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ABSTRACT

A recent line of work in mechanistic interpretability has focused on reverse-
engineering the computation performed by neural networks trained on the binary
operation of finite groups. We investigate the internals of one-hidden-layer neu-
ral networks trained on this task, revealing previously unidentified structure and
producing a more complete description of such models in a step towards unifying
the explanations of previous works (Chughtai et al., 2023; Stander et al., 2024).
Notably, these models approximate equivariance in each input argument. We ver-
ify that our explanation applies to a large fraction of networks trained on this task
by translating it into a compact proof of model performance, a quantitative eval-
uation of the extent to which we faithfully and concisely explain model internals.
In the main text, we focus on the symmetric group S5. For models trained on this
group, our explanation yields a guarantee of model accuracy that runs 3x faster
than brute force and gives a ≥95% accuracy bound for 45% of the models we
trained. We were unable to obtain nontrivial non-vacuous accuracy bounds using
only explanations from previous works.

1 INTRODUCTION

Modern neural network models, despite their widespread deployment and success, remain largely
inscrutable in their inner workings, limiting their use in safety-critical settings. The emerging field
of mechanistic interpretability seeks to address this issue by reverse engineering the behavior of
trained neural networks. One major criticism of this field is the lack of rigorous evaluations of
interpretability results; indeed, many works rely on human intuition to determine the quality of an
interpretation (Miller, 2019; Casper, 2023; Räuker et al., 2023). This insufficiency of evaluations
has proved detrimental to interpretability research: recent work finds many commonly used model
interpretations to be imprecise or incomplete (Miller et al., 2024; Friedman et al., 2024).

A simplified research program has focused on toy algorithmic settings, which are made more
tractable by the presence of complete mathematical descriptions of the task and dataset (Nanda
et al., 2023a;b; Zhong et al., 2024). However, even in these settings, the lack of rigorous evaluations
for interpretations is consequential, leading different researchers to come up with divergent expla-
nations for the same empirical phenomena: recently, Chughtai et al. (2023) claimed that models
trained on finite groups implement a group composition via representations algorithm, while subse-
quent work (Stander et al., 2024) studies the same model and task and instead argues that the model
implements a coset concentration algorithm.

In this work, we take on the challenge of reconciling their interpretations. We investigate the same
setting and find internal model structure that was overlooked by both previous works: the irreducible
representations noticed by Chughtai et al. (2023) act by permutation on a discrete set of vectors
learned by the model. Based on our observations, we propose a model explanation that unifies
those found by both previous works. In particular we find that the model approximates a function
that preserves the group symmetry in each of its input arguments, i.e. a bi-equivariant function.

*These authors contributed equally. See Author Contributions.
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Following Gross et al. (2024), we then evaluate our interpretation and that of previous work by
converting them into compact proofs of lower bounds on model accuracy.

Figure 1: Examples of ρ-sets extracted directly from the weights of models trained on the symmetric
group S4 (left, a tetrahedron) and the alternating group A5 (right, an icosahedron). Both lie in R3.
The vectors of the ρ-sets are depicted as points—the connecting edges are merely for illustration.
See Section 3 for the definition of ρ-sets and Section 4 for how they are in by models to compute
the group operation. See Figure 10 and Figure 11 for compact proof bound results for S4 and A5,
respectively. The standard irrep of S5, the focus of the main text, is four-dimensional and hence
more difficult to visualize.

Our philosophy is that any rigorous mechanistic knowledge of a model’s inner workings should
yield a guarantee on the model’s performance. In more detail, given a mechanistic explanation, the
real model will somewhat differ from it due to noise or imperfections in our analysis. To rigorously
validate the explanation, we thus need to bound the effect of this deviation on model behavior. This
validation is done using a program that takes in a model as input and guarantees that the model obeys
some property; we focus on properties of the form “the model will give the correct answer for at least
some X% of the input space”, i.e. lower bounds on accuracy. The simplest such guarantee is to brute
force try every possible input to the model, which does not require a mechanistic explanation and is
a perfectly tight bound. However, we believe that nontrivial mechanistic understanding of a model
should yield more efficient programs, e.g. by exploiting symmetries in the proposed explanation.

If the program guarantees a property such as model accuracy, then we can uniformly turn an execu-
tion trace of the program into an formal proof of this property. This is an (automatically generated)
proof in the standard mathematical sense: a proof that a mathematical object (the model parameters)
satisfies the desired property. Proofs corresponding to more efficient execution traces are shorter,
i.e. more compact.1 The efficiency of the program, and closeness of the accuracy bound to the true
accuracy, can be taken as metrics of the quality of our explanation: More complete explanations
should yield either tighter performance bounds or a more compact proof, providing a quantitative
measure of explanation completeness. We find that our interpretation is indeed an improvement over
previous ones because it yields more compact proofs of tighter bounds.

Our contributions are as follows:

• We provide a mechanistic explanation of models trained on the group composition task
(Section 4).

• We verify this explanation by translating it into guarantees on model accuracy (Section 5).
For a substantial fraction of models, these guarantees are near the true accuracy, providing
strong positive evidence for our explanation in these cases (Section 5.2).

• We clarify previous mechanistic interpretability results on this same task and argue that
they do not fully explain model behavior (Section 6). We show that our more complete
interpretation is a step towards unifying the findings of previous works (Section 6.3)

1The length of the proof is linear in the running time of the program.
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2 RELATED WORK

Groups, mechanistic interpretability, and grokking Our work can be seen as a direct follow-up
to Chughtai et al. (2023) and Stander et al. (2024), which both perform mechanistic interpretability
on one-hidden-layer neural networks trained on the binary operation of finite groups. These papers
in turn build on work that studies models trained on modular arithmetic (Nanda et al., 2023a; Zhong
et al., 2024), i.e. the binary operation of the cyclic group. Models trained on group composition
exhibit the grokking phenomenon (Power et al., 2022), in which a model trained on an algorithmic
task generalizes to the test set many epochs after attaining perfect accuracy on the training set.
Morwani et al. (2024) study the group composition task from the viewpoint of inductive biases,
showing that, for one-hidden-layer models with quadratic activations, the max-margin solution must
match the observations of Chughtai et al. (2023).

Evaluation of explanations Several techniques to evaluate interpretations of models have been
suggested, such as causal interventions (Wang et al., 2023) and causal scrubbing (Chan et al., 2022).
We discuss merits and limitations of causal interventions in our setting, which were first explored in
Stander et al. (2024). More recently, Gross et al. (2024) use mechanistic interpretability to obtain
compact formal proofs of model properties for the max-of-four task. Yip et al. (2024) study the
modular arithmetic setting, finding that the ReLU nonlinearities can be thought of as performing
numerical integration, and use this insight to compute bounds on model error in linear time.

Equivariance We find that neural networks trained on group composition learn to be equivariant
in both input arguments, i.e. bi-equivariance, despite this condition not being enforced in the ar-
chitecture. Learned equivariance has been noticed and measured in other settings (Lenc & Vedaldi,
2019; Olah et al., 2020; Gruver et al., 2023). This is distinct from the area of equivariant networks,
in which equivariance is enforced by model architecture (Bronstein et al., 2021).

3 PRELIMINARIES

3.1 MATHEMATICAL BACKGROUND: GROUPS, ACTIONS, REPRESENTATIONS, ρ-SETS

This paper uses ideas from finite group theory and representation theory. We provide a rapid and
informal introduction to the most important definitions and refer the reader to Section 3 and Appen-
dices D, E, F of Stander et al. (2024) and/or relevant textbooks (Dummit & Foote, 2004; Fulton &
Harris, 1991) for more details.

Groups and permutations A group G is a set with an associative binary operation ⋆ and an
identity element e such that every element has an inverse. We write Sn for the group of permutations
on n elements. Maps2 G → Sn are called permutation representations and are equivalent to actions
of G on sets of size n. Recall that each permutation σ ∈ Sn can be represented as a permutation
matrix in Rn×n that applies the permutation σ to the basis vectors of Rn. Thus, any permutation
representation of G is a linear representation, i.e. a mapping from G to the group of invertible n×n
matrices GL(n,R). The group operation translates to matrix multiplication.

Irreps Linear representations that cannot be decomposed into a direct sum of representations of
strictly smaller dimension are called irreducible representations or irreps for short. A representation
ρ is an irrep if and only if there is no nontrivial subspace that is closed under ρ(g) for all g ∈ G.
Every finite group G has a finite set of irreps (up to isomorphism), which we denote by Irrep(G).3
Any linear representation can be decomposed uniquely into irreps.

ρ-sets By the preceding discussion, given a permutation representation ρ̃ : G → Sn, we can con-
sider its decomposition into irreps. Let ρ ∈ Irrep(G) be one irrep present in this decomposition,
acting on some subspace W ⊆ Rn. Since, by definition, ρ̃ acts on standard basis vectors e1, . . . , en
by permutation, the constituent irrep ρ acts on the projection of the basis vectors onto W by the same

2By “maps” we mean group homomorphisms.
3In this paper, we consider irreps over R. In particular, all irreps of Sn are real. For a discussion of

preliminary results for groups with complex irreps, see Appendix K.2.
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permutation. We refer to any subset of W that ρ acts on by permutation as a ρ-set; in particular,
projections of the basis vectors onto W fit this criterion.4

Example: S5 Our primary example throughout the main text is the group of permutations S5.
The identity map S5 → S5 is a permutation representation. As a linear representation, it is not
irreducible, as it fixes the all ones vector 1 ∈ R5. Projecting out this vector results in what is called
the standard four-dimensional irrep of S5; call it ρ. This irrep acts by permutation on the projections
of the standard basis vectors, so these five vectors in R4 form a ρ-set. In this example, the ρ-set
consists of five evenly spaced vectors on the surface of the sphere in R4.

3.2 TASK DESCRIPTION AND MODEL ARCHITECTURE

Our task and architecture are identical to that of previous works (Chughtai et al., 2023; Stander et al.,
2024). Fix a finite group G. We train a model on the supervised task ⋆ : G × G → G; i.e., given
x, y ∈ G the task is to predict the product x ⋆ y ∈ G.

We train a one-hidden-layer two-input neural network on this task. The input to the model is two
elements x, y ∈ G, embedded as vectors El(x),Er(y) ∈ Rm, which we refer to as the left and
right embeddings, respectively. These are multiplied by the left and right linearities Wl,Wr ∈
Rm×m, summed, applied with an elementwise ReLU nonlinearity, and finally multiplied by the
unembedding matrix U ∈ R|G|×m and summed with the bias wb.

We can simplify the model’s description by noting that the left embedding El and left linearity
Wl only occur as a product WlEl, and likewise for the right embedding and linearity. Also, the
product between the unembedding U and the embedding vectors can be decomposed into a sum
over the hidden dimensionality [m]. Hence, letting wi

l(x),w
i
r(y),w

i
u(z) denote the ith entries of

WlEl(x),WrEr(y),U(z) respectively, the forward pass is

fθ(z | x, y) = wb(z) +

m∑
i=1

wi
u(z)ReLU[wi

l(x) +wi
r(y)], (1)

paramaterized by θ = (wb, (w
i
l ,w

i
r,w

i
u)

m
i=1). Each vector wi

l ,w
i
r,w

i
u for i ∈ [m] can be thought

of as a function G → R, and we refer to them as the left, right, and unembedding neurons, respec-
tively. The refer to i ∈ [m] as the neuron index.

4 GROUP COMPOSITION BY ρ-SETS

4.1 THE ρ-SET CIRCUIT

Our central finding is that trained models implement circuits of the form

fρ,B(z | x, y) = −
∑

b,b′∈B

b⊤ρ(x−1 ⋆ z ⋆ y−1)b′ ReLU[a⊤(b− b′)] (2)

where B ⊆ Rd is a ρ-set and a ∈ Rd. This fρ,B(z | x, y) depends only on x−1 ⋆ z ⋆ y−1;
we call such functions bi-equivariant.5 Furthermore, we show in Lemma G.5 that for certain irreps,
fρ,B(z | x, y) is guaranteed to be maximized at the correct logit z = x⋆y.6 We find that each trained
model implements several such circuits and that the logits are approximately a linear combinations
of terms of the form Equation 2.

We now explain how the model weights implement the circuit in Eq 2. Recall from Eq 1 that fθ
can be written as the sum of the contributions of each neuron plus the bias. As seen in Section 6.2,
each neuron is in the span of a single irrep ρ ∈ Irrep(G). We find that, furthermore, these neurons

4The term “ρ-set” is our own. All other definitions and notations introduced in this section are standard.
5To see the equivariance, note that if fρ,B is of this form, then, for g, h ∈ G, we have fρ,B(z | g⋆x, y⋆h) =

fρ,B(g
−1 ⋆ z ⋆ h−1 | x, y).

6Notice that z = x ⋆ y if and only if x−1 ⋆ z ⋆ y−1 = e, which implies ρ(x−1 ⋆ z ⋆ y−1) = I . This
implication goes both ways if ρ is faithful, which is the case for all irreps of S5 with dimension > 1.
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are actions of ρ on finite ρ-sets B ⊆ Rd projected onto one dimension. Moreover, the unembedding
weights of each neuron are related to the left and right embedding weights, so that, for some b, b′

from a ρ-set B and some projection vector a, up to scaling,

wi
u(z) = −b⊤ρ(z)b′, wi

l(x) = b⊤ρ(x)a, wi
r(y) = −a⊤ρ(y)b′. (3)

Additionally, there is one neuron of this form for each of the |B|2 pairs (b, b′),7 and a is constant
across all such pairs. See Observation B.1 for a full enumeration of our findings.

Based on these observations, we partition neurons into independent ρ-set circuits; each circuit is
associated with a ρ ∈ Irrep(G) of dimension d, a finite ρ-set B ⊆ Rd that ρ acts on transitively by
permutation, and a constant vector a ∈ Rd. Call this circuit fρ,B; then,

fρ,B(z | x, y) = −
∑

b,b′∈B

b⊤ρ(z)b′ ReLU[b⊤ρ(x)a− a⊤ρ(y)b′] (4)

Using the ρ-set structure of B, we can change variables via b̃ = ρ(x)⊤b = ρ(x−1)b and b̃′ = ρ(y)b′,
and arrive at the aforementioned circuit Eq 2 (with b, b′ exchanged for b̃, b̃′). Since fθ is a sum of
such bi-equivariant circuits, it is also bi-equivariant.

Further, terms of the summation in Eq 2 are zero whenever b = b′, which is precisely when
b⊤ρ(e)b′ = ⟨b, b′⟩ is largest. Heuristically, these properties explain why fρ,B(z | x, y) is max-
imized when z = x ⋆ y. For certain ρ ∈ Irrep(G), we can rigorously show that the function is
indeed maximized at z = x ⋆ y for any value of a; see Lemma G.5 for details. Eq 2 can also be as a
separating hyperplane in the ambient space inhabited by irreps ρ. See Sec B.2 for details.

4.2 THE SIGN CIRCUIT

For irreps of dimension strictly greater than one, we observe that the model learns circuits closely
approximating what we describe in Section 4.1. However, for the sign irrep,8 the model is able to
use one-dimensionality to avoid the expense of the double summation in Eq 4.

Explicitly, up to scaling, the sign circuit is

fsgn(z | x, y) = ρ(z)− ρ(z)ReLU[ρ(x)− ρ(y)]− ρ(z)ReLU[ρ(y)− ρ(x)] = ρ(x−1 ⋆ z ⋆ y−1),

where ρ is the sign irrep. The circuit comprises two neurons −ρ(z)ReLU[ρ(x) − ρ(y)] and
−ρ(z)ReLU[ρ(y) − ρ(x)], and uses the unembedding bias to strip out an extraneous ρ(z) term.
See Appendix B.5 for further discussion.

5 EXPLANATIONS AS COMPACT PROOFS OF MODEL PERFORMANCE

Following Gross et al. (2024), we evaluate the completeness of a mechanistic explanation by trans-
lating it into a compact proof of model performance. Intuitively, given the model weights and an
interpretation of the model, we aim to leverage the interpretation to efficiently compute a guarantee
on the model’s global accuracy. More precisely, we construct a verifier program9 V that takes as
input the model parameters θ, the group G, and an encoding of the interpretation into a string π, and
returns a real number. We require that V always provides valid lower bounds on accuracy; that is,
V (θ, G, π) ≤ αG(θ) regardless of the given interpretation π. 10 Our measure of π’s faithfulness is
the tightness of the output guarantee V (θ, G, π), i.e. how close it is true to the true accuracy αG(θ).

Two simple examples of verifiers are:
7To be more precise, we find that there are often multiple neurons per (b, b′). However, they are scaled such

that the sum of neuron contributions corresponding to each pair is uniform.
8The sign irrep maps permutations to ±1 depending on whether they decompose into an odd or even num-

ber of transpositions. It is the only nontrivial one-dimensional irrep of Sn. In general, any real-valued one-
dimensional irrep of any group must take values ±1, and the same circuit as described here works.

9Formally, a Turing machine. We elide any implementation details related to encoding finite group-theoretic
objects as strings, error from finite floating-point precision, etc.

10This soundness requirement prevents π from (for example) simply providing the true accuracy αG(θ) to
the verifier. If V takes π’s veracity for granted, it is no longer sound—π could falsely claim the accuracy to be
higher than the truth, causing V (θ, G, π) > αG(θ).
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1. The vacuous verifier Vvac(θ, G, ∅) = 0. This is a valid verifier because 0 is a lower bound
on any model’s accuracy.

2. The brute force verifier Vbrute(θ, G, ∅) = αG(θ), which takes the model’s weights and
runs its forward pass on every input to compute the global accuracy.

While the brute force approach attains the optimal bound by recovering the true accuracy, it is
computationally expensive. (Indeed, it is intractable in any real-world setting, where the input space
is too large to enumerate.) Notice also that neither example is provided an interpretation π; without
any information about θ, we cannot expect the verifier to do better than these trivial examples.
We aim to construct verifiers that, when π is a meaningful interpretation, (1) give non-vacuous
guarantees on model accuracy and (2) are compact, i.e. more time-efficient than brute force.

A good understanding of the model’s internals should allow us to compress its description and
therefore make reasonable estimates on its error. A more complete explanation should yield a tighter
bound, while also reducing the computation cost. Therefore if we think of bounding the accuracy as
a trade-off between accuracy and computational cost, a good explanation of the model should push
the Pareto frontier outward. See Gross et al. (2024) for a more thorough discussion.

5.1 CONSTRUCTING COMPACT PROOFS

The verifier lower-bounds the model’s accuracy by trying to prove for each x, y ∈ G that the model’s
output is maximized at x ⋆ y, i.e. that fθ(x ⋆ y | x, y) > maxz ̸=x⋆y fθ(z | x, y). More precisely, the
verifier strategy is:

(1) Given model parameters θ, use the interpretation π to construct an idealized model θ̃.

(2) For x, y ∈ G, lower bound the margin fθ̃(x ⋆ y | x, y)−maxz ̸=x⋆y fθ̃(z | x, y).
(3) For x, y ∈ G, upper bound the maximum logit distance

max
z ̸=x⋆y

|fθ̃(z | x, y)− fθ(z | x, y)|+ fθ̃(x ⋆ y | x, y)− fθ(x ⋆ y | x, y).

(4) The accuracy lower bound is the proportion of inputs x, y ∈ G such that the margin lower bound
exceeds the distance upper bound. For such input pairs, the margin by which the idealized
model’s logit value on the correct answer exceeds the logit value of any incorrect answer is
larger than the error between the original and idealized model, so the original model’s logit
output must be maximized at the correct answer as well. See Figure 2.

Recall our model architecture Eq 1. The brute-force verifier runs a forward pass with time complex-
ity O(m|G|) over |G|2 input pairs, and so takes time O(m|G|3) total. 11 Our verifiers need to be
asymptotically faster than this in order to be performing meaningful compression. Naı̈vely, though,
both steps (2) and (3) take time O(m|G|3), no better than brute force. However, we can reduce the
time complexity of each to O(m|G|2): for (2) by exploiting the internal structure of the idealized
model, and for (3) by using Lemma G.1.

Compact proofs via coset concentration Intuitively, coset concentration (Stander et al., 2024)
gives a way to perform nontrivial compression—if the interpretation says that a neuron is constant
on the cosets of a specific group, then we need only to check one element per coset, instead of a
full iteration over G. However, the shortcomings listed in Section 6.1 are an obstacle to formalizing
this intuition into a compact proof. The verifier Vcoset we construct pessimizes over the degrees of
freedom not explained by the coset concentration explanation, resulting in accuracy bounds that are
vacuous (Section 5.2). See Appendix D for details of Vcoset’s construction.

Compact proofs via ρ-sets We are able to turn our ρ-set circuit interpretation into a proof of
model accuracy that gives non-vacuous results on a majority of trained models; see Appendix E for
details and Section 5.2 for empirical results.

11For simplicity of presentation, we assume all matrix multiplication is performed with the naı̈ve algorithm;
that is, the time complexity of multiplying two matrices of size m× n and n× k is O(mnk).
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Figure 2: Margin lower bound vs. logit distance
upper bound over x, y ∈ S5 for Virrep and Vcoset

on a single example model. The accuracy lower
bound is precisely the number of points for which
the margin lower bound is larger than the logit
upper bound (shaded region); in this example, the
bound from Virrep is 100% while that from Vcoset

is 0%. The margin lower bound of Virrep is con-
stant due to bi-equivariance.

The interpretation string π labels each neuron
with its corresponding irrep ρ and its ρ-set. The
verifier Virrep is then able to use this interpreta-
tion string to construct an idealized version of
the input model that implements ρ-set circuits
(Eq 4) exactly. By bi-equivariance, this ideal-
ized model’s accuracy can then be checked with
a single forward pass. Finally, Virrep bounds
the distance between the original and the ideal-
ized models using Lemma G.1.

5.2 EMPIRICAL
RESULTS FOR COMPACT PROOFS

We train 100 one-hidden-layer neural network
models from random initialization on the group
S5. We then compute lower bounds on accu-
racy obtained by brute force, the cosets expla-
nation, and the ρ-sets explation, which we refer
to as Vbrute, Vcoset, Virrep respectively. We eval-
uate these lower bounds on both their runtime12

(compactness) and by the tightness of the bound.
See Appendix I for full experiment details.

As expected, Vbrute obtains the best accuracy bounds (indeed, they are exact), but has a slower run-
time than Virrep; see Figure 3. On the other hand, across all experiments, Vcoset failed to yield non-
vacuous accuracy bounds; while the margin lower bounds of Vcoset’s idealized models are nonzero,
they are swamped by the upper bound on logit distance to the original model; see Figure 2.

Looking again at Figure 3, we see that the accuracy bound due to ρ-sets is bimodal: the verifier
Virrep obtains a bound of near 100% for roughly half the models, and a vacuous bound of 0% for
another half. Investigating the models for which Virrep does not obtain a good bound, we are able to
discover for many of them aspects in which they deviate from our ρ-sets explanation:

• (a-bad) The a projection vector (Eq 4) fails to be constant across terms of the double sum
over b, b′ ∈ B, so the change of variables showing bi-equivariance (Eq 2) is invalid.13 We
find that such models have poorer cross-entropy loss and larger weight norm than those
with constant a, suggesting they have converged to a suboptimal local minimum (Figure 4
in Appendix B.6).

• (ρ-bad) The double sum over B (Eq 4) misses some b, b′ pairs. Again, we are unable
to prove bi-equivariance when this happens. We speculate that in this case the model is
approximating the discrete summation by a numerical integral à la Yip et al. (2024).

Although these cases are failures of our ρ-sets interpretation to explain the model, their presence can
be seen as a success for compact proofs as a measure of interpretation completeness. For models we
do not genuinely understand, we are unable to achieve non-vacuous guarantees on accuracy.

6 REVISITING PREVIOUS EXPLANATIONS: COSETS AND IRREPS

In this section, we recall the coset algorithm described in Stander et al. (2024), and the notion of
irrep sparsity observed in Chughtai et al. (2023). We find that although these works correctly identify
properties of individual neuron weights, they lack a precise picture of how these neurons combine to
compute the group operation. We conclude the section by clarifying the logical relationship between
these observations and our present work.

12We use the verifier’s time elapsed as a proxy for FLOPs, which is a non-asymptotic measure of runtime.
13If a depends on (b, b′), then there is a remaining dependence on (ρ(x)b̃, ρ(y−1)b̃′) inside the ReLU after

changing variables.
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Figure 3: Accuracy bound vs. computation time for Virrep and Vbrute on 100 models trained on
S5. Points in green (Virrep unexpl) are models for which we find by inspection that our ρ-sets
explanation does not hold, i.e. either (a-bad) or (ρ-bad). Mean accuracy bound is 100% for Vbrute

(orange), 0% for Vcoset (not shown), 50.4% for Virrep (union of blue and green), and 91.7% for
Virrep when only including models for which neither (a-bad) nor (ρ-bad) occur (blue, 55% of total).
Mean time elapsed is 2.20s for Vbrute and 0.75s for Virrep. The asymptotic time complexity of Vbrute

is O(m|G|3) while that of Virrep is O(m|G|2).

6.1 COSET CONCENTRATION

Recall the model architecture Eq 1. In Stander et al. (2024), they make the following observation:
For each neuron i, the left embeddings are approximately constant on the right cosets of a certain
subgroup K1 of G, while the right embeddings are approximately constant on the left cosets of a
conjugate subgroup K2 = g−1Kg. That is, they are coset concentrated; see Definition 6.2. They
then observe that there is a subset X = K1 ⋆ h = h′ ⋆ K2. On inputs x, y ∈ G, the left and
right embeddings of the neuron i sum to near zero precisely when x ⋆ y ∈ X . Meanwhile, the
unembedding takes smaller values on elements of X; thus, when x ⋆ y ̸∈ X , the model’s confidence
in G \X is increased.14 In the example of S5, these X typically take the form of Xab := {σ ∈ S5 |
σ(a) = b}. See Stander et al. (2024, Section 5) and Appendix A for more details.

This explanation leaves several things unclear:

• Even given coset concentration, there are many choices of left/right embeddings that sum
to zero whenever x ⋆ y ∈ X . The choice matters: for example, if there are many input
pairs where x ⋆ y ̸∈ X but the sum of embeddings is near zero, then the model cannot be
expected to perform well. How do we know whether the model has made a good choice?

• The unembedding is similarly underdetermined: there are many degrees of freedom in
choosing weights satisfying the sole constraint of being smaller on X than on G \X .

• The bias term is not mentioned, despite being present in the models under study.

In Proposition A.2, we provide a more precise version of this explanation, assuming the model
weights satisfy stronger constraints. However, the actual models we investigate do not match these
assumptions closely, which is reflected by our failure to convert this explanation into non-vacuous
bounds in Appendix D.

6.2 IRREP SPARSITY

Chughtai et al. (2023) notice that each neuron in the trained model is in the linear span of matrix
elements of some irrep ρ ∈ Irrep(G); we refer to this condition as irrep sparsity (see Definition 6.1
for a formal statement). Based on this observation, they propose that the model:

14These subgroups might vary from neuron to neuron
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1. Embeds the input pair x, y ∈ G as d× d irrep matrices ρ(x) and ρ(y).
2. Uses ReLU nonlinearities to compute the matrix multiplication ρ(x)ρ(y) = ρ(x ⋆ y).
3. Uses ReLU nonlinearities and ρ(x⋆y) from the previous step to compute tr(ρ(x⋆y⋆z−1)),

which is maximized at x ⋆ y ⋆ z−1 = e ⇐⇒ z = x ⋆ y.

However, because they leave the ReLU computations as a black box, they are unable to fully ex-
plain the model’s implemented algorithm. We were able to deduce a more complete description by
carefully investigating which linear combinations of ρ each neuron uses.

6.3 RELATING IRREP SPARSITY, COSET CONCENTRATION, AND ρ-SETS

This paper and prior works observe multiple properties of neurons viewed as functions G → R:
Definition 6.1 (Chughtai et al. 2023). A function f : G → R is irrep sparse if it is a linear combi-
nation of the matrix entries of an irrep of G. That is, there exists a ρ ∈ Irrep(G) of dimension d and
a matrix A ∈ Rd×d such that f(g) = tr(ρ(g)A).
Definition 6.2 (Stander et al. 2024). A function f : G → R is coset concentrated if there exists a
nontrivial subgroup H ≤ G such that f is constant on the cosets (either left or right) of G.
Definition 6.3. A function f : G → R is a projected ρ-set for ρ ∈ Irrep(G) of dimension d if there
exist a, b ∈ Rd such that f(g) = a⊤ρ(g)b and b is in a ρ-set with nontrivial stabilizer.

In this section, we clarify the logical relationships between these three properties.

Projected ρ-sets are irrep-sparse This fact, while immediate from definitions, resolves a mystery
from Chughtai et al. (2023, Figure 7): why is the standard irrep ρstd of S5 learned significantly more
frequently than the sign-standard irrep ρsgnstd, when both have the same dimensionality dim ρstd =
dim ρsgnstd = 4? The answer is that the smallest ρstd-set has size 5, while the smallest ρsgnstd-set
has size 10 (Appendix H). Thus a minimum complete ρstd-set circuit needs 52 = 25 neurons, while
a minimum complete ρsgnstd-set circuit needs 102 = 100. The order of frequencies with which
ρ ∈ Irrep(G) is learned (Chughtai et al., 2023, Figure 7) is the same as the ordering of Irrep(G) by
minimum ρ-set size (Table 2), not by dimensionality.

Projected ρ-sets are coset concentrated Our ρ-set interpretation immediately explains coset con-
centration: the map g 7→ ρ(g)b is constant on precisely the cosets of the stabilizer StabG(b) := {g ∈
G | ρ(g)b = b}. Further, since the action of G is transitive, StabG(b′) for any other element b′ is
a conjugate of StabG(b); as a consequence left and right preactivations of each neuron concentrate
on cosets of conjugate subgroups.

Coset concentration fails to explain irrep sparsity Stander et al. (2024) partially explain irrep
sparsity via coset concentration. We paraphrase their key lemma here:
Lemma 6.4 (Stander et al., 2024). Let H be a subgroup of G. The Fourier transform of a func-
tion constant on the cosets of H is nonzero only at the irreducible components of the permutation
representation corresponding to the action of G on G/H .

This lemma fails to fully explain irrep sparsity, since the permutation representation of G on G/H
is never itself an irrep; it always contains the trivial irrep, possibly among others. Thus, it does
not explain why the models’ neurons are supported purely on single irreps and not, say, on linear
combinations of each irrep with the trivial irrep.

Notice also that, since there are many more subgroups than irreps (Stander et al., 2024, Appendix
G.3), most subgroups H ≤ G have corresponding actions of G on G/H that decompose into more
than two irreps; otherwise, since the decomposition is unique, there would be at most |Irrep(G)|2
total possibilities. Explicit examples of subgroups whose indicators are supported on more than two
irreps are given in Appendix H.

Projected ρ-sets are equivalent to the conjunction of irrep sparsity and coset concentration
Note that neither irrep sparsity nor coset concentration alone is equivalent to the condition of be-
ing a projected ρ-set. For an example of an irrep-sparse function that is not a ρ-set, consider the

9
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function χ(g) = tr(ρ(g)). If ρ is faithful and has nontrivial stabilizer (for example, the standard
4-dimensional irrep of S5), then χ cannot be a projected ρ-set, because it is maximized uniquely
at the identity (Chughtai et al., 2023, Theorem D.7) and thus is not coset-concentrated. To see that
coset concentration does not imply being a projected ρ-set, recall from above that there are coset-
concentrated functions that are not irrep-sparse, but all projected ρ-sets are irrep sparse.

On the other hand, if f : G → R is both irrep-sparse and coset-concentrated, then it must be a
projected ρ-set; for a proof see Lemma G.6. Hence, if we consider by itself a single embedding
of a single neuron on fθ, then our Observation B.2(2) is logically equivalent to the combination of
observations from previous works. However, our perspective gives us more insight into the relation-
ship between left/right embedding and unembedding neurons (Observation B.2(1)) as well as the
relationship between different neurons (Observation B.2(6,7)).

7 DISCUSSION

Limitations of the ρ-sets interpretation The ρ-set explanation we provide has a rather limited
scope: we only claim to understand roughly half of the models we examine, all of which are trained
on S5. On the other hand, all of the models we examine satisfy both irrep sparsity and coset concen-
tration. It was by trying and failing to obtain non-vacuous compact guarantees on model accuracy
that we discovered that our understanding of some models is still incomplete. Hence, compact
proofs are a quantitative means of detecting gaps in proposed model explanations.

Causal interventions In an attempt to verify the validity of the coset concentration interpretation,
Stander et al. (2024) perform a series of causal interventions. While the results do not yield evidence
that their interpretation is incorrect, they also do not provide strong evidence that it is correct. Indeed,
we perform the same interventions on a model for which we know the cosets explanation cannot
hold, and find results in the same direction; see Appendix F. Thus, in this case, causal interventions
might yield strong negative evidence against an explanation, but provide weaker positive evidence.
Furthermore, causal interventions lack a notion of an explanation’s simplicity independent from its
faithfulness—they do not provide a quantitative measure of how much an explanation compresses
the model.

Compact proofs For the models we do understand, we obtain tight accuracy bounds in signifi-
cantly less time than brute force, providing strong positive evidence for our understanding. Hence,
we view the compact proof approach as complementary to the causal intervention one: A tight
bound is strong positive evidence for an explanation, whereas a poor or vacuous bound does
not give us strong negative evidence. Indeed, the coset interpretation does make nontrivial obser-
vations and yield partial explanations of model performance, but this is not reflected in the vacuous
bounds we obtain. It may be the case that some of the pessimizations we use in our construction of
Vcoset were unnecessarily strong; the translation from an informal explanation into a rigorous bound
is itself informal, by necessity.

8 CONCLUSION

Multiple previous works (Chughtai et al., 2023; Stander et al., 2024) have examined the group com-
position setting and claimed a mechanistic understanding of model internals. However, as we have
demonstrated here, these works left much internal structure unrevealed. Our own interpretation
incorporates this structure, resulting in a more complete explanation that unifies previous attempts.

We verify our explanation with compact proofs of model performance, and obtain strong positive
evidence that it holds for a large fraction of the models we investigate. For models where we fail to
obtain bounds, we find that many indeed do not fit our proposed interpretation. Compact proofs thus
provide rigorous and quantitative positive evidence for an interpretation’s completeness. We see this
work as a preliminary step towards a more rigorous science of interpretability.

10
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A COSET CONCENTRATION IN DETAIL

The main observation of Stander et al. (2024) is that neurons are concentrated on the cosets of
subgroups. More precisely,
Observation A.1 (Stander et al., 2024). For each i ∈ [m], there exists a subgroup Hi ≤ G and
element gi ∈ G such that the left and right neurons are approximately constant on the right cosets
of Hi and the left cosets of the conjugate subgroup Ki = giHig

−1
i ,15 respectively:

xy−1 ∈ Hi =⇒ wi
l(x) ≈ wi

l(y), x−1y ∈ K−1
i =⇒ wi

r(x) ≈ wi
r(y). (5)

This forces the summed embeddings wi
l(x) + wi

r(y) to be approximately constant on the double
cosets Hi\G/Ki. Further, it is observed that

wi
l(x) +wi

r(y) ≈ 0 ⇐⇒ xy ∈ HixygiKi = Hig
−1
i . (6)

If we include several additional assumptions, this observation is sufficient for fθ to attain perfect ac-
curacy. Note it was not explicitly investigated in Stander et al. (2024) to what extent these additional
conditions are met.
Proposition A.2. Suppose the model parameters θ are such that Observation A.1 holds, the unem-
beddings satisfy

max
z ̸∈Hig

−1
i

wi
u(z) = min

z ̸∈Hig
−1
i

wi
u(z) > max

z∈Hig
−1
i

wi
u(z) (7)

15Throughout the appendix, we denote the group multiplication of x, y ∈ G by xy instead of by x ⋆ y.
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and the bias wb is zero. Further, defining

s(H, g) = min
x,y∈G

xy ̸∈Hig
−1
i

∑
i∈[m]

(Hi,gi)=(H,g)

ReLU[wi
l(x) +wi

r(y)], (8)

suppose every singleton {z} for z ∈ G can be written as an intersection of sets from the family

{G−Hig
−1
i | i ∈ [m], s(Hi, gi) > 0}

Then, αG(f) = 1.

Proof. Let x, y, z ∈ G with z ̸= xy. Then,

f(xy | x, y)− f(z | x, y) =
m∑
i=1

(wi
u(xy)−wi

u(z))ReLU[wi
l(x) +wi

r(y)]

≥
∑
(H,g)

s(H, g)1{xy ̸∈ Hig
−1
i }

∑
i∈[m]

(Hi,gi)=(H,g)

(wi
u(xy)−wi

u(z))

≥ 0,

To see that the inequality is strict, choose i such that s(Hi, gi) > 0 with z ∈ Hig
−1
i and xy ̸∈

Hig
−1
i .

B ρ-SET CIRCUITS IN DETAIL

B.1 LIST OF NOVEL OBSERVATIONS

Chughtai et al. (2023) observe that neurons are irrep-sparse. That is,

Observation B.1 (Chughtai et al., 2023). For each i ∈ [m], there exists a real-valued irrep
ρi : G → GL(di,R) of degree di as well as Ai,Bi,Ci ∈ Rdi×di such that

wi
l(x) ≈ tr(ρ(x)Ai), wi

r(x) ≈ tr(ρ(x)Bi), wi
u(x) ≈ tr(ρ(x)Ci).

However, this is not sufficient to fully describe how the model computes the group operation; in
particular the ReLU nonlinearities are left as black boxes.

We observe further structure:

Observation B.2 (Ours). Let (ρi,Ai,Bi,Ci)
m
i=1 be as in Observation B.1. Suppose that all irreps

of G over C are real-valued; in particular, this is the case for Sn
16

1. Ci ≈ riBiAi for some ri > 0.

2. Each of Ai,Bi,Ci are rank one, with ∥Ai∥ ≈ ∥Bi∥F . Hence, we may write

Ai ≈ siaib
⊤
i , Bi ≈ sicid

⊤
i , Ci ≈ ris

2
i ⟨di,ai⟩cib⊤i , (9)

where si, ri ∈ R and ai, bi, ci,di ∈ Rdi are unit vectors.

3. ai = di.

Further, fix an irrep ρ of G and consider Iρ = {i ∈ [m] | ρi = ρ}, the subset of neurons supported
on ρ. Then,

4. ai is approximately constant on Iρ. That is, there exists a unit vector aρ ∈ Rdi such that

∀i ∈ Iρ : ai ≈ di ≈ aρ.

16Equivalently, the Frobenius-Schur indicator of each ρ ∈ Irrep(G) is positive. We briefly consider complex
and quaternionic irreps in Appendix K.2.
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5. {bi}i∈Iρ ≈ {−ci}i∈Iρ .

6. Each {bi}i∈Iρ can be partitioned into {Bρ,q}q such that, for each neuron i, the correspond-
ing vectors bi and −ci must belong to the same partition. Further, ρ acts on each partition
by permutations; that is, ρ induces a left G-set structure on every Bρ,q . We say that such
Bρ,q is a ρ-set.

7. If dim ρ > 1, then, for each partition Bρ,q , there exists cρ,q ∈ R such that, for every pair
b, b′ ∈ Bρ,q , ∑

i∈Iρ

s3i ri1{bi = b, ci = −b′} ≈ cρ,q.

8. If dim ρ = 1, then, since we assume ρ is real-valued, it must be either trivial or the sign
irrep. We observe that the former never occurs. In the latter case, Bρ = {±1}, and there
exist c+, c− ∈ R such that

c+ ≈
∑
i∈Iρ

s2i t
2
i ri1{bi = 1, bj = 1} ≈

∑
i∈Iρ

s2i t
2
i ri1{bi = −1, bj = −1},

c− ≈
∑
i∈Iρ

s2i t
2
i ri1{bi = 1, bj = −1} ≈

∑
i∈Iρ

s2i t
2
i ri1{bi = −1, bj = 1}.

9. The bias wb satisfies

wb(z) ≈ (c− − c+) sgn(z).

B.2 SEPERATING HYPERPLANE INTERPRETATION

Another way to express Eq 2 is as

fρ,B(z | x, y) = −
〈
ρ(x−1 ⋆ z ⋆ y−1),

∑
b,b′∈B

ReLU[a⊤(b− b′)]b′b⊤

〉
, (10)

where ⟨·, ·⟩ is the Frobenius inner product of matrices.17. That is, each ρ-set circuit learns a (a,B)-
parameterized separating hyperplane ⟨·,Z(a,B)⟩ between ρ(e) = I and {ρ(z) | z ̸= e}. Since the
ρ are all unitary and thus of equal Frobenius norm, such a hyperplane always exists (e.g. Z = I),
though we do not show in general that it can be expressed in the form of Eq 10.

B.3 BI-EQUIVARIANCE

The observations in Section B.1 force the network to be bi-equivariant:

Proposition B.3. If fθ satisfies Observations B.1 and B.2 exactly, then for all x, y, z, g1, g2 ∈ G,

fθ(z | g1x, yg2) = fθ(g
−1
1 zg−1

2 | x, y).

We say that fθ is bi-equivariant. In particular,

fθ(z | x, y) = fθ(x
−1zy−1 | e, e),

so such fθ depends only on x−1zy−1. Observe that x−1zy−1 = e iff z = xy.

Proof. In the notation of Observation B.2, for each ρ ∈ Irrep(G) and partition Bρ,q , let fρ,q
θ =∑

i∈Iρ
1{bi ∈ Bρ,q}f i

θ. Then, if fθ satisifes Observation B.2 exactly,

17⟨A,B⟩ := tr(A⊤B) =
∑

i,j Ai,jBi,j .
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• If dim ρ > 1, for every Bρ,q , there exists a ∈ Rdim ρ, c ∈ R (all depending on ρ) such that,
by re-indexing neurons,

fρ,q
θ (z | x, y) = −c

k∑
i,j=1

b⊤i ρ(z)bj ReLU[b⊤i ρ(x)a− aρ(y)bj ]

=

k∑
i,j=1

b⊤i ρ(x
−1zy−1)bj ReLU[a⊤(bi − bj)]

=

〈
ρ(x−1zy−1),−c

k∑
i,j

ReLU[a⊤(bi − bj)]bjb
⊤
i

〉
.

• If dim ρ = 1, then ρ must be the sign irrep. In this case,

fρ
θ (z | x, y) +wb(z)

= c+ρ(z)ReLU[ρ(x) + ρ(y)] + c+ρ(z)ReLU[−ρ(y)− ρ(x)]− c+ρ(z)

− c−ρ(z)ReLU[ρ(x)− ρ(y)]− c−ρ(z)ReLU[ρ(y)− ρ(x)] + c−ρ(z)

= c+(ρ(z)|ρ(x) + ρ(y)| − ρ(z))− c−(ρ(z)|ρ(x)− ρ(y)| − ρ(z))

= c+(ρ(z)(1 + ρ(xy))− ρ(z))− c−(ρ(z)(1− ρ(xy))− ρ(z))

= (c+ + c−)ρ(zxy)

= (c+ + c−)ρ(x
−1zy−1).

B.4 STEPS TO DISCOVER THE ρ-SET CIRCUIT

In the main text, we presented the ρ-set circuit, and validated it by using our new understanding to
efficiently lower-bound model performance. However, we did not describe the process by which we
discovered the circuit in the first place. Here, we lead the reader through the steps of this process.
This section can be viewed as an annotated walkthrough of the list of observations in Section B.1.

0. Train a network on G-multiplication. Recall that, given inputs x, y ∈ G, the trained
network assigns the following logit value to output z:

fθ(z | x, y) = wb(z) +
∑
i

wi
u(x)ReLU[wi

l(x) +wi
r(y)].

1. Confirm neurons are irrep-sparse. Given a d-dimensional irrep ρ of G, construct18 a
tensor Tρ of shape (|G|, d, d), interpreted as a d× d representation matrix for each element
of G. We may also think of Tρ as d2 many vectors of size |G|. We compute the span of
these vectors Sρ = span(Tρ) ⊆ R|G|. By the Schur orthogonality relations, the subspaces
{Sρ}ρ∈Irrep(G) are mutually orthogonal.
Now, if we fix a neuron i, then wi

l ,w
i
r,w

i
u are each functions G → R, i.e. vectors of

dimensionality |G|. If these vectors are all approximately contained in a single Sρ (say
each with > 90% variance explained), we say the neuron is supported on ρ. We then use
least-squares linear regression to find Ai,Bi,Ci ∈ Rd×d satisfying:

wi
l(x) ≈ tr(ρ(x)Ai), wi

r(x) ≈ tr(ρ(x)Bi), wi
u(x) ≈ tr(ρ(x)Ci).

Note: the number of features in each of the three least-squares problems is d2, and the
number of data points is |G| > d2. We can now write the network as

fθ(z | x, y) ≈
∑
i

tr(ρ(z)Ci)ReLU[tr(ρ(x)Ai + ρ(y)Bi)]

and our task hereafter is to look for structure in Ai,Bi,Ci.
18We use GAP (2024) for this. See src/groups.py:get real irreps in the provided repository.
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2. Observe Ci ≈ riBiAi for some ri > 0. We guess this relation by analogy with the
modular addition circuit in Yip et al. (2024). We then verify it by defining Frobenius-
normalized matrices

Âi = Ai/∥Ai∥, B̂i = Bi/∥Bi∥, Ĉi = Ci/∥Ci∥

and noting that the unexplained variance ∥Ĉi − B̂iÂi∥2/∥Ĉi∥2 is small.

3. Observe that for real irreps, Ai,Bi,Ci are approximately rank 1, with ∥Ai∥ ≈ ∥Bi∥.
For each matrix, we check that the variance explained by its top principal component is
≈ 1. We also check ∥Ai∥/∥Bi∥ ≈ 1. So we have

Ai ≈ siaib
⊤
i , Bi ≈ sicid

⊤
i , Ci ≈ ris

2
i ⟨di,ai⟩cib⊤i

where si is the top singular value of Ai or Bi, (ai, bi) are the top left and right singular
vectors of Ai, and (ci,di) are the top left and right singular values of Bi.

4. Observe ai ≈ di. We check the unexplained variance ∥ai − di∥2/∥ai∥2 is small.

Now we restrict to neurons i ∈ Iρ, i.e. those supported on a given irrep ρ. Let us take stock, and use
our observations thus far to write out the contribution to the network due to these neurons:

fρ
θ (z | x, y) =

∑
i∈Iρ

ris
3
i b

⊤
i ρ(z)ci ReLU[b⊤i ρ(x)ai + a⊤

i ρ(y)ci].

5. Observe ai ≈ a, a constant. We simply check ⟨ai,aj⟩ ≈ 1 for all pairs i, j. Now the
only remaining degrees of freedom to understand are the bi and ci.

6. Cluster {bi} and {ci}. Using k-means clustering, 19 we find that {bi} and {ci} each
consist of tight clusters. Let Bρ and Cρ be the sets of means of these respective clusters.
In the simplest (and most illustrative) case, {(bi, ci)}i∈Iρ = Bρ × Cρ. In other words, b
and c “vary independently”. Moreover, for any pair (b, c) ∈ Bρ × Cρ, we observe∑

{i∈Iρ if (bi,ci)≈(b,c)}

ris
3
i = cρ

where cρ is a constant independent of i.
In general, though, we find {(bi, ci)}i∈Iρ =

⋃
q Bρ,q × Cρ,q for some partitions {Bρ,q}q

and {Cρ,q}q of Bρ and Cρ. In other words, b and c vary independently within each partition.
Moreover, we observe that for any (b, c) ∈ Bρ,q × Cρ,q∑

{i∈Iρ,q if (bi,ci)≈(b,c)}

ris
3
i = cρ,q

This split into partitions is a technical detail (the partitions are easy to find in practice) and
the reader may wish to ignore it.

7. Observe Bρ,q = −Cρ,q . We check that for each b ∈ B, there exists c ∈ C with ⟨b, c⟩ ≈ −1
(and vice versa with B and C swapped).

8. Observe that Bρ,q is approximately a ρ-set. We check that for all x ∈ G and b ∈ B, there
exists b′ ∈ B such that ρ(x)b ≈ b′ (that is, ⟨ρ(x)b, b′⟩ ≈ 1).

Putting these observations together, we arrive at our final expression for the contribution to the
network due to a single Bρ,q (whose indices we drop to simply call B):

fρ,B(z | x, y) = −
∑

b,b′∈B

b⊤ρ(z)b′ ReLU[b⊤ρ(x)a− a⊤ρ(y)b′].

This is precisely the Equation 4 that we stated when introducing the ρ-set circuit in Section 4.1.

19For exploratory work, we use standard k-means. For the interpretation string of the compact proof, we also
try a modification of k-means that takes into account the symmetries due to the corresponding irrep ρ. We find
that this modified k-means algorithm does not yield substantially different results from the original.
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B.5 SIGN IRREP AND MODULAR ARITHMETIC

Let us briefly extend our attention to groups with complex-valued irreps and consider cyclic groups
Z/pZ, i.e. arithmetic modulo p. All irreps of cyclic groups are one-dimensional, looking like
ρ(x) = e2πikx/p = cos(2πkx/p)+ i sin(2πkx/p). The modular arithmetic setting is studied by Yip
et al. (2024), where it is found that models use an approximation trick involving the sum-of-cosines
formula and integration over a single variable:∫ π

−π

cos(z + 2ϕ)ReLU[cos(x+ ϕ) + cos(y + ϕ)]dϕ

=

∣∣∣∣cos(x− y

2

)∣∣∣∣12
∫ π

−π

cos(z + 2ϕ)

∣∣∣∣cos(x+ y

2
+ ϕ

)∣∣∣∣dϕ
=

∣∣∣∣cos(x− y

2

)∣∣∣∣2 cos(x+ y − z)

3
.

Here, analogously to the sign circuit of our setting, the sum of the group elements’ embeddings
is expressed as the embedding of their sum in order to compute the desired inequality with only a
single sum/integral, instead of a double sum. (In this case, the extraneous |cos((x − y)/2)| is not
removed; indeed, this additional term is the “Achilles’ heel” of this strategy, and necessitates that
the model use multiple irreps, even though each one is faithful (Zhong et al., 2024).)

B.6 CONSTANT PROJECTION VECTORS
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Figure 4: Plots of normalized variance Ei[∥ai−Eiai∥22]/Ei[∥ai∥22] vs. model loss and weight norm,
where ai is the projection vector for neuron i, and expectation is taken across neurons within the
4d standard irrep of S5. Each point is one model out of 100 trained on S5. Notice that constant ai

across neurons is correlated with better model performance and lower weight norm.

Why does the network learn to set the a vector constant across neurons? A heuristic explanation
is that such a constant vector a is one way to enforce bi-equivariance, which then leads the margin
attained to be uniform across inputs x, y ∈ G. Morwani et al. (2024) show that this uniform margin
must necessarily be the case at a maximum margin solution; further, models trained on cross-entropy
loss in the zero weight decay limit indeed attain the maximum margin (Wei et al., 2019).

However, we do see that some fraction of trained models do not have constant a; we do not have
a full understanding of these models, and thus are unable to non-vacuously bound accuracy. We
notice that these models tend to have inferior performance and higher weight norm, suggesting that
they have converged to a poor local minimum by chance; see Figure 4. Further, even in these cases,
we find that the ai all lie in a two-dimensional subspace.
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C ADDITIONAL EVIDENCE FOR ρ-SET CIRCUITS

In this section we provide additional evidence that models implement ρ-set circuits (Eq. 2). For
each trained model, we constructed an idealized version of the model that implements ρ-set circuits
exactly; each irrep ρ, corresponding ρ-set B, and constant vector a are found automatically using
the steps described in Section B.4.

Figure 5 plots the distance between original model parameters and parameters of idealized mod-
els. Figure 7 illustrates the effect of replacing each parameter type (wl,wr,wu,wb) in the original
model with is idealized version. Figure 8 is the same but instead aggregated by neurons correspond-
ing to each irrep. Figure 6 depicts the bi-equivariance of idealized models, original trained models,
and randomly initialized models. We measure bi-equivariance by

equiv(θ) = Ez∈G

[√
Varxy=z fθ(z | x, y)
Exy=zfθ(z | x, y)

]
. (11)

If fθ is exactly bi-equivariant, then equiv(θ) = 0.

embedding left embedding right unembedding unembed bias

10−4

10−3

10−2

10−1

100

Figure 5: Normalized distance between original and idealized model parameters ∥w − ŵ∥22/∥w∥22
(i.e. 1 − R2) for each of left embedding wl, right embedding wr, unembedding wu, and unembed
bias wb of 100 models trained on S5. Green boxes include all models while blue boxes exclude
models for which we find that the ρ-set explanation does not hold (i.e. either (a-bad) or (ρ-bad)).

10−6 10−4 10−2 100 102

Bi-equivariance

random

original

ideal

Figure 6: Bi-equivariance of idealized models, original trained models, and randomly initialized
models for 100 models on S5. See Eq. 11 for the definition of our bi-equivariance metric equiv(θ).
Lower means more bi-equivariant and a value of zero means exactly bi-equivariant. Theoretically,
the idealized model is exactly bi-equivariant when parameters are considered over R; however, some
non-bi-equivariance is introduced by floating point imprecision.

D ACCURACY BOUNDS VIA COSET CONCENTRATION

We construct a verifier Vcoset that takes as input θ and an interpretation string

π = ((Hi, gi))
m
i=1,
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and returns a lower bound on αG(θ) in time O(m|G|2).
For each x, y ∈ G, the verifier Vcoset computes a lower bound on the margin

M(z) ≤ min
x,y,z′∈G
xy=z ̸=z′

fθ(xy | x, y)− fθ(z
′ | x, y)

by doing the following:

1. Check that the (Hi)
m
i=1 are each subgroups of G and construct the conjugate subgroups

Ki = giHig
−1
i in time O(

∑m
i=1|Hi|2).

2. Construct idealized parameters θ̃ by averaging over the cosets given in π. Explicitly,

w̃i
l(x) = |Hi|−1

∑
x′∈Hix

wi
l(x

′)

w̃i
r(y) = |Ki|−1

∑
y′∈yKi

wi
r(y

′)

w̃i
u(z) =

{
|G−Hig

−1
i |−1

∑
z′ ̸∈Hig

−1
i

wi
u(z

′) z ̸∈ Higi

min{wi
u(z),minz′ ̸∈Higi w̃

i
u(z

′)} z ∈ Higi

w̃b = 0.

This takes time O(|G|m).
3. Compute s(Hi, gi) for each i according to Eq 8. This takes time O(

∑m
i=1|Hi\G|2).

4. For each z ∈ G, compute

M(z) = min
z′∈G
z′ ̸=z

∑
(H,g)

s(H, g)1{z ̸∈ Hg−1}
∑
i∈[m]

(Hi,gi)=(H,g)

(wi
u(z)−wi

u(z
′))

This takes time O(m|G|2).
5. Lemma G.2 gives an upper bound on the ℓ∞ norm between the output logits of original and

idealized models for each x, y ∈ G in time O(m|G|2). Sum the difference in logit values
of the original and idealized models on the correct answer, which again can be computed
in time O(m|G|2). This gives

L(x, y) ≥ ∥fθ(· | x, y)− fθ̃(· | x, y)∥∞ + fθ̃(xy | x, y)− fθ(xy | x, y). (12)

The final accuracy bound is

Pr
z∼Unif(G)

[M(z) > max
x,y∈G
xy=z

L(x, y)].

The total time complexity is dominated by the last two steps. Soundness, i.e. ∀π : Vcoset(θ, G, π) ≤
αG(θ), follows from Proposition A.2.

The bias term The description of the coset circuit in Stander et al. (2024) makes no mention of
the unembedding bias term, although it is present in the models they train for their experiments. In
practice, we find that the bias term is large. The maximum minus minimum value of the bias would
then be added directly to L(x, y) for every x, y ∈ G if we were to run Vcoset as written. Thus,
in addition, we train models without an explicit bias term for our Vcoset experiments. We find that
such models are qualitatively similar to models with an explicit bias; the missing bias term is simply
added uniformly to each unembedding weight wi

u. Perhaps because of this, we are still unable to
obtain nonvacuous bounds from Vcoset even for these bias-less models.

E ACCURACY BOUNDS VIA ρ-SETS

We construct a verifier Virrep that takes as input θ and an interpretation string π and returns a lower
bound on αG(θ) in time O(m|G|2). The interpretation π comprises ((ρi, qi,ai, bi, ci)

m
i=1), where

qi is the index of the corresponding ρ-set Bρ,q = {bi | ρi = ρ, qi = q}. The verifier then does
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1. Check that each Bρ,q is indeed a ρ-set. This takes time O(
∑

ρ,q|G||Bρ,q|2 dim(ρ)2). Since
m ≥ ∑

ρ,q|Bρ,q|2 and
∑

ρ∈Irrep(G) dim(ρ)2 = |G|, this is upper-bounded by O(|G|2m).

2. Within neurons corresponding to each (ρ, q), check that ai is constant. This again takes
time no more than O(|G|m).

3. For each (ρ, q) where ρ is not the sign irrep, check that the coefficients ci across all neurons
corresponding to (ρ, q) is constant. This takes time O(m).

4. For neurons corresponding to the sign irrep, there is only one ρ-set Bρ = {±1}. Check
that the constraint in Observation B.2(8) holds; that is, that the neurons corresponding to
(+1,+1) have coefficients summing to the same value as those corresponding to (−1,−1),
and likewise for (+1,−1) and (−1,+1).

5. Construct the idealized parameters θ̃ consisting of

w̃i
l(x) = b⊤i ρ(x)ai

w̃i
r(y) = a⊤

i ρ(x)ci

w̃i
u(z) = cib

⊤
i ρ(z)bj

w̃b(z) = (c− − c+) sgn(z).

This takes time O(
∑m

i=1 dim(ρi)
2|G| ≤ O(|G|2m).

6. Compute the idealized margin

M = min
x,y∈G

fθ̃(xy | x, y)− max
z′ ̸=xy

fθ̃(z | xy).

By Proposition B.3, this can be done with a single forward pass of fθ̃, in time O(|G|m).

7. Use Lemma G.2 to compute L as in Eq 12 in time O(m|G|2). The final accuracy bound is

Pr
x,y∼Unif(G)

[M > L(x, y)].

The total time complexity is dominated by the last step. Soundness, i.e. ∀π : Virrep(θ, G, π) ≤
αG(θ), is obvious from construction and Proposition B.3.

F INSUFFICIENCY OF CAUSAL INTERVENTIONS

Stander et al. (2024) perform a series of causal interventions on a model trained on S5, and find
results consistent with their description of the cosets algorithm. However, we expect that these
interventions would have the same result for models implementing different algorithms. To verify
this, we replicate their outcomes with a model trained on the cyclic group G = Z/53Z; such a model
cannot be using the coset algorithm, as G as no non-trivial subgroups. Models trained cyclic groups
were studied in Yip et al. (2024) and found to be using a distinct algorithm; see also discussion in
Section B.5.

In detail, the interventions that Stander et al. (2024) perform on S5 are:

1. Embedding exchange: Swapping the model’s left and right embeddings destroys model
performance. Since S5 is non-commutative, we expect this to be the case regardless of
what algorithm the model is implementing. Even with Z/53Z, which is commutative, we
get this result, since WlEl(x) +WrEr(y) ̸= WlEr(y) +WrEl(x).

2. Switch permutation sign Multiplying either the left or right embeddings individually by
−1 destroys model performance, while multiplying both preserves model performance. We
find this to be the case with Z/53Z as well.

3. Absolute value non-linearity Replacing the ReLU nonlinearity with an absolute value
improves model performance. Again, this is the case with Z/53Z as well. We explain this
by decomposing ReLU(x) = (x + |x|)/2. By inspecting the summation in Eq 2, we see
that the x/2 component sums to zero, so only the |x|/2 term contributes. Thus, replacing
the ReLU with an absolute value is approximately equivalent to doubling the activations,
which reduces loss assuming the model already has near-perfect accuracy.
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4. Distribution change Perturbing model activations by N (1, 1) reduces performance to a
greater extent than perturbing with N (1,−1). Again, we observe this with Z/53Z.

See Table 1 for results.

Table 1: Causal interventions aggregated over 128 runs on Z/53Z (ours) juxtaposed with the same
interventions aggregated over 128 runs on S5 (Stander et al., 2024). We train our models with fewer
iterations than Stander et al. (2024), resulting in higher base loss. However, the directional effect
of each intervention is the same, even though the coset concentration explanation does not hold for
Z/53Z.

Z/53Z (ours) S5 (Stander et al., 2024)

Intervention Mean accuracy Mean loss Mean accuracy Mean loss
Base model 99.55% 0.0711 99.99% 1.97e-6
Embedding swap 03.85% 4.15 1% 4.76
Switch left and right sign 99.69% 0.0663 100% 1.97e-6
Switch left sign 00.00% 17.2 0% 22.39
Switch right sign 00.00% 17.2 0% 22.36
Absolute value nonlinearity 99.88% 0.0045 100% 3.69e-13
Perturb N (0, 1) 76.90% 0.829 97.8% 0.0017
Perturb N (0, .1) 99.51% 0.0752 99.99% 2.96e-6
Perturb N (1, 1) 49.80% 1.79 88% 0.029
Perturb N (1,−1) 83.17% 0.780 98% 0.0021

G ADDITIONAL PROOFS

Lemma G.1. Let

θ = (U ,El,Er,wb) = ((wi
u,w

i
l ,w

i
r)

m
i=1,wb),

θ̃ = (Ũ , Ẽl, Ẽr, w̃b) = ((w̃i
u, w̃

i
l , w̃

i
r)

m
i=1, w̃b)
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Then, for any x, y ∈ G,

max
z∈G

|fθ(z | x, y)− fθ′(z | x, y)|

= max
z∈G

∣∣∣∣∣
m∑
i=1

(
wi

u(z)ReLU[wi
l(x) +wi

l(y)] +wb(z)− w̃u(z)ReLU[w̃l(x) + w̃l(y)]− w̃b(z)
)∣∣∣∣∣

≤ max
z∈G

∣∣∣∣∣
m∑
i=1

(wi
u(z)− w̃i

u(z))ReLU[wi
l(x) +wi

l(y)]

∣∣∣∣∣
+max

z∈G

∣∣∣∣∣
m∑
i=1

w̃i
u(z)

(
ReLU[wi

l(x) +wi
l(y)]− ReLU[w̃i

l(x) + w̃i
l(y)]

)∣∣∣∣∣
+max

z∈G
|wb(z)− w̃b(z)|

= ∥(U − Ũ)⊤ ReLU[El(x) +Er(y)]∥∞
+
∥∥∥Ũ⊤

(
ReLU[El(x) +Er(y)]− ReLU[Ẽl(x) + Ẽr(y)]

)∥∥∥
∞

+ ∥wb − w̃b∥∞
≤ ∥(U − Ũ)⊤∥2,∞∥ReLU[El(x) +Er(y)]∥2

+ ∥Ũ⊤∥2,∞∥
(
ReLU[El(x) +Er(y)]− ReLU[Ẽl(x) + Ẽr(y)]

)
∥2

+ ∥wb − w̃b∥∞
≤ ∥(U − Ũ)⊤∥2,∞(∥El(x)∥1,2 + ∥Er(y)∥1,2)

+ ∥Ũ⊤∥2,∞(∥El − Ẽl∥1,2 + ∥Er − Ẽr∥1,2)
+ ∥wb − w̃b∥∞.

Lemma G.2. Let θ and θ̃ be as in Lemma G.1. Further, suppose we have a margin lower bound
function for θ

M(z) ≤ min
x,y,z′∈G
xy=z ̸=z′

fθ(xy | x, y)− fθ(z
′ | x, y).

Then,

αG(θ̃) ≥ Pr
x,y∼Unif(G)

[
M(xy) > ∥(U − Ũ)⊤∥2,∞∥ReLU[El(x) +Er(y)]∥2 (13)

+ ∥Ũ⊤∥2,∞
∥∥∥(ReLU[El(x) +Er(y)]− ReLU[Ẽl(x) + Ẽr(y)]

)∥∥∥
2

+ ∥wb − w̃b∥∞
]

≥ Pr
z∼Unif(G)

[
M(z) > ∥(U − Ũ)⊤∥2,∞(∥El(x)∥1,2 + ∥Er(y)∥1,2) (14)

+ ∥Ũ⊤∥2,∞(∥El − Ẽl∥1,2 + ∥Er − Ẽr∥1,2)

+ ∥wb − w̃b∥∞
]
.

The bound in Equation 13 can be computed in time O(m|G|2), while that in Equation 14 can be
computed in time O(m|G|).

Proof. This follows immediately from Lemma G.1.

For the remainder of this section, let ℓ denote the cross-entropy loss:

ℓ(x, i) := − log
exi∑
j xj

.
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Lemma G.3. The cross-entropy loss is
√
2-Lipschitz.

Proof. Cross-entropy loss ℓ is differentiable with

∇x(ℓ(x, i))j =
exj − δij

∑
k e

xk∑
k e

xk
.

Hence,

∥∇xℓ(x, i)∥22 =
(
∑

k ̸=i e
xk)2 +

∑
k ̸=i e

2xk

(
∑

k e
xk)2

≤ 2.

Lemma G.4. For x,y ∈ Rn and i ∈ [n], the cross-entropy loss ℓ(·, i) satisfies

ℓ(y, i) ≤ ℓ(x, i) +∇ℓ(x)⊤(y − x) +
1

4
∥x− y∥22

≤ ℓ(x, i) + ∥∇ℓ(x)∥2∥x− y∥2 +
1

4
∥x− y∥22.

Proof. It suffices to show 0 ⪯ ∇2ℓ(x, i) ⪯ 1

2
I , whence ℓ(·, i) is convex and 1/2-smooth; the

desired inequality is then a well-known consequence (Beck, 2017).

Write pi =
exi∑n
j=1 e

xj
. Then (Boyd & Vandenberghe, 2004),

∇2ℓ(x, i) = ∇2 log

 n∑
j=1

exj

 = diag(p)− pp⊤,

so, for any vector v ∈ Rn,

v⊤∇2ℓi(x)v = v⊤(diag(p)− pp⊤)v = Varp(v) ≥ 0,

confirming that ∇2ℓ(x, i) ⪰ 0. Furthermore, applying the Gershgorin circle theorem to the Hessian,

λmax(∇2ℓ(x, i)) ≤ max
j∈[n]

pj − p2
j +

∑
k ̸=j

pjpk

 = max
j∈[n]

2pj(1− pj) ≤
1

2
,

so ∇2ℓ(x, i) ⪯ 1

2
I .

Lemma G.5. Let ρ : G → GL(n,R) be a permutation representation of G that decomposes into two
subspaces V ⊕W such that ρ acts trivially on W . (For example, the standard (n− 1)-dimensional
irrep of Sn is of this form.) Let V and W be orthonormal bases of V,W ∈ Rn, respectively, and
let P = V V ⊤ and Q = WW⊤ be the corresponding orthogonal projections, so that P +Q = I .
Denote bi = V ⊤ei, where (ei)

n
i=1 are the standard basis of Rn. Then, for any a ∈ V ,

φ(z) =

〈
ρ|V (z),−

n∑
i,j

ReLU[a⊤(bi − bj)]bjb
⊤
i

〉

is maximized at z = e.
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Proof.

φ(z) = −
〈
ρ|V (z),

n∑
i,j

ReLU[a⊤(bi − bj)]bjb
⊤
i

〉

= −
〈
ρ|V (z),

n∑
i,j

ReLU[a⊤(bi − bj)]V
⊤eje

⊤
i V

〉

= −
〈
V ρ|V (z)V ⊤,

n∑
i,j

ReLU[a⊤(bi − bj)]eje
⊤
i

〉

= −
〈
P ρ(z)P ,

n∑
i,j

ReLU[a⊤(bi − bj)]eje
⊤
i

〉

= −
〈
ρ(z),

n∑
i,j

ReLU[a⊤(bi − bj)]eje
⊤
i

〉

−
〈
Qρ(z)Q⊤,

n∑
i,j

ReLU[a⊤(bi − bj)]eje
⊤
i

〉

= −
〈
ρ(z),

n∑
i,j

ReLU[a⊤(bi − bj)]eje
⊤
i

〉

−
〈
QQ⊤,

n∑
i,j

ReLU[a⊤(bi − bj)]eje
⊤
i

〉
,

where the last step uses that ρ|W is trivial. The first term of the last line is the negation of a sum
over off-diagonal entries of the permutation matrix ρ(z), and thus maximized at z = e. The second
term does not depend on z.

An irrep V of G admits such a ρ with W being the trivial representation, if for the corresponding
subgroup H ⊂ G the double coset has two elements H \ G/H . This applies in our case where
G = S5 and H = S4.
Lemma G.6. Suppose f : G → C is coset concentrated and irrep sparse; that is, f is constant on
the cosets of some H ≤ G and there exists ρ ∈ Irrep(G) mapping ρ : G → GL(d,C) such that
f is a linear combination of the entries of ρ. Then, there must exist an embedding ι : G/H → Cd

such that the action of ρ on ι(G/H) is isomorphic to the action of G on G/H . Further, there exist
a ∈ (Cd)∗ and b ∈ Cd such that f(g) = ⟨a, ρ(g)b⟩.
The converse also holds and is immediate.

Proof. Let {g1, . . . , gk} be representatives for the cosets G/H with g1 = e, and let ρ̃ : G → Sk ⊆
GL(

⊕k
i=1 giC) =: V be the permutation representation corresponding to the action of G on G/H .

(That is, ρ̃ is induced by the trivial representation on H .) Let {egi}ki=1 denote the basis vectors of V .
Define a ∈ V ∗ by ⟨a, egi⟩ = f(gi) for each i ∈ [k]. Hence f(gi) = ⟨a, ρ̃(gi)eg1⟩. Since f is coset
concentrated, this same relation holds for all g ∈ G. Now, let V =

⊕n
j=1 Vj be the decomposition

of V into irreps, with corresponding projections πj : V → Vj and irreps ρj : G → GL(Vj). We
have

f(g) = ⟨a, ρ̃(g)eg1⟩ =
n∑

j=1

⟨a|Vj , πj ρ̃(g)eg1⟩ =
n∑

j=1

⟨a|Vj , ρj(g)πjeg1⟩.

By the irrep sparsity assumption, at most one term of this sum is nonzero, and that corresponding
term must have ρj = ρ:

f(g) = ⟨a|Vj
, ρ(g)πjeg1⟩.

Then ρ acts on {πjegi}ki=1 isomorphically to the action of G on G/H and (a|Vj , πjeg1) is the
desired covector and vector pair from the theorem statement.
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H PERMUTATION REPRESENTATIONS AND ρ-SETS OF S5

In this section we enumerate all irreps of S5 and their corresponding minimum ρ-sets.

Irrep Minimum ρ-set size Stabilizer
trivial (1d-0) 1 S5

sign (1d-1) 2 A5

standard (4d-0) 5 S4

sign-standard (4d-1) 10 A4

5d-0 6 F5

5d-1 12 D12

6d-0 20 Z/6Z or S3

Table 2: Irreps ρ ∈ Irrep(S5) by the size of the minimum ρ-set, and corresponding stabilizers.
We name each irrep by its dimension and an arbitrary disambiguating integer; e.g. 5d-0 is a five-
dimensional irrep. A projected ρ-set (Definition 6.3) is constant on the cosets of its stabilizer. Notice
that the ordering of Irrep(S5) by minimum ρ-set size matches the ordering by frequencies with
which irreps are learned (Chughtai et al., 2023, Figure 7).

Stabilizer G-set size Irreps present
S5 1 1d-0
A5 2 1d-0,1d-1
S4 5 1d-0,4d-0
F5 6 1d-0,5d-0
A4 10 1d-0,1d-1,4d-0,4d-1
D12 10 1d-0,4d-0,5d-1
D10 12 1d-0,1d-1,5d-0,5d-1
D8 15 1d-0,4d-0,5d-0,5d-1
Z/6Z 20 1d-0,4d-0,4d-1,5d-1,6d-0
S0
3 20 1d-0,4d-0,5d-1,6d-0

S1
3 20 1d-0,1d-1,4d-0,4d-1,5d-0,5d-1

Z/5Z 24 1d-0,1d-1,5d-0,5d-1,6d-0
V 0
4 30 1d-0,1d-1,4d-0,4d-1,5d-0,5d-1

V 1
4 30 1d-0,4d-0,5d-0,5d-1,6d-0

Z/4Z 30 1d-0,4d-0,4d-1,5d-0,5d-1,6d-0

Table 3: All transitive permutation representations of S5 with size no more than 30 along with
decomposition into irreps. By the orbit-stabilizer theorem, transitive permutation representations
correspond directly to left actions of S5 on cosets of its subgroups; the subgroup acted upon is then
the stabilizer of the action. Upper indices disambiguate subgroups of S5 that are isomorphic but not
conjugate. F5 is the Frobenius group of order 20 and V4 is the Klein four-group.

I EXPERIMENT DETAILS

For the main text, we train 100 one-hidden-layer models with hidden dimensionality m = 128 on
the group S5. The test set is all pairs of two inputs from S5, with |S5|2 = 14400 points total. The
training set comprises iid samples from the test set and has size 40% of the test set. Note that we use
the same training set for each of the 100 training runs. Each model was trained over 25000 epochs.
Learning rate was set to 1e-2. We use the Adam optimizer (Kingma & Ba, 2015) with weight decay
2e-4 and (β1, β2) = (0.9, 0.98).20 All models were trained on one Nvidia A6000 GPU. Compact

20Note that previous work uses AdamW (Loshchilov & Hutter, 2019) instead, with weight decay 1. However,
we found that models trained with Adam grok the group composition task in an order of magnitude fewer
epochs. We did not notice significant differences in the end result post-grokking between models trained with
Adam vs AdamW.
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proof verifiers were run on an Intel Core i5-1350P CPU. Neural networks were implemented in
PyTorch (Paszke et al., 2019). Their group-theoretic properties were analyzed with GAP (GAP,
2024).

In Section K.1, models are trained with the same hyperparameters as described above, except 1)

• For A5, the hidden dimensionality is m = 256, the weight decay is 10−6, and the unem-
bedding bias is omitted. Recall that, in our explanation, the role of the unembedding is
to deal with the sign irrep, which is not present for alternating groups. The larger hidden
dimensionality and smaller weight decay were used in an attempt to reduce occurrences of
(ρ-bad), though we did not observe these changes to have significant effect

• For S4, the hidden dimensionality m = 64 and the training set is 80% of the test set in
order to account for the smaller total number of data points.

As input to the verifier Vcoset, recall that the interpretation string looks like π = ((Hi, gi))
m
i=1,

where the left embedding at neuron i ∈ [m] should be constant on the right cosets of Hi and the
right embedding at neuron i should be constant on the left cosets of giHig

−1
i . When constructing π,

we set each Hi to be the largest subgroup of G such that

EVar(wi
l | Hi\G)

Var(wi
l)

< 0.01,

and Ki to the largest subgroup such that

EVar(wi
l | G/Ki)

Var(wi
l)

< 0.01,

and check for the existence of gi such that Ki = giHig
−1
i . The quotient on the LHS is bounded in

[0, 1] by the law of total variance.

As input to the verifier Virrep, the interpretation string is found using an automated version of the
steps discussed in Section B.4. The automated process labels each neuron with an ρi ∈ Irrep(G)
and a corresponding ρi-set B. The irrep ρi is chosen to have the largest R2 against wi

l , or none, if
the R2 if no irrep exceeds 95%. The ρ-set is recovered using singular value decomposition of the
coefficient matrices Ai,Bi,Ci as defined in Section B.4 and a variant of k-means clustering. We
find that the clustering step is the most fragile part of the interpretation creation process—in practice,
for each model, we run the process several times and choose the interpretation string that yields the
highest accuracy bounds from the verifier. Note also that the construction of the interpretation string
π does not count towards the runtime of the verifier (see Section 5).

J BOUNDING THE LOSS

In this paper we focus on lower-bounding the test-set accuracy. Another natural choice is the test-
set cross-entropy loss, which contains information about the model’s confidence in its answers that
accuracy obscures. Note that, in principle, the compact proofs framework can be applied just as well
to this metric, or indeed any well-defined quantity associated to the model. We view this flexibility as
a strength of the framework. However, those using compact proofs to evaluate model interpretations
must take care that the choice of quantity being bounded is relevant to the task.

We consider two simple techniques for reusing our accuracy bound work for a loss bound:

• Recall from Section 5.1 that we bound the accuracy by lower-bounding for each input pair
x, y ∈ G the margin Mx,y with which the correct logit value exceeds any incorrect logit
value in the original model. (This margin Mx,y is computed as the difference between
the idealized model’s margin and the maximum logit difference between the original and
idealized models.) For each input pair x, y ∈ G, we can guarantee that the original gets
the correct answer on x, y if Mx,y > 0; this results in a lower bound on accuracy. When
considering loss, we can instead use translation-invariance of softmax to find that the con-
tribution to the loss due to x, y is

Lce(θ;x, y) ≤ − log
eMx,y

|G| − 1 + eMx,y
.
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The average of these terms over all x, y ∈ G is then an upper bound for the total cross-
entropy loss.

• Another approach is to first use bi-equivariance to compute the true cross-entropy loss of
the idealized model with a single forward pass and then to bound the ℓ2 norm between the
idealized and original models’ output logits using a variation of Lemma G.1. Combined
with either the fact that cross-entropy loss is

√
2-Lipschitz (Lemma G.3) or with a inequal-

ity that takes into account second-degree information about cross-entropy (Lemma G.4),
this gives a bound on the original model’s loss.

In our experiments, we find that neither of these techniques suffices to give meaningful bounds on
cross-entropy loss. This lack of success is somewhat to be expected—we start with approaches
designed to bound accuracy, and then attempt to crudely adapt them to loss. Better bounds on loss
would likely require new techniques which are out of scope for this paper. See Figure 9 for an
example of loss bounds through the margin for models trained on S5.

K BEYOND SYMMETRIC GROUPS

K.1 OTHER GROUPS WITH REAL IRREPS

In the main text, we focus on the symmetric group S5. For our purposes, this group is especially
nice for several reasons:

• Symmetric groups Sn have only real irreps, in the sense that every irrep over C is isomor-
phic to an irrep with only real matrix entries. See Section K.2 for a preliminary discussion
of groups that do not have all real irreps.

• The minimum faithful ρ-sets of Sn are small relative to the order of the group. In other
words, Sn has small faithful permutation representations because it can be embedded into
itself Sn ↪→ Sn. (In general, an arbitrary finite group G can be embedded into a symmetric
group G ↪→ Sn by Cayley’s theorem, but unless G itself is a symmetric group we must
have |Sn| > |Gn|.)

• For groups of significantly smaller order, the training dataset is too small and we do not
observe the grokking phenomenon. (Recall that training set size is proportional to |G|2.)
For groups of significantly larger

Related to the second point above, we empirically observe that groups with larger ρ-sets relative to
group order are more prone to failure mode (ρ-bad), i.e. they typically miss a substantial portion of
pairs in the double summation of Eq. 4. In this situation, we do not have a complete understanding
of how the model attains high accuracy, and thus our bounds are correspondingly poor. Note that,
although we cannot fully explain how neurons interact in this case, our per-neuron observations (B.2
1-3) hold for all finite groups we examine.

Despite these points, we are able to obtain nonvacuous bounds for models trained on the symmetric
group S4 (see Figure 10) and for models trained on the alternating group A5 (see Figure 11).

K.2 COMPLEX AND QUATERNIONIC IRREPS

An irrep being real is equivalent to it having positive Frobenius-Schur indicator ι(ρ) :=
|G|−1

∑
g∈G tr(ρ(g)). In general, irreps have Frobenius-Schur indicator in {1, 0,−1}, correspond-

ing to the irrep being real, complex, and quaternionic respectively. These three cases correspond
to the ring of G-linear endomorphisms of the irrep being isomorphic to either R,C,H. By Schur’s
lemma, the endomorphism ring is a real associative division algebra, so these are the only three
cases.

In preliminary investigations of more general irreps ρ, we convert irreps over C with nonpositive
Frobenius-Schur indicator to irreps over R of twice the dimensionality:

ρ̃(g) =

[
Re ρ(g) − Im ρ(g)
Im ρ(g) Re ρ(g).

]
(15)
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We then find that the A,B,C matrices of Observation B.2(1) are approximately rank one when ρ
is real, rank two when ρ is complex, and rank four when ρ is quaternionic. In the complex case, we
find also that when Rd is given the complex structure induced by Eq 15, the two singular vectors
are conjugate, and correspond to equal singular values. Thus, we speculate that the neural network
uses the same ρ-sets algorithm as in the real case, but over C, and then takes the real part: letting
ρ ∈ GL(n,C) and B ⊆ Cd a finite ρ-set,

fρ,B(z | x, y) = −
∑

b,b′∈B

Re b⊤ρ(z)b′ ReLU[Re(b⊤ρ(x)a− a⊤ρ(y)b′)].
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Figure 7: Cross-entropy loss of original model vs. cross-entropy loss of model with parameters
partially exchanged for idealized version. 100 models trained on S5, restricted to those where neither
(a-bad) nor (ρ-bad). Legend indicates which parameters are exchanged; for instance, red points
have unembedding weights wu swapped for idealized version. Blue points are the full idealized
model. Note they have loss uniformly lower than original model. Points corresponding to left
embedding are obstructed by those corresponding to right embedding.
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Figure 8: Cross-entropy loss of original model vs. cross-entropy loss of model with neurons (em-
bedding and unembedding) corresponding to specified irreps exchanged for idealized version. 100
models trained on S5, restricted to those where neither (a-bad) nor (ρ-bad). Legend indicates which
parameters are exchanged. Blue points are the full idealized model while for orange points only
neurons corresponding to some irrep are swapped (that is, dead neurons are preserved from the orig-
inal). Red points correspond to the standard irrep 4d-0 and purple points correspond to the sign
irrep 1d-1. See Section H for a full enumeration of irreps of S5.
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Figure 9: Cross-entropy bound vs. computation time for Virrep and Vbrute on 100 models trained
on S5. Points in green (Virrep unexpl) are models for which we find by inspection that our ρ-sets
explanation does not hold, i.e. either (a-bad) or (ρ-bad); they make up 45% of the total. Points
in blue are Virrep for explained models and points in orange are Vbrute. Black dashed line is
log|G| ≈ 4.79, the loss attained by a model that outputs uniform logit values. A priori, there is no
guarantee that a given model does at least as well as the uniform baseline. Thus, in a sense, any
finite upper bound on cross-entropy is nonvacuous.
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Figure 10: Accuracy bound vs. computation time for Virrep and Vbrute on 100 models trained
on S4. Points in green (Virrep unexpl) are models for which we find by inspection that our ρ-sets
explanation does not hold, i.e. either (a-bad) or (ρ-bad); they make up 48% of the total. Note that
the latter condition occurs much more frequently than for S5. Points in blue are Virrep for explained
models and points in orange are Vbrute.
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Figure 11: Accuracy bound vs. computation time for Virrep and Vbrute on 100 models trained on
A5. Points in green (Virrep unexpl) are models for which we find by inspection that our ρ-sets
explanation does not hold, i.e. either (a-bad) or (ρ-bad); they make up 78% of the total. Note that
the latter condition occurs much more frequently than for S5. Points in blue are Virrep for explained
models and points in orange are Vbrute.
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