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DanceCamAnimator: Keyframe-Based Controllable
3D Dance Camera Synthesis

Anonymous Authors

ABSTRACT
Synthesizing camera movements from music and dance is highly
challenging due to the contradicting requirements and complexities
of dance cinematography. Unlike human movements, which are
always continuous, dance camera movements involve both con-
tinuous sequences of variable lengths and sudden drastic changes
to simulate the switching of multiple cameras. However, in previ-
ous works, every camera frame is equally treated and this causes
jittering and unavoidable smoothing in post-processing. To solve
these problems, we propose to integrate animator dance cinematog-
raphy knowledge by formulating this task as a three-stage pro-
cess: keyframe detection, keyframe synthesis, and tween function
prediction. Following this formulation, we design a novel end-to-
end dance camera synthesis framework DanceCamAnimator,
which imitates human animation procedures and shows powerful
keyframe-based controllability with variable lengths. Extensive ex-
periments on the DCM dataset [51] demonstrate that our method
surpasses previous baselines quantitatively and qualitatively. We
will make our code publicly available to promote future research.

CCS CONCEPTS
• Applied computing→Media arts.

KEYWORDS
Dance Camera Synthesis, Dance Cinematography, Keyframing

1 INTRODUCTION
The role of camera work in dance performances is crucial as it sig-
nificantly influences how the audience perceives and understands
the dance piece. By involving multiple camera switches, the pro-
ducer can capture the subtle movements and facial expressions of
dancers to showcase more dance details. Moreover, creative camera
techniques like quick cuts, slow motion, and dolly shots, among
others, can deliver visual impact and novelty to the audience, in-
creasing the attractiveness of the dance performance. As a result,
automatically producing camera movements from music and dance
is an appealing but challenging task since camera movements are
composed of variable-length continuous sequences and dramatic
changes between these sequences, which respectively denote the
camera shots and camera switches, as shown in the left of Figure 2.
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Figure 1: Hierarchical dance-camera-making procedure by
animators. According to the given music and dance, anima-
tors first select keyframes on the timeline. Next, animators
set the camera parameters at each keyframe to capture the
dance details or highlights. Then, for the non-keyframes
between keyframes, animators produce the camera move-
ments by editing tween curves that control the camera mov-
ing speed from one keyframe to the next. Finally, the 3D en-
gine can render results with camera movements and dance.

DanceCamera3D [51] constructed the first 3D dance-camera-
music dataset DCM and has shown the rationality of music-dance-
driven camera movement synthesis. However, it treats all frames
equally and ignores the sudden changes between camera shots. This
greatly affects the model’s generative ability because the model
cannot determine whether to generate continuous or abrupt move-
ments resulting in jittering sequences and shakes in the final dance
video, as shown in the right of Figure 2. Thus, DanceCamera3D has
to conduct a smoothing post-processing by detecting keyframes
using a total variation denoiser in camera parameters and filtering
the frames in between. However, this post-smoothing may mis-
judge some keyframes and introduce some erroneous smoothing
causing the camera to lose focus on the dancer. In addition, Xie

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Smooth continuous shot

Abrupt shot change

Unsmooth shot Severe shake in the video

Figure 2: Challenges in 3D dance camera synthesis. Dance camera movements are not entirely continuous because they consist
of smooth complete shots and abrupt shot changes. Moreover, small disturbances can lead to big shakes of the dancer in the
rendered video. These issues prevent neural networks from synthesizing satisfactory dance camera movements.

et al. [55] proposed to generate camera movements based on the
performer’s position, but they ignored the changes in the camera’s
field of view and also simplified the question from 3D to 2D by
excluding the camera orientation in terms of roll and pitch, which
greatly reduces the expressiveness of camera movements and the
complexity of the problem. To make matters worse, this method
needs keyframe positions on the timeline, further diminishing the
model’s usability and automation capacity. Apart from the above
two works, significant efforts have also been devoted to camera
planning and control [13, 16, 20–22, 25, 26, 42, 43, 54, 58]. These
works all focus on gaming and movie scenes but neglect dance
camera synthesis, which is a more complex problem since it is in-
fluenced by various factors including music and dance. Due to the
aforementioned reasons, although significant progress has been
made in camera planning and control, dance camera synthesis re-
mains an underexplored and challenging task.

Similar to music-dance-driven camera movement synthesis, pre-
vious works [2, 5, 6, 11, 14, 23, 29–36, 40, 44, 46–48, 50, 52, 53, 56,
57, 59] have made progress in music-dance synthesis. However,
compared to human dance motions, dance camera movements pos-
sess higher complexities, highlighted by the fact that dance camera
movements are dancer-centric, not purely continuous, and sensitive
to jittering as shown in Figure 2.

To address the above challenges, we propose to integrate human
animation knowledge into the problem of music-dance-driven cam-
era synthesis. As shown in Figure1, in the actual process of creating
dance camera movements, animators first select keyframes on the
timeline, then determine the camera parameters of keyframes, and
finally modify the tween curves which are used to control the chang-
ing speed of the camera parameters from one keyframe to the next.
After observation, we find that the tween curves are monotonically
increasing so that the smoothness of complete shots can be guaran-
teed. For example, in the MikuMikuDance [1] engine, the producers
provide monotonically increasing Bezier Curves for animators to
edit the in-between camera movements. Utilizing this knowledge,
we devise DanceCamAnimator, a three-stage controllable frame-
work that synthesizes 3D camera movements frommusic and dance
following the hierarchical camera-making procedure of animators.
As shown in Figure3, our DanceCamAnimator consists of a Camera
Keyframe Detection model, a Camera Keyframe Synthesis model,

and a Tween Function Prediction model: the Camera Keyframe
Detection model distinguishes whether each frame is a keyframe
according to music and dance; the Camera Keyframe Synthesis
model infers camera parameters at keyframes from the history
of camera movements and the music-dance context; the Tween
Function Prediction model learns the mapping from music-dance
context, camera movement history and keyframes camera poses to
the tween function values for the calculation of in-between camera
movements. In this manner, our DanceCamAnimator can better
comprehend a complete shot and switch between shots. Moreover,
our unique design provides DanceCamAnimator with keyframe-
level controllability through adjustments to the temporal positions
and camera parameters of keyframes. To overcome the jittering of
the camera, we generate tween function values instead of camera
parameters in the Tween Function Prediction model so that the
camera will move from one keyframe to the next at different speeds
without moving in other directions.

To demonstrate the efficacy of our method, we conduct extensive
experiments on the standard benchmark DCM [51]. Both qualitative
and quantitative evaluations show that our method outperforms
baseline methods. In summary, our contributions are the following:

• We propose to incorporate expertise from the animation
industry into the 3D music-dance-driven camera synthesis
framework by integrating and formalizing the dance camera-
making procedure of animators.

• We imitate the camera-making procedure of animators to de-
vise a novel end-to-end three-stage dance camera synthesis
framework DanceCamAnimator that combines state-of-
the-art performance with keyframe-level controllability.

• Wepropose to predict tween function values between keyframes
instead of directly predicting the dance camera movements,
thus achieving smoother camera curves and more stable
dance camera shots and significantly improving the user
viewing experience.

2 RELATEDWORKS
2.1 Camera Planning and Control
Designing camera movements is a challenging task due to the inher-
ent complexity of camera movements and various influence factors
according to the actual circumstances. Thus, many researchers
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have made attempts to synthesize or control camera movements.
Early works formulate the camera planning problem as a constraint-
satisfaction problem [10] and use constraint-based optimization
approaches [3, 7–9, 41] to solve it. With the development of neural
networks, deep learning-basedmodels have become themainstream
solution for addressing camera auto-generation issues. Jiang et al.
[24, 25, 26] constructed a dataset with film clips, corresponding
camera movements, and motions of actors. This dataset facilitates
their research on synthesizing camera movements from reference
film clips or text descriptions with LSTM [19] and diffusion [18]
models. Wu et al. [54] propose to synthesize camera movements in
the storytelling scenes based on a GAN-based controller. To repro-
duce films in the 3D virtual environment and manipulate camera
movements, Jiang et al. [27] build a differentiable pipeline to es-
timate and optimize the camera movements and human motion
from film video and retarget them to camera and avatars in the
3D engine. Considering the requirements of the gaming scenario,
Li and Cheng [37] developed a camera control module to track
the player in a third-person perspective automatically, Rucks and
Katzakis [43] devise CameraAI which can avoid occlusion when
chasing the player, and Evin et al. [13] integrate the cinematography
knowledge to develop a semi-automated cinematography toolset
Cine-AI for generating in-game cutscenes. Additionally, some other
works [15, 16, 20–22] have investigated the auto-driving of camera
drones for filming dynamic targets using the experience of film-
maker or artist. Compared to camera synthesis in game or film
scenes, dance camera auto-generation is a more complicated prob-
lem due to the multifaceted influence factors including shot type
changes and correlation between music, dance, and camera move-
ments. Xie et al. [55] have tried to generate cameramovements from
the poses of the dance performer, but ignored the influence of mu-
sic and their model needs extra input of devised keyframes on the
timeline. To solve this problem, Wang et al. [51] construct the first
3D dance-camera-music dataset DCM and present a transformer-
based diffusion model DanceCamera3D to solve the dance camera
synthesis problem. However, Wang et al. [51] overlooked the co-
existence of smooth continuous shots and abrupt shot changes in
dance photography. As a result, DanceCamera3D needs additional
smoothing post-processing but it’s hard to strike a balance between
increasing the shot smoothness and maintaining camera switches.
Moreover, Jiang et al. [24, 25, 26], Xie et al. [55] considered directly
synthesizing camera parameters between keyframes using neural
networks, but these solutions also produce inevitable jittery cam-
era movements and unsatisfying shaky videos to the audience, so
that previous researchers have to use post-smoothing filters or use
a simplified 2D camera representation which greatly reduces the
diversity of camera movements and shots. For the aforementioned
reasons, 3D dance camera synthesis remains a challenging problem.

2.2 Music to Dance Synthesis
Music-to-dance problem shares many commonalities with dance
camera synthesis including the processing of music audio and
dance motion, as well as spatio-temporal feature extraction. Early
works [4, 5, 14, 32, 38, 40] formulate music-to-dance as a similarity-
based retrieval problem that greatly limits the capacity and diversity
of generated dance. Recently, with the significant advancements in

deep learning models, various neural networks have been applied
to music-to-dance synthesis. Initially, Crnkovic-Friis et al. [11], Li
et al. [34], Tang et al. [48] tried to synthesize dance motions frame-
by-frame with sequence-to-sequence models including RNN, LSTM,
and Transformer. Besides, Kim et al. [28], Wu et al. [53] employ
Generative Adversarial Network (GAN) to investigate more genera-
tive capabilities including genre control and dual learning between
dance and music. More recently, Chen et al. [6], Ye et al. [57] syn-
thesize pre-annotated dance units instead of dance frames to better
maintain the integrity of dance motions but the annotation process
is time-consuming and relies on human expertise. To synthesize
dance units automatically, Siyao et al. [45, 46] utilize VQ-VAE to
discretize the dance motions and increase the action diversity and
generative capacity. Later, Diffusion-based models [35, 36, 49] fur-
ther elevated the diversity and controllability of dance synthesis
results. Meanwhile, some other works [29, 30, 44, 52, 56] conduct
some explorations on generating multi-dancer dance from music in-
put. Compared to dance synthesis, dance camera synthesis is more
challenging since the dance camera movements are human-centric
and consist of complete shots and shot cuts, resulting in an intermit-
tently continuous and discontinuous sequence. DanceFormer [33]
uses keyframes and in-between curves to solve the music-to-dance
problem which inspired us. However, DanceFormer simplifies the
problem by synchronizing keyframes with music beats and ignor-
ing the impact of motion history on the synthesis of later keyframes
and motions. These issues make it hard to apply DanceFormer to
dance camera synthesis. In general, generating camera movements
from music and dance encounters more complicated issues despite
the extensive effort on music-to-dance synthesis.

3 PROBLEM FORMULATION
For the problem of 3D dance camera synthesis, the goal is to gen-
erate camera movements from given music and dance. To follow
the hierarchical dance-camera-making procedure by animators,
as shown in Figure 1, we propose to formulate music-dance-to-
camera synthesis as a three-stage problem. Our framework takes 𝑇
frames of music features 𝒎 = {𝑚1,𝑚2, . . . ,𝑚𝑇 } and dance motions
𝒑 = {𝑝1, 𝑝2, . . . , 𝑝𝑇 } as input conditions, to generate camera pose
sequence 𝒄 = {𝑐1, 𝑐2, . . . , 𝑐𝑇 }. To elaborate further on these parame-
ters, we follow FACT [34] to extract music features𝑚𝑡 ∈ R35 using
Librosa [39]. For dance poses and camera movements, we follow
DanceCamera3D [51] to use global positions of 60 human joints
as 𝑝𝑖 ∈ R60×3, and MMD format camera representation in polar
coordinates as 𝑥𝑖 ∈ R3+3+1+1 including the global position of the
reference point, rotation and distance of the camera relative to the
reference point, and camera’s field of view (FOV). The three stages
of our framework are formally illustrated as follows:

• Camera Keyframe Detection Stage: Given music and
dance, we intend to generate 𝒌 = {𝑘1, 𝑘2, . . . , 𝑘𝑇 } from 𝒎,𝒑,
where 𝑘𝑡 being 1 and 0 respectively indicate whether the
frame of the moment 𝑡 is a camera keyframe on the timeline.

• Camera Keyframe Synthesis Stage: Having obtained tem-
poral keyframe tags 𝒌 , in this stage, we aim to learn a map-
ping from 𝒎,𝒑 and 𝒌 to camera keyframe motions 𝒄𝒌 =

{𝑐𝑡1 , 𝑐𝑡2 , . . . , 𝑐𝑡 𝑗 , . . . }, where 𝑘𝑡 𝑗 = 1.
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Figure 3: Overall framework of DanceCamAnimator. In the Camera Keyframe Detection stage, the model utilizes music-dance
context and temporal keyframe history to generate subsequent temporal keyframe tags. Next, for each pair of adjacent
keyframes, the Camera Keyframe Synthesis stage takes music-dance context and camera history as input to synthesize camera
keyframe motions. Given camera keyframe motions, camera history, and music-dance context, the final stage predicts tween
function values to calculate in-between non-keyframe camera movements. Encoders with the same name share structures in
different stages but are trained separately. Stages 2&3 are trained together and conducted alternately during inference.

• Tween Function Prediction Stage: In this stage, our objec-
tive is to predict a tween function 𝜌 (𝑡) for non-keyframes
between two adjacent keyframes 𝑐𝑡 𝑗1 and 𝑐𝑡 𝑗2 from corre-
spondingmusic, dance, cameramotion history, and keyframe
motions. So that we can calculate in-between non-keyframes
camera motions as 𝑐𝑡 = 𝑐𝑡 𝑗1 + 𝜌 (𝑡) (𝑐𝑡 𝑗2 − 𝑐𝑡 𝑗1 ). In this way,
we obtain camera motions in all frames.

4 METHODOLOGY
As illustrated in Figure 3, we design a three-stage framework Dance-
CamAnimitor to synthesize 3D dance camera movements following
the formulation in Section 3. In the first stage, the Camera Keyframe
Detection model generates keyframes on the timeline given music
and dance. In the second and third stages, the models iteratively
synthesize camera movements with keyframe intervals as the step
length. In particular, the Camera Keyframe Synthesis model pro-
duces keyframe camera motion from camera motion history and
music-dance context, while the Tween Function Prediction model
takes music-dance context, camera history, and camera keyframe
movements as input to synthesize tween function values and com-
putes the in-between non-keyframe camera parameters. In this way,
we generate camera movements in all frames. With this design,
our DanceCamAnimitor possesses keyframe-level controllability,
including modifying camera keyframes’ temporal positions and

spatial movements. We will further elaborate on these three stages
and the keyframe-level controllability in the following subsections.

4.1 Camera Keyframe Detection Stage
In the animation community’s dance camera-making procedure,
the animators first select keyframes on the timeline when browsing
the dance and music. Thus, we imitate this procedure to design
a Camera Keyframe Detection stage and solve this problem in a
classification manner.

Given input music and dance poses, we first extract the acoustic
features 𝒎 from the music following FACT [34] to use Librosa [39]
and represent the dance poses with positions of 60 joints as 𝒑.
Then we exploit a sliding window to select music-dance context
as𝒎𝒕−𝒉∼𝒕+𝒘−1 = {𝑚𝑡−ℎ, . . . ,𝑚𝑡 , . . . ,𝑚𝑡+𝑤−1} and 𝒑𝒕−𝒉∼𝒕+𝒘−1 =

{𝑝𝑡−ℎ, . . . , 𝑝𝑡 , . . . , 𝑝𝑡+𝑤−1}, where 𝑡 is current frame time, ℎ is the
length of reference history,𝑤 is the window length. We use zeros to
pad the history when predicting the initial frames. Meanwhile, we
use temporal keyframe history {�̂�𝑡−ℎ, . . . , �̂�𝑡−1} and zero padding to
stitch together as 𝒌𝒕−𝒉∼𝒕+𝒘−1 = {�̂�𝑡−ℎ, . . . , �̂�𝑡−1, 𝑘𝑡 , . . . , 𝑘𝑡+𝑤−1},
𝑘𝑖 = 0, 𝑖 ∈ [𝑡, 𝑡 +𝑤 − 1]. Next, we use encoders to encode the above
input as𝒎𝒆𝒎𝒃

𝒕−𝒉∼𝒕+𝒘−1, 𝒑
𝒆𝒎𝒃
𝒕−𝒉∼𝒕+𝒘−1, and 𝒌

𝒆𝒎𝒃
𝒕−𝒉∼𝒕+𝒘−1. Using these

embeddings, we employ a transformer decoder and a linear layer
to obtain the probability sequence of being a keyframe as:
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𝒕−𝒉∼𝒕+𝒘−1 = Concat(𝒎𝒆𝒎𝒃

𝒕−𝒉∼𝒕+𝒘−1,𝒑
𝒆𝒎𝒃
𝒕−𝒉∼𝒕+𝒘−1)

𝑝 (𝑘𝑡 ), . . . , 𝑝 (𝑘𝑡+𝑤−1) = Linear(Decode(𝒎𝒑𝒆𝒎𝒃
𝒕-𝒉∼𝒕+𝒘-1, 𝒌

𝒆𝒎𝒃
𝒕-𝒉∼𝒕+𝒘-1)) .

(1)
Following this, we can predict whether there is a keyframe at time
𝑡 by comparing the probabilities as:

�̂�𝑡 = Argmax(𝑝 (𝑘𝑡 )), (2)

where �̂�𝑡 denotes the synthesized temporal keyframe tag at frame
𝑡 . For the training of this model, we utilize the weighted binary
cross-entropy loss as:

L𝑊𝐶𝐸 = − 1
𝑤

𝑤−1∑︁
𝑖=0

[𝜆∗𝑘𝑡+𝑖∗log(𝑝 (𝑘𝑡+𝑖 ))+(1−𝑘𝑡+𝑖 )∗log(1−𝑝 (𝑘𝑡+𝑖 ))],

(3)
where 𝑘𝑡+𝑖 is the ground truth temporal keyframe tag at frame 𝑡 + 𝑖
and 𝜆 is the weight corresponding to keyframes.

4.2 Camera Keyframe Synthesis Stage
After the previous stage, we have generated the temporal position of
keyframes. In this stage, we intend to synthesize keyframe camera
poses from the music-dance context and camera movement history.
We take the camera movement history as an input condition since
adjacent shots are correlated in real dance camera movements. To
achieve this functionality, we designed a pattern where this stage
and the next stage proceed alternately and can be trained together.
In the following, we will introduce this pattern.

For each pair of adjacent keyframes at 𝑡1 and 𝑡2, we acquire
the embeddings of music-dance context 𝒎𝒑𝒆𝒎𝒃

𝒕1−𝒉∼𝒕1+𝒘−1 as said
in Section 4.1. Here we assume that 𝑡2 is less than 𝑡1 +𝑤 , and for
the exceptional cases, we provide a solution and explanation in
Section 5.1. Meanwhile, we fetch the synthesized camera motion
{�̂�𝑡1−ℎ, . . . , �̂�𝑡1−1} as history and pad zeros for the later𝑤 frames,
which can be represented as 𝒄𝒕1−𝒉∼𝒕1+𝒘−1 = {�̂�𝑡1−ℎ, . . . , �̂�𝑡1−1, 𝑐𝑡1,
. . . , 𝑐𝑡1+𝑤−1}, 𝑐𝑖 = 0, 𝑖 ∈ [𝑡1, 𝑡1 + 𝑤 − 1]. Next, we use a Cam-
era Encoder to encode camera motion condition as 𝒄𝒆𝒎𝒃

𝒕1−𝒉∼𝒕1+𝒘−1.
With these conditions, we use a transformer decoder to generate
keyframe camera poses at 𝑡1 and 𝑡2 − 1 as:

�̂�𝑡1, . . . , �̂�𝑡1+𝑤−1 = Linear(Decode(𝒎𝒑𝒆𝒎𝒃
𝒕1−𝒉∼𝒕1+𝒘−1, 𝒄

𝒆𝒎𝒃
𝒕1−𝒉∼𝒕1+𝒘−1))

�̂�𝑡1, �̂�𝑡2−1 = Mask((�̂�𝑡1, . . . , �̂�𝑡1+𝑤−1), 𝑡1, 𝑡2 − 1),
(4)

where we use a mask to select camera poses at 𝑡1 and 𝑡2 − 1 from
the generated sequence. Here we use 𝑡2 − 1 instead of 𝑡2 to avoid
the reproduction of the same keyframe. This alternative will not
influence the training process since we imitate the animators to
synthesize monotonically increasing tween functions. To elaborate
further, given any adjacent 𝑡1′ and 𝑡2′ in ground truth data, the
increment from 𝑐𝑡1′ to 𝑐𝑡2′ is always positive, so that the increment
from 𝑐𝑡1′ to 𝑐𝑡2′−1 is always positive.

4.3 Tween Function Prediction Stage
Now that we have obtained the camera poses at 𝑡1 and 𝑡2 − 1,
we aim to predict the in-between camera movements by predict-
ing tween function values 𝝆(𝒕) from music-dance context, cam-
era movement history, and camera poses at 𝑡1 and 𝑡2 − 1. In-
tuitively, we first concatenate camera history {�̂�𝑡1−ℎ, . . . , �̂�𝑡1−1}

with generated camera keyframes �̂�𝑡1, �̂�𝑡2−1 from the previous
stage and padding zeros to get camera history-keyframe condition
�̃�𝒕1−𝒉∼𝒕1+𝒘−1 = {�̂�𝑡1−ℎ, . . . , �̂�𝑡1, . . . , �̂�𝑡2−1, 𝑐𝑡2, . . . , 𝑐𝑡1+𝑤−1}, 𝑐𝑖 =

0, 𝑖 ∈ [𝑡1+1, 𝑡2−2] or [𝑡2, 𝑡1+𝑤−1]. Then, we encode �̃�𝒕1−𝒉∼𝒕1+𝒘−1
as �̃�𝒆𝒎𝒃

𝒕1−𝒉∼𝒕1+𝒘−1. Next, we decode the music-dance context and
camera history-keyframe condition to get the tween function values
𝝆𝒕1∼𝒕2−1 = {𝜌𝑡1, 𝜌𝑡1+1, . . . , 𝜌𝑡2−1} as illustrated in Algorithm 1.

Algorithm 1 Generation of Tween Function Values

1: 𝚫𝝆𝒕1∼𝒕1+𝒘−1 = Linear(Decode(𝒎𝒑𝒆𝒎𝒃
𝒕1−𝒉∼𝒕1+𝒘−1, �̃�

𝒆𝒎𝒃
𝒕1−𝒉∼𝒕1+𝒘−1))

2: 𝚫𝝆𝒕1∼𝒕2−1 = Mask(𝚫𝝆𝒕1∼𝒕1+𝒘−1, [𝑡1, 𝑡2 − 1])
3: 𝚫�̆�𝒕1∼𝒕2−1 = 𝚫𝝆𝒕1∼𝒕2−1 −Min(𝚫𝝆𝒕1∼𝒕2−1)
4: �̆�𝒕1∼𝒕2−1 = Cumsum(𝚫�̆�𝒕1∼𝒕2−1)
5: 𝝆𝒕1∼𝒕2−1 = Normalize(�̆�𝒕1∼𝒕2−1)
6: return 𝝆𝒕1∼𝒕2−1

In particular, we first utilize the transformer decoder and linear
layer to produce intermediate variables 𝚫𝝆𝒕1∼𝒕1+𝒘−1 and use a
mask to obtain only the results from 𝑡1 to 𝑡2 − 1 as 𝚫𝝆𝒕1∼𝒕2−1.
Since the Bezier Curves used in raw data are non-differentiable, we
propose to directly predict the tween function values instead of the
parameters of Bezier Curves. Following this design, we first process
𝚫𝝆𝒕1∼𝒕2−1 for non-negativization to obtain 𝚫�̆�𝒕1∼𝒕2−1 denoting
the increment of the tween function. Then, we calculate the cumu-
lative sum of 𝚫�̆�𝒕1∼𝒕2−1 as �̆�𝒕1∼𝒕2−1 and conduct normalization to
produce 𝝆𝒕1∼𝒕2−1 which are monotonically increasing value from
0 to 1. In this way, we produce the tween function values from 𝑡1 to
𝑡2 − 1 and we can compute the camera movements �̂�𝒕1∼𝒕2−1 from
𝑡1 to 𝑡2 − 1 as:

�̂�𝑡 = �̂�𝑡1 + 𝜌 (𝑡) (�̂�𝑡2−1 − �̂�𝑡1) 𝑡 ∈ [𝑡1, 𝑡2 − 1], (5)

With the above design, the models of Camera Keyframe Synthe-
sis and Tween Function Prediction stages can be trained together.
For the loss function, we follow DanceCamera3D [51] to use L𝑟𝑒𝑐 ,
L𝑣𝑒𝑙 , L𝑎𝑐𝑐 for physical realism and L𝑏𝑎 to help the model learn
the relationship between human bodyparts and the camera field of
view, which can be illustrated as follows:

L𝑟𝑒𝑐 = | |Mask(𝒄 − �̂�, [𝑡1, 𝑡2 − 1]) | |22
L𝑣𝑒𝑙 = | |Mask(𝒄′ − �̂� ′, [𝑡1, 𝑡2 − 2]) | |22
L𝑎𝑐𝑐 = | |Mask(𝒄′′ − �̂� ′′, [𝑡1, 𝑡2 − 3]) | |22,
L𝑏𝑎 = | |𝑱𝒎 − 𝑱𝒎 ∗ 𝑱𝒎 | |,

(6)

where 𝒄 and �̂� denote ground truth and synthesized camera move-
ments, respectively, 𝑱𝒎 and 𝑱𝒎 are the joint masks of ground truth
and generated results indicating whether each joint is inside the
camera view or not. To prevent abrupt shot switches from affecting
the smoothness of complete shots, we use masks to select camera
motions in a complete shot given each pair of adjacent keyframes at
𝑡1 and 𝑡2. Our overall training object is the weighted sum of these
losses as:

L = 𝜆𝑟𝑒𝑐L𝑟𝑒𝑐 + 𝜆𝑣𝑒𝑙L𝑣𝑒𝑙 + 𝜆𝑎𝑐𝑐L𝑎𝑐𝑐 + 𝜆𝑏𝑎L𝑏𝑎 . (7)
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Method
Quality Diversity Dancer Fidelity User Study

FID𝑘 ↓ FID𝑠 ↓ Dist𝑘 ↑ Dist𝑠 ↑ DMR↓ LCD↓ DanceCamAnimitor WinRate↑
Ground Truth - - 3.275 1.731 0.00142 - 35.22% ± 0.71%

DanceCamera3D 3.749 0.280 1.631 1.326 0.0025 0.147 83.49% ± 1.05%
DanceCamera3D∗ (Filtered) 7.864 0.313 0.861 1.301 0.0047 0.151 64.35% ± 2.15%
DanceCamAnimator (Ours) 3.453 0.268 3.140 1.293 0.0022 0.152 -

Table 1: Quantitative results on the DCM [51] dataset. ∗ means we filter the results of DanceCamera3D [51] using the officially
recommended denoiser and filter. - denotes that the self-comparison is meaningless.

4.4 Keyframe-level Controllability
Using our novel three-stage framework, the trained models pos-
sess keyframe-level controllability including modifying keyframe
temporal positions and keyframe camera poses. First, the Camera
Keyframe Detection model can utilize a user-designed temporal
keyframe sequence as history to detect the later keyframe temporal
positions. In addition, users can replace the first stage with a pre-
designed temporal keyframe sequence to generate camera move-
ments in the following 2 stages. Moreover, the users can modify
the synthesized camera keyframe poses from the Camera Keyframe
Synthesis stage and employ the Tween Function Prediction stage
to compute the in-between non-keyframes. This also indicates that
the users can isolate the third stage from the framework to syn-
thesize dance camera movements using their pre-designed camera
keyframe poses. In Section 5.3, we provide more evidence to demon-
strate the keyframe-level controllability of our framework.

5 EXPERIMENTS
5.1 Experiment Setup
Dateset In this work, we use DCM [51], a dataset consisting of
108 pieces of animator-designed paired dance-camera-music data
including camera keyframe information. To ensure the fairness of
the experiment, we re-use the train and test splits provided by the
original dataset, in which the length of split sub-sequences ranges
from 17 to 35 seconds and the FPS is 30. For the training of our
framework, in the training set, we stitch the data pieces that are
adjacent in the original data so that we acquire more training data
with history.
Implementation Details Our final models have 38.5M parame-
ters for the first stage and 63.7M parameters for the second and
third stages. We trained our models on 4 NVIDIA 3090 GPUS with
a batch size of 512, and we took 5 hours to train the first stage
for 3000 epochs and 17 hours to train the second and third stages
for 3000 epochs. For the extraction of acoustic features, we fol-
low FACT [34] to use Librosa [39] instead of Jukebox [12] used in
DanceCamera3D [51] because Jukebox and is an autoregressive
transformer based framework and has a limit to max context win-
dow, which makes it difficult to extract features of music beyond
the length limit so that we can not extract all features in advance. In
addition, the extraction of the Jukebox consumes much more time if
we try to extract acoustic features for music between newly synthe-
sized keyframes in our framework. Moreover, the features extracted
from Jukebox have 4800 dimensions which need more space to save
and will increase the size of the models. For the history length ℎ

and the window length𝑤 in our models as mentioned in Section 4.1,
we set them to be 60 because we find 95.9% keyframe intervals in
raw data are not longer than 60. For the keyframe intervals over
60 frames, we add new keyframes in between to split them with
a stride of 60. This operation will not affect the monotonicity of
the tween functions since any subinterval of a monotonic function
remains monotonic.

5.2 Comparison to DanceCamera3D
Baseline We compare our method with the existing advanced
framework DanceCamera3D [51] on the DCM dataset. We repro-
duce the DanceCamera3D from the source code and filter the syn-
thesized results utilizing the officially recommended denoiser and
filter as DanceCamera3D (Filtered).
Metrics Following DanceCamera3D [51], we evaluate the gener-
ated results from three perspectives, including quality, diversity,
and dancer fidelity. For quality evaluation, we calculate the Frechet
Inception Distance (FID) [17] between generated results and test
set camera sequences for the shot features and kinetic features as
FID𝑠 and FID𝑘 . To evaluate the diversity of camera movements,
we compute the average Euclidean distance (Dist) within the shot
feature space and the kinetic feature space as Dist𝑠 and Dist𝑘 . For
the evaluation of dancer fidelity, we employ Dancer Missing Rate
(DMR) and Limbs Capture Difference (LCD) from [51] to respec-
tively calculate the ratio of frames that the dancer is outside camera
view and the difference of camera captured body parts between the
synthesized results and ground truth.
Quantitative Results As shown in Table 1, our DanceCamAni-
mator beats the baseline methods on the FID𝑘 , FID𝑠 and DMR, and
significantly outperforms the baseline methods on the Dist𝑘 . For
the other two metrics, although DanceCamera3D achieves higher
Dist𝑠 and lower LCD, it fails to provide smooth camera movements.
After the filtering process, our method achieves a performance
very close to the filtered DanceCamera3D. Meanwhile, after the
filtering, the FID𝑘 of DanceCamera3D increases from 3.749 to 7.864,
and Dist𝑘 drops from 1.631 to 0.861, which indicates the smooth
post-process will greatly influence the kinetic quality and diversity.
This phenomenon also suggests that the jittering helps DanceCam-
era3D to obtain results closer to the ground truth distribution, but
it leads to undesirable and unrealistic visual effects. In contrast, our
DanceCamAnimitor achieves much better FID𝑘 and Dist𝑘 without
jittering. The above results all demonstrate the effectiveness of our
DanceCamAnimitor.
User Study To further evaluate the real visual performance of our
DanceCamAnimitor, we conduct a user study among the generated
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Figure 4: Visualization Comparison. We rendered the ground truth data and results generated from our method and the
baselines given a 2-second music-dance condition. Compared to the baselines, our DanceCamAnimator synthesizes dance
camera movements with more shot changes in a short period of time. This comparison also shows the usage of filters in the
baseline DanceCamera3D is unstable and carries the risk of erroneous smoothing, causing the character to deviate from the
center of the camera view, thus validating that our designed no post-processing framework is meaningful.

results of our methods, baseline methods, and the ground truth.
Firstly, we randomly sample 10 dance-camera-music pieces from
the test set. Next, for each piece, we use the music and dance to
generate camera results and render dance videos with our method
and baselines. Next, we combine each dance video of our method
with related baseline videos and the ground truth video so that we
acquire 30 video pairs. We invited 23 participants to view these 30
video pairs in random order and distinguish which camera move-
ments better match the music and make the dance more expres-
sive. Results are shown in Table 1. The outcomes revealed that
our method outperforms DanceCamera3D by an 83.49% win rate
mainly because the participants find noticeable shaking in the dance
videos. Compared to the filtered DanceCamera3D, our method wins
in 64.35% cases with the remaining situations attributed to some
users preferring single-camera tracking dance videos. Furthermore,
although the ground truth data has many well-designed camera
shots, our method beats the ground truth in 35.22% of the cases
where users find it hard to distinguish between real data and gen-
erated results, denoting that our method generates fluent camera
movements and various shot switches similar to the ground truth.
Case Study We provide evidence from the perspectives of camera
curve comparison and visualization to demonstrate that our method
better solves the contradiction between smooth complete shots and
abrupt shot switches, and achieves better visual performance.

As shown in Figure 5, given the same music-dance condition, we
plot the camera curves of the ground truth data and results gener-
ated by baseline methods and our method. Compared to DanceCam-
era3D, our DanceCamAnimitor produces sharper transitions reflect-
ing shot switches and smoother camera movements within each
complete shot. The filtered DanceCamera3D provides smoother
camera movements but fails to synthesize abrupt changes, resulting
in a lack of visual experience in multi-camera angle transitions.

As shown in Figure 4, given the same 2 seconds of music and
dance data from the test set, we visualize the ground truth and
the generated results of our DanceCamAnimitor and baselines.
Compared to baseline methods, our method synthesizes more shot
changes including distance and angle towards the dancer in such a
short time. Furthermore, comparing the DanceCamera3D results
with and without filtering operations, we find that the usage of the
filter is unstable which may lead to excessive smoothing and cause
the dancer to move away from the center of the camera view or even
disappear from the camera view because the filtering is conducted
only on the camera movements without awareness of the dancer.
The comparison of curve results also confirms this over-smoothing
phenomenon, as shown in Figure 5 that the local extremes of the
curves are altered after the filtering process. For example, the local
maximum values of camera FOV between frames 0 and 100 under-
went considerable changes after smoothing. This significant issue
once again highlights the superiority of our DanceCamAnimitor
framework which requires no post-processing to synthesize smooth
dance camera movements.
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Figure 5: Curves Comparison of Camera Parameters. Given
the same music and dance input, we plot the camera curves
of the ground truth and synthesized results of DanceCam-
era3D [51] and our DanceCamAnimator. Compared to Dance-
Camera3D, our method provides more stable movements
during each complete shot. Meanwhile, our method better
preserves the abrupt changes caused by shot switches. If we
ablate the prediction of the tween function values and di-
rectly generate camera movements, the model would fail
to produce smooth shots. This demonstrates the efficacy of
our design in predicting tween function values. Here camera
eye represents the position of the camera in the cartesian
coordinate system.

5.3 Comparison on Keyframe-Level
Controllability

For the comparison of keyframe-level controllability, we employ a
diffusion-based editing operation in EDGE [49] on the reproduced
diffusion-based DanceCamera3D as the baseline method. As shown
in Figure 6, we implement keyframe temporal position control
and keyframe control by replacing stage1, and stage1 & 2 with
the ground truth, respectively. Compared to the ground truth, our
method with keyframe control completely keeps the keyframes
unchanged and synthesizes smooth in-between transitions while
DanceCamera3D fails to preserve the keyframes because diffusion-
based editing operation has a trade-off between keeping conditions
and generating seamless transitions. Meanwhile, given only the
temporal keyframe positions, our framework also synthesizes satis-
fying results with fluent complete shots and abrupt shot switches
leveraging the stage2 & 3 models. The above results all showcase
the keyframe-level controllability of our framework.

DanceCamAnimator
(w/o stage1)

DanceCamAnimator
(w/o stage1 & 2)

DanceCamera3D

Ground Truth

Method Camera Eye
Curves

Camera Rotation
Curves

Camera FOV
Curve

Figure 6: Comparison on Keyframe-level Controllability.
Given keyframe camera poses, our method utilizes the third
stage to predict the in-between camera movements while
maintaining the keyframes unchanged. In contrast, the
diffusion-based method DanceCamera3D [51] fails to pre-
serve the keyframe poses. Here we employ editing operation
from EDGE [49] on the DanceCamera3D to test the control-
lability of the diffusion model. Besides, we use temporal
keyframe positions instead of the first stage of our model at
the bottom line to show the keyframe positions’ controlla-
bility of our model. The keyframe temporal positions given
in this figure are 0, 10, 20, 30, 45, 55, 56, 70, and 71.

5.4 Ablation Study
To demonstrate the efficacy of our design to predict tween function
values we ablate this operation and trained a model directly syn-
thesizing the in-between camera movements. As shown in Figure 5,
DanceCamAnimitor without tween function value prediction pro-
duces more jittering compared to our original design, indicating
that our design of predicting tween function values is effective.

6 CONCLUSION
In this paper, we introduce DanceCamAnimitor, a three-stage 3D
music-dance-to-camera movement synthesis framework that inte-
grates the dance camera-making knowledge of animators from the
animation industry. To equip our model with the capability to syn-
thesize complete camera shots with variable lengths, we propose to
alternately generate keyframes and in-between transitions. With
the design of predicting tween function values rather than directly
producing in-between camera poses, our framework eliminates the
need for unstable post-processing that requires human intervention.
Extensive experiments on the DCM standard dataset demonstrate
the effectiveness and keyframe-level controllability of our method.
We hope DanceCamAnimator can pave a new way for controllable
dance camera synthesis.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

DanceCamAnimator: Keyframe-Based Controllable 3D Dance Camera Synthesis ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] MikuMikuDance. https://sites.google.com/view/vpvp/.
[2] Omid Alemi, Jules Françoise, and Philippe Pasquier. 2017. GrooveNet: Real-

time music-driven dance movement generation using artificial neural networks.
networks 8, 17 (2017), 26.

[3] William Bares, Scott McDermott, Christina Boudreaux, and Somying Thainimit.
2000. Virtual 3D camera composition from frame constraints. In Proceedings of
the eighth ACM international conference on Multimedia. 177–186.

[4] Alexander Berman and Valencia James. 2015. Kinetic imaginations: Exploring
the possibilities of combining AI and dance. In Twenty-fourth international joint
conference on artificial intelligence.

[5] Marc Cardle, Loic Barthe, Stephen Brooks, and Peter Robinson. 2002. Music-
driven motion editing: Local motion transformations guided by music analysis.
In Proceedings 20th Eurographics UK Conference. IEEE, 38–44.

[6] Kang Chen, Zhipeng Tan, Jin Lei, Song-Hai Zhang, Yuan-Chen Guo, Weidong
Zhang, and Shi-Min Hu. 2021. Choreomaster: choreography-oriented music-
driven dance synthesis. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–13.

[7] Marc Christie and Eric Languénou. 2003. A constraint-based approach to camera
path planning. In International Symposium on Smart Graphics. Springer, 172–181.

[8] Marc Christie, Éric Languénou, and Laurent Granvilliers. 2002. Modeling camera
control with constrained hypertubes. In International Conference on Principles
and Practice of Constraint Programming. Springer, 618–632.

[9] Marc Christie and Jean-Marie Normand. 2005. A semantic space partitioning
approach to virtual camera composition. In Computer Graphics Forum, Vol. 24.
Amsterdam: North Holland, 1982-, 247–256.

[10] Marc Christie, Patrick Olivier, and Jean-Marie Normand. 2008. Camera control in
computer graphics. In Computer Graphics Forum, Vol. 27. Wiley Online Library,
2197–2218.

[11] Luka Crnkovic-Friis and Louise Crnkovic-Friis. 2016. Generative choreography
using deep learning. arXiv preprint arXiv:1605.06921 (2016).

[12] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford,
and Ilya Sutskever. 2020. Jukebox: A generative model for music. arXiv preprint
arXiv:2005.00341 (2020).

[13] Inan Evin, Perttu Hämäläinen, and Christian Guckelsberger. 2022. Cine-AI:
Generating Video Game Cutscenes in the Style of Human Directors. Proceedings
of the ACM on Human-Computer Interaction 6, CHI PLAY (2022), 1–23.

[14] Rukun Fan, Songhua Xu, and Weidong Geng. 2011. Example-based automatic
music-driven conventional dance motion synthesis. IEEE transactions on visual-
ization and computer graphics 18, 3 (2011), 501–515.

[15] Quentin Galvane, Christophe Lino, Marc Christie, Julien Fleureau, Fabien Servant,
François-Louis Tariolle, and Philippe Guillotel. 2018. Directing cinematographic
drones. ACM Transactions on Graphics (TOG) 37, 3 (2018), 1–18.

[16] Mirko Gschwindt, Efe Camci, Rogerio Bonatti, Wenshan Wang, Erdal Kayacan,
and Sebastian Scherer. 2019. Can a Robot Become a Movie Director? Learning
Artistic Principles for Aerial Cinematography. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1107–1114. https://doi.org/
10.1109/IROS40897.2019.8967592

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. Advances in neural information processing systems 30
(2017).

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[20] Chong Huang, Yuanjie Dang, Peng Chen, Xin Yang, and Kwang-Ting Cheng. 2022.
One-Shot Imitation Drone Filming of Human Motion Videos. IEEE Transactions
on Pattern Analysis and Machine Intelligence 44, 9 (2022), 5335–5348. https:
//doi.org/10.1109/TPAMI.2021.3067359

[21] Chong Huang, Chuan-En Lin, Zhenyu Yang, Yan Kong, Peng Chen, Xin Yang,
and Kwang-Ting Cheng. 2019. Learning to film from professional human motion
videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 4244–4253.

[22] Chong Huang, Zhenyu Yang, Yan Kong, Peng Chen, Xin Yang, and Kwang-
Ting Tim Cheng. 2019. Learning to Capture a Film-Look Video with a Camera
Drone. In 2019 International Conference on Robotics and Automation (ICRA). 1871–
1877. https://doi.org/10.1109/ICRA.2019.8793915

[23] Ruozi Huang, Huang Hu, Wei Wu, Kei Sawada, Mi Zhang, and Daxin Jiang. 2021.
Dance Revolution: Long-Term Dance Generation with Music via Curriculum
Learning. In International Conference on Learning Representations.

[24] Hongda Jiang, Marc Christie, Xi Wang, Libin Liu, Bin Wang, and Baoquan Chen.
2021. Camera keyframing with style and control. ACM Transactions on Graphics
(TOG) 40, 6 (2021), 1–13.

[25] Hongda Jiang, Bin Wang, Xi Wang, Marc Christie, and Baoquan Chen. 2020.
Example-driven virtual cinematography by learning camera behaviors. ACM
Transactions on Graphics (TOG) 39, 4 (2020), 45–1.

[26] Hongda Jiang, Xi Wang, Marc Christie, Libin Liu, and Baoquan Chen. 2024.
Cinematographic Camera Diffusion Model. arXiv e-prints (2024), arXiv–2402.

[27] Xuekun Jiang, Anyi Rao, Jingbo Wang, Dahua Lin, and Bo Dai. 2024. Cinematic
Behavior Transfer via NeRF-based Differentiable Filming. (2024).

[28] Jinwoo Kim, Heeseok Oh, Seongjean Kim, Hoseok Tong, and Sanghoon Lee. 2022.
A brand new dance partner: Music-conditioned pluralistic dancing controlled by
multiple dance genres. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 3490–3500.

[29] Nhat Le, Tuong Do, Khoa Do, Hien Nguyen, Erman Tjiputra, Quang D Tran,
and Anh Nguyen. 2023. Controllable Group Choreography using Contrastive
Diffusion. ACM Transactions on Graphics (TOG) 42, 6 (2023), 1–14.

[30] Nhat Le, Thang Pham, Tuong Do, Erman Tjiputra, Quang D Tran, and Anh
Nguyen. 2023. Music-Driven Group Choreography. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 8673–8682.

[31] Hsin-Ying Lee, Xiaodong Yang, Ming-Yu Liu, Ting-Chun Wang, Yu-Ding Lu,
Ming-Hsuan Yang, and Jan Kautz. 2019. Dancing to music. Advances in neural
information processing systems 32 (2019).

[32] Minho Lee, Kyogu Lee, and Jaeheung Park. 2013. Music similarity-based approach
to generating dance motion sequence. Multimedia tools and applications 62 (2013),
895–912.

[33] Buyu Li, Yongchi Zhao, Shi Zhelun, and Lu Sheng. 2022. Danceformer: Music con-
ditioned 3d dance generation with parametric motion transformer. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 36. 1272–1279.

[34] Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. 2021. Ai choreog-
rapher: Music conditioned 3d dance generation with aist++. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 13401–13412.

[35] Ronghui Li, Yuxiang Zhang, Yachao Zhang, Hongwen Zhang, Jie Guo, Yan Zhang,
Yebin Liu, and Xiu Li. 2024. Lodge: A Coarse to Fine Diffusion Network for Long
Dance Generation Guided by the Characteristic Dance Primitives. In IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR).

[36] Ronghui Li, Junfan Zhao, Yachao Zhang, Mingyang Su, Zeping Ren, Han Zhang,
Yansong Tang, and Xiu Li. 2023. FineDance: A Fine-grained Choreography
Dataset for 3D Full Body Dance Generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 10234–10243.

[37] Tsai-Yen Li and Chung-Chiang Cheng. 2008. Real-time camera planning for nav-
igation in virtual environments. In Smart Graphics: 9th International Symposium,
SG 2008, Rennes, France, August 27-29, 2008. Proceedings 9. Springer, 118–129.

[38] Adriano Manfrè, Ignazio Infantino, Filippo Vella, and Salvatore Gaglio. 2016. An
automatic system for humanoid dance creation. Biologically Inspired Cognitive
Architectures 15 (2016), 1–9.

[39] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric
Battenberg, and Oriol Nieto. 2015. librosa: Audio and music signal analysis in
python.. In SciPy. 18–24.

[40] Ferda Ofli, Engin Erzin, Yücel Yemez, and A Murat Tekalp. 2011. Learn2dance:
Learning statistical music-to-dance mappings for choreography synthesis. IEEE
Transactions on Multimedia 14, 3 (2011), 747–759.

[41] Jonathan H Pickering. 2002. Intelligent camera planning for computer graphics.
Ph. D. Dissertation. Citeseer.

[42] Anyi Rao, Xuekun Jiang, Yuwei Guo, Linning Xu, Lei Yang, Libiao Jin, Dahua Lin,
and Bo Dai. 2023. Dynamic storyboard generation in an engine-based virtual
environment for video production. In ACM SIGGRAPH 2023 Posters. 1–2.

[43] James Rucks and Nikolaos Katzakis. 2021. CamerAI: Chase Camera in a Dense
Environment using a Proximal Policy Optimization-trained Neural Network. In
2021 IEEE Conference on Games (CoG). IEEE, 1–8.

[44] Li Siyao, Tianpei Gu, Zhitao Yang, Zhengyu Lin, Ziwei Liu, Henghui Ding, Lei
Yang, and Chen Change Loy. 2024. Duolando: Follower gpt with off-policy
reinforcement learning for dance accompaniment. arXiv preprint arXiv:2403.18811
(2024).

[45] Li Siyao, Weijiang Yu, Tianpei Gu, Chunze Lin, Quan Wang, Chen Qian,
Chen Change Loy, and Ziwei Liu. 2022. Bailando: 3d dance generation by actor-
critic gpt with choreographic memory. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 11050–11059.

[46] Li Siyao, Weijiang Yu, Tianpei Gu, Chunze Lin, Quan Wang, Chen Qian,
Chen Change Loy, and Ziwei Liu. 2023. Bailando++: 3D Dance GPT With Chore-
ographic Memory. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2023).

[47] Guofei Sun, Yongkang Wong, Zhiyong Cheng, Mohan S Kankanhalli, Weidong
Geng, and Xiangdong Li. 2020. DeepDance: music-to-dance motion choreography
with adversarial learning. IEEE Transactions on Multimedia 23 (2020), 497–509.

[48] Taoran Tang, Jia Jia, and Hanyang Mao. 2018. Dance with melody: An lstm-
autoencoder approach to music-oriented dance synthesis. In Proceedings of the
26th ACM international conference on Multimedia. 1598–1606.

[49] Jonathan Tseng, Rodrigo Castellon, and Karen Liu. 2023. Edge: Editable dance
generation from music. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 448–458.

[50] Guillermo Valle-Pérez, Gustav Eje Henter, Jonas Beskow, Andre Holzapfel, Pierre-
Yves Oudeyer, and Simon Alexanderson. 2021. Transflower: probabilistic au-
toregressive dance generation with multimodal attention. ACM Transactions on

https://sites.google.com/view/vpvp/
https://doi.org/10.1109/IROS40897.2019.8967592
https://doi.org/10.1109/IROS40897.2019.8967592
https://doi.org/10.1109/TPAMI.2021.3067359
https://doi.org/10.1109/TPAMI.2021.3067359
https://doi.org/10.1109/ICRA.2019.8793915


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Graphics (TOG) 40, 6 (2021), 1–14.
[51] Zixuan Wang, Jia Jia, Shikun Sun, Haozhe Wu, Rong Han, Zhenyu Li, Di Tang,

Jiaqing Zhou, and Jiebo Luo. 2024. DanceCamera3D: 3D Camera Movement
Synthesis with Music and Dance. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition.

[52] Zixuan Wang, Jia Jia, Haozhe Wu, Junliang Xing, Jinghe Cai, Fanbo Meng,
Guowen Chen, and Yanfeng Wang. 2022. GroupDancer: Music to Multi-People
Dance Synthesis with Style Collaboration. In Proceedings of the 30th ACM Inter-
national Conference on Multimedia (MM). 1138–1146.

[53] Shuang Wu, Zhenguang Liu, Shijian Lu, and Li Cheng. 2021. Dual learning
music composition and dance choreography. In Proceedings of the 29th ACM
International Conference on Multimedia. 3746–3754.

[54] Xinyi Wu, Haohong Wang, and Aggelos K Katsaggelos. 2023. The secret of
immersion: actor driven camera movement generation for auto-cinematography.
arXiv preprint arXiv:2303.17041 (2023).

[55] Chun Xie, Isao Hemmi, Hidehiko Shishido, and Itaru Kitahara. 2023. Camera
Motion Generation Method Based on Performer’s Position for Performance
Filming. In 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE).

957–960. https://doi.org/10.1109/GCCE59613.2023.10315539
[56] Siyue Yao, Mingjie Sun, Bingliang Li, Fengyu Yang, Junle Wang, and Ruimao

Zhang. 2023. Dance with You: The Diversity Controllable Dancer Generation
via Diffusion Models. In Proceedings of the 31st ACM International Conference on
Multimedia. 8504–8514.

[57] Zijie Ye, Haozhe Wu, Jia Jia, Yaohua Bu, Wei Chen, Fanbo Meng, and Yanfeng
Wang. 2020. Choreonet: Towards music to dance synthesis with choreographic
action unit. In Proceedings of the 28th ACM International Conference on Multimedia.
744–752.

[58] Zixiao Yu, Enhao Guo, Haohong Wang, and Jian Ren. 2022. Bridging Script
and Animation Utilizing a New Automatic Cinematography Model. In 2022 IEEE
5th International Conference on Multimedia Information Processing and Retrieval
(MIPR). IEEE, 268–273.

[59] Wenlin Zhuang, Congyi Wang, Jinxiang Chai, Yangang Wang, Ming Shao, and
Siyu Xia. 2022. Music2dance: Dancenet for music-driven dance generation.
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM) 18, 2 (2022), 1–21.

https://doi.org/10.1109/GCCE59613.2023.10315539

	Abstract
	1 Introduction
	2 Related works
	2.1 Camera Planning and Control
	2.2 Music to Dance Synthesis

	3 Problem Formulation
	4 Methodology
	4.1 Camera Keyframe Detection Stage
	4.2 Camera Keyframe Synthesis Stage
	4.3 Tween Function Prediction Stage
	4.4 Keyframe-level Controllability

	5 experiments
	5.1 Experiment Setup
	5.2 Comparison to DanceCamera3D
	5.3 Comparison on Keyframe-Level Controllability
	5.4 Ablation Study

	6 conclusion
	References

