and R2 ∈ C2 are established. Hence, by Proposition 3.1,
CS-STEP(R1, R2, v) will cluster-send v if R1 ∈ nf(C1) and
R2 ∈ nf(C2). If the cluster-sending step fails to cluster-send
v, then one of the replicas involved must be faulty, proving
the first property. Next, let R1 ∈ C1 and consider a set S ⊆ C2
of nS = fC2 +1 replicas such that, for all R2 ∈ S, CS-STEP(R1,
R2, v) fails to cluster-send v. Let S′ = S \ f(C2) be the non-
faulty replicas in S. As nS > fC2 , we have nS′ ≥ 1 and there
exists a R′

2 ∈ S′. As R′
2 /∈ f(C2) and CS-STEP(R1, R′

2, v) fails to
cluster-send v, we must have R1 ∈ f(C1) by the first property,
proving the second property. An analogous argument proves
the third property.

We can apply the properties of Lemma 4.1 to actively prune
which replica pairs CSP considers (Line 4 of Figure 4). No-
tice that pruning via Lemma 4.1(1) simply replaces choosing
replica pairs with replacement, as done by CSP, by choosing

5

2022

replica pairs without replacement, this without further reduc-
ing the possible search space. Pruning via Lemma 4.1(2) does
reduce the search space, however, as each replica in C1 will
only be paired with a subset of fC2 +1 replicas in C2. Likewise,
pruning via Lemma 4.1(3) also reduces the search space. We
obtain the Pruned Synchronous Probabilistic Cluster-Sending
protocol (CSPP) by applying all three prune steps to CSP. By
construction, Theorem 4.2, and Lemma 4.1, we conclude:

Corollary 4.5. Let C1,C2 be disjoint clusters. If communica-
tion is synchronous, then CSPP(C1, C2, v) results in cluster-
sending v from C1 to C2. The execution performs two local
consensus steps in C1, one local consensus step in C2, is ex-
pected to make less than (nC1 nC2)/(nfC1nfC1) cluster-sending
steps, and makes worst-case (fC1 +1)(fC2 +1) cluster-sending
steps.

5 Worst-Case Linear-Time
Probabilistic Cluster-Sending

In the previous section, we introduced CSP and CSPP, two
probabilistic cluster-sending protocols that can cluster-send a
value v from C1 to C2 with expected constant cost. Unfortu-
nately, CSP does not guarantee termination, while CSPP has a
worst-case quadratic complexity. In this section, we improve
on this by presenting a probabilistic cluster-sending protocol
that has expected constant cost and guarantees termination
with a worst-case optimal linear complexity [17,19]. We refer
to Table 1 for an overview of the notation used in this section.

To improve on CSP and CSPP, we need to improve the
scheme by which we select replica pairs (R1,R2) ∈ C1 ×C2
that we use in cluster-sending steps. The straightforward
manner to guarantee a worst-case linear complexity is by
using a scheme that can select only up-to-n = max(nC1 ,nC2)
distinct pairs (R1,R2) ∈ C1 × C2. To select n replica pairs
from C1 ×C2, we will proceed in two steps.

1. We generate list S1 of n replicas taken from C1 and list
S2 of n replicas taken from C2.

2. Then, we choose permutations P1 ∈ perms(S1) and
P2 ∈ perms(S2) fully at random, and interpret each pair
(P1[i],P2[i]). 0 ≤ i < n, as one of the chosen replica
pairs.

We use the first step to deal with any differences in the sizes
of C1 and C2, and we use the second step to introduce suffi-
cient randomness in our protocol to yield a low expected-case
message complexity.

Next, we introduce some notations to simplify reasoning
about the above list-based scheme. If R is a set of replicas,
then list(R) is the list consisting of the replicas in R placed in
a predetermined order (e.g., on increasing replica identifier).
If S is a list of replicas, then we write f(S) to denote the
faulty replicas in S and nf(S) to denote the non-faulty replicas

Table 1: Overview of the notation used in Section 5.

Notation Description

P1, P2 Permutation of a list of replicas from C1 and
C2, respectively.

m1, m2 Given a pair of lists of replicas (P1,P2), the
number of faulty replicas in list P1 and P2, re-
spectively.

b1 The number 1-faulty pairs in a given pair of
lists of replicas (P1,P2).

b2 The number 2-faulty pairs in a given pair of
lists of replicas (P1,P2).

b1,2 The number of both-faulty pairs in a given pair
of lists of replicas (P1,P2).

list(R) A list-representation of the replica set R.
perms(S) Permutation of list of replicas S.
S:n The first n elements in the list obtained by

repeatedly concatenating list S.
L|M Tthe list obtained from L by only keeping the

values that also appear in list M.
M(v,w) The number of distinct ways in which two

lists of v and w elements, respectively, can be
merged together (without shuffling elements
from their respective lists).

Φ A list-pair function.

∥P1;P2∥f The number of faulty positions in (P1,P2).
F(n,m1,m2,k) The number of permutations (P1,P2) with k

faulty positions of two given lists of n replicas
of which m1 and m2 replicas are faulty, respec-
tively.

E(n,m1,m2) The non-faulty position trials problem with
two lists of n replicas of which m1 and m2
replicas are faulty, respectively.

in S, and we write nS = |S|, fS = |{i | (0 ≤ i < nS)∧ S[i] ∈
f(S)}|, and nfS = nS − fS to denote the number of positions
in S with replicas, faulty replicas, and non-faulty replicas,
respectively. If (P1,P2) is a pair of equal-length lists of n =
|P1| = |P2| replicas, then we say that the i-th position is a
faulty position if either P1[i] ∈ f(P1) or P2[i] ∈ f(P2). We write
∥P1;P2∥f to denote the number of faulty positions in (P1,P2).
As faulty positions can only be constructed out of the fP1

faulty replicas in P1 and the fP2 faulty replicas in P2, we must
have max(fP1 , fP2)≤ ∥P1;P2∥f ≤ min(n, fP1 + fP2).
Example 5.1. Consider clusters C1,C2 with

S1 = list(C1) = [R1,1, . . . ,R1,5], f(C1) = {R1,1,R1,2};
S2 = list(C2) = [R2,1, . . . ,R2,5], f(C2) = {R2,1,R2,2}.

The set perms(S1)× perms(S2) contains 5!2 = 14400 list
pairs. Now, consider the list pairs (P1,P2),(Q1,Q2),
(R1,R2) ∈ perms(S1)×perms(S2) with

P1[R1,1,R1,5,R1,2,R1,4,R1,3],

P2[R2,1,R2,3,R2,2,R2,5,R2,4];

6

2022

Protocol CSPL(C1, C2, v, Φ):

1: Use local consensus on v and construct ⟨send : v, C2⟩C1 .
2: {Each replica in nf(C1) decides AGREE on v.}
3: Let (S1,S2) := Φ(C1,C2).
4: Choose (P1,P2) ∈ perms(S1)×perms(S2) fully at random.
5: i := 0.
6: repeat
7: CS-STEP(P1[i], P2[i], v)
8: Wait three global pulses.
9: i := i+1.

10: until C1 reaches consensus on ⟨proof : ⟨send : v, C2⟩C1⟩C2 .

Figure 5: The Synchronous Probabilistic Linear Cluster-
Sending protocol CSPL(C1, C2, v, Φ) that cluster-sends a
value v from C1 to C2 using list-pair function Φ.

Q1[R1,1,R1,3,R1,5,R1,4,R1,2],

Q2[R2,5,R2,4,R2,3,R2,2,R2,1];

R1[R1,5,R1,4,R1,3,R1,2,R1,1],

R2[R2,1,R2,2,R2,3,R2,4,R2,5].

We have underlined the faulty replicas in each list, and
we have ∥P1;P2∥f = 2 = fS1 = fS2 , ∥Q1;Q2∥f = 3, and
∥R1;R2∥f = 4 = fS1 + fS2 .

In the following, we will use a list-pair function Φ to com-
pute the initial list-pair (S1,S2) of n replicas taken from C1
and C2, respectively. We build a cluster-sending protocol
that uses Φ to compute S1 and S2, uses randomization to
choose n replica pairs from S1 × S2, and, finally, performs
cluster-sending steps using only these n replica pairs. The
pseudo-code of the resultant Synchronous Probabilistic Lin-
ear Cluster-Sending protocol CSPL can be found in Figure 5.
Next, we prove that CSPL is correct and has a worst-case
linear message complexity:

Proposition 5.1. Let C1,C2 be disjoint clusters and let Φ be
a list-pair function with (S1,S2) := Φ(C1,C2) and n = nS1 =
nS2 . If communication is synchronous and n > fS1 + fS2 , then
CSPL(C1, C2, v, Φ) results in cluster-sending v from C1 to C2.
The execution performs two local consensus steps in C1, one
local consensus step in C2, and makes worst-case fS1 + fS2 +1
cluster-sending steps.

Proof. Due to Lines 1–2 of Figure 5, CSPL(C1, C2, v,
Φ) establishes the pre-conditions for any execution of CS-
STEP(R1, R2, v) with R1 ∈ C1 and R2 ∈ C2. Now let (P1,P2) ∈
perms(S1)×perms(S2), as chosen at Line 4 of Figure 5. As
Pi, i ∈ {1,2}, is a permutation of Si, we have fPi = fSi . Hence,
we have ∥P1;P2∥f ≤ fS1 + fS2 and there must exist a position
j, 0 ≤ j < n, such that (P1[j],P2[j]) ∈ nf(C1)×nf(C2). Using
the correctness of CS-STEP (Proposition 3.1), we conclude
that CSPL(C1, C2, v, Φ) results in cluster-sending v from C1
to C2 in at most fS1 + fS2 +1 cluster-sending steps. Finally, the

bounds on the number of consensus steps follow from an ar-
gument analogous to the one in the proof of Theorem 4.2.

Proposition 5.1 only shows that CSPL will perform cluster-
sending when specific conditions are met on the list-pair
function. Next, we proceed in two steps to arrive at practical
list-pair functions for CSPL that can be used in combination
with CSPL to guarantee an expected constant cost. First,
in Section 5.1, we study the probabilistic nature of CSPL.
Then, in Section 5.2, we propose practical list-pair functions
and show that these functions yield instances of CSPL with
expected constant message complexity.

5.1 The Expected-Case Complexity of CSPL

The expected-case analysis of CSP and CSPP was rather
straightforward, as the sending and receiving replicas used by
these protocols are chosen fully at random and independent
of each other. Hence, the random choices made by both proto-
cols can be modelled via well-known independent Bernoulli
trials (see the proof of Theorem 4.2). In CSPL, the choice of
sending and receiving replicas are dependent, as they are cho-
sen from a list of possible replica pairs. As such, the random
choices made by CSPL can no longer be modelled via inde-
pendent Bernoulli trials. Hence, the expected-case analysis
of CSPL requires a further analysis of the probabilistic nature
of the randomized scheme used by CSPL.

As the first step toward this analysis, we solve the following
abstract problem that captures the probabilistic argument at
the core of the expected-case complexity of CSPL:

Problem 5.2 (non-faulty position trials). Let S1 and S2 be lists
of |S1| = |S2| = n replicas. Choose permutations (P1,P2) ∈
perms(S1)× perms(S2) fully at random. Next, we inspect
positions in P1 and P2 fully at random (with replacement). The
non-faulty position trials problem asks how many positions
one expects to inspect to find the first non-faulty position.

Let S1 and S2 be lists of |S1| = |S2| = n replicas. To an-
swer the non-faulty position trials problem, we first look
at the combinatorics of faulty positions in pairs (P1,P2) ∈
perms(S1)× perms(S2). Let m1 = fS1 and m2 = fS2 . By
F(n,m1,m2,k), we denote the number of distinct pairs (P1,P2)
one can construct that have exactly k faulty positions, hence,
with ∥P1;P2∥f = k. As observed, we have max(m1,m2) ≤
∥P1;P2∥f ≤ min(n,m1 + m2) for any pair (P1,P2). Hence,
we have F(n,m1,m2,k) = 0 for all k < max(m1,m2) and
k > min(n,m1 +m2).

Now consider the step-wise construction of any permuta-
tion (P1,P2)∈ perms(S1)×perms(S2) with k faulty positions.
First, we choose (P1[0],P2[0]), the pair at position 0, after
which we choose pairs for the remaining n−1 positions. For
Pi[0], i ∈ {1,2}, we can choose n distinct replicas, of which
mi are faulty. If we pick a non-faulty replica, then the re-
mainder of Pi is constructed out of n−1 replicas, of which

7

2022

mi are faulty. Otherwise, the remainder of Pi is constructed
out of n− 1 replicas of which mi − 1 are faulty. If, due to
our choice of (P1[0],P2[0]), the first position is faulty, then
only k−1 out of the n−1 remaining positions must be faulty.
Otherwise, k out of the n− 1 remaining positions must be
faulty. Combining this analysis yields four types for the first
pair (P1[0],P2[0]):

1. A non-faulty pair (P1[0],P2[0]) ∈ nf(P1)× nf(P2). We
have (n−m1)(n−m2) such pairs, and we have F(n−
1,m1,m2,k) different ways to construct the remainder of
P1 and P2.

2. A 1-faulty pair (P1[0],P2[0]) ∈ f(P1)×nf(P2). We have
m1(n − m2) such pairs, and we have F(n − 1,m1 −
1,m2,k−1) different ways to construct the remainder of
P1 and P2.

3. A 2-faulty pair (P1[0],P2[0]) ∈ nf(P1)× f(P2). We have
(n−m1)m2 such pairs, and we have F(n− 1,m1,m2 −
2,k−1) different ways to construct the remainder of P1
and P2.

4. A both-faulty pair (P1[0],P2[0])∈ f(P1)× f(P2). We have
m1m2 such pairs, and we have F(n − 1,m1 − 1,m2 −
1,k−1) different ways to construct the remainder of P1
and P2.

Hence, for all k, max(m1,m2) ≤ k ≤ min(n,m1 + m2),
F(n,m1,m2,k) is recursively defined by:

F(n,m1,m2,k) = (n−m1)(n−m2)F(n−1,m1,m2,k)

(non-faulty pair)
+m1(n−m2)F(n−1,m1 −1,m2,k−1)

(1-faulty pair)
+(n−m1)m2F(n−1,m1,m2 −1,k−1)

(2-faulty pair)
+m1m2F(n−1,m1 −1,m2 −1,k−1),

(both-faulty pair)

and the base case for this recursion is F(0,0,0,0) = 1.

Example 5.3. Reconsider the list pairs (P1,P2), (Q1,Q2), and
(R1,R2) from Example 5.1. In (P1,P2), we have both-faulty
pairs at positions 0 and 2 and non-faulty pairs at positions 1,
3, and 4. In (Q1,Q2), we have a 1-faulty pair at position 0,
non-faulty pairs at positions 1 and 2, a 2-faulty pair at position
3, and a both-faulty pair at position 4. Finally, in (R1,R2), we
have 2-faulty pairs at positions 0 and 1, a non-faulty pair at
position 2, and 1-faulty pairs at positions 3 and 4.

Using the combinatorics of faulty positions, we formalize
an exact solution to the non-faulty position trials problem:

Lemma 5.1. Let S1 and S2 be lists of n = nS1 = nS2 replicas
with m1 = fS1 and m2 = fS2 . If m1 +m2 < n, then the non-
faulty position trials problem E(n,m1,m2) has solution

1
n!2

(
m1+m2

∑
k=max(m1,m2)

n
n− k

F(n,m1,m2,k)

)
.

Proof. We have |perms(S1)| = |perms(S2)| = n!. Conse-
quently, we have |perms(S1)×perms(S2)|= n!2 and we have
probability 1/(n!2) to choose any pair (P1,P2)∈ perms(S1)×
perms(S2). Now consider such a pair (P1,P2) ∈ perms(S1)×
perms(S2). As there are ∥P1;P2∥f faulty positions in (P1,P2),
we have probability p(P1,P2) = (n−∥P1;P2∥f)/n to inspect
a non-faulty position. Notice that max(m1,m2)≤ ∥P1;P2∥f ≤
m1 +m2 < n and, hence, 0 < p(P1,P2) ≤ 1. Each of the in-
spected positions in (P1,P2) is chosen fully at random. Hence,
each inspection is a Bernoulli trial with probability of success
p(P1,P2), and we expect to inspect a first non-faulty position
in the p(P1,P2)

−1 = n/(n−∥P1;P2∥f)-th attempt. We con-
clude that the non-faulty position trials problem E(n,m1,m2)
has solution

1
n!2

(
∑

(P1,P2)∈perms(S1)×perms(S2)

n
n−∥P1;P2∥f

)
.

Notice that there are F(n,m1,m2,k) distinct pairs (P1,P2) ∈
perms(S1) × perms(S2) with ∥P′

1;P′
2∥f = k for each k,

max(m1,m2)≤ k ≤ m1+m2 < n. Hence, in the above expres-
sion for E(n,m1,m2), we can group on these pairs (P′

1,P
′
2) to

obtain the searched-for solution.

To further solve the non-faulty position trials problem, we
work towards a closed form for F(n,m1,m2,k). Consider
any pair (P1,P2) ∈ perms(S1)×perms(S2) with ∥P1;P2∥f =
k obtained via the outlined step-wise construction. Let b1
be the number of 1-faulty pairs, let b2 be the number of 2-
faulty pairs, and let b1,2 be the number of both-faulty pairs
in (P1,P2). By construction, we must have k = b1 +b2 +b1,2,
m1 = b1 +b1,2, and m2 = b2 +b1,2 and by rearranging terms,
we can derive

b1,2 = (m1 +m2)− k, b1 = k−m2, b2 = k−m1.

Example 5.4. Consider

S1 = [R1,1, . . . ,R1,5], f(S1) = {R1,1,R1,2,R1,3};
S2 = [R2,1, . . . ,R2,5], f(S2) = {R2,1}.

Hence, we have n = 5, m1 = fS1 = 3, and m2 = fS2 = 1. If we
want to create a pair (P1,P2) ∈ perms(S1)×perms(S2) with
k = ∥P1;P2∥f = 3 faulty positions, then (P1,P2) must have
two non-faulty pairs, two 1-faulty pairs, no 2-faulty pairs,
and one both-faulty pair. Hence, we have n− k = 2, b1 = 2,
b2 = 0, and b1,2 = 1.

8

2022

The above analysis only depends on the choice of m1, m2,
and k, and not on our choice of (P1,P2). Next, we use this
analysis to express F(n,m1,m2,k) in terms of the number of
distinct ways in which one can construct

(A) lists of b1 1-faulty pairs out of faulty replicas from S1
and non-faulty replicas from S2,

(B) lists of b2 2-faulty pairs out of non-faulty replicas from
S1 and faulty replicas from S2,

(C) lists of b1,2 both-faulty pairs out of the remaining faulty
replicas in S1 and S2 that are not used in the previous
two cases, and

(D) lists of n− k non-faulty pairs out of the remaining (non-
faulty) replicas in S1 and S2 that are not used in the
previous three cases;

and in terms of the number of distinct ways one can merge
these lists. As the first step, we look at how many distinct
ways we can merge two lists together:

Lemma 5.2. For any two disjoint lists S and T with |S|= v
and |T | = w, there exist M(v,w) = (v+w)!/(v!w!) distinct
lists L with L|S = S and L|T = T , in which L|M , M ∈ {S,T},
is the list obtained from L by only keeping the values that also
appear in list M.

Next, we look at the number of distinct ways in which
one can construct lists of type A, B, C, and D. Consider
the construction of a list of type A. We can choose

(m1
b1

)
distinct sets of b1 faulty replicas from S1 and we can choose(n−m2

b1

)
distinct sets of b1 non-faulty replicas from S2. As we

can order the chosen values from S1 and S2 in b1! distinct
ways, we can construct b1!2

(m1
b1

)(n−m2
b1

)
distinct lists of type A.

Likewise, we can construct b2!2
(n−m1

b2

)(m2
b2

)
distinct lists of

type B.

Example 5.5. We continue from the setting of Example 5.4:
we want to create a pair (P1,P2) ∈ perms(S1)× perms(S2)
with k = ∥P1;P2∥f = 3 faulty positions. To create (P1,P2),
we need to create b1 = 2 pairs that are 1-faulty. We have(m1

b1

)
=
(3

2

)
= 3 sets of two faulty replicas in S1 that we

can choose, namely the sets {R1,1,R1,2}, {R1,1,R1,3}, and
{R1,2,R1,3}. Likewise, we have

(n−m2
b1

)
=
(4

2

)
= 6 sets of two

non-faulty replicas in S2 that we can choose. Assume we
choose T1 = {R1,1,R1,3} from S1 and T2 = {R2,4,R2,5} from
S2. The two replicas in T1 can be ordered in nT1 ! = 2! = 2
ways, namely [R1,1,R1,3] and [R1,3,R1,1]. Likewise, the two
replicas in T2 can be ordered in nT2 ! = 2! = 2 ways. Hence,
we can construct 2 ·2 = 4 distinct lists of type A out of this
single choice for T1 and T2, and the sequences S1 and S2 pro-
vide us with

(m1
b1

)(n−m2
b1

)
= 18 distinct choices for T1 and T2.

We conclude that we can construct 72 distinct lists of type A
from S1 and S2.

By construction, lists of type A and type B cannot utilize the
same replicas from S1 or S2. After choosing b1 +b2 replicas
in S1 and S2 for the construction of lists of type A and B, the
remaining b1,2 faulty replicas in S1 and S2 are all used for
constructing lists of type C. As we can order these remaining
values from S1 and S2 in b1,2! distinct ways, we can construct
b1,2!2 distinct lists of type C (per choice of lists of type A
and B). Likewise, the remaining n− k non-faulty replicas in
S1 and S2 are all used for constructing lists of type D, and we
can construct (n− k)!2 distinct lists of type D (per choice of
lists of type A and B).

As the final steps, we merge lists of type A and B into lists
of type AB. We can do so in M(b1,b2) ways and the resultant
lists have size b1 +b2. Next, we merge lists of type AB and C
into lists of type ABC. We can do so in M(b1+b2,b1,2) ways
and the resultant lists have size k. Finally, we merge list of
type ABC and D together, which we can do in M(k,n− k)
ways. From this construction, we derive that F(n,m1,m2,k)
is equivalent to

b1!2
(

m1

b1

)(
n−m2

b1

)
b2!2

(
n−m1

b2

)(
m2

b2

)
·

M(b1,b2)b1,2!2M(b1 +b2,b1,2)(n− k)!2M(k,n− k),

which can be simplified to the following (see Appendix B):

Lemma 5.3. Let max(m1,m2) ≤ k ≤ min(n,m1 +m2) and
let b1 = k−m2, b2 = k−m1, and b1,2 = (m1 +m2)− k. We
have

F(n,m1,m2,k) =
m1!m2!(n−m1)!(n−m2)n!

b1!b2!b1,2!(n− k)!
.

Proof. We write f (n,m1,m2,k) for the closed form in the
statement of this lemma and we prove the statement of this
lemma by induction. First, the base case F(0,0,0,0). In this
case, we have n = m1 = m2 = k = 0 and, hence, b1 = b2 =
b1,2 = 0, and we conclude f (0,0,0,0) = 1 = F(0,0,0,0).

Now assume F(n′,m′
1,m

′
2,k

′) = f (n′,m′
1,m

′
2,k

′) for all
n′ < n and all k′ with max(m′

1,m
′
2) ≤ k′ ≤ min(n′,m′

1 +
m′

2). Next, we prove F(n,m1,m2,k) = f (n,m1,m2,k) with
max(m1,m2)≤ k ≤ min(n,m1 +m2). We use the shorthand
G= F(n,m1,m2,k) and we have

G= (n−m1)(n−m2)F(n−1,m1,m2,k)

(non-faulty pair)
+m1(n−m2)F(n−1,m1 −1,m2,k−1)

(1-faulty pair)
+(n−m1)m2F(n−1,m1,m2 −1,k−1)

(2-faulty pair)
+m1m2F(n−1,m1 −1,m2 −1,k−1).

(both-faulty pair)

9

2022

Notice that if n = k, then the non-faulty pair case does not
apply, as F(n−1,m1,m2,k) = 0, and evaluates to zero. Like-
wise, if b1 = 0, then the 1-faulty pair case does not apply,
as F(n − 1,m1 − 1,m2,k − 1) = 0, and evaluates to zero;
if b2 = 0, then the 2-faulty pair case does not apply, as
F(n− 1,m1,m2 − 1,k − 1) = 0, and evaluates to zero; and,
finally, if b1,2 = 0, then the both-faulty pair case does not
apply, as F(n−1,m1 −1,m2 −1,k−1) = 0, and evaluates to
zero.

First, we consider the case in which n > k, b1 > 0, b2 >
0, and b1,2 > 0. Hence, each of the four cases apply and
evaluate to non-zero values. We directly apply the induction
hypothesis on F(n−1,m1,m2,k), F(n−1,m1 −1,m2,k−1),
F(n−1,m1,m2−1,k−1), and F(n−1,m1−1,m2−1,k−1),
and obtain

G= (n−m1)(n−m2) ·
m1!m2!(n−1−m1)!(n−1−m2)!(n−1)!

b1!b2!b1,2!(n−1− k)!

+m1(n−m2) ·
(m1 −1)!m2!(n−m1)!(n−1−m2)!(n−1)!

(b1 −1)!b2!b1,2!(n−1− (k−1))!

+(n−m1)m2 ·
m1!(m2 −1)!(n−1−m1)!(n−m2)!(n−1)!

b1!(b2 −1)!b1,2!(n−1− (k−1))!

+m1m2 ·
(m1 −1)!(m2 −1)!(n−m1)!(n−m2)!(n−1)!

b1!b2!(b1,2 −1)!(n−1− (k−1))!
.

We apply x! = x(x−1)! and further simplify and obtain

G=
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n−1− k)!

+
m1!m2!(n−m1)!(n−m2)!(n−1)!

(b1 −1)!b2!b1,2!(n− k)!

+
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!(b2 −1)!b1,2!(n− k)!

+
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!(b1,2 −1)!(n− k)!

= (n− k)
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

+b1
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

+b2
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

+b1,2
m−1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!
.

We have k = b1+b2+b1,2 and, hence, n= (n−k)+b1+b2+
b1,2 and we conclude

G= ((n− k)+b1 +b2 +b1,2) ·
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

= n
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

=
m1!m2!(n−m1)!(n−m2)!n!

b1!b2!b1,2!(n− k)!
.

Next, in all other cases, we can repeat the above derivation
while removing the terms corresponding to the cases that
evaluate to 0. By doing so, we end up with the expression

G=
((∑t∈T t)m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!
.

in which T contains the term (n− k) if n > k (the non-faulty
pair case applies), the term b1 if b1 > 0 (the 1-faulty case
applies), the term b2 if b2 > 0 (the 2-faulty case applies), and
the term b1,2 if b1,2 > 0 (the both-faulty case applies). As
each term (n− k), b1, b2, and b1,2 is in T whenever the term
is non-zero, we have ∑t∈T t = (n− k)+ b1 + b2 + b1,2 = n.
Hence, we can repeat the steps of the above derivation in all
cases, and complete the proof.

We combine Lemma 5.1 and Lemma 5.3 to conclude

Proposition 5.2. Let S1 and S2 be lists of n = nS1 = nS2

replicas with m1 = fS1 , m2 = fS2 , b1 = k−m2, b2 = k−m1,
and b1,2 = (m1+m2)−k. If m1+m2 < n, then the non-faulty
position trials problem E(n,m1,m2) has solution

1
n!2

(
m1+m2

∑
k=max(m1,m2)

n
n− k

m1!m2!(n−m1)!(n−m2)!n!
b1!b2!b1,2!(n− k)!

)
.

Finally, we use Proposition 5.2 to derive

Proposition 5.3. Let C1,C2 be disjoint clusters and let Φ be
a list-pair function with (S1,S2) := Φ(C1,C2) and n = nS1 =
nS2 . If communication is synchronous and fS1 + fS2 < n, then
the expected number of cluster-sending steps performed by
CSPL(C1, C2, v, Φ) is less than E(n, fS1 , fS2).

Proof. Let (P1,P2)∈ perms(S1)×perms(S2). We notice that
CSPL inspects positions in P1 and P2 in a different way than
the non-faulty trials problem: at Line 7 of Figure 5, positions
are inspected one-by-one in a predetermined order and not
fully at random (with replacement). Next, we will argue that
E(n, fS1 , fS2) provides an upper bound on the expected num-
ber of cluster-sending steps regardless of these differences.
Without loss of generality, we assume that S1 and S2 each
have n distinct replicas. Consequently, the pair (P1,P2) rep-
resents a set R of n distinct replica pairs taken from C1 ×C2.

10

2022

We notice that each of the n! permutations of R is represented
by a single pair (P′

1,P
′
2) ∈ perms(S1)×perms(S2).

Now consider the selection of positions in (P1,P2) fully
at random, but without replacement. This process will yield
a list [j0, . . . , jn−1] ∈ perms([0, . . . ,n−1]) of positions fully
at random. Let Qi = [Pi[j0], . . . ,Pi[jn−1]], i ∈ {1,2}. We no-
tice that the pair (Q1,Q2) also represents R and we have
(Q1,Q2) ∈ perms(S1)× perms(S2). Hence, by choosing a
pair (P1,P2) ∈ perms(S1)×perms(S2), we choose set R fully
at random and, at the same time, we choose the order in which
replica pairs in R are inspected fully at random.

Finally, we note that CSPL inspects positions without re-
placement. As the number of expected positions inspected
in the non-faulty position trials problem decreases if we
choose positions without replacement, we have proven that
E(n, fS1 , fS2) is an upper bound on the expected number of
cluster-sending steps.

5.2 Practical Instances of CSPL

As the last step in providing practical instances of CSPL, we
need to provide practical list-pair functions to be used in con-
junction with CSPL. We provide two such functions that ad-
dress most practical environments. Let C1,C2 be disjoint clus-
ters, let nmin = min(nC1 ,nC2), and let nmax = max(nC1 ,nC2).
We provide list-pair functions

Φmin(C1,C2) 7→ (list(C1)
:nmin , list(C2)

:nmin),

Φmax(C1,C2) 7→ (list(C2)
:nmax , list(C2)

:nmax),

in which L:n denotes the first n values in the list obtained by
repeating list L. Next, we illustrate usage of these functions:
Example 5.6. Consider clusters C1,C2 with

S1 = list(C1) = [R1,1, . . . ,R1,9];
S2 = list(C2) = [R2,1, . . . ,R2,4].

We have

Φmin(C1,C2) = ([R1,1, . . . ,R1,4], list(C2));
Φmax(C1,C2) = (list(C1), [R2,1, . . . ,R2,4,R2,1, . . . ,R2,4,R2,1]).

Next, we combine Φmin and Φmax with CSPL, show that
in practical environments Φmin and Φmax satisfy the require-
ments put on list-pair functions in Proposition 5.1 to guarantee
termination and cluster-sending, and use these results to de-
termine the expected constant complexity of the resulting
instances of CSPL.

Theorem 5.7. Let C1,C2 be disjoint clusters with synchronous
communication.

1. If n = min(nC1 ,nC2)> 2max(fC1 , fC2), then the expected
number of cluster-sending steps performed by CSPL(C1,
C2, v, Φmin) is upper bounded by 4. For every (S1,S2) :=
Φmin(C1,C2), we have n = nS1 = nS2 , n > 2fS1 , n > 2fS2 ,
and n > fS1 + fS2

2. If n = min(nC1 ,nC2) > 3max(fC1 , fC2), then the ex-
pected number of cluster-sending steps performed by
CSPL(C1, C2, v, Φmin) is upper bounded by 2 1

4 . For
every (S1,S2) := Φmin(C1,C2), we have n = nS1 = nS2 ,
n > 3fS1 , n > 3fS2 , and n > fS1 + fS2 .

3. If nC1 > 3fC1 and nC2 > 3fC2 , then the expected number
of cluster-sending steps performed by CSPL(C1, C2, v,
Φmax) is upper bounded by 3. For every (S1,S2) :=
Φmax(C1,C2), we have n= nS1 = nS2 =max(nC1 ,nC2)>
fS1 + fS2 and either we have nC1 ≥ nC2 , n > 3fS1 , and
n > 2fS2 ; or we have nC2 ≥ nC1 , n > 2fS1 , and n > 3fS2 .

Each of these instance of CSPL results in cluster-sending v
from C1 to C2.

Proof. First, we prove the properties of Φmin and Φmax
claimed in the three statements of the theorem. In the first and
second statement of the theorem, we have min(nC1 ,nC2) >
cmax(fC1 , fC2), c ∈ {2,3}. Let (S1,S2) := Φmin(C1,C2)
and n = nS1 = nS2 . By definition of Φmin, we have n =
min(nC1 ,nC2), in which case Si, i ∈ {1,2}, holds n dis-
tinct replicas from Ci. Hence, we have fCi ≥ fSi and, as
n > cmax(fC1 , fC2)≥ cfCi , also n > cfSi . Finally, as n > 2fS1

and n > 2fS2 , also 2n > 2fS1 +2fS2 and n > fS1 + fS2 holds.
In the last statement of the theorem, we have nC1 > 3fC1

and nC2 > 3fC2 . Without loss of generality, we assume nC1 ≥
nC2 . Let (S1,S2) := Φmax(C1,C2) and n = nS1 = nS2 . By
definition of Φmax, we have n = max(nC1 ,nC2) = nC1 . As
n = nC1 , we have S1 = list(C1). Consequently, we also have
fS1 = fC1 and, hence, nS1 > 3fC1 . Next, we will show that
nS2 > 2fS2 . Let q = nC1 divnC2 and r = nC1 mod nC2 . We
note that list(C2)

:n contains q full copies of list(C2) and one
partial copy of list(C2). Let T ⊂ C2 be the set of replicas in
this partial copy. By construction, we have nS2 = qnC2 + r >
q3fC2 + fT + nfT and fS2 = qfC2 + fT with fT ≤ min(fC2 ,r).
As q > 1 and fC2 ≥ fT , we have qfC2 ≥ fC2 ≥ fT . Hence,
nS2 > 3qfC2 + fT +nfT > 2qfC2 + fC2 + fT +nfT ≥ 2(qfC2 +
fT) + nfT ≥ 2fS2 . Finally, as n > 3fS1 and n > 2fS2 , also
2n > 3fS1 +2fS2 and n > fS1 + fS2 holds.

Now, we prove the upper bounds on the expected num-
ber of cluster-sending steps for CSPL(C1, C2, v, Φmin) with
min(nC1 ,nC2)> 2max(fC1 , fC2). By Proposition 5.3, the ex-
pected number of cluster-sending steps is upper bounded
by E(n, fS1 , fS2). In the worst case, we have n = 2 f + 1
with f = fS1 = fS2 . Hence, the expected number of cluster-
sending steps is upper bounded by E(2 f + 1, f , f), f ≥ 0.
We claim that E(2 f +1, f , f) simplifies to E(2 f +1, f , f) =
4−2/(f +1)− f !2/(2 f)!. Hence, for all S1 and S2, we have
E(n, fS1 , fS2) < 4. An analogous argument can be used to
prove the other upper bounds.

Note that the third case of Theorem 5.7 corresponds to
cluster-sending between arbitrary-sized resilient clusters that
each operate using Byzantine fault-tolerant consensus proto-
cols.

11

2022

Remark 5.8. The upper bounds on the expected-case com-
plexity of instances of CSPL presented in Theorem 5.7 match
the upper bounds for CSP presented in Corollary 4.4. This
does not imply that the expected-case complexity for these
protocols is the same, however, as the probability distributions
that yield these expected-case complexities are very different.
To see this, consider a system in which all clusters have n
replicas of which f , n = 2 f +1, are faulty. Next, we denote
the expected number of cluster-sending steps of protocol P
by EP, and we have

ECSP =
(2 f +1)2

(f +1)2 = 4− 4 f +3
(f +1)2 ;

ECSPL = E(2 f +1, f , f) = 4− 2
(f +1)

− f !2

(2 f)!
.

In Figure 6, we have illustrated this difference by plotting the
expected-case complexity of CSP and CSPL for systems with
equal-sized clusters. In practice, we see that the expected-case
complexity for CSP is slightly lower than the expected-case
complexity for CSPL.

5.3 Practical Considerations

The results in this paper address the worst-case use-case of
cluster-sending: the exchange of a single value between clus-
ters in complete isolation without any knowledge on the like-
lihood of specific replicas to be faulty. Practical use-cases
typically provide additional knowledge that can be used to fur-
ther fine-tune the cluster-sending protocols. E.g., if multiple
values are to be exchanged in consecutive steps, then one can
start the cluster-sending of the next value by first attempting
to cluster-send via the previously-successful replica pair and
by skipping any replica pairs that have failed (in preceding
rounds). Likewise, if the likelihood of replicas to be faulty
is known to be skewed, then one can incorporate the skew in
the fully at random selection of replica pairs to maximize the
likelihood of selection non-faulty replica pairs.

6 Asynchronous Communication

In the previous sections, we introduced CSP, CSPP, and
CSPL, three probabilistic cluster-sending protocols with ex-
pected constant message complexity. To simplify presenta-
tion, we have presented their design with respect to a syn-
chronous environment. Next, we consider their usage in en-
vironments with asynchronous inter-cluster communication
due to which messages can get arbitrary delayed, duplicated,
or dropped.

We notice that the presented protocols only depend on syn-
chronous communication to minimize communication: at the
core of the correctness of CSP, CSPP, and CSPL is the cluster-
sending step performed by CS-STEP, which does not make

any assumptions on communication (Proposition 3.1). Conse-
quently, CSP, CSPP, and CSPL can easily be generalized to
operate in environments with asynchronous communication.

First, we observe that message duplication and out-of-order
delivery have no impact on the cluster-sending step performed
by CS-STEP. Hence, we do not need to take precautions
against such asynchronous behavior. Furthermore, if com-
munication is asynchronous, but reliable (messages do not
get lost, but can get duplicated, be delivered out-of-order, or
get arbitrarily delayed), both CSPP and CSPL will be able to
always perform cluster-sending in a finite number of steps.

If communication is asyncrhonous and unreliable (mes-
sages sent between non-faulty replicas can get lost and all
cluster-sending steps can fail), then the presented syncrhonous
protocols can fail and, hence, need to be adjusted to the asyn-
crhonous environment in which they are deployed. The best
way in which a probabilistic cluster-sending solution can deal
with unreliable asynchronous communication depends on the
model of asynchronous communication one is optimizing
for. If, for example, communication is expected to follow the
fair-lossy link model (in which any communication step will
succeed infinitely often if performed infinitely often), then
replicas in C1 can simply continue cluster-sending steps un-
til a step succeeds (CSP) or rerun the protocol until a step
succeeds (CSPP, and CSPL), which will eventually happen.
As a second example, one can consider the partial synchrony
model often employed by primary-backup consensus proto-
cols such as PBFT. In these models, unreliable periods of
communication are followed by sufficiently-long periods of
reliable communication, during which cluster-sending with
the presented algorithms will always succeed. Hence, under
this model, running the algorithms until successfull cluster-
sending will assure success as soon as communication be-
comes reliable.

We note that if communication is asynchronous, then mes-
sages can get arbitrarily delayed. Fortunately, practical en-
vironments operate with large periods of reliable communi-
cation in which the majority of the messages arrive within
some bounded delay unknown to C1 and C2. Hence, repli-
cas in C1 can simply assume some delay δ. If this delay is
too short, then a cluster-sending step can appear to fail sim-
ply because the proof of receipt is still under way. In this
case, cluster-sending will still be achieved when the proof of
receipt arrives, but spurious cluster-sending steps can be initi-
ated in the meantime. To reduce the number of such spurious
cluster-sending steps, all non-faulty replicas in C1 can use
exponential backoff to increase the message delay δ toward
some reasonable upper bound (e.g., 100 s).

Finally, asynchronous environments often necessitate
rather high assumptions on the message delay δ. Conse-
quently, the duration of a single failed cluster-sending step
performed by CS-STEP will be high. Here, a trade-off can
be made between message complexity and duration by start-
ing several rounds of the cluster-sending step at once. E.g.,

12

2022

0 2 4 6 8 10 12 14 16 18 20

2.5

3.0

3.5

4.0

Number of faulty replicas f

C
lu

st
er

-s
en

di
ng

st
ep

s

(n = 2f+1 replicas per cluster)

CSP, CSPP

CSPL

0 2 4 6 8 10 12 14 16 18 20

1.80

1.90

2.00

2.10

2.20

2.25

Number of faulty replicas f

C
lu

st
er

-s
en

di
ng

st
ep

s

(n = 3f+1 replicas per cluster)

CSP, CSPP

CSPL

Figure 6: Comparison of the expected-case complexity of CSPL and CSP as a function of the number of faulty replicas.

when communication is sufficiently reliable, then all three
protocols are expected to finish in four rounds or less, due
to which starting four rounds initially will sharply reduce
the duration of the protocol with only a constant increase in
expected message complexity.

7 Performance evaluation

In the previous sections, we introduced probabilistic cluster-
sending protocols with expected-case constant message com-
plexity. To gain further insight in the performance attainable
by these protocols, especially in environments with unreliable
communication, we implemented these protocols in a simu-
lated sharded resilient environment that allows us to control
the faulty replicas and the message loss rates.3 As a base-
line of comparison, we also evaluated three cluster-sending
protocols from the literature:

1. The worst-case optimal cluster-sending protocol PBS-
CS of Hellings et al. [17, 19] that can perform cluster-
sending using only fC1 + fC2 + 1 messages, which is
worst-case optimal. This protocol requires reliable com-
munication.

2. The broadcast-based cluster-sending protocol of
CHAINSPACE [1] that can perform cluster-sending us-
ing nC1nC2 messages. This protocol requires reliable
communication.

3. The global sharing protocol of GEOBFT [15], an opti-
mistic cluster-sending protocol that assumes that each
cluster uses a primary-backup consensus protocol (e.g.,
PBFT [6]) and optimizes for the case in which the coor-
dinating primary of C1 is non-faulty. In this optimistic
case, GEOBFT can perform cluster-sending using only
fC2 + 1 messages. To deal with faulty primaries and

3The full implementation of this experiment is available at anonymized.

unreliable communication, GEOBFT employs a costly
remote view-change protocol, however.

We refer to Figure 2 for an analytical comparison between
these three cluster-sending protocols and our three probabilis-
tic cluster-sending protocols.

In each experiment, we measured the number of messages
exchanged in 10000 runs of the cluster-sending protocol un-
der consideration. In specific, in each run we measure the
number of messages exchanged when sending a value v from a
cluster C1 to a cluster C2 with nC1 = nC2 = 3fC1 +1= 3fC2 +1,
and we aggregate this data over 10000 runs. The messages
exchanged is an objective measure of the performance of the
cluster-sending protocols under consideration that is inde-
pendent of the environment (e.g., network bandwidth, mes-
sage delays) and the application use-case for which cluster-
sending is used. As we use equal-sized clusters, we have
Φmin(C1,C2) = Φmax(C1,C2) and, hence, we use a singe in-
stance of CSPL.

Next, we detail the two experiments we performed and
look at their results.

7.1 Performance of Cluster-Sending Protocols
In our first experiment, we measure the number of messages
exchanged as a function of the number of faulty replicas.
In this case, we assumed reliable communication, due to
which we could include all six protocols. The results of this
experiment can be found in Figure 7.

As is clear from the results, our probabilistic cluster-
sending protocols are able to perform cluster-sending with
only a constant number of messages exchanged. Furthermore,
we see that the performance of our cluster-sending protocols
matches the theoretical expected-case analysis in this paper
and closely follows the expected performance illustrated in
Figure 6 (note that Figure 6 plots cluster-sending steps and
each cluster-sending step involves the exchange of two mes-
sages between clusters).

13

2022

1 5 9 13 17 21 25 29 33

0

20

40

60

80

100

120

140

160

180

Number of faulty replicas f

M
es

sa
ge

s
E

xc
ha

ng
ed

(Zoomed)

1 5 9 13 17 21 25 29 33

0

2

4

6

8

10

12

14

16

Number of faulty replicas f

M
es

sa
ge

s
E

xc
ha

ng
ed

(Further Zoomed)

PBS-CS [17, 19]
GEOBFT [15]†

CHAINSPACE [1]
CSP

CSPP

CSPL

Figure 7: A comparison of the number of message exchange steps as a function of the number of faulty replicas in both clusters
by our probabilistic cluster-sending protocols CSP, CSPP, and CSPL, and by three protocols from the literature. For each
protocol, we measured the number of message exchange steps to send a value between two equally-sized clusters (average of
10000 runs), each cluster having n = 3f+1 replicas. †The results for GEOBFT are a plot of the best-case optimistic phase of
that protocol.

As all other cluster-sending protocols have a linear (PBS-
CS and GEOBFT) or quadratic (CHAINSPACE) message com-
plexity, our probabilistic cluster-sending protocols outper-
form the other cluster-sending protocols. This is especially
the case when dealing with bigger clusters, in which case
the expected-case constant message complexity of our prob-
abilistic cluster-sending protocols shows the biggest advan-
tage. Only in the case of the smallest clusters can the other
cluster-sending protocols outperform our probabilistic cluster-
sending protocols, as PBS-CS, GEOBFT, and CHAINSPACE
use reliable communication to their advantage to eliminate
any acknowledgment messages send from the receiving clus-
ter to the sending cluster. We believe that the slightly higher
cost of our probabilistic cluster-sending protocols in these
cases is justified, as our protocols can effectively deal with
unreliable communication.

7.2 Message Loss

In our second experiment, we measure the number of mes-
sages exchanged as a function of the number of faulty replicas
and as a function of the message loss (in percent) between
the two clusters. We only focus on message loss between
clusters, and we assume that consensus steps within a cluster
always succeed. In this case, we only included our probabilis-
tic cluster-sending protocols, as PBS-CS and CHAINSPACE
both assume reliable communication and GEOBFT is only
able to perform recovery via remote view-changes in periods
of reliable communication. The results of this experiment can
be found in Figure 8.

We note that with a message loss of x%, the probability
p(x) of a successful cluster-sending step is only (1− x

100)
2.

E.g., p(30%)≈ 0.49. As expected, the message complexity

increases with an increase in message loss. Furthermore, the
probabilistic cluster-sending protocols perform as expected
(when taking into account the added cost to deal with message
loss). Although the probabilistic arguments underpinning the
expected-case cost of, on the one hand, CSP and CSPP and, on
the other hand, CSPL are vastly different, the results of these
experiments show that all three protocols behave similarly in
practice.

These results further underline the practical benefits of
each of the probabilistic cluster-sending protocols, especially
for larger clusters: even in the case of high message loss
rates, each of our probabilistic cluster-sending protocols are
able to outperform the cluster-sending protocols PBS-CS,
CHAINSPACE, and GEOBFT, which can only operate with
reliable-communication.

8 Related Work

Although there is abundant literature on distributed systems
and on consensus-based resilient systems (e.g., [2, 5, 8, 14,
16, 28, 33]), there is only limited work on communication
between resilient systems [1, 15, 17, 19]. In the previous sec-
tion, we have already compared CSP, CSPP, and CSPL with
the worst-case optimal cluster-sending protocols of Hellings
et al. [17, 19], the optimistic cluster-sending protocol of
GEOBFT [15], and the broadcast-based cluster-sending pro-
tocols of CHAINSPACE [1]. Furthermore, we notice that
cluster-sending can be solved using well-known Byzantine
primitives such as consensus, interactive consistency, and
Byzantine broadcasts [6, 9, 25]. These primitives are much
more costly than cluster-sending protocols, however, and re-
quire huge amounts of communication between all involved
replicas.

14

2022

Message Performance of Probabilistic Cluster-Sending (median, interquartile range, 1–99 percentile range)
Loss CSP CSPP CSPL

0%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
2
4
6
8

10
12
14
16
18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
2
4
6
8

10
12
14
16
18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
2
4
6
8

10
12
14
16

10%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

5

10

15

20

20%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

5
10
15
20
25
30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

5
10
15
20
25
30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

5

10

15

20

25

30%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

5
10
15
20
25
30
35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

5
10
15
20
25
30
35
40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

5
10
15
20
25
30
35

40%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

10

20

30

40

50

50%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

10
20
30
40
50
60
70
80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

10
20
30
40
50
60
70
80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

10
20
30
40
50
60
70
80

60%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

20
40
60
80

100
120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

20
40
60
80

100
120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

20
40
60
80

100
120

70%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

50

100

150

200

80%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

100

200

300

400

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

100

200

300

400

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

100

200

300

400

500

90%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

500

1,000

1,500

2,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

500

1,000

1,500

2,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

500

1,000

1,500

2,000

Figure 8: A comparison of the number of message exchange steps as a function of the number of faulty replicas in both clusters
and of the message loss by our probabilistic cluster-sending protocols CSP, CSPP, and CSPL. For each protocol, we measured
the number of message exchange steps to send 10000 values between two equally-sized clusters, each cluster having n = 3f+1
replicas, after which we aggregated the measurements to obtain a summary of the distribution of messages exchanged.

15

2022

In parallel to the development of traditional resilient sys-
tems and permissioned blockchains, there has been promis-
ing work on sharding in permissionless blockchains such
as BITCOIN [26] and ETHEREUM [34]. Examples include
techniques for enabling reliable cross-chain coordination via
sidechains, blockchain relays, atomic swaps, atomic com-
mitment, and cross-chain deals [12, 13, 20, 22, 23, 35, 36].
Unfortunately, these techniques are deeply intertwined with
the design goals of permissionless blockchains in mind (e.g.,
cryptocurrency-oriented), and are not readily applicable to
traditional consensus-based Byzantine clusters.

9 Conclusion

In this paper, we presented probabilistic cluster-sending proto-
cols that each provide highly-efficient solutions to the cluster-
sending problem. Our probabilistic cluster-sending proto-
cols can facilitate communication between Byzantine fault-
tolerant clusters with expected constant communication be-
tween clusters. For practical environments, our protocols can
support worst-case linear communication between clusters,
which is optimal, and deal with asynchronous and unreli-
able communication. The low practical cost of our cluster-
sending protocols further enables the development and de-
ployment of high-performance systems that are constructed
out of Byzantine fault-tolerant clusters, e.g., fault-resilient
geo-aware sharded data processing systems.

References

[1] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano,
Dave Hrycyszyn, and George Danezis. Chainspace: A
sharded smart contracts platform, 2017. URL: http:
//arxiv.org/abs/1708.03778.

[2] Christian Berger and Hans P. Reiser. Scaling byzantine
consensus: A broad analysis. In Proceedings of the 2nd
Workshop on Scalable and Resilient Infrastructures for
Distributed Ledgers, pages 13–18. ACM, 2018. https:
//doi.org/10.1145/3284764.3284767.

[3] Gabi Bracha and Ophir Rachman. Randomized consen-
sus in expected O((n2 logn)) operations. In Distributed
Algorithms, pages 143–150. Springer Berlin Heidelberg,
1992. https://doi.org/10.1007/BFb0022443.

[4] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Advances in Cryptology — CRYPTO
2001, pages 524–541. Springer Berlin Heidelberg, 2001.
https://doi.org/10.1007/3-540-44647-8_31.

[5] Christian Cachin and Marko Vukolic. Blockchain con-
sensus protocols in the wild (keynote talk). In 31st
International Symposium on Distributed Computing,

volume 91 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 1:1–1:16. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017. https://doi.
org/10.4230/LIPIcs.DISC.2017.1.

[6] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. ACM Trans-
actions on Computer Systems, 20(4):398–461, 2002.
https://doi.org/10.1145/571637.571640.

[7] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin,
Ee-Chien Chang, Qian Lin, and Beng Chin Ooi. To-
wards scaling blockchain systems via sharding. In
Proceedings of the 2019 International Conference on
Management of Data, pages 123–140. ACM, 2019.
https://doi.org/10.1145/3299869.3319889.

[8] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang
Chen, Beng Chin Ooi, and Ji Wang. Untangling
blockchain: A data processing view of blockchain sys-
tems. IEEE Trans. Knowl. Data Eng., 30(7):1366–
1385, 2018. https://doi.org/10.1109/TKDE.2017.
2781227.

[9] D. Dolev and H. Strong. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing,
12(4):656–666, 1983. https://doi.org/10.1137/
0212045.

[10] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer.
On the minimal synchronism needed for distributed con-
sensus. Journal of the ACM, 34(1):77—-97, 1987.
https://doi.org/10.1145/7531.7533.

[11] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288––323, 1988. https://doi.
org/10.1145/42282.42283.

[12] Muhammad El-Hindi, Carsten Binnig, Arvind
Arasu, Donald Kossmann, and Ravi Ramamurthy.
BlockchainDB: A shared database on blockchains.
Proc. VLDB Endow., 12(11):1597–1609, 2019.
https://doi.org/10.14778/3342263.3342636.

[13] Ethereum Foundation. BTC Relay: A bridge between
the bitcoin blockchain & ethereum smart contracts,
2017. URL: http://btcrelay.org.

[14] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi.
Fault-Tolerant Distributed Transactions on Blockchain.
Synthesis Lectures on Data Management. Morgan
& Claypool, 2021. https://doi.org/10.2200/
S01068ED1V01Y202012DTM065.

[15] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mo-
hammad Sadoghi. ResilientDB: Global scale resilient

16

http://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1708.03778
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1007/BFb0022443
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://doi.org/10.1145/7531.7533
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://doi.org/10.14778/3342263.3342636
http://btcrelay.org
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.2200/S01068ED1V01Y202012DTM065

2022

blockchain fabric. Proceedings of the VLDB Endow-
ment, 13(6):868—-883, 2020. https://doi.org/10.
14778/3380750.3380757.

[16] Suyash Gupta and Mohammad Sadoghi. Blockchain
Transaction Processing, pages 1–11. Springer Interna-
tional Publishing, 2018. https://doi.org/10.1007/
978-3-319-63962-8_333-1.

[17] Jelle Hellings and Mohammad Sadoghi. Brief an-
nouncement: The fault-tolerant cluster-sending prob-
lem. In 33rd International Symposium on Distributed
Computing (DISC 2019), volume 146 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages
45:1–45:3. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2019. https://doi.org/10.4230/LIPIcs.
DISC.2019.45.

[18] Jelle Hellings and Mohammad Sadoghi. Byshard:
Sharding in a byzantine environment. Proceedings
of the VLDB Endowment, 14(11):2230–2243, 2021.
https://doi.org/10.14778/3476249.3476275.

[19] Jelle Hellings and Mohammad Sadoghi. The fault-
tolerant cluster-sending problem. In Foundations
of Information and Knowledge Systems, pages 168–
186. Springer, 2022. https://doi.org/10.1007/
978-3-031-11321-5_10.

[20] Maurice Herlihy. Atomic cross-chain swaps. In Pro-
ceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, pages 245––254. ACM, 2018.
https://doi.org/10.1145/3212734.3212736.

[21] Maurice Herlihy. Blockchains from a distributed com-
puting perspective. Communications of the ACM,
62(2):78–85, 2019. https://doi.org/10.1145/
3209623.

[22] Maurice Herlihy, Barbara Liskov, and Liuba Shrira.
Cross-chain deals and adversarial commerce. The
VLDB Journal, 2021. https://doi.org/10.1007/
s00778-021-00686-1.

[23] Jae Kwon and Ethan Buchman. Cosmos whitepaper:
A network of distributed ledgers, 2019. URL: https:
//cosmos.network/cosmos-whitepaper.pdf.

[24] Leslie Lamport. Paxos made simple. ACM SIGACT
News, Distributed Computing Column 5, 32(4):51–58,
2001. https://doi.org/10.1145/568425.568433.

[25] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401,
1982. https://doi.org/10.1145/357172.357176.

[26] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system. URL: https://bitcoin.org/
en/bitcoin-paper.

[27] Arvind Narayanan and Jeremy Clark. Bitcoin’s
academic pedigree. Communications of the ACM,
60(12):36–45, 2017. https://doi.org/10.1145/
3132259.

[28] M. Tamer Özsu and Patrick Valduriez. Principles of
Distributed Database Systems. Springer, 2020. https:
//doi.org/10.1007/978-3-030-26253-2.

[29] Michael Pisa and Matt Juden. Blockchain and
economic development: Hype vs. reality. Tech-
nical report, Center for Global Development, 2017.
URL: https://www.cgdev.org/publication/
blockchain-and-economic-development-hype-vs-reality.

[30] David Reinsel, John Gantz, and John Rydning.
Data age 2025: The digitization of the world,
from edge to core. Technical report, IDC,
2018. URL: https://www.seagate.com/
files/www-content/our-story/trends/files/
idc-seagate-dataage-whitepaper.pdf.

[31] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and
Marek Zawirski. Conflict-free replicated data types.
In Stabilization, Safety, and Security of Distributed
Systems, pages 386–400. Springer, 2011. https:
//doi.org/10.1007/978-3-642-24550-3_29.

[32] Victor Shoup. Practical threshold signatures. In Ad-
vances in Cryptology — EUROCRYPT 2000, pages
207–220. Springer Berlin Heidelberg, 2000. https:
//doi.org/10.1007/3-540-45539-6_15.

[33] Gerard Tel. Introduction to Distributed Algorithms.
Cambridge University Press, 2nd edition, 2001.

[34] Gavin Wood. Ethereum: a secure decentralised gen-
eralised transaction ledger. EIP-150 revision. URL:
https://gavwood.com/paper.pdf.

[35] Gavin Wood. Polkadot: vision for a heteroge-
neous multi-chain framework, 2016. URL: https:
//polkadot.network/PolkaDotPaper.pdf.

[36] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi.
Atomic commitment across blockchains. Proc. VLDB
Endow., 13(9):1319–1331, 2020. https://doi.org/
10.14778/3397230.3397231.

A The proof of Lemma 5.2

To get the intuition behind the closed form of Lemma 5.2, we
take a quick look at the combinatorics of list-merging. Notice

17

https://doi.org/10.14778/3380750.3380757
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.1007/978-3-319-63962-8_333-1
https://doi.org/10.1007/978-3-319-63962-8_333-1
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.14778/3476249.3476275
https://doi.org/10.1007/978-3-031-11321-5_10
https://doi.org/10.1007/978-3-031-11321-5_10
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/3209623
https://doi.org/10.1145/3209623
https://doi.org/10.1007/s00778-021-00686-1
https://doi.org/10.1007/s00778-021-00686-1
https://cosmos.network/cosmos-whitepaper.pdf
https://cosmos.network/cosmos-whitepaper.pdf
https://doi.org/10.1145/568425.568433
https://doi.org/10.1145/357172.357176
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1145/3132259
https://doi.org/10.1145/3132259
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1007/978-3-030-26253-2
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://gavwood.com/paper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://doi.org/10.14778/3397230.3397231
https://doi.org/10.14778/3397230.3397231

2022

that we can merge lists S and T together by either first taking
an element from S or first taking an element from T . This
approach towards list-merging yields the following recursive
solution to the list-merge problem:

M(v,w)=

{
M(v−1,w)+M(v,w−1) if v > 0 and w > 0;
1 if v = 0 or w = 0.

Consider lists S and T with |S| = v and |T | = w distinct
values. We have |perms(S)| = v!, |perms(T)| = w!, and
|perms(S∪T)|= (v+w)!. We observe that every list-merge
of (PS,PT) ∈ perms(S)× perms(T) is a unique value in
perms(S ∪ T). Furthermore, every value in perms(S ∪ T)
can be constructed by such a list-merge. As we have
|perms(S)×perms(T)|= v!w!, we derive the closed form

M(v,w) =
(v+w)!
(v!w!)

of Lemma 5.2. Next, we formally prove this closed form.

Proof. We prove this by induction. First, the base cases
M(0,w) and M(v,0). We have

M(0,w) =
(0+w)!

0!w!
=

w!
w!

= 1;

M(v,0) =
(v+0)!

v!0!
=

v!
v!

= 1.

Next, we assume that the statement of the lemma holds for
all non-negative integers v′,w′ with 0 ≤ v′ +w′ ≤ j. Now
consider non-negative integers v,w with v+w = j+ 1. We
assume that v > 0 and w > 0, as otherwise one of the base
cases applies. Hence, we have

M(v,w) =M(v−1,w)+M(v,w−1).

We apply the induction hypothesis on the terms M(v−1,w)
and M(v,w−1) and obtain

M(v,w) =
(
((v−1)+w)!
(v−1)!w!

)
+

(
(v+(w−1))!

v!(w−1)!

)
.

Next, we apply x = x(x−1)! and simplify the result to obtain

M(v,w) =
(

v(v+w−1)!
v!w!

)
+

(
w(v+w−1)!

v!w!

)
=

(
(v+w)(v+w−1)!

v!w!

)
=

(v+w)!
v!w!

,

which completes the proof.

B The simplification of F(n,m1,m2,k)

Let g be the expression

b1!2
(

m1

b1

)(
n−m2

b1

)
b2!2

(
n−m1

b2

)(
m2

b2

)
·

M(b1,b2)b1,2!2M(b1 +b2,b1,2)(n− k)!2M(k,n− k),

as stated right above Lemma 5.3. We will show that g is
equivalent to the closed form of F(n,m1,m2,k), as stated in
Lemma 5.3.

Proof. We use the shorthands T1 =
(m1

b1

)(n−m2
b1

)
and T2 =(n−m1

b2

)(m2
b2

)
, and we have

g = b1!2T1b2!2T2 ·
M(b1,b2)b1,2!2M(b1 +b2,b1,2)(n− k)!2M(k,n− k).

We apply Lemma 5.2 on terms M(b1,b2), M(b1 + b2,b1,2),
and M(k,n− k), apply k = b1 + b2 + b1,2, and simplify to
derive

g = b1!2T1b2!2T2 ·
(b1 +b2)!

b1!b2!
b1,2!2 (b1 +b2 +b1,2)!

(b1 +b2)!b1,2!
(n− k)!2 (k+n− k)!

k!(n− k)!

= b1!T1b2!T2b1,2!(n− k)!n!.

Finally, we expand the binomial terms T1 and T2, apply b1,2 =
m1 −b1 = m2 −b2 and k = m1 +b2 = m2 +b1, and simplify
to derive

g = b1!
m1!

b1!(m1 −b1)!
(n−m2)!

b1!(n−m2 −b1)!
·

b2!
(n−m1)!

b2!(n−m1 −b2)!
m2!

b2!(m2 −b2)!
·

b1,2!(n− k)!n!

=
m1!
b1,2!

(n−m2)!
b1!(n− k)!

(n−m1)!
b2!(n− k)!

m2!
b1,2!

b1,2!(n− k)!n!

=
m1!m2!(n−m1)!(n−m2)!n!

b1!b2!b1,2!(n− k)!
,

which completes the proof.

C The Closed Form of E(2 f +1, f , f)

Here, we shall prove that

E(2 f +1, f , f) = 4− 2
(f +1)

− f !2

(2 f)!
.

18

2022

Proof. By Proposition 5.2 and some simplifications, we have

E(2 f +1, f , f) =
1

(2 f +1)!2 ·(
2 f

∑
k= f

2 f +1
2 f +1− k

f !2(f +1)!2(2 f +1)!
(k− f)!2(2 f − k)!(2 f +1− k)!

)
.

First, we apply x! = x(x−1)!, simplify, and obtain

E(2 f +1, f , f) =
f !2(2 f +1)
(2 f +1)!

·(
2 f

∑
k= f

(f +1)!2

(k− f)!2(2 f +1− k)!2

)

=
f !2

(2 f)!

(
f

∑
k=0

(f +1)!2

k!2(f +1− k)!2

)

=
f !2

(2 f)!

(
f

∑
k=0

(
f +1

k

)2
)
.

Next, we apply
(m

n

)
=
(m

m−n

)
, extend the sum by one term,

and obtain

E(2 f +1, f , f) =
f !2

(2 f)!
·((

f+1

∑
k=0

(
f +1

k

)(
f +1

f +1− k

))
−
(

f +1
f +1

)(
f +1

0

))
.

Then, we apply Vandermonde’s Identity to eliminate the sum
and obtain

E(2 f +1, f , f) =
f !2

(2 f)!

((
2 f +2
f +1

)
−1
)
.

Finally, we apply straightforward simplifications and obtain

E(2 f +1, f , f) =
f !2

(2 f)!
(2 f +2)!

(f +1)!(f +1)!
− f !2

(2 f)!

=
f !2

(2 f)!
(2 f)!(2 f +1)(2 f +2)

f !2(f +1)2 − f !2

(2 f)!

=
(2 f +1)(2 f +2)

(f +1)2 − f !2

(2 f)!

=
(2 f +2)2

(f +1)2 − 2 f +2
(f +1)2 − f !2

(2 f)!

=
4(f +1)2

(f +1)2 − 2(f +1)
(f +1)2 − f !2

(2 f)!

= 4− 2
f +1

− f !2

(2 f)!
,

which completes the proof.

19

Supplemental Materials

See attached the rebuttal comments based on the previous reviews. We have
applied the changes proposed in these rebuttal comments in the revised paper.

1

Response to the Reviewers’ comments

“Solution: Byzantine Cluster-Sending in

Expected Constant Cost and Constant Time”

Anonymous authors

October 1, 2022

We like to thank each of the three reviewers for their careful review and their detailed feedback of our
previous manuscript and the very positive evaluation of the accompanying artifact. To address the reviewers
comments, we have detailed below our rebuttal to the reviewers comments and the corresponding revisions
(in red).

Review #1 (reviewer HnvD) Besides the following major comments, the reviewer provided several
minor comments (e.g., spelling) that we shall resolve in a revision.

Review: When considering the sharded design to overcome limitations on consensus scalability
it might be relevant to also consider that consensus might not be needed to quantity transfer
tasks: cf: https://hal.archives-ouvertes.fr/hal-02861511v3.

To the best of our knowledge, strict ordering is necessary to support arbitrary general-purpose workloads.
However, we agree that there are indeed classes of operations for which strict consensus-based ordering of
(sharding) steps is unnecessary (e.g., balance changes and, more generally, operations on CRDTs). Hence,
we can add a provision to recognize such cases to the introduction.

Revise: Include design alternatives for scalable Byzantine fault-tolerant systems that do not
require strict ordering in the Introduction.

Review: In the CSpl protocol, it looks that a possible optimization would order the lists of
pairs, instead of fully at random, by the likelihood of them having non faulty replicas. Apparently
this could favour from transfer to transfer trying first pairs that are more likely to succeed by
being successful in previous transfers. Would there be any obvious drawback in this?

Such optimizations are only possible if information on the likelihood of failure of individual replicas
is available to all replicas in the sending cluster and these replicas all agree exactly on this information:
otherwise, individual replicas might make distinct decisions on how to proceed with cluster-sending.

In the specific case of resending via previously-successful paths (as a first attempt): this seems like an
obvious further optimization for repeated cluster-sending steps, as the information on previously-successful
paths will be available to all replicas.

Revise: We will add a practical consideration section (which will also addresses some of the
comments of Reviewer #2) where the multiple send optimization is outlined.

Review: On section 6, point 2, talking about eventual occurrence of reliable communication.
The concept of “Fair-lossy link” can be useful here. cf: https://dcl.epfl.ch/site/_media/

education/da18-introduction.pdf

1

In the text, we have opted for the informal model of asynchronous communication that is commonly used
in PBFT-like algorithms. We did not choose a particular formalization, as we believe that our protocols
can be adapted to any practical formalization of unreliable communication.

Review: Figure 7 would be more clear by using in the y axis the average number of steps,
instead of the total number of steps for 10000 repetitions.

Revise: We agree with this comment and will update Figure 7 and Figure 8, top, to remove
the factor 104 from the y-axis. We will update the captions accordingly.

Review: “We assume that communication within each cluster is reliable. In this case, we only
included our probabilistic cluster-sending protocols as PBS-CS and CHAINSPACE both assume
reliable communication ..”. By reliable did you meant to say unreliable here?

Both occurrences of reliable in the above excerpt are correct. In the experiment, we assume that com-
munication within a cluster is reliable, as we only focus on failure to communicate between clusters. Hence,
consensus steps within a cluster always succeed, while cs-step might fail due to communication failures.

Review #2 (reviewer 8v6c) The reviewer provided a non-exhaustive list of writing comments at https:
//ipfs.infura.io/ipfs/QmUBLLUDfmgkkM9Yn99Vyk5K4NfLiqj68YLvPKSPXszVya. We thank the reviewer
for the detailed feedback and shall resolve these comments in a revision. Besides these comments, the
reviewer provided the following major comments.

Review: It is a bit questionable to me how practically relevant the chosen model of synchronous
rounds is in practice, especially when the motivation seems to be blockchain systems and other
large-scale geo-distributed systems, where communication in synchronous rounds is generally
hard to achieve.

We agree that an always synchronous system is near-impossible to achieve in practical large-scale settings.
At the same time, practical communication (e.g., via the internet) between any pair of replicas will work
reliably with a reasonable delay with high likelihood.

As such, we have chosen to use a synchronous model to present the main ideas of probabilistic cluster-
sending protocols, which allowed us to simplify presentation significantly. As argued in our paper, the
probabilistic cluster-sending protocols can easily be extended to an asynchronous (practical) environment to
deal with the cases in which communication is not reliable or does not have a reasonable delay.

Revise: We will further clarify the structure of the paper with respect to asynchronous and
syncrhonous communication, which is already mentioned in Section 4, in the Introduction.

Review: Together with completely neglecting the intra-cluster overhead, this creates a very
specific model whose relation to practice could have been better argumented.

. . .

Also, at the beginning of page 5, I did not properly understand the implicit / free consensus.
Indeed, nodes in a cluster first need to agree on some operation that triggers the cluster-sending,
and thus agreeing on a message can be implicit. However, I do not see how, at the same time,
agreeing on the reception of a value can also be considered “free”. In such a case, it seems to
me, the whole cluster-sending could be implicit and no algorithm would be necessary in the first
place.

There are several cases in which intra-cluster overhead can be ignored. One such case is already mentioned
in the paper: in the case in which clusters are geo-aware shards (local clusters, dispersed globally); the costs
of intra-cluster steps are orders-of-magnitude lower than inter-cluster steps (see, e.g., [15]).

2

More generally, in most use cases we see for cluster-sending (e.g., multi-shard transaction execution), the
intra-cluster consensus steps are implicit, as they are also required to execute the transaction itself (which
we already briefly hinted at in Remark 4.3). To see this, consider a multi-shard transaction T that affects
clusters C1 and C2. One way to execute this transaction in a serializable manner is (1) for C1 to lock all
data relevant for the transaction and determine which operations σ need to be performed by C2; (2) for C1

to transfer control to C2; (3) for C2 to perform σ; (4) for C2 to transfer control back to C1; and (5) for C1

to make any required local changes and unlock all locked data. In this setting, a single cluster-sending step
is required and all consensus steps of this cluster-sending step can be made implicit:

• For step (1), cluster C1 needs to reach consensus on when to start execution of T (when to lock all data
relevant, when to determine σ). As part of this consensus step, one can construct the send-message of
Line 1 of CSp/CSpl.

• Likewise, for step (3), cluster C2 needs to reach consensus on when to perform σ. The proof of this
consensus step can be used as the proof of Line 4 of CS-step.

• Finally, for step (5), cluster C1 needs to reach consensus on when to complete execution of T (when to
make any local changes and unlock data). The proof of this consensus step can be used as the proof
of Line 9 of CS-step.

We believe that such integration of the intra-cluster overhead of cluster-sending into the underlying task
that needs to be performed (in this case, a multi-shard transaction execution) is typically possible, although
the specifics on how to do so will vary greatly from use case to use case. Hence, as we believe the intra-cluster
overhead is non-essential, we have not studied these costs in-depth.

Revise: We will add a practical consideration section (which also addresses some of the com-
ments of Reviewer #1) where the above practical approach toward eliminating additional intra-
cluster consensus steps for the purpose of cluster-sending are discussed. This added section will
expand on the current Remark 4.3.

Review: More than number of cross-cluster messages exchanged, it would be interesting to
also study the expected / worst-case latency in of cluster-sending in a realistic system.

. . .

The evaluation is rather limited and only focuses on the number of messages sent as a function of
cluster size. What would be much more interesting for me to see are actual time and bandwidth
spent to complete a cluster-sending operation.

The messages exchanged (and the number of rounds of CS-step) is an objective measure that is inde-
pendent of the environment and the application use case for which cluster-sending is used. Any measure of
bandwidth and latency in a realistic system would be hugely dependent on deployment parameters. E.g.,
the type of values that need to be cluster-send (which depend on the use case), the consensus protocols
used locally, any local execution cost (due to execution of transaction steps), and the cost of cryptographic
libraries used. Hence, we believe that any bandwidth and latency measurements would provide only insight
on the specifics of the artifact, and no further insight on these costs in any other use cases and deployments.

Revise: We will add the above rational to Section 7 (in specific, right before Section 7.1).

Review: Also, the authors clearly state that they consider a Byzantine model, but at the same
time suggest Paxos, a CFT protocol, as an example of a protocol for intra-cluster agreement.

We mainly consider a Byzantine environment. This does not rule out deployments where:

1. resilience to Byzantine failures is not required at all and we only have to consider crashes;

3

2. resilience to Byzantine failures is not required at the level of individual clusters (e.g., tightly man-
aged environments), while communication between clusters is done via an inherently hostile Byzantine
channel (e.g., a public network such as the internet).

In both cases, Paxos (crash-fault tolerance) suffices at the level of clusters. Crash-fault tolerance can deal
with a different ratio of faulty and non-faulty replicas than typical Byzantine fault-tolerant systems (without
trusted hardware). Hence, the probabilities involved in probabilistic cluster-sending are rather different in
case of crash-fault tolerant than in the case of Byzantine-fault tolerance. As we believe the crash-fault
tolerant cases to be useful in their own right, we have also included results for them.

Revise: Currently, the consideration of crash-fault tolerant deployments is only hinted at
indirectly (e.g., by mentioning Paxos), while the expected case complexities for such deployments
are included in the results of the paper. We will make this consideration explicit.

Review: Although some parts of the paper make use of rather extensive formalism, the very
definition of the cluster-sending problem is not very clear. Although Definition 2.1 conveys a
reasonable intuition behind the problem, in itself it is rather vague. E.g., the terms RECEIVE,
CONFIRM, and AGREE are not properly defined and even later on in the paper their exact
definitions are not properly specified. I would suggest defining proper abstractions to model
“local consensus” and communication between nodes / clusters and expressing the cluster-sending
problem in terms of those.

We agree with the reviewer that current definition are on the intuitive side. We did so as we did not
want to tie the definition of cluster-sending to our particular solution. E.g., a formalization in consensus
and communication steps would clearly fit the steps of the protocols we propose, while excluding solutions
to the cluster-sending problem that either do not require consensus steps at the receiving cluster or do not
require acknowledgment messages sent by the receiving cluster. We note that such solutions should not be
ruled out, as they do exist in environments with fully reliable communication.

Revise: We can formalize the terms agree, receive, and confirm as states of the involved
non-faulty replicas and require that all involved non-faulty replicas make the same state changes
independent of Byzantine behavior. Such a formalization would apply to both our solution and
other possible solutions.

Review: I was a bit puzzled by the claims around optimality referring to [17], as it is a 3-page
brief announcement that presents high-level intuitions about the cluster-sendig problem, but does
not prove any lower bounds on its solution.

The work in [17] did claim the worst-case lower bounds (Theorem 2 and 3 in that work), but did not
provide proofs for these claims. The details of the proof were included in the technical report available at
https://arxiv.org/abs/1908.01455.

Revise: We will update the references accordingly.

Review: When talking about the complexity of the proposed algorithms, I did not fully
understand how the number of “agreements” was counted, especially in the case where one of
the selected nodes is faulty. In particular, is it possible for nodes to participate in an agreement
protocol that fails due to a faulty proposer?

We believe that this comment refers to the number of consensus steps performed as part of the protocols
(e.g., in Theorem 4.2, we state two local consensus steps in cluster C1 and one local consensus step in cluster
C2). In this case, a consensus step is a completed round of consensus due to which all non-faulty replicas
reach agreement on a consensus decision. In a blockchain, this would correspond to a block being added to
their ledger.

We will further illustrate this using the consensus steps such as Line 8 of CS-step. With regards to this
consensus step, we have three cases:

4

1. If the replica R2 that received m and needs the construction of a proof at Line 8 is non-faulty, then it
will always be able to assure a consensus step. In specific, we require that a consensus step includes
any mitigation steps of the consensus protocol used to deal with faulty participants. E.g., if Pbft is
used and the current primary P of the receiving cluster is faulty, then the replica R2 that received
m and needs the construction of a proof at Line 8 needs to force a view-change (which can be done
by forwarding m to all non-faulty replicas in C2, which then each can ask primary P to initiate a
successful consensus step, failure of which will lead into a view-change).

2. If the replica R2 that received m and needs the construction of a proof at Line 8 is faulty, then it might
not initiate a consensus step. In this case, the CS-step will fail and a next iteration of CS-step will
eventually be triggered.

3. If the replica R2 that received m and needs the construction of a proof at Line 8 is faulty, then it
can initiate a consensus step, leading to a proof of receipt mp, but not send mp back to cluster C1.
In this case, the CS-step will fail and a next iteration of CS-step will eventually be triggered. If
the receiving replica of the next iteration is non-faulty, then it participated in the earlier round of
consensus that resulted in mp and, hence, this non-faulty replica can skip the consensus and send mp

back to cluster C1.

Hence, in all cases, non-faulty receivers can force consensus steps in C2 when necessary, while only a single
consensus step in C2 is required.

Revise: We will state explicitly what we mean by consensus steps in Theorem 4.2 and similar
results. We will further clarify the second paragraph of the proof of Theorem 4.2 by incorporating
a full case breakdown.

Review: I like the progressive approach to explaining the protocols and their analyses, starting
simple and gradually moving to wards the more complex ones. Some of the proofs / analyses
were rather hard to read though. A more structured approach, breaking them down into smaller
parts that are easier to digest would have been welcome.

As the reviewer noted, we already work step-by-step in our write up to eventually arrive at the full
details of CSpl. This structure is currently not yet explicitly outlined in the paper, however. We believe
that making the structure of the following arguments explicit (especially in Section 5) will support and guide
the reader throughout the paper.

Revise: Add supporting text to the organization outlined in the Introduction and to Sections
3–5 to support and guide the reader throughout the paper. Furthermore, integrate Appendix A
into Section 5.

Review #3 (reviewer ZfrY)

Review: First, the solution itself is not very novel. The basic building block, CS-Step, is
essentially a two-phase commit protocol between two clusters.

We agree with the reviewer that the basic building blocks in cluster-sending are simple, which is un-
surprising as cluster-sending itself is a simple primitive (when compared to other Byzantine fault-tolerant
primitives such as consensus). Indeed, the analogue of cluster-sending in a normal (non-fault tolerant)
distributed system in which individual components are nodes (instead of fault-tolerant clusters) would be
reliable message passing, which would be straightforward to implement on top of TCP. As such, we disagree
with the comparison with two-phase commit: two-phase commit aims at solving a higher-level agreement
problem (much more akin to consensus than cluster-sending).

Indeed in the fault-tolerant area several recent sharded fault-tolerant system designs such as AHL [7],
ByShard [18], and Chainspace [1] have built multi-shard transaction execution capabilities on top of Byzan-
tine fault-tolerant variants of two-phase commit. Each of these system designs use consensus and cluster-
sending (or, informally, a form of inter-cluster communication) as building blocks to build these Byzantine
fault-tolerant 2PCs.

5

Even though we agree that cluster-sending is a simple problem, we also believe it is a fundamental
primitive for scalable resilient systems. This, we strongly believe cluster-sending warrants investigation:
recent works, including the aforementioned AHL, ByShard, and Chainspace, have shown that some form
of inter-cluster communication, which can be formalized as cluster-sending, is an essential building block
(together with consensus for intra-cluster decision making).

Review: Then, the extensions, CSp and CSpl, are just randomized versions of the basic
algorithm to select nodes, which is a common process in Byzantine consensus and agreement
algorithms. There may be some interesting insights in the paper, but as presented, it was not
clear.

We agree with the reviewer that the protocols of Section 4, CSp and CSpp, are straightforward random-
ized protocols. In specific, in CSp, we randomly select replica pairs until we pick a pair of non-faulty replicas,
whereas the protocol CSpp provides a fine-tuned version of CSp that eliminates provable unnecessary steps.
Although both protocols can be used in practice and have very low expected-case complexities, we do not
consider them to be a major contribution in this paper. Instead, the main purpose of Section 4 (and the
protocols CSp and CSpp) is three-fold:

1. illustrate that cluster-sending with an expected constant cost is possible (even if the worst-case lower-
bounds of [17] dictate linear costs);

2. illustrate the basic usage of CS-step in randomized protocols; and

3. illustrate the basic operations of randomized protocols, their complexity analysis, and ways to fine-tune
them.

Unfortunately, both CSp and CSpp have very high worst-case complexity: CSp does not guarantee termi-
nation, whereas CSpp performs a worst-case quadratic amount of steps (as argued in Corollary 4.5).

Section 4 introduces all main concepts we rely on in later sections to improve on these straightforward
protocols by constructing the randomized protocol CSpl. CSpl is able to combine an expected constant
cost with a low worst-case optimal cost. We believe that the main novelty of the paper is CSpl, and the
main complexity of the paper is the analysis of the probabilistic experiment at the basis of the expected-case
analysis of this protocol (which covers Section 5).

Revise: We will rework the organization part of the Introduction and make changes to Sections
3–5 to better highlight our contributions and support and guide the reader throughout the paper.

Review: If not for the novelty of the algorithm itself, I think the analysis of the algorithm
should be interesting and/or provide new insights. The authors indeed carefully analyze a closed
form solution of probability of non-faulty position. This, for example, yields the bounds of 4
expected steps and 9

4 expected steps in cases 1 and 2 of Theorem 5.7. This analysis, however,
seems unnecessarily complex. When considering Φmin in the first case of Theorem 5.7,
the analysis is simply about the number of trials before selecting two good nodes
without replacement. This is upper bounded by the same experiment but with
replacement, since a failed node is removed when considering without replacement.
This is upper bounded by the same experiment but with replacement, since a failed
node is removed when considering without replacement. WLOG, assume m1 > m2.
In this case, the probability of success is

Pr[Selecting two good nodes without replacement]

> Pr[Selecting two good nodes with replacement]

>
(
1− m1

n

)(
1− m2

n

)
>

(
1− 1

2

)(
1− 1

2

)
=

1

4

6

The “with replacement” case becomes a simple Bernoulli trial with p > 1
4 , which

then has expected number of trial of < 1
p . This provides the same bound of 4 steps,

with a much simpler analysis. [emphasis added by the authors] Similar analysis for case 2
of Theorem 5.7 as well, where p is bounded below by (1 − 1

3)(1 − 1
3) = 4

9 , and thus expected
number of trials less than 9

4 , which again is the same bound as the analysis gives in the paper.
Similar analysis can be applied to Φmax for the same result as case 3. Would it be possible to
get a tighter expected value than this loose analysis?

The probabilistic argument described by the reviewer does not match the random experiment of CSpl.
In specific, the core simplification on which the above argument rests is the statement

Pr[Selecting two good nodes with replacement] >
(
1− m1

n

)(
1− m2

n

)
.

We note that the above statement combines the probabilities p1 =
(
1− m1

n

)
(probability to pick a non-faulty

sender from cluster C1) and p2 =
(
1− m2

n

)
(probability to pick a non-faulty receiver from cluster C2.

This simplified statement does not hold in the random experiment performed by CSpl: to combine
probabilites p1 and p2 in this way, one requires that the two probabilites are independent, which is not the
case in CSpl. Indeed, in CSpl a replica pair is picked from a pre-arranged set of pairs (that does not include
all possible pairs, hence, making the pairing dependent).

The analysis of the reviewer does apply to CSp, however, as CSp performs a straightforward independent
pick of replicas from the sending and receiving cluster. As such, the analysis presented in Theorem 4.2 is
almost identical to the analysis proposed here by the reviewer.

Although CSp has the simple analysis proposed by the reviewer, this simple analysis can only exists
because CSp inspects all n1 · n2 possible pairings of n1 replicas in the sending cluster and n2 replicas
in the receiving cluster (thereby guaranteeing that replicas in the sending and receiving cluster are picked
independently). The downside of this approach followed by CSp is that it has to consider all possible pairing,
which is a quadratic amount even if we do not replace pairs.

The main contribution of our paper is an alternative to CSp, the protocol CSpl, that guarantees to
inspect only a worst-case linear amount of replica pairs (which matches the worst-case lower-bounds on
complexity as proven in [17]), while at the same time guaranteeing a constant expected-case complexity. To
be able to achieve these two guarantees in one protocol, CSpl performs a random experiment in which the
choice of replica from the sending cluster depends on the choice of replica from the receiving cluster (and
vice versa).

Even though this experiment considers strictly fewer replicas pairs than a standard random pick of replicas
(as performed by CSp), we were able via an in-depth analysis (which is the majority of Section 5) to derive
that the expected-case cost of both approaches are similar and provide the same constant upper-bounds on
the expected-case costs of CSp and CSpl (they are not identical, however, as argued in Remark 5.8).

Revise: To address the above reviewer comment and the previous reviewer comment, we will
further underline our contributions and their significance in the Introduction and Section 5 (the
latter focussing on the differences in the random experiments of CSp and CSpl).

Review: The evaluation also needs improvement. For instance, while the expected number of
steps is important, the tail latency is also important. For example, what is the 99% or 99.9%
messaging latency for various sizes of clusters and number of faulty nodes?

Figure 8, bottom, already provides the complexity of the worst run (out of 10000) with respect to total
number of CS-steps, which translate exactly to the number of communication phases and the latency. We
can extend the experiments to also include further distribution data on the complexity of the runs.

Revise: Include further distribution data on the tail latency of the message complexity in the
10.000 runs performed in the experiments.

7

Review: This might also be a place where an exact closed form analysis of the probability
might be beneficial, as you can analyze the variance and other properties of the distribution
more theoretically, not just empirically.

The protocol CSp follows the standard geometric distribution. All other protocols follow non-standard
distributions.

Revise: We can extend the claims of Theorem 4.2 with other theoretical details on the cost
of CSp. For the other protocols, we do not have a standard distribution with known theoretical
standard deviations and variance. We can, however, extend the experiments to include details
on standard deviations in the cost of the protocols.

Review: In general, the evaluation also probably could benefit from showing more realistic
results. E.g., running two small clusters as shown in Figure 1 (like, one in Europe and one in
US), and measuring end to end latency to run the full protocol.

As detailed in the response to Reviewer #2, we used the messages exchanged (and the number of rounds
of CS-step) as an objective measure that is independent of the environment and the application use case
for which cluster-sending is used.

Any measure of bandwidth and latency in a realistic system would be hugely dependent on deployment
parameters. E.g., the type of values that need to be cluster-send (which depend on the use case), the
consensus protocols used locally, any local execution cost (due to execution of transaction steps), and the
cost of cryptographic libraries used. Hence, we believe that any bandwidth and latency measurements would
provide only insight on the specifics of the artifact, and no further insight on these costs in any other use
cases and deployments.

Revise: We will add the above rational to Section 7 (in specific, right before Section 7.1).

Review: How does one perform “Choose replicas” in step 4 of CSp? This step also seem to
require a Byzantine consensus, or a reliable (random) beacon. It’s possible to bootstrap this with
a random initial seed, and using a PRNG from that seed to locally determine the randomness
for that round, but I believe it requires some care.

The protocols require a shared source of randomness for all replicas in the sending cluster. As stated in
the paper (end of Section 2), such randomness can be provided via a distributed fault-tolerant random coin
[3,4].

Review: The protocol doesn’t seem to generalize that well to multiple clusters. As in, if a
cluster needs to send values to clusters and all clusters need to be sure that all clusters saw
the value, then the number of inter-cluster messages seems to scale quadratically in with naive
extension of this scheme.

Indeed, the protocol is desingned for cluster-to-cluster communication (as a replacement for direct point-
to-point communication when replacing nodes in a distributed system by fault-tolerant clusters).

Review: Table of notations somewhere would help the reader, given the lengthy probability
analysis with many terms.

Thanks for this great suggestion to improve readability of Section 5.

Revise: We shall include such a table in the revision.

Review: The graphs are difficult to read with various lines looking very similar to each other.
The zooming doesn’t help readability here.

We have to redesign the figures to include details on variance and further details on tail costs (in response
to earlier comments by the reviewer).

Revise: In the redesign of the figures, we will use additional space to further improve readability
of the figures (as there is no limit on page size).

8

SOLUTION: BYZANTINE CLUSTER-SENDING IN

EXPECTED CONSTANT COST AND CONSTANT TIME

Anonymous authors
Paper under double-blind review

Abstract
Traditional resilient systems operate on fully-replicated fault-
tolerant clusters, which limits their scalability and perfor-
mance. One way to make the step towards resilient high-
performance systems that can deal with huge workloads, is by
enabling independent fault-tolerant clusters to efficiently com-
municate and cooperate with each other, as this also enables
the usage of high-performance techniques such as sharding.
Recently, such inter-cluster communication was formalized as
the Byzantine cluster-sending problem. Unfortunately, exist-
ing worst-case optimal protocols for cluster-sending all have
linear complexity in the size of the clusters involved.

In this paper, we propose probabilistic cluster-sending tech-
niques as a solution for the cluster-sending problem with only
an expected constant message complexity, this independent
of the size of the clusters involved and this even in the pres-
ence of highly unreliable communication. Depending on the
robustness of the clusters involved, our techniques require
only two-to-four message round-trips (without communica-
tion failures). Furthermore, our protocols can support worst-
case linear communication between clusters. Finally, we have
put our techniques to the test in an in-depth experimental eval-
uation that further underlines the exceptional low expected
costs of our techniques in comparison with other protocols.
As such, our work provides a strong foundation for the further
development of resilient high-performance systems.

1 Introduction

The promises of resilient data processing, as provided by
private and public blockchains [14, 20, 26], has renewed inter-
est in traditional consensus-based Byzantine fault-tolerant re-
silient systems [5,6,23]. Unfortunately, blockchains and other
consensus-based systems typically rely on fully-replicated
designs, which limits their scalability and performance. Con-
sequently, these systems cannot deal with the ever-growing
requirements in data processing [28, 29].

One wat to improve on these limitations is by building com-
plex system designs that consist of independently-operating
resilient clusters that can cooperate to provide certain services.
To illustrate this, one can consider a sharded resilient design.
In a traditional resilient systems, resilience is provided by
a fully-replicated consensus-based Byzantine fault-tolerant
cluster in which all replicas hold all data and process all re-
quests. This traditional design has only limited performance,

even with the best consensus protocols, and lacks scalability.
To improve on the design of traditional systems, one can em-
ploy the sharded design of Figure 1. In this sharded design,
each cluster only holds part of the data. Consequently, each
cluster only needs to process requests that affect data they
hold. In this way, this sharded design improves performance
by enabling parallel processing of requests by different clus-
ters, while also improving storage scalability. To support
requests that affect data in several clusters in such a sharded
design, the clusters need to be able to coordinate their opera-
tions, however [1, 7, 15, 18].

Central to such complex system designs is the ability to
reliably and efficiently communicate between independently-
operating resilient clusters. Recently, this problem of commu-
nication between Byzantine fault-tolerant clusters has been
formalized as the cluster-sending problem [17]. We believe
that efficient solutions to this problem have a central role
towards bridging resilient and high-performance data pro-
cessing.

E1 E2

E3 E4

Cluster
(European Data)

A1 A2

A3 A4

Cluster
(American Data)

Cluster Sending

(coordination)

Requests
(European Data)

Requests
(Mixed Data)

Requests
(American Data)

Figure 1: A sharded design in which each resilient cluster of
four replicas holds only a part of the data. Local decisions
within a cluster are made via consensus (), whereas
multi-shard coordination to process multi-shard transactions
requires cluster-sending ().

Although the cluster-sending problem has received
some attention (e.g., as part of the design of AHL [7],
BYSHARD [18], GEOBFT [15], and CHAINSPACE [1]), and
cluster-sending protocols that solve the cluster-sending prob-
lem with worst-case optimal complexity are known [17], we
believe there is still much room for improvement.

In this paper, we introduce a new solution to the cluster-

2022

Figure 2: A comparison of cluster-sending protocols that send a value from cluster C1 with nC1 replicas, of which fC1 are faulty,
to cluster C2 with nC2 replicas, of which fC2 are faulty. For each protocol P, Protocol specifies its name; Robustness specifies the
conditions P puts on the clusters; Message Steps specifies the number of messages exchanges P performs; Optimal specifies
whether P is worst-case optimal; and Unreliable specifies whether P can deal with unreliable communication.

Protocol Robustnessa Message Steps Optimal Unreliable
(expected-case) (worst-case)

PBS-CS [17] min(nC1 ,nC2)> fC1 + fC2 fC1 + fC2 +1 Ë é
PBS-CS [17] nC1 > 3fC1 , nC2 > 3fC2 max(nC1 ,nC2) Ë é

GEOBFT [15] nC1 = nC2 > 3max(fC1 , fC2) fC2 +1b Ω(fC1 nC2) é Ë

CHAINSPACE [1] nC1 > 3fC1 , nC2 > 3fC2 nC1 nC2 é é

T
hi

s
Pa

pe
r CSPP nC1 > 2fC1 , nC2 > 2fC2 4 (fC1 +1)(fC2 +1) é Ë

CSPP nC1 > 3fC1 , nC2 > 3fC2 2 1
4 (fC1 +1)(fC2 +1) é Ë

CSPL min(nC1 ,nC2)> fC1 + fC2 4 fC1 + fC2 +1 Ë Ë

CSPL min(nC1 ,nC2)> 2(fC1 + fC2) 2 1
4 fC1 + fC2 +1 Ë Ë

CSPL nC1 > 3fC1 , nC2 > 3fC2 3 max(nC1 ,nC2) Ë Ë

aProtocols that have different message step complexities depending on the robustness assumptions have been included for each of the robustness assumptions.
bComplexity when the coordinating primary in C1 is non-faulty and communication is reliable.

sending problem: we introduce cluster-sending protocols that
use probabilistic cluster-sending techniques and are able to
provide low expected-case message complexity (at the cost of
higher communication latencies, a good trade-off in systems
where inter-cluster network bandwidth is limited). In specific,
our main contributions are as follows:

1. First, in Section 3, we introduce the cluster-sending step
CS-STEP that attempts to send a value from a replica in
the sending cluster to a replica in the receiving cluster
in a verifiable manner and with a constant amount of
inter-cluster communication.

2. Then, in Section 4, we introduce the Synchronous Proba-
bilistic Cluster-Sending protocol CSP that uses CS-STEP
with randomly selected sending and receiving replicas to
provide cluster-sending in expected constant steps. We
also propose pruned-CSP (CSPP), a fine-tuned version
of CSP that guarantees termination.

3. In Section 5, we propose the Synchronous Probabilistic
Linear Cluster-Sending protocol CSPL, that uses CS-
STEP with a specialized randomized scheme to select
replicas, this to provide cluster-sending in expected con-
stant steps and worst-case linear steps, which is optimal.

4. Next, in Section 6, we discuss how CSP, CSPP, and
CSPL can be generalized to operate in environments
with asynchronous and unreliable communication.

5. Finally, in Section 7, we evaluate the behavior of the
proposed probabilistic cluster-sending protocols via an
in-depth evaluation. In this evaluation, we show that
probabilistic cluster-sending protocols has exceptionally
low communication costs in comparison with existing

cluster-sending protocols, this even in the presence of
communication failures.

A summary of our findings in comparison with existing tech-
niques can be found in Figure 2. In Section 2, we introduce
the necessary terminology and notation, in Section 8, we com-
pare with related work, and in Section 9, we conclude on our
findings.

2 The Cluster-Sending Problem

Before we present our probabilistic cluster-sending tech-
niques, we first introduce all necessary terminology and no-
tation. The formal model we use is based on the formal-
ization of the cluster-sending problem provided by Hellings
et al. [17]. If S is a set of replicas, then f(S) ⊆ S denotes
the faulty replicas in S, whereas nf(S) = S\ f(S) denotes the
non-faulty replicas in S. We write nS = |S|, fS = |f(S)|, and
nfS = |nf(S)|= nS−fS to denote the number of replicas, faulty
replicas, and non-faulty replicas in S, respectively. A cluster
C is a finite set of replicas. We consider clusters with Byzan-
tine replicas that behave in arbitrary manners. In specific,
if C is a cluster, then any malicious adversary can control
the replicas in f(C) at any time, but adversaries cannot bring
non-faulty replicas under their control.

Definition 2.1. Let C1,C2 be disjoint clusters. The cluster-
sending problem is the problem of sending a value v from C1
to C2 such that (1) all non-faulty replicas in nf(C2) RECEIVE
the value v; (2) all non-faulty replicas in nf(C1) CONFIRM that
the value v was received by all non-faulty replicas in nf(C2);
and (3) non-faulty replicas in nf(C2) only receive a value v if
all non-faulty replicas in nf(C1) AGREE upon sending v.

We assume that there is no limitation on local communica-
tion within a cluster, while global communication between

2

2022

clusters is costly. This model is supported by practice, where
communication between wide-area deployments of clusters
is up-to-two orders of magnitudes more expensive than com-
munication within a cluster [7, 15].

We assume that each cluster can make local decisions
among all non-faulty replicas, e.g., via a consensus proto-
col such as PBFT or PAXOS [6, 23]. Furthermore, we assume
that the replicas in each cluster can certify such local deci-
sions via a signature scheme. E.g., a cluster C can certify a
consensus decision on some message m by collecting a set
of signatures for m of fC +1 replicas in C , guaranteeing one
such signature is from a non-faulty replica (which would only
signs values on which consensus is reached). We write ⟨m⟩C
to denote a message m certified by C . To minimize the size
of certified messages, one can utilize a threshold signature
scheme [30]. To enable decision making and message certifi-
cation, we assume, for every cluster C , nC > 2fC , a minimal
requirement [9, 24]. Lastly, we assume that there is a com-
mon source of randomness for all non-faulty replicas of each
cluster, e.g., via a distributed fault-tolerant random coin [3,4].

3 The Cluster-Sending Step

If communication is reliable and one knows non-faulty repli-
cas R1 ∈ nf(C1) and R2 ∈ nf(C2), then cluster-sending a value
v from C1 to C2 can be done via a straightforward cluster-
sending step: one can simply instruct R1 to send v to R2.
When R2 receives v, it can disperse v locally in C2. Unfortu-
nately, we do not know which replicas are faulty and which
are non-faulty. Furthermore, it is practically impossible to
reliably determine which replicas are non-faulty, as non-faulty
replicas can appear faulty due to unreliable communication,
while faulty replicas can appear well-behaved to most replicas,
while interfering with the operations of only some non-faulty
replicas.

To deal with faulty replicas when utilizing the above cluster-
sending step, one needs a sufficient safeguards to detect fail-
ure of R1, of R2, or of the communication between them. To
do so, we add receive and confirmation phases to the sketched
cluster-sending step. During the receive phase, the receiv-
ing replica R2 must construct a proof P that it received and
dispersed v locally in C2 and then send this proof back to R1.
Finally, during the confirmation phase, R1 can utilize P to
prove to all other replicas in C1 that the cluster-sending step
was successful. The pseudo-code of this cluster-sending step
protocol CS-STEP can be found in Figure 3. We have the
following:

Proposition 3.1. Let C1,C2 be disjoint clusters with R1 ∈ C1
and R2 ∈ C2. If C1 satisfies the pre-conditions of CS-STEP(R1,
R2, v), then execution of CS-STEP(R1, R2, v) satisfies the post-
conditions and will exchange at most two messages between
C1 and C2.

Proof. We prove the three post-conditions separately. (i)

Protocol CS-STEP(R1, R2, v), with R1 ∈ C1 and R2 ∈ C2:

Pre: Each replica in nf(C1) decided AGREE on sending v to C2 (and
can construct ⟨send : v, C2⟩C1).

Post: (i) If communication is reliable, R1 ∈ nf(C1), and R2 ∈ nf(C2),
then R1 decides CONFIRM on v. (ii) If a replica in nf(C2) decides
RECEIVE on v, then all replicas in nf(C1) decided AGREE on
sending v to C2. (iii) If a replica in nf(C1) decides CONFIRM

on v, then all replicas in nf(C2) decided RECEIVE on v and all
replicas in nf(C1) eventually decide CONFIRM on v (whenever
communication becomes reliable).

The cluster-sending step for R1 and R2:
1: Instruct R1 to send ⟨send : v, C2⟩C1 to R2.

The receive role for C2:
2: event R2 ∈ nf(C2) receives message m := ⟨send : v, C2⟩C1

from R1 ∈ C1 do
3: if R2 does not have consensus on m then
4: Use local consensus on m and construct ⟨proof : m⟩C2 .
5: {Each replica in nf(C2) decides RECEIVE on v.}
6: Send ⟨proof : m⟩C2 to R1.

The confirmation role for C1:
7: event R1 ∈ nf(C1) receives message mp := ⟨proof : m⟩C2

with m := ⟨send : v, C2⟩C1 from R2 ∈ C2 do
8: if R1 does not have consensus on mp then
9: Use local consensus on mp.

10: {Each replica in nf(C1) decides CONFIRM on v.}

Figure 3: The Cluster-sending step protocol CS-STEP(R1, R2,
v). In this protocol, R1 tries to send v to R2, which will succeed
if both R1 and R2 are non-faulty.

We assume that communication is reliable, R1 ∈ nf(C1), and
R2 ∈ nf(C2). Hence, R1 sends message m := ⟨send : v, C2⟩C1
to R2 (Line 1 of Figure 3). In the receive phase (Lines 2–6 of
Figure 3), replica R2 receives message m from R1. Replica R2
uses local consensus on m to replicate m among all replicas
C2 and, along the way, to constructs a proof of receipt mp :=
⟨proof : m⟩C2 . As all replicas in nf(C2) participate in this
local consensus, all replicas in nf(C2) will decide RECEIVE
on v from C1. Finally, the proof mp is returned to R1. In
the confirmation phase (Lines 7–10 of Figure 3), replica R1
receives the proof of receipt mp. Next, R1 uses local consensus
on mp to replicate mp among all replicas in nf(C1), after which
all replicas in nf(C1) decide CONFIRM on sending v to C2

(ii) A replica in nf(C2) only decides RECEIVE on v after
consensus is reached on a message m := ⟨send : v, C2⟩C1
(Line 5 of Figure 3). This message m not only contains the
value v, but also the identity of the recipient cluster C2. Due
to the usage of certificates and the pre-condition, the message
m cannot be created without the replicas in nf(C1) deciding
AGREE on sending v to C2.

(iii) A replica in nf(C1) only decides CONFIRM on v after

3

2022

consensus is reached on a proof of receipt message mp :=
⟨proof : m⟩C2 (Line 10 of Figure 3). This consensus step
will complete for all replicas in C1 whenever communication
becomes reliable. Hence, all replicas in nf(C1) will eventually
decide CONFIRM on v. Due to the usage of certificates, the
message mp cannot be created without cooperation of the
replicas in nf(C2). The replicas in nf(C2) only cooperate in
constructing mp as part of the consensus step of Line 4 of
Figure 3. Upon completion of this consensus step, all replicas
in nf(C2) will decide RECEIVE on v.

In the following sections, we show how to use the cluster-
sending step in the construction of cluster-sending protocols.
In Section 4, we introduce synchronous protocols that provide
expected constant message complexity. Then, in Section 5,
we introduce synchronous protocols that additionally provide
worst-case linear message complexity, which is optimal. Fi-
nally, in Section 6, we show how to extend the presented
techniques to asynchronous communication.

4 Probabilistic Cluster-Sending with
Random Replica Selection

In the previous section, we introduced CS-STEP, the cluster-
sending step protocol that succeeds whenever the participating
replicas are non-faulty and communication is reliable. Using
CS-STEP, we build a three-step protocol that cluster-sends a
value v from C1 to C2:

1. First, the replicas in nf(C1) reach agreement and decide
AGREE on sending v to C2.

2. Then, the replicas in nf(C1) perform a probabilistic
cluster-sending step by electing replicas R1 ∈ C1 and
R2 ∈ C2 fully at random, after which CS-STEP(R1, R2, v)
is executed.

3. Finally, each replicas in nf(C1) waits for the completion
of CS-STEP(R1, R2, v) If the waiting replicas decided
CONFIRM on v during this wait, then cluster-sending is
successful. Otherwise, we repeat the previous step.

To simplify presentation, we assume synchronous inter-cluster
communication to enable replicas to wait for completion:
messages sent by non-faulty replicas will be delivered within
some known bounded delay. We refer to Section 6 on how
to deal with asynchronous and unreliable communication.
Synchronous systems can be modeled by pulses [10, 11]:

Definition 4.1. A system is synchronous if all inter-cluster
communication happens in pulses such that every message
sent in a pulse will be received in the same pulse.

The pseudo-code of the resultant Synchronous Probabilistic
Cluster-Sending protocol CSP can be found in Figure 4. Next,
we prove that CSP is correct and has expected-case constant
message complexity:

Protocol CSP(C1, C2, v):

1: Use local consensus on v and construct ⟨send : v, C2⟩C1 .
2: {Each replica in nf(C1) decides AGREE on v.}
3: repeat
4: Choose replicas (R1,R2) ∈ C1 ×C2, fully at random.
5: CS-STEP(R1, R2, v)
6: Wait three global pulses.
7: until C1 reaches consensus on ⟨proof : ⟨send : v, C2⟩C1⟩C2 .

Figure 4: The Synchronous Probabilistic Cluster-Sending
protocol CSP(C1, C2, v) that cluster-sends a value v from C1
to C2.

Theorem 4.2. Let C1,C2 be disjoint clusters. If communica-
tion is synchronous, then CSP(C1, C2, v) results in cluster-
sending v from C1 to C2. The execution performs two local
consensus steps in C1, one local consensus step in C2, and is
expected to make (nC1nC2)/(nfC1nfC1) cluster-sending steps.

Proof. Due to Lines 1–2 of Figure 4, CSP(C1, C2, v) estab-
lishes the pre-conditions for any execution of CS-STEP(R1,
R2, v) with R1 ∈ C1 and R2 ∈ C2. Using the correctness of CS-
STEP (Proposition 3.1), we conclude that CSP(C1, C2, v) re-
sults in cluster-sending v from C1 to C2 whenever the replicas
(R1,R2)∈ C1×C2 chosen at Line 4 of Figure 4 are non-faulty.
As the replicas (R1,R2) ∈ C1 ×C2 are chosen fully at random,
we have probability pi = nfCi/nCi , i∈{1,2}, of choosing Ri ∈
nf(Ci). The probabilities p1 and p2 are independent of each
other. Consequently, the probability of choosing (R1,R2) ∈
nf(C1)×nf(C2) is p = p1 p2 = (nfC1nfC2)/(nC1 nC2). As such,
each iteration of the loop at Line 3 of Figure 4 can be mod-
eled as an independent Bernoulli trial with probability of
success p, and the expected number of iterations of the loop
is p−1 = (nC1nC2)/(nfC1nfC1).

Finally, we prove that each local consensus step needs to
be performed only once. To do so, we consider the local
consensus steps triggered by the loop at Line 3 of Figure 4.
These are the local consensus steps at Lines 4 and 9 of Fig-
ure 3. The local consensus step at Line 4 can be initiated
by a faulty replica R2. After this single local consensus step
reaches consensus on message m := ⟨send : v, C2⟩C1 , each
replica in nf(C2) reaches consensus on m, decides RECEIVE
on v, and can construct mp := ⟨proof : m⟩C2 , this independent
of the behavior of R2. Hence, a single local consensus step for
m in C2 suffices, and no replica in nf(C2) will participate in
future consensus steps for m. An analogous argument proves
that a single local consensus step for mp in C1, performed at
Line 9 of Figure 3, suffices.

Remark 4.3. Although Theorem 4.2 indicates local consen-
sus steps in clusters C1 and C2, these local consensus steps
typically come for free as part of the protocol that uses cluster-
sending as a building block. To see this, we consider a multi-
shard transaction processed by clusters C1 and C2.

4

2022

The decision of cluster C1 to send a value v to cluster C2
is a consequence of the execution of some transaction τ in
C1. Before the replicas in C1 execute τ, they need to reach
consensus on the order in which τ is executed in C1. As part
of this consensus step, the replicas in C1 can also construct
⟨send : v, C2⟩C1 without additional consensus steps. Hence,
no consensus step is necessary in C1 to send value v. Likewise,
if value v is received by replicas in C2 as part of some multi-
shard transaction execution protocol, then the replicas in C2
need to perform the necessary transaction execution steps as a
consequence of receiving v. To do so, the replicas in C2 need
to reach consensus on the order in which these transaction
execution steps are performed. As part of this consensus step,
the replicas in C2 can also constructing a proof of receipt for
v.

In typical fault-tolerant clusters, at least half of the replicas
are non-faulty (e.g., in synchronous systems with Byzantine
failures that use digital signatures, or in systems that only
deal with crashes) or at least two-third of the replicas are non-
faulty (e.g., asynchronous systems). In these systems, CSP is
expected to only performs a few cluster-sending steps:

Corollary 4.4. Let C1,C2 be disjoint clusters. If communi-
cation is synchronous, then the expected number of cluster-
sending steps performed by CSP(C1, C2, v) is upper bounded
by 4 if nC1 > 2fC1 and nC2 > 2fC2; and by 2 1

4 if nC1 > 3fC1
and nC2 > 3fC2 .

In CSP, the replicas (R1,R2) ∈ C1 ×C2 are chosen fully at
random and with replacement, as CSP does not retain any
information on failed probabilistic steps. In the worst case,
this prevents termination, as the same pair of replicas can be
picked repeatedly. Furthermore, CSP does not prevent the
choice of faulty replicas whose failure could be detected. We
can easily improve on this, as the failure of a probabilistic
step provides some information on the chosen replicas. In
specific, we have the following technical properties:

Lemma 4.1. Let C1,C2 be disjoint clusters. We assume syn-
chronous communication and assume that each replica in
nf(C1) decided AGREE on sending v to C2.

1. Let (R1,R2) ∈ C1 ×C2. If CS-STEP(R1, R2, v) fails to
cluster-send v, then either R1 ∈ f(C1), R2 ∈ C2, or both.

2. Let R1 ∈ C1. If CS-STEP(R1, R2, v) fails to cluster-send
v for fC2 +1 distinct replicas R2 ∈ C2, then R1 ∈ f(C1).

3. Let R2 ∈ C2. If CS-STEP(R1, R2, v) fails to cluster-send
v for fC1 +1 distinct replicas R1 ∈ C1, then R2 ∈ f(C2).

Proof. The statement of this Lemma assumes that the pre-
conditions for any execution of CS-STEP(R1, R2, v) with R1 ∈
C1 and R2 ∈ C2 are established. Hence, by Proposition 3.1,
CS-STEP(R1, R2, v) will cluster-send v if R1 ∈ nf(C1) and
R2 ∈ nf(C2). If the cluster-sending step fails to cluster-send

v, then one of the replicas involved must be faulty, proving
the first property. Next, let R1 ∈ C1 and consider a set S ⊆ C2
of nS = fC2 +1 replicas such that, for all R2 ∈ S, CS-STEP(R1,
R2, v) fails to cluster-send v. Let S′ = S \ f(C2) be the non-
faulty replicas in S. As nS > fC2 , we have nS′ ≥ 1 and there
exists a R′

2 ∈ S′. As R′
2 /∈ f(C2) and CS-STEP(R1, R′

2, v) fails to
cluster-send v, we must have R1 ∈ f(C1) by the first property,
proving the second property. An analogous argument proves
the third property.

We can apply the properties of Lemma 4.1 to actively prune
which replica pairs CSP considers (Line 4 of Figure 4). No-
tice that pruning via Lemma 4.1(1) simply replaces choosing
replica pairs with replacement, as done by CSP, by choosing
replica pairs without replacement, this without further reduc-
ing the possible search space. Pruning via Lemma 4.1(2) does
reduce the search space, however, as each replica in C1 will
only be paired with a subset of fC2 +1 replicas in C2. Likewise,
pruning via Lemma 4.1(3) also reduces the search space. We
obtain the Pruned Synchronous Probabilistic Cluster-Sending
protocol (CSPP) by applying all three prune steps to CSP. By
construction, Theorem 4.2, and Lemma 4.1, we conclude:

Corollary 4.5. Let C1,C2 be disjoint clusters. If communica-
tion is synchronous, then CSPP(C1, C2, v) results in cluster-
sending v from C1 to C2. The execution performs two local
consensus steps in C1, one local consensus step in C2, is ex-
pected to make less than (nC1 nC2)/(nfC1nfC1) cluster-sending
steps, and makes worst-case (fC1 +1)(fC2 +1) cluster-sending
steps.

5 Worst-Case Linear-Time
Probabilistic Cluster-Sending

In the previous section, we introduced CSP and CSPP, two
probabilistic cluster-sending protocols that can cluster-send
a value v from C1 to C2 with expected constant cost. Unfor-
tunately, CSP does not guarantee termination, while CSPP
has a worst-case quadratic complexity. To improve on this,
we need to improve the scheme by which we select replica
pairs (R1,R2) ∈ C1 ×C2 that we use in cluster-sending steps.
The straightforward manner to guarantee a worst-case linear
complexity is by using a scheme that can select only up-to-
n = max(nC1 ,nC2) distinct pairs (R1,R2) ∈ C1 ×C2. To select
n replica pairs from C1 ×C2, we will proceed in two steps.

1. We generate list S1 of n replicas taken from C1 and list
S2 of n replicas taken from C2.

2. Then, we choose permutations P1 ∈ perms(S1) and
P2 ∈ perms(S2) fully at random, and interpret each pair
(P1[i],P2[i]). 0 ≤ i < n, as one of the chosen replica
pairs.

We use the first step to deal with any differences in the sizes of
C1 and C2, and we use the second step to introduce sufficient

5

2022

randomness in our protocol to yield an low expected-case
message complexity.

Next, we introduce some notations to simplify reasoning
about the above list-based scheme. If R is a set of replicas,
then list(R) is the list consisting of the replicas in R placed in
a predetermined order (e.g., on increasing replica identifier).
If S is a list of replicas, then we write f(S) to denote the
faulty replicas in S and nf(S) to denote the non-faulty replicas
in S, and we write nS = |S|, fS = |{i | (0 ≤ i < nS)∧ S[i] ∈
f(S)}|, and nfS = nS − fS to denote the number of positions
in S with replicas, faulty replicas, and non-faulty replicas,
respectively. If (P1,P2) is a pair of equal-length lists of n =
|P1| = |P2| replicas, then we say that the i-th position is a
faulty position if either P1[i] ∈ f(P1) or P2[i] ∈ f(P2). We write
∥P1;P2∥f to denote the number of faulty positions in (P1,P2).
As faulty positions can only be constructed out of the fP1

faulty replicas in P1 and the fP2 faulty replicas in P2, we must
have max(fP1 , fP2)≤ ∥P1;P2∥f ≤ min(n, fP1 + fP2).

Example 5.1. Consider clusters C1,C2 with

S1 = list(C1) = [R1,1, . . . ,R1,5], f(C1) = {R1,1,R1,2};
S2 = list(C2) = [R2,1, . . . ,R2,5], f(C2) = {R2,1,R2,2}.

The set perms(S1)× perms(S2) contains 5!2 = 14400 list
pairs. Now, consider the list pairs (P1,P2),(Q1,Q2),
(R1,R2) ∈ perms(S1)×perms(S2) with

P1[R1,1,R1,5,R1,2,R1,4,R1,3],

P2[R2,1,R2,3,R2,2,R2,5,R2,4];

Q1[R1,1,R1,3,R1,5,R1,4,R1,2],

Q2[R2,5,R2,4,R2,3,R2,2,R2,1];

R1[R1,5,R1,4,R1,3,R1,2,R1,1],

R2[R2,1,R2,2,R2,3,R2,4,R2,5].

We have underlined the faulty replicas in each list, and
we have ∥P1;P2∥f = 2 = fS1 = fS2 , ∥Q1;Q2∥f = 3, and
∥R1;R2∥f = 4 = fS1 + fS2 .

In the following, we will use a list-pair function Φ to com-
pute the initial list-pair (S1,S2) of n replicas taken from C1
and C2, respectively. We build a cluster-sending protocol
that uses Φ to compute S1 and S2, uses randomization to
choose n replica pairs from S1 × S2, and, finally, performs
cluster-sending steps using only these n replica pairs. The
pseudo-code of the resultant Synchronous Probabilistic Lin-
ear Cluster-Sending protocol CSPL can be found in Figure 5.
Next, we prove that CSPL is correct and has a worst-case
linear message complexity:

Proposition 5.1. Let C1,C2 be disjoint clusters and let Φ be
a list-pair function with (S1,S2) := Φ(C1,C2) and n = nS1 =
nS2 . If communication is synchronous and n > fS1 + fS2 , then
CSPL(C1, C2, v, Φ) results in cluster-sending v from C1 to C2.

Protocol CSPL(C1, C2, v, Φ):

1: Use local consensus on v and construct ⟨send : v, C2⟩C1 .
2: {Each replica in nf(C1) decides AGREE on v.}
3: Let (S1,S2) := Φ(C1,C2).
4: Choose (P1,P2) ∈ perms(S1)×perms(S2) fully at random.
5: i := 0.
6: repeat
7: CS-STEP(P1[i], P2[i], v)
8: Wait three global pulses.
9: i := i+1.

10: until C1 reaches consensus on ⟨proof : ⟨send : v, C2⟩C1⟩C2 .

Figure 5: The Synchronous Probabilistic Linear Cluster-
Sending protocol CSPL(C1, C2, v, Φ) that cluster-sends a
value v from C1 to C2 using list-pair function Φ.

The execution performs two local consensus steps in C1, one
local consensus step in C2, and makes worst-case fS1 + fS2 +1
cluster-sending steps.

Proof. Due to Lines 1–2 of Figure 5, CSPL(C1, C2, v,
Φ) establishes the pre-conditions for any execution of CS-
STEP(R1, R2, v) with R1 ∈ C1 and R2 ∈ C2. Now let (P1,P2) ∈
perms(S1)×perms(S2), as chosen at Line 4 of Figure 5. As
Pi, i ∈ {1,2}, is a permutation of Si, we have fPi = fSi . Hence,
we have ∥P1;P2∥f ≤ fS1 + fS2 and there must exist a position
j, 0 ≤ j < n, such that (P1[j],P2[j]) ∈ nf(C1)×nf(C2). Using
the correctness of CS-STEP (Proposition 3.1), we conclude
that CSPL(C1, C2, v, Φ) results in cluster-sending v from C1
to C2 in at most fS1 + fS2 +1 cluster-sending steps. Finally, the
bounds on the number of consensus steps follow from an ar-
gument analogous to the one in the proof of Theorem 4.2.

Next, we proceed in two steps to arrive at practical in-
stances of CSPL with expected constant message complexity.
First, in Section 5.1, we study the probabilistic nature of
CSPL. Then, in Section 5.2, we propose practical list-pair
functions and show that these functions yield instances of
CSPL with expected constant message complexity.

5.1 The Expected-Case Complexity of CSPL

As the first step to determine the expected-case complexity of
CSPL, we solve the following abstract problem that captures
the probabilistic argument at the core of the expected-case
complexity of CSPL:

Problem 5.2 (non-faulty position trials). Let S1 and S2 be lists
of |S1| = |S2| = n replicas. Choose permutations (P1,P2) ∈
perms(S1)× perms(S2) fully at random. Next, we inspect
positions in P1 and P2 fully at random (with replacement). The
non-faulty position trials problem asks how many positions
one expects to inspect to find the first non-faulty position.

Let S1 and S2 be list of |S1| = |S2| = n replicas. To an-
swer the non-faulty position trials problem, we first look

6

2022

at the combinatorics of faulty positions in pairs (P1,P2) ∈
perms(S1)× perms(S2). Let m1 = fS1 and m2 = fS2 . By
F(n,m1,m2,k), we denote the number of distinct pairs (P1,P2)
one can construct that have exactly k faulty positions, hence,
with ∥P1;P2∥f = k. As observed, we have max(m1,m2) ≤
∥P1;P2∥f ≤ min(n,m1 + m2) for any pair (P1,P2). Hence,
we have F(n,m1,m2,k) = 0 for all k < max(m1,m2) and
k > min(n,m1 +m2).

Now consider the step-wise construction of any permuta-
tion (P1,P2)∈ perms(S1)×perms(S2) with k faulty positions.
First, we choose (P1[0],P2[0]), the pair at position 0, after
which we choose pairs for the remaining n−1 positions. For
Pi[0], i ∈ {1,2}, we can choose n distinct replicas, of which
mi are faulty. If we pick a non-faulty replica, then the re-
mainder of Pi is constructed out of n−1 replicas, of which
mi are faulty. Otherwise, the remainder of Pi is constructed
out of n− 1 replicas of which mi − 1 are faulty. If, due to
our choice of (P1[0],P2[0]), the first position is faulty, then
only k−1 out of the n−1 remaining positions must be faulty.
Otherwise, k out of the n− 1 remaining positions must be
faulty. Combining this analysis yields four types for the first
pair (P1[0],P2[0]):

1. A non-faulty pair (P1[0],P2[0]) ∈ nf(P1)× nf(P2). We
have (n−m1)(n−m2) such pairs, and we have F(n−
1,m1,m2,k) different ways to construct the remainder of
P1 and P2.

2. A 1-faulty pair (P1[0],P2[0]) ∈ f(P1)×nf(P2). We have
m1(n − m2) such pairs, and we have F(n − 1,m1 −
1,m2,k−1) different ways to construct the remainder of
P1 and P2.

3. A 2-faulty pair (P1[0],P2[0]) ∈ nf(P1)× f(P2). We have
(n−m1)m2 such pairs, and we have F(n− 1,m1,m2 −
2,k−1) different ways to construct the remainder of P1
and P2.

4. A both-faulty pair (P1[0],P2[0])∈ f(P1)× f(P2). We have
m1m2 such pairs, and we have F(n − 1,m1 − 1,m2 −
1,k−1) different ways to construct the remainder of P1
and P2.

Hence, for all k, max(m1,m2) ≤ k ≤ min(n,m1 + m2),
F(n,m1,m2,k) is recursively defined by:

F(n,m1,m2,k) = (n−m1)(n−m2)F(n−1,m1,m2,k)

(non-faulty pair)
+m1(n−m2)F(n−1,m1 −1,m2,k−1)

(1-faulty pair)
+(n−m1)m2F(n−1,m1,m2 −1,k−1)

(2-faulty pair)
+m1m2F(n−1,m1 −1,m2 −1,k−1),

(both-faulty pair)

and the base case for this recursion is F(0,0,0,0) = 1.

Example 5.3. Reconsider the list pairs (P1,P2), (Q1,Q2), and
(R1,R2) from Example 5.1. In (P1,P2), we have both-faulty
pairs at positions 0 and 2 and non-faulty pairs at positions 1,
3, and 4. In (Q1,Q2), we have a 1-faulty pair at position 0,
non-faulty pairs at positions 1 and 2, a 2-faulty pair at position
3, and a both-faulty pair at position 4. Finally, in (R1,R2), we
have 2-faulty pairs at positions 0 and 1, a non-faulty pair at
position 2, and 1-faulty pairs at positions 3 and 4.

Using the combinatorics of faulty positions, we formalize
an exact solution to the non-faulty position trials problem:

Lemma 5.1. Let S1 and S2 be lists of n = nS1 = nS2 replicas
with m1 = fS1 and m2 = fS2 . If m1 +m2 < n, then the non-
faulty position trials problem E(n,m1,m2) has solution

1
n!2

(
m1+m2

∑
k=max(m1,m2)

n
n− k

F(n,m1,m2,k)

)
.

Proof. We have |perms(S1)| = |perms(S2)| = n!. Conse-
quently, we have |perms(S1)×perms(S2)|= n!2 and we have
probability 1/(n!2) to choose any pair (P1,P2)∈ perms(S1)×
perms(S2). Now consider such a pair (P1,P2) ∈ perms(S1)×
perms(S2). As there are ∥P1;P2∥f faulty positions in (P1,P2),
we have probability p(P1,P2) = (n−∥P1;P2∥f)/n to inspect
a non-faulty position. Notice that max(m1,m2)≤ ∥P1;P2∥f ≤
m1 +m2 < n and, hence, 0 < p(P1,P2) ≤ 1. Each of the in-
spected positions in (P1,P2) is chosen fully at random. Hence,
each inspection is a Bernoulli trial with probability of success
p(P1,P2), and we expect to inspect a first non-faulty position
in the p(P1,P2)

−1 = n/(n−∥P1;P2∥f)-th attempt. We con-
clude that the non-faulty position trials problem E(n,m1,m2)
has solution

1
n!2

(
∑

(P1,P2)∈perms(S1)×perms(S2)

n
n−∥P1;P2∥f

)
.

Notice that there are F(n,m1,m2,k) distinct pairs (P1,P2) ∈
perms(S1) × perms(S2) with ∥P′

1;P′
2∥f = k for each k,

max(m1,m2)≤ k ≤ m1+m2 < n. Hence, in the above expres-
sion for E(n,m1,m2), we can group on these pairs (P′

1,P
′
2) to

obtain the searched-for solution.

To further solve the non-faulty position trials problem, we
work towards a closed form for F(n,m1,m2,k). Consider
any pair (P1,P2) ∈ perms(S1)×perms(S2) with ∥P1;P2∥f =
k obtained via the outlined step-wise construction. Let b1
be the number of 1-faulty pairs, let b2 be the number of 2-
faulty pairs, and let b1,2 be the number of both-faulty pairs
in (P1,P2). By construction, we must have k = b1 +b2 +b1,2,
m1 = b1 +b1,2, and m2 = b2 +b1,2 and by rearranging terms,
we can derive

b1,2 = (m1 +m2)− k, b1 = k−m2, b2 = k−m1.

7

2022

Example 5.4. Consider

S1 = [R1,1, . . . ,R1,5], f(S1) = {R1,1,R1,2,R1,3};
S2 = [R2,1, . . . ,R2,5], f(S2) = {R2,1}.

Hence, we have n = 5, m1 = fS1 = 3, and m2 = fS2 = 1. If we
want to create a pair (P1,P2) ∈ perms(S1)×perms(S2) with
k = ∥P1;P2∥f = 3 faulty positions, then (P1,P2) must have
two non-faulty pairs, two 1-faulty pairs, no 2-faulty pairs,
and one both-faulty pair. Hence, we have n− k = 2, b1 = 2,
b2 = 0, and b1,2 = 1.

The above analysis only depends on the choice of m1, m2,
and k, and not on our choice of (P1,P2). Next, we use this
analysis to express F(n,m1,m2,k) in terms of the number of
distinct ways in which one can construct

(A) lists of b1 1-faulty pairs out of faulty replicas from S1
and non-faulty replicas from S2,

(B) lists of b2 2-faulty pairs out of non-faulty replicas from
S1 and faulty replicas from S2,

(C) lists of b1,2 both-faulty pairs out of the remaining faulty
replicas in S1 and S2 that are not used in the previous
two cases, and

(D) lists of n− k non-faulty pairs out of the remaining (non-
faulty) replicas in S1 and S2 that are not used in the
previous three cases;

and in terms of the number of distinct ways one can merge
these lists. As the first step, we look at how many distinct
ways we can merge two lists together:

Lemma 5.2. For any two disjoint lists S and T with |S|= v
and |T | = w, there exist M(v,w) = (v+w)!/(v!w!) distinct
lists L with L|S = S and L|T = T , in which L|M , M ∈ {S,T},
is the list obtained from L by only keeping the values that also
appear in list M.

Next, we look at the number of distinct ways in which
one can construct lists of type A, B, C, and D. Consider
the construction of a list of type A. We can choose

(m1
b1

)
distinct sets of b1 faulty replicas from S1 and we can choose(n−m2

b1

)
distinct sets of b1 non-faulty replicas from S2. As we

can order the chosen values from S1 and S2 in b1! distinct
ways, we can construct b1!2

(m1
b1

)(n−m2
b1

)
distinct lists of type A.

Likewise, we can construct b2!2
(n−m1

b2

)(m2
b2

)
distinct lists of

type B.

Example 5.5. We continue from the setting of Example 5.4:
we want to create a pair (P1,P2) ∈ perms(S1)× perms(S2)
with k = ∥P1;P2∥f = 3 faulty positions. To create (P1,P2),
we need to create b1 = 2 pairs that are 1-faulty. We have(m1

b1

)
=
(3

2

)
= 3 sets of two faulty replicas in S1 that we

can choose, namely the sets {R1,1,R1,2}, {R1,1,R1,3}, and
{R1,2,R1,3}. Likewise, we have

(n−m2
b1

)
=
(4

2

)
= 6 sets of two

non-faulty replicas in S2 that we can choose. Assume we
choose T1 = {R1,1,R1,3} from S1 and T2 = {R2,4,R2,5} from
S2. The two replicas in T1 can be ordered in nT1 ! = 2! = 2
ways, namely [R1,1,R1,3] and [R1,3,R1,1]. Likewise, the two
replicas in T2 can be ordered in nT2 ! = 2! = 2 ways. Hence,
we can construct 2 ·2 = 4 distinct lists of type A out of this
single choice for T1 and T2, and the sequences S1 and S2 pro-
vide us with

(m1
b1

)(n−m2
b1

)
= 18 distinct choices for T1 and T2.

We conclude that we can construct 72 distinct lists of type A
from S1 and S2.

By construction, lists of type A and type B cannot utilize the
same replicas from S1 or S2. After choosing b1 +b2 replicas
in S1 and S2 for the construction of lists of type A and B, the
remaining b1,2 faulty replicas in S1 and S2 are all used for
constructing lists of type C. As we can order these remaining
values from S1 and S2 in b1,2! distinct ways, we can construct
b1,2!2 distinct lists of type C (per choice of lists of type A
and B). Likewise, the remaining n− k non-faulty replicas in
S1 and S2 are all used for constructing lists of type D, and we
can construct (n− k)!2 distinct lists of type D (per choice of
lists of type A and B).

As the final steps, we merge lists of type A and B into lists
of type AB. We can do so in M(b1,b2) ways and the resultant
lists have size b1 +b2. Next, we merge lists of type AB and C
into lists of type ABC. We can do so in M(b1+b2,b1,2) ways
and the resultant lists have size k. Finally, we merge list of
type ABC and D together, which we can do in M(k,n− k)
ways. From this construction, we derive that F(n,m1,m2,k)
is equivalent to

b1!2
(

m1

b1

)(
n−m2

b1

)
b2!2

(
n−m1

b2

)(
m2

b2

)
·

M(b1,b2)b1,2!2M(b1 +b2,b1,2)(n− k)!2M(k,n− k),

which can be simplified to the following:

Lemma 5.3. Let max(m1,m2) ≤ k ≤ min(n,m1 +m2) and
let b1 = k−m2, b2 = k−m1, and b1,2 = (m1 +m2)− k. We
have

F(n,m1,m2,k) =
m1!m2!(n−m1)!(n−m2)n!

b1!b2!b1,2!(n− k)!
.

We combine Lemma 5.1 and Lemma 5.3 to conclude

Proposition 5.2. Let S1 and S2 be lists of n = nS1 = nS2

replicas with m1 = fS1 , m2 = fS2 , b1 = k−m2, b2 = k−m1,
and b1,2 = (m1+m2)−k. If m1+m2 < n, then the non-faulty
position trials problem E(n,m1,m2) has solution

1
n!2

(
m1+m2

∑
k=max(m1,m2)

n
n− k

m1!m2!(n−m1)!(n−m2)!n!
b1!b2!b1,2!(n− k)!

)
.

Finally, we use Proposition 5.2 to derive

8

2022

Proposition 5.3. Let C1,C2 be disjoint clusters and let Φ be
a list-pair function with (S1,S2) := Φ(C1,C2) and n = nS1 =
nS2 . If communication is synchronous and fS1 + fS2 < n, then
the expected number of cluster-sending steps performed by
CSPL(C1, C2, v, Φ) is less than E(n, fS1 , fS2).

Proof. Let (P1,P2)∈ perms(S1)×perms(S2). We notice that
CSPL inspects positions in P1 and P2 in a different way than
the non-faulty trials problem: at Line 7 of Figure 5, positions
are inspected one-by-one in a predetermined order and not
fully at random (with replacement). Next, we will argue that
E(n, fS1 , fS2) provides an upper bound on the expected num-
ber of cluster-sending steps regardless of these differences.
Without loss of generality, we assume that S1 and S2 each
have n distinct replicas. Consequently, the pair (P1,P2) rep-
resents a set R of n distinct replica pairs taken from C1 ×C2.
We notice that each of the n! permutations of R is represented
by a single pair (P′

1,P
′
2) ∈ perms(S1)×perms(S2).

Now consider the selection of positions in (P1,P2) fully
at random, but without replacement. This process will yield
a list [j0, . . . , jn−1] ∈ perms([0, . . . ,n−1]) of positions fully
at random. Let Qi = [Pi[j0], . . . ,Pi[jn−1]], i ∈ {1,2}. We no-
tice that the pair (Q1,Q2) also represents R and we have
(Q1,Q2) ∈ perms(S1)× perms(S2). Hence, by choosing a
pair (P1,P2) ∈ perms(S1)×perms(S2), we choose set R fully
at random and, at the same time, we choose the order in which
replica pairs in R are inspected fully at random.

Finally, we note that CSPL inspects positions without re-
placement. As the number of expected positions inspected
in the non-faulty position trials problem decreases if we
choose positions without replacement, we have proven that
E(n, fS1 , fS2) is an upper bound on the expected number of
cluster-sending steps.

5.2 Practical Instances of CSPL

As the last step in providing practical instances of CSPL, we
need to provide practical list-pair functions to be used in con-
junction with CSPL. We provide two such functions that ad-
dress most practical environments. Let C1,C2 be disjoint clus-
ters, let nmin = min(nC1 ,nC2), and let nmax = max(nC1 ,nC2).
We provide list-pair functions

Φmin(C1,C2) 7→ (list(C1)
:nmin , list(C2)

:nmin),

Φmax(C1,C2) 7→ (list(C2)
:nmax , list(C2)

:nmax),

in which L:n denotes the first n values in the list obtained by
repeating list L. Next, we illustrate usage of these functions:

Example 5.6. Consider clusters C1,C2 with

S1 = list(C1) = [R1,1, . . . ,R1,9];
S2 = list(C2) = [R2,1, . . . ,R2,4].

We have

Φmin(C1,C2) = ([R1,1, . . . ,R1,4], list(C2));
Φmax(C1,C2) = (list(C1), [R2,1, . . . ,R2,4,R2,1, . . . ,R2,4,R2,1]).

Next, we combine Φmin and Φmax with CSPL, show that
in practical environments Φmin and Φmax satisfy the require-
ments put on list-pair functions in Proposition 5.1 to guarantee
termination and cluster-sending, and use these results to de-
termine the expected constant complexity of the resulting
instances of CSPL.

Theorem 5.7. Let C1,C2 be disjoint clusters with synchronous
communication.

1. If n = min(nC1 ,nC2)> 2max(fC1 , fC2), then the expected
number of cluster-sending steps performed by CSPL(C1,
C2, v, Φmin) is upper bounded by 4. For every (S1,S2) :=
Φmin(C1,C2), we have n = nS1 = nS2 , n > 2fS1 , n > 2fS2 ,
and n > fS1 + fS2

2. If n = min(nC1 ,nC2) > 3max(fC1 , fC2), then the ex-
pected number of cluster-sending steps performed by
CSPL(C1, C2, v, Φmin) is upper bounded by 2 1

4 . For
every (S1,S2) := Φmin(C1,C2), we have n = nS1 = nS2 ,
n > 3fS1 , n > 3fS2 , and n > fS1 + fS2 .

3. If nC1 > 3fC1 and nC2 > 3fC2 , then the expected number
of cluster-sending steps performed by CSPL(C1, C2, v,
Φmax) is upper bounded by 3. For every (S1,S2) :=
Φmax(C1,C2), we have n= nS1 = nS2 =max(nC1 ,nC2)>
fS1 + fS2 and either we have nC1 ≥ nC2 , n > 3fS1 , and
n > 2fS2 ; or we have nC2 ≥ nC1 , n > 2fS1 , and n > 3fS2 .

Each of these instance of CSPL results in cluster-sending v
from C1 to C2.

Proof. First, we prove the properties of Φmin and Φmax
claimed in the three statements of the theorem. In the first and
second statement of the theorem, we have min(nC1 ,nC2) >
cmax(fC1 , fC2), c ∈ {2,3}. Let (S1,S2) := Φmin(C1,C2)
and n = nS1 = nS2 . By definition of Φmin, we have n =
min(nC1 ,nC2), in which case Si, i ∈ {1,2}, holds n dis-
tinct replicas from Ci. Hence, we have fCi ≥ fSi and, as
n > cmax(fC1 , fC2)≥ cfCi , also n > cfSi . Finally, as n > 2fS1

and n > 2fS2 , also 2n > 2fS1 +2fS2 and n > fS1 + fS2 holds.
In the last statement of the theorem, we have nC1 > 3fC1

and nC2 > 3fC2 . Without loss of generality, we assume nC1 ≥
nC2 . Let (S1,S2) := Φmax(C1,C2) and n = nS1 = nS2 . By
definition of Φmax, we have n = max(nC1 ,nC2) = nC1 . As
n = nC1 , we have S1 = list(C1). Consequently, we also have
fS1 = fC1 and, hence, nS1 > 3fC1 . Next, we will show that
nS2 > 2fS2 . Let q = nC1 divnC2 and r = nC1 mod nC2 . We
note that list(C2)

:n contains q full copies of list(C2) and one
partial copy of list(C2). Let T ⊂ C2 be the set of replicas in
this partial copy. By construction, we have nS2 = qnC2 + r >

9

2022

q3fC2 + fT + nfT and fS2 = qfC2 + fT with fT ≤ min(fC2 ,r).
As q > 1 and fC2 ≥ fT , we have qfC2 ≥ fC2 ≥ fT . Hence,
nS2 > 3qfC2 + fT +nfT > 2qfC2 + fC2 + fT +nfT ≥ 2(qfC2 +
fT) + nfT ≥ 2fS2 . Finally, as n > 3fS1 and n > 2fS2 , also
2n > 3fS1 +2fS2 and n > fS1 + fS2 holds.

Now, we prove the upper bounds on the expected num-
ber of cluster-sending steps for CSPL(C1, C2, v, Φmin) with
min(nC1 ,nC2)> 2max(fC1 , fC2). By Proposition 5.3, the ex-
pected number of cluster-sending steps is upper bounded
by E(n, fS1 , fS2). In the worst case, we have n = 2 f + 1
with f = fS1 = fS2 . Hence, the expected number of cluster-
sending steps is upper bounded by E(2 f + 1, f , f), f ≥ 0.
We claim that E(2 f +1, f , f) simplifies to E(2 f +1, f , f) =
4−2/(f +1)− f !2/(2 f)!. Hence, for all S1 and S2, we have
E(n, fS1 , fS2) < 4. An analogous argument can be used to
prove the other upper bounds.

Note that the third case of Theorem 5.7 corresponds with
cluster-sending between arbitrary-sized resilient clusters that
each operate using Byzantine fault-tolerant consensus proto-
cols.

Remark 5.8. The upper bounds on the expected-case com-
plexity of instances of CSPL presented in Theorem 5.7 match
the upper bounds for CSP presented in Corollary 4.4. This
does not imply that the expected-case complexity for these
protocols is the same, however, as the probability distributions
that yield these expected-case complexities are very different.
To see this, consider a system in which all clusters have n
replicas of which f , n = 2 f +1, are faulty. Next, we denote
the expected number of cluster-sending steps of protocol P
by EP, and we have

ECSP =
(2 f +1)2

(f +1)2 = 4− 4 f +3
(f +1)2 ;

ECSPL = E(2 f +1, f , f) = 4− 2
(f +1)

− f !2

(2 f)!
.

In Figure 6, we have illustrated this difference by plotting the
expected-case complexity of CSP and CSPL for systems with
equal-sized clusters. In practice, we see that the expected-case
complexity for CSP is slightly lower than the expected-case
complexity for CSPL.

6 Asynchronous Communication

In the previous sections, we introduced CSP, CSPP, and
CSPL, three probabilistic cluster-sending protocols with ex-
pected constant message complexity. To simplify presenta-
tion, we have presented their design with respect to a syn-
chronous environment. Next, we consider their usage in en-
vironments with asynchronous inter-cluster communication
due to which messages can get arbitrary delayed, duplicated,
or dropped.

0 2 4 6 8 10 12 14 16 18 20

2.5

3.0

3.5

4.0

Number of faulty replicas f

C
lu

st
er

-s
en

di
ng

st
ep

s

(n = 2f+1 replicas per cluster)

CSP, CSPP
CSPL

0 2 4 6 8 10 12 14 16 18 20

1.80

1.90

2.00

2.10

2.20
2.25

Number of faulty replicas f

C
lu

st
er

-s
en

di
ng

st
ep

s

(n = 3f+1 replicas per cluster)

CSP, CSPP
CSPL

Figure 6: Comparison of the expected-case complexity of
CSPL and CSP as a function of the number of faulty replicas.

We notice that the presented protocols only depend on syn-
chronous communication to minimize communication: at the
core of the correctness of CSP, CSPP, and CSPL is the cluster-
sending step performed by CS-STEP, which does not make
any assumptions on communication (Proposition 3.1). Conse-
quently, CSP, CSPP, and CSPL can easily be generalized to
operate in environments with asynchronous communication:

1. First, we observe that message duplication and out-of-
order delivery have no impact on the cluster-sending step
performed by CS-STEP. Hence, we do not need to take
precautions against such asynchronous behavior.

2. If communication is asynchronous, but reliable (mes-
sages do not get lost, but can get duplicated, be delivered
out-of-order, or get arbitrarily delayed), both CSPP and
CSPL will be able to always perform cluster-sending
in a finite number of steps. If communication becomes
unreliable, however, messages sent between non-faulty
replicas can get lost and all cluster-sending steps can fail.
To deal with this, replicas in C1 simply continue cluster-
sending steps until a step succeeds (CSP) or rerun the
protocol until a step succeeds (CSPP, and CSPL), which
will eventually happen in an expected constant number
steps whenever communication becomes reliable again.

3. If communication is asynchronous, then messages can
get arbitrarily delayed. Fortunately, practical environ-
ments operate with large periods of reliable communica-
tion in which the majority of the messages arrive within
some bounded delay unknown to C1 and C2. Hence,
replicas in C1 can simply assume some delay δ. If this
delay is too short, then a cluster-sending step can appear
to fail simply because the proof of receipt is still under
way. In this case, cluster-sending will still be achieved
when the proof of receipt arrives, but spurious cluster-
sending steps can be initiated in the meantime. To reduce
the number of such spurious cluster-sending steps, all

10

2022

non-faulty replicas in C1 can use exponential backup
to increase the message delay δ up-to-some reasonable
upper bound (e.g., 100 s).

4. Finally, asynchronous environments often necessitate
rather high assumptions on the message delay δ. Conse-
quently, the duration of a single failed cluster-sending
step performed by CS-STEP will be high. Here, a trade-
off can be made between message complexity and du-
ration by starting several rounds of the cluster-sending
step at once. E.g., when communication is sufficiently
reliable, then all three protocols are expected to finish
in four rounds or less, due to which starting four rounds
initially will sharply reduce the duration of the proto-
col with only a constant increase in expected message
complexity.

7 Performance evaluation

In the previous sections, we introduced probabilistic cluster-
sending protocols with expected-case constant message com-
plexity. To gain further insight in the performance attainable
by these protocols, especially in environments with unreliable
communication, we implemented these protocols in a simu-
lated sharded resilient environment that allows us to control
the faulty replicas and the message loss rates.1 As a base-
line of comparison, we also evaluated three cluster-sending
protocols from the literature:

1. The worst-case optimal cluster-sending protocol PBS-
CS of Hellings et al. [17] that can perform cluster-
sending using only fC1 + fC2 + 1 messages, which is
worst-case optimal. This protocol requires reliable com-
munication.

2. The broadcast-based cluster-sending protocol of
CHAINSPACE [1] that can perform cluster-sending us-
ing nC1nC2 messages. This protocol requires reliable
communication.

3. The global sharing protocol of GEOBFT [15], an opti-
mistic cluster-sending protocol that assumes that each
cluster uses a primary-backup consensus protocol (e.g.,
PBFT [6]) and optimizes for the case in which the coor-
dinating primary of C1 is non-faulty. In this optimistic
case, GEOBFT can perform cluster-sending using only
fC2 + 1 messages. To deal with faulty primaries and
unreliable communication, GEOBFT employs a costly
remote view-change protocol, however.

We refer to Figure 2 for an analytical comparison between
these three cluster-sending protocols and our three probabilis-
tic cluster-sending protocols.

1The full implementation of this experiment is available at anonymized.

1 5 9 13 17 21 25 29 33
0.0

0.5

1.0

1.5

·106

Number of faulty replicas f

M
es

sa
ge

s
E

xc
ha

ng
ed

(Zoomed)

1 5 9 13 17 21 25 29 33
0.0

0.5

1.0

1.5

·105

Number of faulty replicas f

M
es

sa
ge

s
E

xc
ha

ng
ed

(Further Zoomed)

PBS-CS [17]
GEOBFT [15]†

CHAINSPACE [1]
CSP
CSPP
CSPL

Figure 7: A comparison of the number of message exchange
steps as a function of the number of faulty replicas in both
clusters by our probabilistic cluster-sending protocols CSP,
CSPP, and CSPL, and by three protocols from the literature.
For each protocol, we measured the number of message ex-
change steps to send 10000 values between two equally-sized
clusters, each cluster having n = 3f+1 replicas. †The results
for GEOBFT are a plot of the best-case optimistic phase of
that protocol.

In each experiment, we measured the number of messages
exchanged in 10000 runs of the cluster-sending protocol un-
der consideration. In specific, in each run we measure the
number of messages exchanged when sending a value v from a
cluster C1 to a cluster C2 with nC1 = nC2 = 3fC1 +1= 3fC2 +1,
and we aggregate this data over 10000 runs. As we use
equal-sized clusters, we have Φmin(C1,C2) = Φmax(C1,C2)
and, hence, we use a singe instance of CSPL.

Next, we detail the two experiments we performed and
look at their results.

7.1 Performance of Cluster-Sending Protocols
In our first experiment, we measure the number of messages
exchanged as a function of the number of faulty replicas.
In this case, we assumed reliable communication, due to
which we could include all six protocols. The results of this
experiment can be found in Figure 7.

As is clear from the results, our probabilistic cluster-
sending protocols are able to perform cluster-sending with
only a constant number of messages exchanged. Furthermore,
we see that the performance of our cluster-sending protocols
matches the theoretical expected-case analysis in this paper
and closely follows the expected performance illustrated in
Figure 6 (note that Figure 6 plots cluster-sending steps and
each cluster-sending step involves the exchange of two mes-
sages between clusters).

As all other cluster-sending protocols have a linear (PBS-
CS and GEOBFT) or quadratic (CHAINSPACE) message com-
plexity, our probabilistic cluster-sending protocols outper-

11

2022

form the other cluster-sending protocols. This is especially
the case when dealing with bigger clusters, in which case
the expected-case constant message complexity of our prob-
abilistic cluster-sending protocols shows the biggest advan-
tage. Only in the case of the smallest clusters can the other
cluster-sending protocols outperform our probabilistic cluster-
sending protocols, as PBS-CS, GEOBFT, and CHAINSPACE
use reliable communication to their advantage to eliminate
any acknowledgment messages send from the receiving clus-
ter to the sending cluster. We believe that the slightly higher
cost of our probabilistic cluster-sending protocols in these
cases is justified, as our protocols can effectively deal with
unreliable communication.

7.2 Message Loss
In our second experiment, we measure the number of mes-
sages exchanged as a function of the number of faulty replicas
and as a function of the message loss (in percent) between the
two clusters. We assume that communication within each clus-
ter is reliable. In this case, we only included our probabilistic
cluster-sending protocols as PBS-CS and CHAINSPACE both
assume reliable communication and GEOBFT is only able
to perform recovery via remote view-changes in periods of
reliable communication. The results of this experiment can
be found in Figure 8.

We note that with a message loss of x%, the probability
p(x) of a successful cluster-sending step is only (1− x

100)
2.

E.g., p(30%)≈ 0.49. As expected, the message complexity
increases with an increase in message loss. Furthermore, the
probabilistic cluster-sending protocols perform as expected
(when taking into account the added cost to deal with message
loss). These results further underline the practical benefits of
each of the probabilistic cluster-sending protocols, especially
for larger clusters: even in the case of high message loss
rates, each of our probabilistic cluster-sending protocols are
able to outperform the cluster-sending protocols PBS-CS,
CHAINSPACE, and GEOBFT, which can only operate with
reliable-communication.

8 Related Work

Although there is abundant literature on distributed systems
and on consensus-based resilient systems (e.g., [2, 5, 8, 14,
16, 27, 31]), there is only limited work on communication
between resilient systems [1, 15, 17]. In the previous sec-
tion, we have already compared CSP, CSPP, and CSPL
with the worst-case optimal cluster-sending protocols of
Hellings et al. [17], the optimistic cluster-sending protocol
of GEOBFT [15], and the broadcast-based cluster-sending
protocols of CHAINSPACE [1]. Furthermore, we notice that
cluster-sending can be solved using well-known Byzantine
primitives such as consensus, interactive consistency, and
Byzantine broadcasts [6, 9, 24]. These primitives are much

more costly than cluster-sending protocols, however, and re-
quire huge amounts of communication between all involved
replicas.

In parallel to the development of traditional resilient sys-
tems and permissioned blockchains, there has been promis-
ing work on sharding in permissionless blockchains such
as BITCOIN [25] and ETHEREUM [32]. Examples include
techniques for enabling reliable cross-chain coordination via
sidechains, blockchain relays, atomic swaps, atomic com-
mitment, and cross-chain deals [12, 13, 19, 21, 22, 33, 34].
Unfortunately, these techniques are deeply intertwined with
the design goals of permissionless blockchains in mind (e.g.,
cryptocurrency-oriented), and are not readily applicable to
traditional consensus-based Byzantine clusters.

9 Conclusion

In this paper, we presented probabilistic cluster-sending proto-
cols that each provide highly-efficient solutions to the cluster-
sending problem. In specific, our probabilistic cluster-sending
protocols can facilitate communication between Byzantine
fault-tolerant clusters with expected constant communication
between clusters. For practical environments, our protocols
can support worst-case linear communication between clus-
ters, which is optimal, and deal with asynchronous and unre-
liable communication. The low practical cost of our cluster-
sending protocols further enables the development and de-
ployment of high-performance systems that are constructed
out of Byzantine fault-tolerant clusters, e.g., fault-resilient
geo-aware sharded data processing systems.

References

[1] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano,
Dave Hrycyszyn, and George Danezis. Chainspace: A
sharded smart contracts platform, 2017. URL: http:
//arxiv.org/abs/1708.03778.

[2] Christian Berger and Hans P. Reiser. Scaling byzantine
consensus: A broad analysis. In Proceedings of the 2nd
Workshop on Scalable and Resilient Infrastructures for
Distributed Ledgers, pages 13–18. ACM, 2018. https:
//doi.org/10.1145/3284764.3284767.

[3] Gabi Bracha and Ophir Rachman. Randomized consen-
sus in expected O((n2 logn)) operations. In Distributed
Algorithms, pages 143–150. Springer Berlin Heidelberg,
1992. https://doi.org/10.1007/BFb0022443.

[4] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Advances in Cryptology — CRYPTO
2001, pages 524–541. Springer Berlin Heidelberg, 2001.
https://doi.org/10.1007/3-540-44647-8_31.

12

http://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1708.03778
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1007/BFb0022443
https://doi.org/10.1007/3-540-44647-8_31

2022

Performance of Probabilistic Cluster-Sending as a function of Message Loss (CSP; CSPP; CSPL)
0% loss 10% loss 20% loss 30% loss 40% loss 50% loss 60% loss 70% loss 80% loss 90% loss

(M
es

sa
ge

s
E

xc
ha

ng
ed

pe
r1

0
00

0
ru

ns
)

(t
ot

al
)

1 9 17 25 33

3.5

4.0

4.5
·104

Faulty replicas f
1 9 17 25 33

4.0

4.5

5.0

5.5
·104

Faulty replicas f
1 9 17 25 33

5.0

5.5

6.0

6.5

7.0

·104

Faulty replicas f
1 9 17 25 33

7.0

8.0

9.0

·104

Faulty replicas f
1 9 17 25 33

0.9

1.0

1.1

1.2

·105

Faulty replicas f
1 9 17 25 33

1.3

1.4

1.5

1.6

1.7

1.8
·105

Faulty replicas f
1 9 17 25 33

2.0

2.2

2.4

2.6

2.8

·105

Faulty replicas f
1 9 17 25 33

3.5

4.0

4.5

5.0
·105

Faulty replicas f
1 9 17 25 33

0.8

0.9

1.0

1.1

·106

Faulty replicas f
1 9 17 25 33

3.5

4.0

4.5
·106

Faulty replicas f

(m
ax

im
um

)

1 9 17 25 33

1.0

2.0

3.0

4.0

·101

Faulty replicas f
1 9 17 25 33

3.0

4.0

5.0

·101

Faulty replicas f
1 9 17 25 33

0.4

0.6

0.8

1.0
·102

Faulty replicas f
1 9 17 25 33

0.6

0.8

1.0

·102

Faulty replicas f
1 9 17 25 33

0.8

1.0

1.2

1.4

1.6

·102

Faulty replicas f
1 9 17 25 33

1.0

1.2

1.4

1.6

1.8

2.0

2.2
·102

Faulty replicas f
1 9 17 25 331.5

2.0

2.5

3.0

3.5

·102

Faulty replicas f
1 9 17 25 33

3.5

4.0

4.5

5.0

5.5

6.0
·102

Faulty replicas f
1 9 17 25 33

0.8

1.0

1.2

1.4
·103

Faulty replicas f
1 9 17 25 33

3.0

3.5

4.0

4.5

5.0

5.5
·103

Faulty replicas f

Figure 8: A comparison of the number of message exchange steps as a function of the number of faulty replicas in both clusters
and of the message loss by our probabilistic cluster-sending protocols CSP, CSPP, and CSPL. For each protocol, we measured
the number of message exchange steps to send 10000 values between two equally-sized clusters, each cluster having n = 3f+1
replicas. At the top row, we have plotted the total number of messages exchanged in the 10000 runs, and at the bottom row,we
have plotted the maximum number of messages exchanged in any of the 10000 runs.

[5] Christian Cachin and Marko Vukolic. Blockchain con-
sensus protocols in the wild (keynote talk). In 31st
International Symposium on Distributed Computing,
volume 91 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 1:1–1:16. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017. https://doi.
org/10.4230/LIPIcs.DISC.2017.1.

[6] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. ACM Trans-
actions on Computer Systems, 20(4):398–461, 2002.
https://doi.org/10.1145/571637.571640.

[7] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin,
Ee-Chien Chang, Qian Lin, and Beng Chin Ooi. To-
wards scaling blockchain systems via sharding. In
Proceedings of the 2019 International Conference on
Management of Data, pages 123–140. ACM, 2019.
https://doi.org/10.1145/3299869.3319889.

[8] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang
Chen, Beng Chin Ooi, and Ji Wang. Untangling
blockchain: A data processing view of blockchain sys-
tems. IEEE Trans. Knowl. Data Eng., 30(7):1366–
1385, 2018. https://doi.org/10.1109/TKDE.2017.
2781227.

[9] D. Dolev and H. Strong. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing,
12(4):656–666, 1983. https://doi.org/10.1137/
0212045.

[10] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer.
On the minimal synchronism needed for distributed con-

sensus. Journal of the ACM, 34(1):77—-97, 1987.
https://doi.org/10.1145/7531.7533.

[11] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288––323, 1988. https://doi.
org/10.1145/42282.42283.

[12] Muhammad El-Hindi, Carsten Binnig, Arvind
Arasu, Donald Kossmann, and Ravi Ramamurthy.
BlockchainDB: A shared database on blockchains.
Proc. VLDB Endow., 12(11):1597–1609, 2019.
https://doi.org/10.14778/3342263.3342636.

[13] Ethereum Foundation. BTC Relay: A bridge between
the bitcoin blockchain & ethereum smart contracts,
2017. URL: http://btcrelay.org.

[14] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi.
Fault-Tolerant Distributed Transactions on Blockchain.
Synthesis Lectures on Data Management. Morgan
& Claypool, 2021. https://doi.org/10.2200/
S01068ED1V01Y202012DTM065.

[15] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mo-
hammad Sadoghi. ResilientDB: Global scale resilient
blockchain fabric. Proceedings of the VLDB Endow-
ment, 13(6):868—-883, 2020. https://doi.org/10.
14778/3380750.3380757.

[16] Suyash Gupta and Mohammad Sadoghi. Blockchain
Transaction Processing, pages 1–11. Springer Interna-
tional Publishing, 2018. https://doi.org/10.1007/
978-3-319-63962-8_333-1.

13

https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://doi.org/10.1145/7531.7533
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://doi.org/10.14778/3342263.3342636
http://btcrelay.org
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.1007/978-3-319-63962-8_333-1
https://doi.org/10.1007/978-3-319-63962-8_333-1

2022

[17] Jelle Hellings and Mohammad Sadoghi. Brief an-
nouncement: The fault-tolerant cluster-sending prob-
lem. In 33rd International Symposium on Distributed
Computing (DISC 2019), volume 146 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages
45:1–45:3. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2019. https://doi.org/10.4230/LIPIcs.
DISC.2019.45.

[18] Jelle Hellings and Mohammad Sadoghi. Byshard:
Sharding in a byzantine environment. Proceedings
of the VLDB Endowment, 14(11):2230–2243, 2021.
https://doi.org/10.14778/3476249.3476275.

[19] Maurice Herlihy. Atomic cross-chain swaps. In Pro-
ceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, pages 245––254. ACM, 2018.
https://doi.org/10.1145/3212734.3212736.

[20] Maurice Herlihy. Blockchains from a distributed com-
puting perspective. Communications of the ACM,
62(2):78–85, 2019. https://doi.org/10.1145/
3209623.

[21] Maurice Herlihy, Barbara Liskov, and Liuba Shrira.
Cross-chain deals and adversarial commerce. The
VLDB Journal, 2021. https://doi.org/10.1007/
s00778-021-00686-1.

[22] Jae Kwon and Ethan Buchman. Cosmos whitepaper:
A network of distributed ledgers, 2019. URL: https:
//cosmos.network/cosmos-whitepaper.pdf.

[23] Leslie Lamport. Paxos made simple. ACM SIGACT
News, Distributed Computing Column 5, 32(4):51–58,
2001. https://doi.org/10.1145/568425.568433.

[24] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401,
1982. https://doi.org/10.1145/357172.357176.

[25] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system. URL: https://bitcoin.org/
en/bitcoin-paper.

[26] Arvind Narayanan and Jeremy Clark. Bitcoin’s
academic pedigree. Communications of the ACM,
60(12):36–45, 2017. https://doi.org/10.1145/
3132259.

[27] M. Tamer Özsu and Patrick Valduriez. Principles of
Distributed Database Systems. Springer, 2020. https:
//doi.org/10.1007/978-3-030-26253-2.

[28] Michael Pisa and Matt Juden. Blockchain and
economic development: Hype vs. reality. Tech-
nical report, Center for Global Development, 2017.

URL: https://www.cgdev.org/publication/
blockchain-and-economic-development-hype-vs-reality.

[29] David Reinsel, John Gantz, and John Rydning.
Data age 2025: The digitization of the world,
from edge to core. Technical report, IDC,
2018. URL: https://www.seagate.com/
files/www-content/our-story/trends/files/
idc-seagate-dataage-whitepaper.pdf.

[30] Victor Shoup. Practical threshold signatures. In Ad-
vances in Cryptology — EUROCRYPT 2000, pages
207–220. Springer Berlin Heidelberg, 2000. https:
//doi.org/10.1007/3-540-45539-6_15.

[31] Gerard Tel. Introduction to Distributed Algorithms.
Cambridge University Press, 2nd edition, 2001.

[32] Gavin Wood. Ethereum: a secure decentralised gen-
eralised transaction ledger. EIP-150 revision. URL:
https://gavwood.com/paper.pdf.

[33] Gavin Wood. Polkadot: vision for a heteroge-
neous multi-chain framework, 2016. URL: https:
//polkadot.network/PolkaDotPaper.pdf.

[34] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi.
Atomic commitment across blockchains. Proc. VLDB
Endow., 13(9):1319–1331, 2020. https://doi.org/
10.14778/3397230.3397231.

A The proof of Lemma 5.2

To get the intuition behind the closed form of Lemma 5.2, we
take a quick look at the combinatorics of list-merging. Notice
that we can merge lists S and T together by either first taking
an element from S or first taking an element from T . This
approach towards list-merging yields the following recursive
solution to the list-merge problem:

M(v,w)=

{
M(v−1,w)+M(v,w−1) if v > 0 and w > 0;
1 if v = 0 or w = 0.

Consider lists S and T with |S| = v and |T | = w distinct
values. We have |perms(S)| = v!, |perms(T)| = w!, and
|perms(S∪T)|= (v+w)!. We observe that every list-merge
of (PS,PT) ∈ perms(S)× perms(T) is a unique value in
perms(S ∪ T). Furthermore, every value in perms(S ∪ T)
can be constructed by such a list-merge. As we have
|perms(S)×perms(T)|= v!w!, we derive the closed form

M(v,w) =
(v+w)!
(v!w!)

of Lemma 5.2. Next, we formally prove this closed form.

14

https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.14778/3476249.3476275
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/3209623
https://doi.org/10.1145/3209623
https://doi.org/10.1007/s00778-021-00686-1
https://doi.org/10.1007/s00778-021-00686-1
https://cosmos.network/cosmos-whitepaper.pdf
https://cosmos.network/cosmos-whitepaper.pdf
https://doi.org/10.1145/568425.568433
https://doi.org/10.1145/357172.357176
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1145/3132259
https://doi.org/10.1145/3132259
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1007/978-3-030-26253-2
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://gavwood.com/paper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://doi.org/10.14778/3397230.3397231
https://doi.org/10.14778/3397230.3397231

2022

Proof. We prove this by induction. First, the base cases
M(0,w) and M(v,0). We have

M(0,w) =
(0+w)!

0!w!
=

w!
w!

= 1;

M(v,0) =
(v+0)!

v!0!
=

v!
v!

= 1.

Next, we assume that the statement of the lemma holds for
all non-negative integers v′,w′ with 0 ≤ v′ +w′ ≤ j. Now
consider non-negative integers v,w with v+w = j+ 1. We
assume that v > 0 and w > 0, as otherwise one of the base
cases applies. Hence, we have

M(v,w) =M(v−1,w)+M(v,w−1).

We apply the induction hypothesis on the terms M(v−1,w)
and M(v,w−1) and obtain

M(v,w) =
(
((v−1)+w)!
(v−1)!w!

)
+

(
(v+(w−1))!

v!(w−1)!

)
.

Next, we apply x = x(x−1)! and simplify the result to obtain

M(v,w) =
(

v(v+w−1)!
v!w!

)
+

(
w(v+w−1)!

v!w!

)
=

(
(v+w)(v+w−1)!

v!w!

)
=

(v+w)!
v!w!

,

which completes the proof.

B The proof of Lemma 5.3

Let g be the expression

b1!2
(

m1

b1

)(
n−m2

b1

)
b2!2

(
n−m1

b2

)(
m2

b2

)
·

M(b1,b2)b1,2!2M(b1 +b2,b1,2)(n− k)!2M(k,n− k),

as stated right above Lemma 5.3. We will show that g is
equivalent to the closed form of F(n,m1,m2,k), as stated in
Lemma 5.3.

Proof. We use the shorthands T1 =
(m1

b1

)(n−m2
b1

)
and T2 =(n−m1

b2

)(m2
b2

)
, and we have

g = b1!2T1b2!2T2 ·
M(b1,b2)b1,2!2M(b1 +b2,b1,2)(n− k)!2M(k,n− k).

We apply Lemma 5.2 on terms M(b1,b2), M(b1 + b2,b1,2),
and M(k,n− k), apply k = b1 + b2 + b1,2, and simplify to
derive

g = b1!2T1b2!2T2 ·
(b1 +b2)!

b1!b2!
b1,2!2 (b1 +b2 +b1,2)!

(b1 +b2)!b1,2!
(n− k)!2 (k+n− k)!

k!(n− k)!

= b1!T1b2!T2b1,2!(n− k)!n!.

Finally, we expand the binomial terms T1 and T2, apply b1,2 =
m1 −b1 = m2 −b2 and k = m1 +b2 = m2 +b1, and simplify
to derive

g = b1!
m1!

b1!(m1 −b1)!
(n−m2)!

b1!(n−m2 −b1)!
·

b2!
(n−m1)!

b2!(n−m1 −b2)!
m2!

b2!(m2 −b2)!
·

b1,2!(n− k)!n!

=
m1!
b1,2!

(n−m2)!
b1!(n− k)!

(n−m1)!
b2!(n− k)!

m2!
b1,2!

b1,2!(n− k)!n!

=
m1!m2!(n−m1)!(n−m2)!n!

b1!b2!b1,2!(n− k)!
,

which completes the proof.

C The proof of Lemma 5.3

Proof. We write f (n,m1,m2,k) for the closed form in the
statement of this lemma and we prove the statement of this
lemma by induction. First, the base case F(0,0,0,0). In this
case, we have n = m1 = m2 = k = 0 and, hence, b1 = b2 =
b1,2 = 0, and we conclude f (0,0,0,0) = 1 = F(0,0,0,0).

Now assume F(n′,m′
1,m

′
2,k

′) = f (n′,m′
1,m

′
2,k

′) for all
n′ < n and all k′ with max(m′

1,m
′
2) ≤ k′ ≤ min(n′,m′

1 +
m′

2). Next, we prove F(n,m1,m2,k) = f (n,m1,m2,k) with
max(m1,m2)≤ k ≤ min(n,m1 +m2). We use the shorthand
G= F(n,m1,m2,k) and we have

G= (n−m1)(n−m2)F(n−1,m1,m2,k)

(non-faulty pair)
+m1(n−m2)F(n−1,m1 −1,m2,k−1)

(1-faulty pair)
+(n−m1)m2F(n−1,m1,m2 −1,k−1)

(2-faulty pair)
+m1m2F(n−1,m1 −1,m2 −1,k−1).

(both-faulty pair)

Notice that if n = k, then the non-faulty pair case does not
apply, as F(n−1,m1,m2,k) = 0, and evaluates to zero. Like-
wise, if b1 = 0, then the 1-faulty pair case does not apply,
as F(n − 1,m1 − 1,m2,k − 1) = 0, and evaluates to zero;
if b2 = 0, then the 2-faulty pair case does not apply, as
F(n− 1,m1,m2 − 1,k − 1) = 0, and evaluates to zero; and,
finally, if b1,2 = 0, then the both-faulty pair case does not
apply, as F(n−1,m1 −1,m2 −1,k−1) = 0, and evaluates to
zero.

First, we consider the case in which n > k, b1 > 0, b2 >
0, and b1,2 > 0. Hence, each of the four cases apply and
evaluate to non-zero values. We directly apply the induction
hypothesis on F(n−1,m1,m2,k), F(n−1,m1 −1,m2,k−1),

15

2022

F(n−1,m1,m2−1,k−1), and F(n−1,m1−1,m2−1,k−1),
and obtain

G= (n−m1)(n−m2) ·
m1!m2!(n−1−m1)!(n−1−m2)!(n−1)!

b1!b2!b1,2!(n−1− k)!

+m1(n−m2) ·
(m1 −1)!m2!(n−m1)!(n−1−m2)!(n−1)!

(b1 −1)!b2!b1,2!(n−1− (k−1))!

+(n−m1)m2 ·
m1!(m2 −1)!(n−1−m1)!(n−m2)!(n−1)!

b1!(b2 −1)!b1,2!(n−1− (k−1))!

+m1m2 ·
(m1 −1)!(m2 −1)!(n−m1)!(n−m2)!(n−1)!

b1!b2!(b1,2 −1)!(n−1− (k−1))!
.

We apply x! = x(x−1)! and further simplify and obtain

G=
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n−1− k)!

+
m1!m2!(n−m1)!(n−m2)!(n−1)!

(b1 −1)!b2!b1,2!(n− k)!

+
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!(b2 −1)!b1,2!(n− k)!

+
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!(b1,2 −1)!(n− k)!

= (n− k)
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

+b1
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

+b2
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

+b1,2
m−1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!
.

We have k = b1+b2+b1,2 and, hence, n= (n−k)+b1+b2+
b1,2 and we conclude

G= ((n− k)+b1 +b2 +b1,2) ·
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

= n
m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!

=
m1!m2!(n−m1)!(n−m2)!n!

b1!b2!b1,2!(n− k)!
.

Next, in all other cases, we can repeat the above derivation
while removing the terms corresponding to the cases that

evaluate to 0. By doing so, we end up with the expression

G=
((∑t∈T t)m1!m2!(n−m1)!(n−m2)!(n−1)!

b1!b2!b1,2!(n− k)!
.

in which T contains the term (n− k) if n > k (the non-faulty
pair case applies), the term b1 if b1 > 0 (the 1-faulty case
applies), the term b2 if b2 > 0 (the 2-faulty case applies), and
the term b1,2 if b1,2 > 0 (the both-faulty case applies). As
each term (n− k), b1, b2, and b1,2 is in T whenever the term
is non-zero, we have ∑t∈T t = (n− k)+ b1 + b2 + b1,2 = n.
Hence, we can repeat the steps of the above derivation in all
cases, and complete the proof.

D The Closed Form of E(2 f +1, f , f)

Here, we shall prove that

E(2 f +1, f , f) = 4− 2
(f +1)

− f !2

(2 f)!
.

Proof. By Proposition 5.2 and some simplifications, we have

E(2 f +1, f , f) =
1

(2 f +1)!2 ·(
2 f

∑
k= f

2 f +1
2 f +1− k

f !2(f +1)!2(2 f +1)!
(k− f)!2(2 f − k)!(2 f +1− k)!

)
.

First, we apply x! = x(x−1)!, simplify, and obtain

E(2 f +1, f , f) =
f !2(2 f +1)
(2 f +1)!

·(
2 f

∑
k= f

(f +1)!2

(k− f)!2(2 f +1− k)!2

)

=
f !2

(2 f)!

(
f

∑
k=0

(f +1)!2

k!2(f +1− k)!2

)

=
f !2

(2 f)!

(
f

∑
k=0

(
f +1

k

)2
)
.

Next, we apply
(m

n

)
=
(m

m−n

)
, extend the sum by one term,

and obtain

E(2 f +1, f , f) =
f !2

(2 f)!
·((

f+1

∑
k=0

(
f +1

k

)(
f +1

f +1− k

))
−
(

f +1
f +1

)(
f +1

0

))
.

Then, we apply Vandermonde’s Identity to eliminate the sum
and obtain

E(2 f +1, f , f) =
f !2

(2 f)!

((
2 f +2
f +1

)
−1
)
.

16

2022

Finally, we apply straightforward simplifications and obtain

E(2 f +1, f , f) =
f !2

(2 f)!
(2 f +2)!

(f +1)!(f +1)!
− f !2

(2 f)!

=
f !2

(2 f)!
(2 f)!(2 f +1)(2 f +2)

f !2(f +1)2 − f !2

(2 f)!

=
(2 f +1)(2 f +2)

(f +1)2 − f !2

(2 f)!

=
(2 f +2)2

(f +1)2 − 2 f +2
(f +1)2 − f !2

(2 f)!

=
4(f +1)2

(f +1)2 − 2(f +1)
(f +1)2 − f !2

(2 f)!

= 4− 2
f +1

− f !2

(2 f)!
,

which completes the proof.

17

	Introduction
	The Cluster-Sending Problem
	The Cluster-Sending Step
	Probabilistic Cluster-Sending withRandom Replica Selection
	Worst-Case Linear-TimeProbabilistic Cluster-Sending
	The Expected-Case Complexity of CSpl
	Practical Instances of CSpl
	Practical Considerations

	Asynchronous Communication
	Performance evaluation
	Performance of Cluster-Sending Protocols
	Message Loss

	Related Work
	Conclusion
	The proof of Lemma 5.2
	The simplification of F(n, m1, m2, k)
	The Closed Form of E(2f+1, f, f)
	Introduction
	The Cluster-Sending Problem
	The Cluster-Sending Step
	Probabilistic Cluster-Sending withRandom Replica Selection
	Worst-Case Linear-TimeProbabilistic Cluster-Sending
	The Expected-Case Complexity of CSpl
	Practical Instances of CSpl

	Asynchronous Communication
	Performance evaluation
	Performance of Cluster-Sending Protocols
	Message Loss

	Related Work
	Conclusion
	The proof of Lemma 5.2
	The proof of Lemma 5.3
	The proof of Lemma 5.3
	The Closed Form of E(2f+1, f, f)

